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a b s t r a c t

We study nonlinear dynamics of the kicked particle whose motion is confined by square billiard. The kick
source is considered as localized at the center of a square with central symmetric spatial distribution. It is
found that ensemble averaged energy of the particle diffusively grows as a function of time. This growth is
much more extensive than that of kicked rotor energy. It is shown that momentum transfer distribution
in a kicked billiard is considerably different than that for kicked free particle. Time-dependence of the
ensemble averaged energy for different localizations of the kick source is also explored. It is found that
changing of localization does not lead to crucial changes in the time-dependence of the energy. Also,
escape and transport of particles are studied by considering a kicked open billiard with one and three
holes, respectively. It is found that for the open billiard with one hole the number of (non-interacting)
billiard particles decreases according to exponential law.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Periodically driven dynamical systems play one of the central
roles in classical and quantum chaos theory [1–5]. An important
feature of periodically driven dynamical systems is the chaotiza-
tion of themotion under certain conditions (resonances, exceeding
critical value of the external field strength etc.). This chaotization
leads to the exponential divergence of neighboring trajectories in
the phase space and diffusive growth of the energy of the given
system [1–3].

Comprehensive theoretical [1–5] and experimental [6] study of
the simplest periodically driven systems kicked rotor shows that
for high enough values of the kicking force the average energy
of the system grows linearly in time. Depending on the kicking
strength dynamics of the system can be mixed or chaotic [1–5].

In this paper we study particle motion in closed and open
square billiards in the presence of external periodic perturbation
with the aim to explore the effect of confinement on periodically
driven dynamics. The motion of a particle in confined geometries
is a paradigm for the study of nonlinear dynamics and chaos
in theoretical [5–13] and experimental contexts [14–16] in case
of time-dependent systems. Up to now much progress has
been made in the study of billiards with static boundaries.
Also, classical dynamics of the billiards with time-dependent
boundaries have been extensively studied in the context of Fermi
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acceleration [17–23]. In particular, possibility of Fermi acceleration
in [17], stadium [18] and elliptical [20,21] billiards has been shown.

Dynamics of an unperturbed billiard is governed by the geom-
etry of its boundaries, while a kicked billiard has additional factors
which allows it to manipulate the billiard particle dynamics. Those
are perturbation parameters such as a coupling constant and the
frequency of the kick.

We explore the kicked billiard particle dynamics by calculating
time dependence of the energy both for a single trajectory and en-
semble of the trajectories. In addition, we treat momentum trans-
fer distribution for this system and compare it with that of a kicked
rotor.

Our study shows that depending on the type of the kick poten-
tial, localization and strength of the perturbation force the dynam-
ics can be different. In particular, the motion of the particle can be
localized (trapped) in the kicking area. The ‘lifetime’ of such a trap
depends on the perturbation strength (coupling constant) and ini-
tial energy of the particle.

It is found that the average energy of the kicked particle grows
diffusively as a function of time, as does the kicked rotor average
energy. However, this growth is more rapid than that of kicked
rotor.

Also, we study particle transport in a kicked billiard by consid-
ering open billiards with one and three holes. We explore time-
dependence of the escape rate and transmission and reflection
coefficients. We note that classical dynamics of unperturbed open
billiards have been studied for integrable and chaotic geometries
bymany authors (see, e.g., Refs. [24–30]). In particular, itwas found
that the number of (non-interacting) particles in non-integrable
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open billiard decreases exponentially, while in case of regular bil-
liard it decreases according to a power law [24–26]. In this paper
we extend these studies for the case when non-interacting parti-
cles in an open billiard are subjected to the influence of a delta-
kicking force.

The motivation for the study of periodically driven billiards
is caused by several reasons. In many systems with confinement
(e.g. quantum dots, graphene, MIT bag model) in real situations
a confined system is subjected to the action of external time-
dependent fields. For example, hadrons in quark–gluon plasma can
be considered as a driven confined system. In quantum dots or
in graphene, external time–periodic perturbation can be used for
manipulation by particle transport in these systems.

This paper is organized as follows. In the next section we will
give a formulation of the problem for the kicked square billiard and
its detailed solution. Section 3 extends the results of Section 2 for
the case of a kicked open billiard with one and three holes. The last
section provides some concluding remarks.

2. Kicked billiard vs kicked rotor

In this work, we examine a system consisting of a particle mov-
ing inside a two-dimensional square billiard with an additional
kicking source located at the center of the billiard. The kicking po-
tential (see Fig. 1) is given by

V (x, y, t) =
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
8πρ

a

 −
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where α, T , a and R are the coupling constant, the kicking period,
the side length of the square and the radius of kicking area,
respectively. Furthermore we fix R = a/4. The Hamiltonian of the
system can be written as

H = H0 + V (ρ, t), (2)

withH0 being the Hamiltonian of the particle moving in the square
billiard without any kicking. Since particles move ballistically in
between collision with the billiard boundary as well as in between
kicks, a discrete mapping is used to solve the corresponding
equations of motion. At collisions with the billiard boundary the
particles undergo elastic reflections, whereas if the particles are at
t = nT , n = 1, 2, 3, . . . inside the kicking area, their momenta
changes according to

p⃗′ = p⃗ − ∇⃗V (x, y, t), (3)

where p⃗ and p⃗′ are the momenta just before and right after the
kick respectively. In Fig. 2, the energy E(t) as a function of time
for a typical trajectory is shown. The curve can be decomposed
in characteristic segments, each corresponding to a representative
dynamic of the particle: Firstly, parts with rapid oscillations of
energy can be seen, see the inset of Fig. 2. During such phases,
the particle is trapped for a certain time inside the kicking area
and experiences successive kicks, leading to the typical oscillations
of energy shown in the inset of Fig. 2. Secondly, in the single
vertical lines in the curve of Fig. 2 corresponding to single kicks, the
energy of the particle is either increased or decreased, depending
on where the kick happens. Finally, there are parts of the curve
where the energy remains constant. During such times, the particle
moves outside the kicking area (quasiperiodic orbits) or crosses the
kicking area without getting a kick, the latter means it is in a way
not synchronized with the kicking period.
Fig. 1. (Color online) Three-dimensional plot of the kicking potential for α = 1.0.

Fig. 2. (Color online) Time-dependence of the energy for a typical particle in the
kicked billiard (α = 0.2, T = 0.01). Inset: rapid oscillations of energy, the particle
is trapped for a certain time inside the kicking area.

Fig. 3. (Color online) Distribution of constant energy time intervals. Circles are the
results of direct numerical calculations, the solid line is the linear regression.

To understand the kicked billiard dynamics more deeply we
need to explore distribution, N(t) of the time intervals during
which the energy remains constant, i.e. constant-energy–time
intervals. Fig. 3 presents the plot of such a distribution in double
logarithmic scale obtained using direct numerical computation.
In addition, this figure also compares N(t) with the curve N(t)
obtained from the linear regression. Such a power law (with the
exponent equal to −3) behavior of N(t) can be explained as
follows: appearing constant energy intervals are caused by two
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Fig. 4. Schematic picture.

factors. One of them corresponds to the situation when the billiard
particle moves along the quasiperiodic orbits which initially does
not cross the kicking area. For this case one can obtain the estimate
N(t) ∼ t−1. However, we found that the probability for such
orbits appearing in our system is quite small. Therefore such a
regime of motion does not make a contribution to the above
distribution of constant-energy–time intervals. The second type of
motion corresponds to the abovementioned synchronizedmotion.
It is easy to show that the distribution for the constant energy time
intervals for this case behaves as N(t) ∼ t−3.

To explain this we note that in the synchronized regime billiard
particle returns to its initial position during the kicking period.
If in each initial condition we will shift its initial position to a
infinitesimally small distance δL (see Fig. 4) its final (after one
kicking period) position shifts to the same distance δL becoming
closer to the kicking area. Then time t after which particle reaches
the kicking area can be found from the following relation:

L
δL

=
t
T

(4)

where L is the distance between the particle’s initial position and
the kicking area.

Thus the number of initial conditions is related to the quantity
δL as

N(δL) =

∫ δL

0
ρ(q)d(q) (5)

where ρ is the density of particles.
Since particles are uniformly distributed, ρ depends on q as

ρ(q) = γ q2 (6)

where γ is coefficient of proportionality.
Therefore it follows from Eq. (5) that

N(δL) = γ1(δL)3 (7)

or, combining with Eq. (4) we finally get:

N(t) ∼ N(δL) = γ2t−3. (8)

When considering not only a single trajectory, but rather an
ensemble of particles, a diffusive growth of the ensemble averaged
energy ⟨Eb(t)⟩ (average of 1000 trajectories) can be observed, see
Fig. 5. More precisely, the energy grows linearly (normal diffusion)
with the time t . The proportionality constant is naturally just
the diffusion coefficient Db(α, T ), so that ⟨Eb(t)⟩ = Db(α, T ) ·

t . As indicated, Db depends on the coupling constant α and the
kicking period T .Db increasesmonotonicallywith increasingα and
decreases monotonically with increasing T , see Fig. 7.

It is reasonable to compare the diffusive growth of the ensemble
averaged energy ⟨Eb(t)⟩ = Db(α, T ) · t of the kicked billiard with
the evolution of energy ⟨Er(t)⟩ of the kicked rotor (again with
α being the coupling constant and T being the period between
two successive kicks). From Fig. 5, it can be seen that ⟨Er(t)⟩ =

Dr(α, T ) · t , but with Dr(α, T ) ≪ Db(α, T ), so the energy grows
Fig. 5. Comparison of the time-dependence of the ensemble averaged energy of
the kicked billiard and kicked rotor for α = 5.0, T = 1.0.

Fig. 6. (Color online) The dependence of the diffusion coefficient Db on α and T for
the kicked billiard.

much faster in the case of the kicked billiard. We note that in the
case of the kicked rotor the dynamics is effectively governed by a
single parameterKr = αT only, see e.g [2]. The energy of the kicked
rotor as a function of the dimensionless time n = t/T can than for
Kr & 5 be written as Er(n) = K 2

r /4 · n, so

Dr(α, T ) = Dr(Kr) = K 2
r /4. (9)

In the kicked billiard the situation is different, the dynamics de-
pends on α and T individually, thus there is no simple representa-
tion for Db(α, T ) as in Eq. (9) possible. The dependence of Db(α, T )
on α and T is shown in Fig. 5, whereas Dr(α, T ) is shown in Fig. 6.
The large deviation between Db and Dr becomes immediately clear
when considering the maximum momentum transfer 1Pmax at a
single kick. In the case of the kicked billiard, 1Pmax = 8πα/a,
whereas for the kicked rotor, 1Pmax = α.

The corresponding distributions Nr(1P) and Nb(1P) (1000
initial conditions iterated until t = 106T ) are shown in Figs. 8 and
9 (the subscripts r and b denote the kicked rotor and the kicked
billiard respectively). Clearly, the available range in 1P increases
with the increase of α in the case of the kicked billiard, and for a
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Fig. 7. (Color online) The dependence of the diffusion coefficient Dr on α and T for
the kicked rotor.

Fig. 8. (Color online) Distributions of momentum transfers 1P for the kicked
billiard for α = 5.0 and for T = 1.0.

fixedα this range ismuch larger than in the case of the kicked rotor.
Unlike the Nr(1P), the distribution Nb(1P) has a jump at1P = 0;
this can be explained as follows. The momentum transfer in the
case of the kicked rotor can be found from a standard 2-D map as
1Pr = Kr sin(θ). For the kicked billiard the momentum transfer
can be written as:

1P = |P⃗ ′ − P⃗| = Kb sin(bρ) (10)

where P⃗ and P⃗ ′, which are the momenta before and after the kick,
respectively and b = 8π/a, Kb = bα.

Hence, for the momentum transfer distribution we get

Nb(1P) ∼ N(ρ)


arcsin


1P + 1δP

K


− arcsin


1P
K


. (11)

In the case of the kicked rotor we have Nr(θ) = const, for Kr & 5
(chaotic regime), while for the kicked billiard as it was men-
tioned above, we have equally distributed kick occurrence over
x, y. Therefore, the dependence of this distribution on ρ is given by
N(ρ) = const1 + const2ρ. It follows from the Eq. (10) that 1P = 0
for ρ = 0 and for ρ = a/4. However, the kick numbers at these
two points are not equal, the number of kicks at ρ = a/4 points is
maximal,while forρ = 0 it isminimal; that explains the difference
between the shape of N(1P) in Figs. 8 and 9.

In Fig. 10, the time-dependence of the average energy ⟨E(t)⟩
is plotted for different localizations of the kicking source and
Fig. 9. (Color online) Distributions of momentum transfers 1P for the kicked rotor
for α = 5.0, T = 1.0.

Fig. 10. Time-dependence of the ensemble averaged energy for different
localizations of the center of the kicking source in the billiard (α = 5, T = 1): The
central localization is compared to the case, when the kicking source is shifted to
the left (position of the center at (0.6; 0.5)) andwhen it is shifted along the diagonal
of the billiard (center at (0.6; 0.6)).

compared to the one when the kicking source is located at the
center of the billiard. The shift of the kick source leads to minor
changes in ⟨E(t)⟩ only, so the dynamics are rather robust against
this shift. We tested this for other delocalizations as well, with
similar results, thus these are not shown here.

So far, we have considered the kicked billiard with a potential
which is very similar to the one of the kicked rotor, in particular
with the same minimum and maximum values of the kicking
potential. Despite this, however, the acceleration in the kicked
billiard is much more pronounced compared to the kicked rotor,
which is of course due to the fact that much larger 1P are possible
upon single kicks in the billiard. To make the two systems better
comparable in terms of the momentum transfer, we modify the
potential given in Eq. (1) slightly and obtain:

V (x, y, t) =


αa
8π

α cos

8πρ

a

 −
n

δ(t − nT ) ρ ≤ R

0 ρ > R.
(12)

This potential leads to the samemaximum andminimummomen-
tum transfer as in the kicked rotor. Now, the energy of the kicked
rotor growth faster than the one the kicked billiard, see Fig. 11. This
can be seen also from Fig. 12 where the dependence of the diffu-
sion coefficeint Db on α and T is presented. The reasons are the
following:
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Fig. 11. Comparison of the time-dependence of the ensemble averaged energy of
the kicked billiard and the kicked rotor with α = 5.0, T = 1.0.

Fig. 12. (Color online) The dependence of the diffusion coefficient Db on α and T
for the kicked billiard.

Firstly, in the kicked rotor at every t = nT , n = 1, 2, 3, . . .
the particle experiences a kick, a certain amount of momentum
is transferred. In the kicked billiard this is not the case, a particle
gets a kick only if is at t = nT , n = 1, 2, 3, . . . inside the kicking
area, see Fig. 1. Consequently, particles will experience fewer kicks
during a certain time interval compared to the kicked rotor.

We note that the above considered kicked billiard to some
extent is equivalent to time-dependent Sinai scattering billiard.
However, unlike usual Sinai billiard the scatterer is not static and
switches on periodically. In addition, the kicked billiard collision
with the scatterer is inelastic, while the Sinai billiard collision with
the scatterer is elastic. Here we mention that the time-dependent
Sinai billiard has been studied earlier in the context of Fermi
acceleration [17–19]. However, these studies dealwith the billiards
whose boundaries are time-dependent, while in our system the
boundaries of the billiard are static.

Therefore exploring of such time-dependent billiards requires
solving the classical equations of motion with time-dependent
boundary conditions. Time-dependence in our system is caused by
the kicking source andwe do not need to consider time-dependent
boundary conditions in the equations of motion.

Also, as it was shown, under certain conditions particle motion
in the kicked billiard can be localized (trapping of the particle
into the kicking source) in the kicking area. Such a trapping is not
possible for usual time-dependent Sinai billiards.

Finally, it should be noted that particle acceleration in kicked
billiards can be considered as a kind of Fermi acceleration. In usual
Fermi acceleration the growth of the kinetic energy of a billiard
particle is caused by the motion of billiard walls, while in our case
the energy grows due to the interaction with the kicking source.
The latter mechanism is close to the kicked rotor rather than to the
billiard with time-dependent boundaries. Detailed study of Fermi
acceleration in billiard geometries showed that the acceleration
is possible for non-integrable billiards only [17,18]. However, the
above studied kicked square billiard has integrable boundaries.
Despite this acceleration is possible in this system. This is the
main difference between the above kicked billiard and other time-
dependent billiards (with time-changing boundaries).

3. Open billiard

In this section we study particle transport in a kicked open
billiard. The first systemwewill consider is a square billiard having
one small hole with the size σ . The type and location of the
kicking source is the same as in the previous section. Simulation
of the system is performed for N0 non-interacting particles with
randomly distributed initial positions, (x0, y0), and directions of
the initial velocities, φ. The initial momenta of all particles are
assumed to be equal p0. Classical dynamics of unperturbed open
billiards has been extensively studied both for integrable and
chaotic geometries [24–30]. In particular, it was found in Refs.
[24–26] that for the case of ergodic particle motion in an open
billiard the particle’s escape rate decreases exponentially, while for
a non-chaotic system it decreases according to a power law.

In this work we explore behavior of the escape rate for the
kicked open billiard. The quantity we want to calculate is the
number of particles in a billiard at the time t,N(t). The escape rate
is related to N(t) as

ρ(t) = 1 − N(t)/N0,

where N0 is the number of particles at t = 0. As it was shown
recently [24,25], for chaotic billiards time-dependence of survival
probability can be written as

N(t)
N0

= exp(−ζ t), (13)

where

ζ =
pσ
πS

with p being the absolute value of the billiard particle’s momen-
tum, S is the area of the billiard. Intuitively, one may expect a sim-
ilar decay in the case of a kicked billiard (which is chaotic for an
arbitrary geometry of billiard boundaries). However, in this case
momenta of billiard particles are not equal and p in Eq. (13) can be
replaced by p′, the most probable value of the escape momentum.
In Fig. 13 we compare N(t) computed:

(i) using Eq. (13) and
(ii) by numericalmodeling for three values of the kicking strength,

α = 1.0.

As it can be seen from these plots, increasing of the kicking force
leads to decreasing of N(t) which is equivalent to increasing the
number of escaped particles. Such behavior can be explained by
the fact that according to the previous section, for higher values of
the kicking force the energy of the billiard particles grows linearly
in time. Also, the plots in Fig. 14 show that the results of simulation
are in good agreement with the results obtained using Eq. (13).
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Fig. 13. (Color online) Time-dependence of the number of survived particles N(t)
for the value α = 1.0 and calculated using Eq. (13). σ = 0.001×a,N0 = 106, p0 =

1.0. The inset: Distribution of the escaped particle momenta.

Fig. 14. (Color online) Time-dependence of the number of survived particles N(t)
for different values of the delta-kick strengthα. σ = 0.001×a,N0 = 106, p0 = 1.0.

Fig. 15. (Color online) Kicked square billiard with three holes.

To study transport properties of the kicked billiard system we
consider a square billiard having three holes with attached one
incoming and two outgoing leads Fig. 15. Particles are assumed
to come into the billiard from an incoming lead, while their
escape from the billiard is possible from all three leads. Reflection
coefficient R is calculated as the escape rate from the incoming
lead, while transmission coefficients T1 and T2 are the escape rates
from the outgoing leads. In Fig. 16 these coefficients are plotted as
a function of kicking strength. As it can be seen from these plots, the
reflection coefficient is much smaller compared to transmission
coefficients for the leads 1 and 2. This implies that such a system
Fig. 16. Transmission (T ) and reflection (R) coefficients versus kicking force α.
σ = 0.001 × a,N0 = 106, p0 = 1.0.

can be used as a conductance amplifier. All the coefficients become
α-independent for the values of α larger than 0.5.

4. Summary

In this work we studied classical dynamics of a kicked particle
whose motion is confined in a square billiard. The kick potential is
considered as localized inside the billiard with central symmetric
spatial distribution. It is found that for this type of kick potential
the average energy of the particle as a function of time grows
faster than that of a kicked free particle. This implies that the
above explored system is more attractive from the view point
of acceleration. Unlike the kicked free particle (kicked rotor)
dynamics of the kicked billiard particle depends of perturbation
parameters α and T separately. It also depends on the geometry
of the billiard and the localization of the kick source. In addition,
the case of the kick potential that gives the same maximum and
minimumvalues ofmomentum transfer as those for kicked rotor is
considered. It is found that in this system the acceleration is much
weaker compared to the first system and even compared to kicked
rotor.

Also,we have studied particle transport in a kicked open billiard
with one and three holes. In particular, we calculated escape rate,
transmission and reflection coefficients. The latter quantities are
calculated for a billiardwith one incoming and two outgoing holes.
Exponential decay (i.e., decreasing the number of billiard particle
according to exponential law) of the system is found for the case
of a one-hole open billiard. It is shown for such a billiard that
increasing of the kicking force leads to a rapid decay of the system.
Transmission and reflection probabilities are studied for the case
of a kicked billiard with three holes. For this system the injection
of particles into the billiard occurs from one hole, while the escape
of particles occurs from all three holes. It is shown that for such
a system transmission and reflection coefficients depend on the
kick strength, α until we increase α up to certain value. Further
increasing of α does not lead to changes in T and R.

Finally, we note that the above considered kicked billiard is a
kind of time-dependent billiards whose dynamics are completely
different than that of static billiards. Recently billiards with time-
dependent boundaries have been extensively studied [17–23] in
the context of Fermi acceleration. In such billiards the dynamics is
governed by the time-changing law of the boundaries. This time-
dependence requires solving of classical equations of motion with
time-dependent boundary conditions. Unlike these billiards, the
kicked billiard is perturbed by the kicking source located inside
the billiard and the walls of the billiard are static. This fact causes
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the main difference in the dynamics of the kicked billiards and the
billiards with moving walls.

The importance of the above study is caused by its perspective
relevance to the particle transport in various mesoscopic systems
(e.g. as quantum dots, ratchets, nanotubes etc.). A time-dependent
external field can be used in these systems as an additional tool for
manipulating by particle dynamics and transport. In this context an
important issue should be the extension of the above study for the
case of a corresponding quantum system. Such a study is currently
in progress.
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