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Abstract

We develop the technique of the variational approximation (VA) for solitons in two directions. First, one may have a
physical model which does not admit the usual Lagrangian representation, as some terms were discarded for various reasons.
For instance, the second-harmonic-generation (SHG) model considered here, which includes the Kerr nonlinearity, lacks the
usual Lagrangian representation if one ignores the Kerr nonlinearity of the second-harmonic, as compared to that of the
fundamental. However, we show that, with a natural modification, one may still apply the VA to those seemingly flawed
systems as efficiently as it applies to their fully Lagrangian counterparts. We call such models, that do not admit the usual
Lagrangian representation,semi-Lagrangian systems. Second, we show that, upon adding an infinitesimal tail that does not
vanish at infinity, to a usual soliton ansatz, one can obtain an analytical criterion which (within the framework of VA) gives a
condition for findingembedded solitons (ESs), i.e., isolated truly localized solutions existing inside the continuous spectrum
of the radiation modes. The criterion takes a form of orthogonality of the radiation mode in the infinite tail to the soliton core.
To test the criterion, we have applied it to both the semi-Lagrangian truncated version of the SHG model and to the same
model in its full form. In the former case, the criterion (combined with VA for the soliton proper) yields anexact solution for
the ES. In the latter case, the criterion selects the ES with a relative error≈1%.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

One of the many pioneer contributions by A.C. Newell has been the study of solitary waves (which we will simply
call “solitons” here, in line with currently adopted terminology). These occur not only in integrable models, but
also in many non-integrable nonlinear-wave systems[1,2]. It is toward an improved understanding of solitons in
non-integrable systems, that we present this work, dedicated to Prof. Newell.

In non-integrable models, more complex forms of solitons are found as one considers higher-order systems. An
issue of fundamental importance is to find where, in the space of the soliton parameters, such solutions could exist.
Where this could be is dominantly determined by the model’s linear dispersion relation,ω(k). Typically, dispersion
curves have gaps or partial gaps, which are intervals of the frequency ofω in which the wavenumberk would take
imaginary or complex values. For example, for the nonlinear Schrödinger (NLS) equation, one hasω = Dk2, where
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D is the dispersion coefficient, hencek must be imaginary ifω/D < 0. This is precisely the region where one finds
solitons of the NLS equation.

More complex systems, with several branches of the dispersion relation, may have regions ofω where one
branch gives imaginaryk, while another one gives it real. Inside such a “partial gap”, one typically encounters
“delocalized solitons” (see the book[3] and relevant examples from nonlinear-optical models in Ref.[4]), which
are quasi-solitary waves with non-vanishing oscillatory tails. Such objects, obviously, have an infinite energy, and
therefore are unphysical, except, possibly, in finite-size systems. However, it may occur that the amplitude of the
tail vanishes at some special values ofω. Then, one has a truly localized object at an isolated (discrete) value ofω at
which a real value ofk does exist. Since this value ofω lies inside a continuous part of the spectrum, these objects
are called embedded solitons (ESs). A number of physically meaningful models which support ESs are now known
(see examples of such solitons found in hydrodynamic models in Refs.[5,6], and a short review in Ref.[7]), their
stability (which turns out to besemi-stability) being quite distinct from the stability of ordinary solitary waves[8].

Currently, the only method for locating ESs is to search for them numerically (in a model of a different type,
based on the fifth-order Korteweg–de Vries equation, an approach which makes it possible to identify ES by means
of a perturbation theory was developed in Ref.[6]). One does know that they may be found inside a partial gap of
the dispersion relation, but otherwise one has no analytical tool for locating them (in exceptional cases, exact ES
solutions can be found by guess [8]). The first objective of this paper is to develop an approximate analytical method
for locating ESs. The method is based on the variational approximation (VA; see a recent review of the application
of this technique to solitons in Ref.[9]), which incorporates an amplitude of the infinitesimal tail of the related
delocalized solitons as a key variational parameter. The approach will be tested on two versions of an ES-generating
model introduced in Ref.[8], which combines the second-harmonic-generation (SHG) through quadratic [χ(2)]
nonlinearity, and the usual cubic [χ(3)] nonlinear terms. The difference between the two versions of the model
is that one is a full model (it has the usual Lagrangian representation), while the other one is a truncated model,
wherein, upon assuming that the fundamental-harmonic (FH) field is much stronger than the second-harmonic (SH),
some of the SHχ(3) terms are omitted. The truncated model doesnot admit the usual Lagrangian representation.
However, it was this truncated version of theχ(2) : χ(3) model in which the above-mentioned exact analytic ES
solution was found in Ref.[8]. On the other hand, in the full version of the model, ES solutions could only be found
by means of numerical methods. In this work, we will obtain a natural variational criterion which makes it possible
to distinguish ESs from delocalized solitons in each of these systems. Furthermore, we will demonstrate that, in the
case of the truncated model, this method yields an exact result, and in the full model, a relative error is≈1% in the
prediction of the location of ES (in comparison with numerical results).

As it was mentioned above, due to a missing (omitted) term, the truncated model does not have a “complete”
Lagrangian representation. Namely, it can be obtained from a Lagrangian, but only if one term in it is not subjected
to the variation with respect to the FH field, when deriving the system of the FH and SH equations. Accordingly, the
truncated model does not conserve any Hamiltonian. But it is, nevertheless, a conservative system, as it conserves
the norm of the solution (which is usually called “energy” in nonlinear optics and is different from the Hamiltonian).

As the truncated model does not admit the full Lagrangian representation, it is necessary to work out a special
version of the VA for it, which is another objective of this paper. In fact, this can be done in a very simple way:
after inserting the variational ansatz into the Lagrangian and performing the integration in order to obtain the
corresponding effective Lagrangian (the one which is an explicit function of variational parameters, rather than a
functional depending on the field variables), the above-mentioned special term in the effective Lagrangian should
not be varied with respect to variational parameters that belong to the FH component of the ansatz. Thus, models
similar to the above-mentioned truncated one, even though they cannot be represented in the usual Lagrangian form,
can still be handled by means of VA. Since one cannot freely vary all the fields in the Lagrangian of these systems,
we call themsemi-Lagrangian systems.
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The rest of the paper is organized as follows. InSection 2, we introduce the full and truncated models and the
Lagrangian representations of each. InSection 3, the VA for the semi-Lagrangian case is developed. The general
VA-based analytical condition for identifying ESs (in an approximate form) is obtained inSection 4. Section 5
concludes the paper.

2. The full and truncated models

Following Refs.[8,10], we first introduce the fullχ(2) : χ(3) model:

iuz + 1
2utt + u∗v+ γ1|u|2u+ 4γ2|v|2u = 0, (1)

ivz − 1
2δvtt + qv+ 1

2u
2 + 2γ2(|v|2 + 2|u|2)v = 0, (2)

which is written in the usual “optical” notation, so thatz andt are the propagation distance and reduced time,u and
v the FH and SH fields,−δ is the relative dispersion coefficient at SH,q the SHG mismatch, andγ1,2 are the Kerr
coefficients. In fact, the ratio of the self-phase-modulation (SPM) and cross-phase-modulation (XPM) coefficients
in Eq. (2)is not necessarily 1:2, but this feature of the model is not a crucially important one.

The form ofEqs. (1) and (2)implies that the group-velocity dispersion is anomalous at FH, while at SH it may be
both normal, ifδ > 0, and anomalous, ifδ < 0 (both cases are physically possible). As for the Kerr coefficientsγ1

andγ2, they always have one sign. Most typically, they are positive (corresponding to the self-focusing nonlinearity),
but may be negative too, see a detailed discussion of this point in Ref.[11].

In many cases, the SH field is much weaker than the FH field—for instance, if the mismatch is large. Then,
assuming that|v|2 � |u|2, one may neglect the XPM term in comparison with the SPM one inEq. (1), and the
SPM term in comparison with its XPM counterpart inEq. (1), which leads to thetruncated model,

iuz + 1
2utt + u∗v+ γ1|u|2u = 0, (3)

ivz − 1
2δvtt + qv+ 1

2u
2 + 4γ2|u|2v = 0. (4)

In this work, we are interested in stationary fundamental-soliton solutions, which are looked in the form

u(z, t) = eikzU(t), v(z, t) = e2ikzV(t), (5)

wherek is the FH wavenumber, and real even functionsU(t) andV(t)with a single maximum att = 0 exponentially
decay att → ∞. Note that ordinary (non-embedded) solitons may exist in the regions

0< k < 1
2q if δ > 0, k > max{0, 1

2q} if δ < 0 (6)

(which implies thatqmust be positive for the existence of ordinary solitons ifδ is positive). On the other hand, ESs
may exist in a range ofk which does not overlap with the continuous spectrum in the FH equation,(1) or (3), but
falls into the continuous spectrum of the SH equation,(2) or (4). Thus, ES may exist in the regions (cf.Eq. (6))

k > max{0, 1
2q} if δ > 0, 0< k < 1

2q if δ < 0. (7)

This implies that, in the caseδ < 0, the existence of ESs makes it necessary to have positiveq.
Substituting the expressions(5) into Eqs. (1) and (2), we arrive at a system of ordinary differential equations,

−kU + 1
2U

′′ + UV + γ1U
2 + γ1U

3 + 4γ2V
2U = 0, (8)

−2kV − 1
2δV

′′ + qV + 1
2U

2 + 2γ2(V
2 + 2U2)V = 0, (9)
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where the prime stands for d/dt. Accordingly, the system of stationary equations corresponding to the truncated
model is

−kU + 1
2U

′′ + UV + γ1U
3 = 0, (10)

−2kV − 1
2δV

′′ + qV + 1
2U

2 + 4γ2U
2V = 0. (11)

It is obvious thatEqs. (8) and (9)can be derived from the Lagrangian

L = 1

2

∫ +∞

−∞

[
−kU2 − (2k + q)V 2 − 1

2
(U ′)2 + δ

2
(V ′)2 + U2V + γ1

2
U4 + 4γ2U

2V 2 + γ2V
4
]

dt. (12)

In the case of the truncated system of stationary equations,(10) and (11), one may still obtain this system from
the variational principle, provided we do the following. First, the last term in the integrand inEq. (12)should be
dropped. Second, the next to the last term should only be subjected to varying inV , but not in theU field.

3. The VA for the semi-Lagrangian system

In this section, we focus on the application of VA to the semi-Lagrangian (truncated) system(10) and (11). The
most natural variational ansatz to search for ESs proper (without the tail, which will be considered in the next
section) in this system is based on the following expressions:

U = A sech(
√

2kx)x, V = B sech2(
√

2kx), (13)

where the amplitudesA andB are variational parameters, while the inverse width
√

2k, which isnot to be varied,
has been fixed to match to the linearized form ofEqs. (8) and (9)or (10) and (11)at t → ∞. Substituting the ansatz
(13) into the Lagrangian(12), dropping the last term, and then performing the integration, we find the effective
Lagrangian of the truncated system:

3
√

2kLeff = −4kA2 − 2

[
2

(
1 − 2δ

5

)
k − q

]
B2 + 2A2B + γ1A

4 + 35

5
γ2A

2B2. (14)

As it was said above, in order to go from the full system to its truncated counterpart, one not only has to omit the
last term inEq. (12), but also must avoid varying the term 4γ2U

2V 2 with respect toU. In terms of the effective
Lagrangian(14), this means that, when deriving the variational equations forA andB, one should not vary the
last term of the effective Lagrangian with respect toA. In this case, the variation with respect toA yields a simple
equation which allows one to eliminateB,

B = −γ1A
2 + 2k. (15)

Using this result, the equation produced by varying the Lagrangian with respect toB can be cast in the final form
of a biquadratic equation forA,

32

5
γ1γ2A

4 −
[
1 + 64

5
kγ2 + 2γ1

(
2

(
1 − 2δ

5

)
k − q

)]
A2 + 4k

[
2

(
1 − 2δ

5

)
k − q

]
= 0. (16)

Thus, depending on values of the parameters,Eq. (16)may give up to two different physical solutions. The simplest
non-trivial case (which still allows an ES to exist) is withγ1 = 0, butγ2 �= 0. Then,Eq. (16)yields a single solution,

A2 = 4k[2(5 − 2δ)k − 5q]

5 + 64kγ2
, (17)

which is physical if it givesA2 > 0; the amplitudeB can then be obtained fromEq. (15).



D.J. Kaup, B.A. Malomed / Physica D 184 (2003) 153–161 157

t0 1 2 3 4 5 6 7

U,V

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U

V

Fig. 1. A comparison between the numerical shape (solid curves) of an ordinary (non-embedded) soliton of the semi-Lagrangian (truncated)
system ofequations (10) and (11), as found by the shooting method, and the result (dashed curves) obtained from the modified VA based on
Eqs. (13), (15) and (16). The parameters areq = 1, δ = 1, γ1 = 0, andγ2 = −1/4, and both the numerical and analytical solutions are taken
for k = 1/4.

It should be stressed that, as it was demonstrated in Ref.[8], the ansatz(13) yields exact soliton solutions to
Eqs. (10) and (11)at some uniquely selected values ofk (an expression for it is given inEq. (25)). Depending on the
value of the mismatch parameterq, this exact solution may be either ES or an ordinary soliton. ComparingEqs. (15)
and (16)with that solution, one can easily verify that expressions(15) and (16)are precisely parts of the exact solution.

While the exact solution for the soliton in the truncated model is available at a single value ofk, in the region(6),
where acontinuous family of ordinary solitons is expected to exist, no general exact solution is known. So, to illustrate
the accuracy and reliability of the modified VA for producing approximate solutions to the truncatedequations (10)
and (11), in Fig. 1we display a typical example of a numerically found ordinary soliton in the region 0< k < q/2
(in this example,δ = 1), together with the analytical approximation generated byEqs. (13), (15) and (16).

Looking at the numerical solution inFig. 1, one observes that the SH component goes slightly negative along the
shoulder of the soliton, and then appears to oscillate as it decays. Note that in the region where this behavior of the
SH component is observed,U is not small, and, according toEq. (4), the solution forV in this region should oscillate
indeed. Thus, ordinary solitons in the truncated system may have fine features which are not found in the ESs.

4. An analytical criterion to identify ESs

4.1. General analysis

In the case when the wavenumberk falls into the regions(7), ESs can exist in both the full and truncated models,
i.e.,(1)–(4) [8]. However, except for using the exact ES solutions in the truncated model to guess where ESs might
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exist in its full counterpart, the only known method for locating ESs in the full model was to search for them by
means of direct numerical computations.

Thus, there is a need for an analytical approach to the quest for ESs. Such an approach can be based on VA, if one
assumes that, at values ofk close tokES, at which an ES exists, there also exists a family of delocalized solitons,
with small-amplitude oscillating tails in the SH component that vanish whenk become exactly equal tokES. As it
immediately follows fromEq. (9)or (11), the free oscillating tail of a delocalized soliton, which has an infinitesimal
amplitudeb and arbitrary phase shiftψ, is given by the expression

Vtail = b cos

(√
2

δ
(2k − q)t + ψ

)
, (18)

that neglects the nonlinear terms (henceb is an arbitrary small amplitude). Now, one may add this tail to the ansatz
(13), to produce a more general tailed ansatz,

V(t) = Vsol(t)+ b cos

(√
2

δ
(2k − q)t + ψ

)
, (19)

whereVsol(t) corresponds to the ansatz for the core of the delocalized soliton, andb is considered as an extra
variational parameter.

Thus, a new variational equation,

∂Leff

∂b
= 0, (20)

must be added to the set of equations obtained by varying the effective Lagrangian with respect to other free
parameters, which pertain to the soliton’s core (irrespective of the fact if the system is complete Lagrangian or
semi-Lagrangian). As we are interested in the location of the ES which, by itself, hasb = 0 (no tail), one should
setb = 0 after completing the differentiation inEq. (20). This means that, prior to varying inb, one should only
keep terms inLeff which are linear inb, henceEq. (20)takes the general form

∫ +∞

−∞

[(
δL

δV

)∣∣∣∣
U=Usol(t),V=Vsol(t)

]
cos

(√
2

δ
(2k − q)t + ψ

)
dt = 0 (21)

with δ/δV standing for the variational derivative of the underlying Lagrangian (the one given byEq. (12)).
It is relevant to make some observations here. First, we stress again thatEq. (21)applies equally well to the full

system and to the truncated one, since only the variation in the SH field is involved, while the differences between
the two types of the systems is solely in the variation with respect toU. Second, since the solitons sought for are
even, the expressionδL/δV with V substituted byVsol(t) is also even. HenceEq. (21)amounts to anorthogonality
condition between the infinitesimal tail and the soliton,∫ +∞

−∞

[(
δL

δV

)∣∣∣∣
U=Usol(t),V=Vsol(t)

]
cos

(√
2

δ
(2k − q)t

)
dt = 0. (22)

This consideration also shows that the phase parameterψ in the expression(18) is not important in the limit of
b → 0.

We notice that the above derivation actually circumvents the formal problem of the divergence of the integral
expression(12) for the Lagrangian, when there is a tail which does not vanish as|t| → ∞. The divergence did not
appear since the tail was designed as a solution to the linearized version ofEq. (9)or (11). One can readily verify
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that the tale-induced divergence can also be eliminated in the fully nonlinear case, provided one suitably adjusts the
nonlinear shift of the tail’s frequency.

As concerns the latter issue, the divergence of the integrated Lagrangian is a rather general problem, which
occurs in other contexts, for instance, in the application of the variational method to dark solitons. In those cases,
regularization procedures were proposed that are based on properly justified subtraction of a divergence-generating
term in the Lagrangian density[12].

Thus,Eq. (22)is a general criterion that can be used to locate ES solutions within the framework of VA. In
Eq. (22), we recognize that the variational derivative(δL/δV)|U=Usol,V=Vsol(t) is just the left-hand side (l.h.s.) of the
stationary equation for SH, withU andV taken as per the chosen ansatz for the core of the delocalized soliton.
Another point is that upon applying integration by parts to the second-derivative term inEq. (11), one sees that all
contributions from the linear terms cancel inEq. (22), leaving only the nonlinear terms inEq. (11)to determine this
condition.

4.2. ES in the truncated system

To test the efficiency of the criterion(22), we first apply it to the truncated system. Then, according to what was
said above, the variational derivative inEq. (22)should be replaced by the nonlinear part of l.h.s. ofEq. (11), which
yields∫ +∞

−∞

[
1

2
U2(t)+ 4γ2U

2(t)V(t)

]
cos

(√
2

δ
(2k − q)t

)
dt = 0. (23)

Using the ansatz(13), it is easy to explicitly perform the integration inEq. (23), which finally yields a simple result
(note that the FH amplitude drops out),

4γ2B = − 3δ · k
2k(1 + 2δ)− q

. (24)

Now, combining the above results(15) and (16), which were obtained by means of the VA, with the relation(24)
that locates where the ES must be (and is also based on VA), one can easily verify that this set of three relations is
precisely tantamount to the exact analytical solution for the ES which was found by guess in Ref.[8]. In particular,
an eventual expression for the wavenumber of ES is

kES = 1
2(1 + 2δ)−1[q− 3

2δ(4γ2 + 3δγ1)
−1]. (25)

The fact that, in the case of the semi-Lagrangian truncated system, VA reproduces theexact ES is remarkable,
although the reason for this occurrence is not fully understood (the fact can be understood easily if one knows a
priori that the exact solution is expressed in terms of the first and second powers of sech, as inEq. (13), as in this
case the number of variational equations is equal to the number of free parameters in the corresponding analytical
expressions). We also note that this exact soliton is not always an embedded one, as the wavenumber(25) is not
necessarily restricted to the region(7) in which ES may exist: the wavenumber may instead fall into the region(6),
in which ordinary solitons are to be found. A criterion showing whether the exact soliton is embedded or ordinary
has already been given, for this model, in Ref.[8].

4.3. ES in the full system

The next step is to apply the general ES-selecting criterion(22) to the full system which is based onEqs. (8)
and (9). To this end, we assume that the soliton proper may again be approximated by the ansatz(13). Then,
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substituting the nonlinear part of l.h.s. ofEq. (9)into Eq. (22), we arrive, instead ofEq. (24), at a more complicated
relation,

4γ2B

[
1 + B2

A2

2(8δ+ 1)kES − q

40δ · kES

]
= − 3δ · kES

2kES(1 + 2δ)− q
. (26)

We tested the validity of this relation in the following way: take a particular example of the ES in the full system
that was found in a numerical form in Ref.[8], for whichδ = 1, q = 1, andγ1 = γ2 = −0.05. Borrowing values
of the amplitudesA andB directly from the numerical data, we find thatA = 3.794 andB = 2.735. Substituting
these values intoEq. (26)yieldskES = 0.688, while the numerical value found in Ref.[8] waskES = 0.696. Thus,
the relative error of the criterion(22) for this case is 1.1%.

5. Conclusion

In this work, we have put forward two modifications to the technique of the VA for solitons. First, it may happen
that a physical model does not admit the full Lagrangian representation, as some terms may be missing due to various
reasons. In the case of theχ(2) : χ(3) model considered in this work, this means that one term in the Lagrangian
should not be varied when deriving the equation for the fundamental wave. We demonstrate that the VA can be
applied to suchsemi-Lagrangian systems as efficiently as to their full Lagrangian counterparts. Second, we have
shown that, by the addition of an infinitesimal tail, which does not vanish at infinity, to the usual soliton ansatz, and
demanding, after performing the variation, that the amplitude of the tail be zero, we obtain an approximate analytical
criterion for locating ESs inside a family of delocalized ones, i.e., isolated truly localized solutions existing inside
the continuous spectrum of radiation modes. The criterion takes the form of orthogonality between the radiation
mode contained in the infinitesimal tail and the core of the delocalized soliton. To test the criterion, we have applied
it to both the semi-Lagrangian truncated version of theχ(2) : χ(3) model and to the same model in its full form. In the
former model, the criterion, combined with the VA for the soliton proper, yields a result which completely coincides
with the previously found exact solution for the ES. In the latter model, the criterion predicts the wavenumber
corresponding to the ES with a relative error≈1%.
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