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a b s t r a c t

The aim of this work is to establish an instability study for stationary kink and antikink/kink profiles
solutions for the sine–Gordon equation on a metric graph with a structure represented by a Y-junction
so-called a Josephson tricrystal junction. By considering boundary conditions at the graph-vertex of
δ′-interaction type, it is shown that kink profiles which are continuous at the vertex, as well as anti-
kink/kink profiles possibly discontinuous at the vertex, are linearly (and nonlinearly) unstable. The
extension theory of symmetric operators, Sturm–Liouville oscillation results and analytic perturbation
theory of operators are fundamental ingredients in the stability analysis. The local well-posedness of
the sine–Gordon model in H1(Y)×L2(Y) is also established. The theory developed in this investigation
has prospects for the study of the (in)-stability of stationary wave solutions of other configurations
for kink-solitons profiles.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear dispersive models on quantum star-shaped graphs
quantum graphs, henceforth) arise as simplifications for wave
ropagation, for instance, in quasi one-dimensional (e.g. meso-
r nano-scaled) systems that look like a thin neighborhood of a
raph. We recall that a star-shaped metric graph, G, is a structure
epresented by a finite or countable edges attached to a common
ertex, ν = 0, having each edge identified with a copy of the half-

line, (−∞, 0) or (0,∞) (see Fig. 1). Hence, a quantum star-shaped
metric graph, G, is a star-shaped metric graph with a linear
Hamiltonian operator (for example, a Schrödinger-like operator)
suitably defined on functions which are supported on the edges.

Quantum graphs have been used to describe a variety of phys-
ical problems and applications, for instance, condensed matter,
Y-Josephson junction networks, polymers, optics, neuroscience,
DNA chains, blood pressure waves in large arteries, or in shallow
water models describing a fluid networks (see [1–5] and the
many references therein). Recently, they have attracted much
attention in the context of soliton transport in networks and
branched structures since wave dynamics in networks can be
modeled by nonlinear evolution equations (see, e.g., [6–14]).
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E-mail addresses: angulo@ime.usp.br (J.A. Pava),
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The present study focuses on the dynamics of the one-
dimensional sine–Gordon equation,

utt − c2uxx + sin u = 0, (1.1)

posed on a metric graph. The sine–Gordon model appears in a
great variety of physical and biological models. For example, it
has been used to describe the magnetic flux in a long Josephson
line in superconductor theory [15–17], mechanical oscillations of
a nonlinear pendulum [18,19] and the dynamics of a crystal lat-
tice near a dislocation [20]. Recently, soliton solutions to Eq. (1.1)
have been used as simplified models of scalar gravitational fields
in general relativity theory [21,22] and of oscillations describing
the dynamics of DNA chains [23,24] in the context of the solitons
in DNA hypothesis [25]. In addition, the sine–Gordon equation
(1.1) underlies many remarkable mathematical features such as
a Hamiltonian structure [26], complete integrability [27,28] and
the existence of localized solutions (solitons) [29,30].

In recent contributions (cf. [10,11]), we performed the first
rigorous analytical studies of the stability properties of stationary
soliton solutions of kink and/or anti-kink profiles to the sine–
Gordon equation posed on a Y-junction graph. There exist two
main types of Y-junctions. A Y-junction of the first type (or type
I) consists of one incoming (or parent) edge, E1 = (−∞, 0),
meeting at one single vertex at the origin, ν = 0, with other
two outgoing (children) edges, Ej = (0,∞), j = 2, 3. The second
type (or Y-junction of type II) resembles more a starred structure

and consists of three identical edges of the form Ej = (0,∞),
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Fig. 1. Panel (a) shows a Y-junction of the first type with E1 = (−∞, 0) and Ej = (0,∞), j = 2, 3, whereas panel (b) shows a Y-junction of the
econd type (star graph) with Ej = (0,∞), 1 ≦ j ≦ 3.
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≦ j ≦ 3. See Fig. 1(b) for an illustration. Junctions of type I
re more common in unidirectional fluid flow models (see, for
xample, [31]). The junctions of the second type (which belong
o the star graph class) are often referred as Josephson tricrystal
unctions and are common in network of transmission lines (see,
or instance, [13,32,33]). The distinction between the two types
f Y-junctions is mainly historical.
Our work focuses on the sine–Gordon model posed on a Y-

ricrystal junction, more precisely, on the equations

2
t uj−c2j ∂

2
x uj+sin uj = 0, x ∈ Ej = (0,∞), t > 0, 1 ≦ j ≦ 3,

(1.2)

here uj = uj(x, t). It is assumed that the characteristic speed
on each edge Ej is constant and positive, cj > 0, without loss of
enerality.
Posing the sine–Gordon equation on a metric graph comes

ut naturally from practical applications. Indeed, in the context
f superconductor theory, the sine–Gordon equation on a metric
raph arises as a model for coupling of two or more Joseph-
on junctions in a network. A Josephson junction is a quantum
echanical structure that is made by two superconducting elec-

rodes separated by a barrier (the junction), thin enough to allow
oupling of the wave functions of electrons for the two supercon-
uctors [34]. After appropriate normalizations, it can be shown
hat the phase difference u (also known as order parameter)
of the two wave functions satisfies the sine–Gordon equation
(1.1) [15,34]. Coupling three junctions at one common vertex, the
so called tricrystal junction, can be regarded (and fabricated) as
a probe of the order parameter symmetry of high temperature
superconductors (cf. [35,36]). Physically coupling three otherwise
independent long Josephson junctions, Y = ∪

3
j=1Ej, together at

one common vertex, was first proposed by Nakajima et al. [37,38]
as a prototype for logic circuits.

What is more crucial in the analysis on quantum graphs is
the choice of boundary conditions, mainly because the transition
rules at the vertex completely determine the dynamics of the PDE
model on the graph. For the sine–Gordon equation in Y-junctions,
previous studies have basically (and almost exclusively) consid-
ered two types of boundary conditions: interactions of δ -type
(continuity of the wave functions plus a law of Kirchhoff-type for
the fluxes at the vertex, see [3,10,39]) and of δ′-type (continu-
ity of the derivatives plus a Kirchhoff law for the self-induced
magnetic flux). Since Josephson models arise in the description of
electromagnetic flux, interactions of δ′-type have received more
attention (see, for example, [11,13,32,37,38,40]). Thus, since the
surface current density should be the same in all three films at
2

the vertex, Nakajima et al. [37,38] (see also [32,40]) impose the
condition

c1∂xu1|x=0 = c2∂xu2|x=0 = c3∂xu3|x=0, (1.3)

expressing that the magnetic field, which is proportional to the
derivative of phase difference, should be continuous at the inter-
section. Moreover, the magnetic flux computed along an infinites-
imal small contour encircling the origin (vertex) must vanish,
that is, the total change of the gauge invariant phase difference
must be zero [14,32]. This leads to the Kirchhoff-type of boundary
condition

3∑
j=1

cjuj(0+) = 0. (1.4)

he interaction conditions (1.3)–(1.4) are known as boundary
onditions of δ′-type: they express continuity of the fluxes (deriva-
ives) plus a Kirchhoff-type rule for the self-induced magnetic
lux.

Motivated by physical applications, the purpose of the present
aper is to study the stability of particular stationary solutions to
he sine–Gordon equation seen as a first order system posed on
Y-tricrystal junction, namely, the system{
∂tuj = vj

∂tvj = c2j ∂
2
x uj − sin uj,

x ∈ Ej = (0,∞), t > 0, 1 ≦ j ≦ 3.

(1.5)

As far as we know, there is no rigorous analytical study of
he stability of stationary solutions of type kink and/or anti-kink
o the vectorial sine–Gordon model (1.5) on a tricrystal junction
ith boundary conditions of δ′-interaction type available in the

iterature (see Angulo and Plaza [11] for related results). The sta-
ility of these static configurations is an important property from
oth the mathematical and the physical points of view. Stability
an predict whether a particular state can be observed in ex-
eriments or not. Unstable configurations are rapidly dominated
y dispersion, drift, or by other interactions depending on the
ynamics, and they are practically undetectable in applications.
For tricrystal junctions we will study stationary solutions with

kink type structure. The latter have the form uj(x, t) = ϕj(x),
j(x, t) = 0, for all j = 1, 2, 3, and x ∈ Ej, t > 0, in (1.5), where

each of the profile functions ϕj satisfies the equation

− c2ϕ′′
+ sinϕ = 0, (1.6)
j j j
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n each edge Ej = (0,∞) and for all j, as well as the boundary
conditions of δ′-type, at the vertex ν = 0:

c1ϕ′

1(0+) = c2ϕ′

2(0+) = c3ϕ′

3(0+),
3∑

j=1

cjϕj(0+) = γ c1ϕ′

1(0+).
(1.7)

hese conditions depend upon the real parameter γ , whose range
ill depend of the specific profile (ϕj) to be found. Therefore, the
alue γ ∈ R is part of the physical parameters that determine the
odel (such as the speeds cj, for instance). Instead of adopting ad
oc boundary conditions, we consider a parametrized family of
ransition rules covering a wide range of applications and which,
or the particular value γ = 0, include the Kirchhoff condition
1.4) previously studied in the literature. Our analysis focuses
n two particular class of solutions of the sine–Gordon equa-
ion known as kink and anti-kink (also referred to as topological
olitons) [18,29,30].
Initially, we look at the particular family of solutions with the

ame kink-type structure with cj > 0,

j(x) = 4 arctan
(
e−(x−bj)/cj

)
, x ∈ (0,∞), j = 1, 2, 3, (1.8)

here the constants bj are determined by the boundary condi-
ions (1.7). The family satisfies as well

j(+∞) = 0, j = 1, 2, 3, (1.9)

nd Φ = (ϕj)3j=1 ∈ H2(Y) (see definition of the Sobolev space
2(Y) on a Y-junction graph in the Notation section below).
ur second class of solutions are the anti-kink/kink type soliton,
amely, profiles having the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ1(x) = 4 arctan

(
e(x−a1)/c1

)
, x ∈ (0,∞),

limx→+∞ ϕ1(x) = 2π,

ϕj(x) = 4 arctan
(
e(x−aj)/cj

)
− 2π, x ∈ (0,∞),

limx→+∞ ϕj(x) = 0 j = 2, 3,

(1.10)

where each aj is a constant determined by the boundary condi-
tions (1.7). Expression in (1.10) is so-called 2π-kink because the
total Josephson phase is 2π when one circles the branch point at
large distances, i.e.,

∑3
j=1 ϕj(+∞) = 2π . We have left open the

tability study of other Josephson configurations systems, such as
tricrystal junction with a π-kink, φ1(x) = 4 arctan

(
e(x−a1)/c1

)
π , φj(x) = 4 arctan

(
e(x−aj)/cj

)
− 2π , j = 2, 3. This stability

analysis is also important for experimentalists since these net-
work systems constitute a large opportunity for applications in
high-performance computers (see [13] and references therein).

In the forthcoming analysis we establish the existence of two
smooth mapping of stationary profiles for (1.5), the first one λ ∈

(−∞,−
∑3

j=1 cj) → Πλ,δ′ := (ϕ1, ϕ2, ϕ3, 0, 0, 0) ∈ H2(Y)× L2(Y),
ith ϕj = ϕj,bj(λ) defined in (1.8), and the second one Z ∈

(−∞,∞) → ΦZ,δ′ := (ϕ1, ϕ2, ϕ3, 0, 0, 0) ∈ Z(Y) × L2(Y), with
j = ϕj,aj(Z) defined in (1.10), and both families satisfying the
δ′-type interaction condition in (1.7). Here, we have used the
notation Z(Y) := H2

loc(−∞, 0) × H2(0,∞) × H2(0,∞).
The main linear instability results of this manuscript are the

following,

Theorem 1.1. Let λ ∈ (−∞,−
∑3

j=1 cj) and consider the smooth
family of stationary profiles λ ↦→ Πλ,δ′ , which, in addition, satisfy
the continuity condition at the vertex, more precisely, ϕ1(0+) =

ϕ2(0+) = ϕ3(0+). Then Πλ,δ′ is linear and nonlinearly unstable for
the sine–Gordon model (2.1) on a tricrystal junction in the following
cases:

π
∑3 c ,−

∑3 c ) and c > 0,
(1) for λ ∈ (− 2 j=1 j j=1 j i

3

(2) for λ ∈ (−∞,− π
2

∑3
j=1 cj] and c1 = c2 = c3.

Theorem 1.2. Let c1 = c2 = c3, Z ∈ (−∞,+∞), and the smooth
family of stationary anti-kink/kink profiles Z → ΦZ,δ′ determined
above. Then ΦZ,δ′ is spectrally unstable for the sine–Gordon model
(1.5) on a tricrystal junction.

We refer the reader to Remarks 3.6 and 3.12 for comments on
the cases where the constants cj are not all equal in the Theorems
above.

In our stability analysis below, the family of linearized op-
erators around the stationary profiles plays a fundamental role.
These operators are characterized by the following formal
Schrödinger diagonal matrix operators,

Wv =

((
−c2j

d2

dx2
vj + cos(ϕj)vj

)
δj,k

)
, ł1 ≦ j, k ≦ 3, v = (vj)3j=1,

(1.11)

where δj,k denotes the Kronecker symbol), and which become
elf-adjoint operators on domains with δ′-type interaction at the
ertex ν = 0,

(W) =

{
v = (vj)3j=1 ∈ H2(Y) : c1v′

1(0+) = c2v′

2(0+)

= c3v′

3(0+),
3∑

j=1

cjvj(0+) = γ c1v′

1(0+)
}
, (1.12)

ith γ ∈ R. It is to be observed that the particular family (1.8) of
ink-profile stationary solutions under consideration is such that
ϕj)3j=1 ∈ D(W) in view that they satisfy the boundary conditions
1.7) with γ ≡ λ ∈ (−∞,− π

2

∑3
j=1 cj].

In Section 2 we establish a general instability criterion for
static solutions for the sine–Gordon model (1.5) on a Y-junction.
The reader can find this result in Theorem 2.4. It essentially
provides sufficient conditions on the flow of the semigroup gen-
erated by the linearization around the stationary solutions (see
(2.7)), for the existence of a pair of positive/negative real eigen-
values of this linearization, which depend of the Morse index for
the associated self-adjoint operator (W,D(W)) (see assumptions
(S1)−(S2)−(S3) in the end of Section 2). The proof of Theorems 1.1
nd 1.2 follow as an application of Theorem 2.4. It is to be
bserved that this instability criterion is very versatile, as it can
e applied to different interactions at the vertex, such as the δ-

type (see [10]). Moreover, we believe that for other metric graph
configurations for the sine–Gordon model, such as tree graphs
(see [33]), our instability criterion can be a useful tool in the study
of stability properties of stationary profiles.

The structure of the paper is the following: in Section 2, we
review the general instability criterion for stationary solutions for
the sine–Gordon model (1.5) on a Y-junction developed in [10]
(see Theorem 2.4; see also [41]). The Section 3.1 is devoted
to develop the instability theory of kink-profiles and we show
Theorem 1.1. A special space is defined in order to analyze the
Cauchy problem in H1(Y) × L2(Y). Section 3.2 is devoted to the
roof of Theorem 1.2. By convenience of the reader and by the
ake of completeness we establish in the Appendix some results
f the extension theory of symmetric operators used in the body
f the manuscript.

n notation

For any −∞ ≤ a < b ≤ ∞, we denote by L2(a, b) the Hilbert
pace equipped with the inner product (u, v) =

∫ b
a u(x)v(x)dx. By

Hn(a, b) we denote the classical Sobolev spaces on (a, b) ⊆ R
with the usual norm. We denote by Y the junction of type II



J.A. Pava and R.G. Plaza Physica D 427 (2021) 133020

p
a
L

L

a
H
v

⟨

D
d
B
a
H
a
o
m

2
m

v

w

w
u

J

F

a
d

T

w

g
e
e

N
w

v

t
(

v

w

L

s
f

D
b
J
Υ

R
r
u
a
s
a
Υ

u

t
p
[
d

D
t
s
t
t
s

arametrized by the edges Ej = (0,∞), j = 1, 2, 3, attached to
common vertex ν = 0. On the graph Y we define the classical

p-spaces
p(Y) = Lp(0,+∞) ⊕ Lp(0,+∞) ⊕ Lp(0,+∞), p > 1,

nd Sobolev-spaces Hm(Y) = Hm(0,+∞) ⊕ Hm(0,+∞) ⊕
m(0,+∞), m ∈ N, with the natural norms. Also, for u = (uj)3j=1,
= (vj)3j=1 ∈ L2(Y), the inner product is defined by

u, v⟩ =

3∑
j=1

∫
∞

0
uj(x)vj(x) dx

epending on the context we will use the following notations for
ifferent objects. By ∥ ·∥ we denote the norm in L2(R) or in L2(Y).
y ∥ · ∥p we denote the norm in Lp(R) or in Lp(Y). Finally, if A is
closed, densely defined symmetric operator in a Hilbert space
then its domain is denoted by D(A), the deficiency indices of A

re denoted by n±(A) := dim ker(A∗
∓ iI), where A∗ is the adjoint

perator of A, and the number of negative eigenvalues counting
ultiplicities (or Morse index) of A is denoted by n(A).

. Preliminaries: Linear instability criterion for sine–Gordon
odel on a tricrystal junction

We start our study by recasting the equations in (1.5) in the
ectorial form

t = JEw + F (w) (2.1)

here w = (u, v)⊤, with u = (u1, u2, u3)⊤, v = (v1, v2, v3)⊤,
j, vj : Ej → R, 1 ≦ j ≦ 3,

=

(
0 I3

−I3 0

)
, E =

(
T 0
0 I3

)
,

(w) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

− sin(u1)
− sin(u2)
− sin(u3)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (2.2)

nd where I3 denotes the identity matrix of order 3 and T is the
iagonal-matrix linear operator

=

((
−c2j

d2

dx2

)
δj,k

)
, ł1 ≦ j, k ≦ 3. (2.3)

For the Y-junction being a tricrystal junction, we will use
the δ′-interaction domain for Tγ ≡ T given by (1.12), namely,
D(Tγ ) = D(W):

D(Tγ ) := {(vj)3j=1 ∈ H2(Y) : c1v′

1(0+) = c2v′

2(0+) = c3v′

3(0+),
3∑

j=1

cjvj(0+) = γ c1v′

1(0+)}, (2.4)

ith γ ∈ R (see Proposition 3.1).
In the sequel, we review the linear instability criterion devel-

oped in [10] (see also [41]). Although the stability analysis in [10]
pertains to interactions of δ-type at the vertex, it is important to
note that the criterion proved in that references also applies to
any type of stationary solutions independently of the boundary
conditions under consideration and, therefore, it can be used
to study the present configurations with boundary rules at the
vertex of δ′-interaction type, or even to other types of stationary
solutions to the sine–Gordon equation such as anti-kinks, for
instance. In addition, the criterion applies to both the Y-junction
of type I (see Fig. 1) and of type II (see Fig. 1(b)).
4

Let Y be a tricrystal junction. Let us suppose that JE on a
domain denoted as D(JE) ⊂ H1(Y) × L2(Y) is the infinitesimal
enerator of a C0-semigroup on H1(Y) × L2(Y) and that there
xists a stationary solution Υ = (ζ1, ζ2, ζ3, 0, 0, 0) ∈ D(JE). Thus,
very component ζj satisfies the equation

− c2j ζ
′′

j + sin(ζj) = 0, j = 1, 2, 3. (2.5)

ow, we suppose that w satisfies formally equality in (2.1) and
e define

≡ w − Υ , (2.6)

hen, from (2.5) we obtain the following linearized system for
2.1) around Φ = (ζj)3j=1,

t = JEv, (2.7)

ith E being the 6 × 6 diagonal-matrix E =

(
L 0
0 I3

)
, and

=

((
−c2j

d2

dx2
+ cos(ζj)

)
δj,k

)
, 1 ≦ j, k ≦ 3. (2.8)

We point out the equality JE = JE + Z , with

Z =

(
0 0(

− cos(ζj) δj,k
)

0

)
(2.9)

being a bounded operator on H1(Y) × L2(Y). This implies that JE
also generates a C0-semigroup on H1(Y) × L2(Y) (see Pazy [42]).

The linear instability criterion below provides sufficient con-
ditions for the trivial solution v ≡ 0 to be unstable by the
linear flow of (2.7). More precisely, it underlies the existence of a
growing mode solution to (2.7) of the form v = eµtΨ and Reµ > 0.
To find it, one needs to solve the formal system

JEΨ = µΨ , (2.10)

with Ψ ∈ D(JE). If we denote by σ (JE) = σpt(JE) ∪ σess(JE) the
pectrum of JE (namely, µ ∈ σpt(JE) if µ is isolated and with
inite multiplicity) then we have the following

efinition 2.1. The stationary vector solution Υ ∈ D(E) is said to
e spectrally stable for model sine–Gordon (2.1) if the spectrum of
E , σ (JE), satisfies σ (JE) ⊂ iR. Otherwise, the stationary solution

∈ D(E) is said to be spectrally unstable.

emark 2.2. It is well-known that σpt(JE) is symmetric with
espect to both the real and imaginary axes and σess(JE) ⊂ iR
nder the assumption that J is skew-symmetric and that E is self-
djoint (by supposing, for instance, Assumption (S3) below for L;
ee [43, Lemma 5.6 and Theorem 5.8]). These cases on J and E
re considered in the theory. Hence, it is equivalent to say that

∈ D(E) is spectrally stable if σpt(JE) ⊂ iR, and it is spectrally
nstable if σpt(JE) contains a point µ with Reµ > 0.

It is widely known that the spectral instability of a specific
raveling wave solution of an evolution type model is a key
rerequisite to show their nonlinear instability property (see
43–45] and the references therein). Thus we have the following
efinition.

efinition 2.3. The stationary vector solution Υ ∈ D(E) is said
o be nonlinearly unstable in X ≡ H1(Y) × L2(Y)-norm for model
ine–Gordon (2.1) if there is ϵ > 0 such that for every δ > 0
here exist an initial data w0 with ∥Υ −w0∥X < δ and an instant
0 = t0(w0), such that ∥w(t0) − Υ ∥X > ϵ, where w = w(t) is the
olution of the sine–Gordon model with initial data w(0) = w .
0
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From (2.10), the eigenvalue problem to solve is now reduced
to the abstract problem

JEΨ = µΨ , Reµ > 0, Ψ ∈ D(E). (2.11)

Next, we establish our theoretical framework and assumptions
for obtaining a nontrivial solution to problem in (2.11):

(S1) JE is the generator of a C0-semigroup {S(t)}t≧0.
(S2) Let L be the matrix-operator in (2.8) defined on a domain

D(L) ⊂ L2(Y) on which L is self-adjoint.
(S3) Suppose L : D(L) → L2(Y) is invertible with Morse index

n(L) = 1 and such that σ (L) = {λ0}∪J0 with J0 ⊂ [r0,+∞),
for r0 > 0, and λ0 < 0,

The criterion for linear instability of the trivial solution v ≡ 0
of (2.7) reads precisely as follows (cf. [10]).

Theorem 2.4 (Linear Instability Criterion). Suppose the assumptions
(S1) - (S3) hold. Then the operator JE has a real positive and a real
negative eigenvalue.

Proof. See [10,41]. □

3. Instability of stationary solutions for the sine–Gordon equa-
tion with δ′-interaction on a tricrystal junction

In this section we study the stability of stationary solutions
determined by a δ′-interaction type at the vertex ν = 0 of a
tricrystal junction. First we study the kink-profile type in (1.8)–
(1.9) and also the local well-posedness problem associated to
(2.1). Next, we apply the linear instability criterion (Theorem 2.4)
to prove that the family of stationary solutions (1.8) are linearly
(and nonlinearly) unstable (Theorem 1.1). Our second focus goes
to the study of the anti-kink-profile type in (1.10) and similarly as
in the former profile case we establish the necessary ingredients
for obtaining Theorem 1.2.

3.1. Kink-profile’s instability on a tricrystal junction

We start our stability study for the kink-profile type in (1.8)–
(1.9) and so our first focus is dedicated to the Cauchy problem
associated to the sine–Gordon model in (2.1). As this study is not
completely standard in the case of metric graphs we provide the
new ingredients that arise.

3.1.1. Cauchy Problem in H1(Y) × L2(Y)
In this subsection we establish the local well-posedness in

H1(Y)×L2(Y) of the sine–Gordon equation on a tricrystal junction
(section §2 in [10]). We start with the following result from
the extension theory. The proof follows the same strategy as in
Proposition A.6 and Theorem 3.1 in Angulo and Plaza [11] (see
Proposition A.4 in the Appendix) and we omit it.

Proposition 3.1. Consider the closed symmetric operator (T ,D(T ))
densely defined on L2(Y), with Y being a tricrystal junction, by

T =

((
−c2j

d2

dx2

)
δj,k

)
, 1 ≦ j, k ≦ 3,

D(T ) =

{
(vj)3j=1 ∈ H2(Y) :c1v′

1(0+)=c2v′

2(0+)=c3v′

3(0+)=0,

3∑
j=1

cjvj(0+) = 0
}
.

(3.1)

ere cj ̸= 0, 1 ≦ j ≦ 3, and δj,k is the Kronecker symbol. Then, the
eficiency indices are n±(T ) = 1. Therefore, we have that all the self-
djoint extensions of (T ,D(T )) are given by the one-parameter family
Tγ ,D(Tγ )), γ ∈ R, with Tγ ≡ T and D(Tγ ) defined by

(T ) = {(u )3 ∈ H2(Y) : c u′ (0+) = c u′ (0+) = c u′ (0+),
γ j j=1 1 1 2 2 3 3

5

3∑
j=1

cjuj(0+) = γ c1u′

1(0+)}. (3.2)

Moreover, the spectrum of the family of self-adjoint operators (Tγ ,D
(Tγ )) satisfies σess(Tγ ) = [0,+∞) for every γ ̸= 0. For γ < 0, Tγ
has precisely one negative simple eigenvalue. If γ > 0 then Tγ has no
eigenvalues (see [8]).

Theorem 3.2. Let Y = (0,+∞) ∪ (0,+∞) ∪ (0,+∞). For any
Ψ ∈ H1(Y) × L2(Y) there exists T > 0 such that the sine–Gordon
equation (2.1) has a unique solution w ∈ C([0, T ];H1(Y) × L2(Y))
satisfyingw(0) = Ψ . For each T0 ∈ (0, T ) the mapping data-solution

Ψ ∈ H1(Y) × L2(Y) → w ∈ C([0, T0];H1(Y) × L2(Y)), (3.3)

is at least of class C2.

Proof. By applying the same strategy as in [10] (Theorems 2.2,
2.5 and 2.7) and [11] (Theorem 3.2), we have the following:

(1) Consider the linear operators J and E defined in (2.2) with
(Tγ ,D(Tγ )) defined in Proposition 3.1. Then, A ≡ JE with
D(A) = D(Tγ ) × H1(Y) is the infinitesimal generator of a
C0-semigroup on X(Y) ≡ H1(Y) × L2(Y).

(2) By using the contraction mapping principle (Banach fixed
point theorem), we obtain the local well-posedness result
for the sine–Gordon equation (2.1) on X(Y). We will give
the sketch of the proof for convenience of the reader. Con-
sider the mapping JΨ : C([0, T ] : X(Y)) −→ C([0, T ]; X(Y))
given by

JΨ [w](t) = etAΨ +

∫ t

0
e(t−s)AF (w(s))ds,

where etA is the C0-semigroup generated by A. One needs
to show that the mapping JΨ is well-defined. We note
immediately that the nonlinearity satisfies for w = (u, v) ∈

X(Y) that F (w) ∈ X(Y) with ∥F (w)∥X(Y) ≦ ∥u∥L2(Y) ≦
∥w∥X(Y). Thus we obtain for t ∈ [0, T ]

∥JΨ [w](t)∥X(Y)

≤ Meγ T∥Ψ ∥X(Y) +
M
γ

(
eγ T − 1

)
sup

s∈[0,T ]

∥w(s)∥X(Y),

where the positive constants M, γ do not depend on Ψ and
are determined by the semigroup etA. The continuity and
contraction property of JΨ are proved in a standard way.
Therefore, we obtain the existence of a unique solution to
the Cauchy problem associated to (2.1) on X(Y) and that
the mapping data-solution in (3.3) is at least continuous.
Next, we recall that the argument based on the contraction
mapping principle above has the advantage that if F (w) has
a specific regularity, then it is inherited by the mapping
data-solution. In particular, following the ideas in [8], we
consider for (Ψ , z) ∈ B(Ψ ; ϵ)×C([0, T ], X(Y)) the mapping

Γ (Ψ , z)(t) = z(t) − JΨ [z](t), t ∈ [0, T ].

Then Γ (Ψ ,w)(t) = 0 for all t ∈ [0, T ], and since F (z)
is smooth we obtain that Γ is smooth. Hence, using the
arguments applied for obtaining the local well-posedness
in X(Y) above, we can show that the operator ∂zΓ (Ψ ,w)
is one-to-one and onto. Thus, by the Implicit Function
Theorem there exists a smooth mapping Λ : B(Ψ ; δ) →

C([0, T ], X(Y)) such that Γ (V0,Λ(V0)) = 0 for all V0 ∈

B(Ψ ; δ). This argument establishes the smoothness prop-
erty of the mapping data-solution associated to the sine–
Gordon equation. □
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We are ready to draw conclusions about the linearized oper-
ator W in (1.11) around the family of stationary solutions of the
form (1.8) on a tricrystal junction required by the assumptions
in Section 2. To denote the dependence of this operator on the
parameter γ ≡ λ in the case of the kink-type profile we write it
as (Wλ,D(Wλ)). Moreover, by the results in Section 3.1.2, we shall
consider λ ∈ (−∞,−

∑3
j=1 cj) .

Proposition 3.3. Consider the operator (Wλ,D(Wλ)) determined
by Wλ ≡ W defined in (1.11), on the domain D(Wλ) = D(Tλ)
defined in (3.2). Let E be the following diagonal-matrix

E =

(
Wλ 0
0 I3

)
.

Then JE is the generator of a C0-semigroup on H1(Y) × L2(Y) with
(JE) = D(Wλ) × H1(Y). This implies, in turn, that assumption (S1)
see Section 2) is satisfied.

roof. From the relation JE = JE +Z (see (2.9) for ζj = ϕj), stan-
ard semigroup theory and item 1) in the proof of Theorem 3.2
mply the result. □

.1.2. Kink-profile for the sine–Gordon equation on a tricrystal-
unction

We will consider stationary solutions (ϕj)3j=1 for the sine–
ordon equation on a tricrystal-junction of the form (1.8) satis-
ying the δ′-interactions at the vertex given by (2.4), this means
hat (ϕj)3j=1 ∈ D(Tλ). Here we shall consider the full continuity case
t the vertex, under which

1(0+) = ϕ2(0+) = ϕ3(0+).

ence b1/c1 = b2/c2 = b3/c3 and, moreover, the conditions
1ϕ

′

1(0+) = c2ϕ′

2(0+) = c3ϕ′

3(0+) hold. The Kirchhoff type
ondition in (1.7) implies, for y = eb1/c1 , the relation

1 + y2

y
arctan(y)

3∑
j=1

cj = −λ. (3.4)

hus from the strictly-increasing property of the positive map-
ing y ↦→

1+y2
y arctan(y), y > 0, we obtain from (3.4) that λ ∈

(−∞,−
∑3

j=1 cj) and the existence of a smooth mapping λ ↦→

b1(λ) satisfying (3.4). Moreover, λ ∈ (−∞,−
∑3

j=1 cj) ↦→ Πλ,δ′ =

(ϕ1,b1(λ), ϕ2,b2(λ), ϕ3,b3(λ), 0, 0, 0) represents a real-analytic family
of static profiles for the sine–Gordon equation on a tricrystal-
junction. Thus, we have:

(1) for λ ∈ (−∞,− π
2

∑3
j=1 cj) we obtain that bi > 0 and

ϕ′′

i (bi) = 0, for every i. Moreover, ϕi(0+) ∈ (η, 2π ), i =

1, 2, 3, with η = 4 arctan
(
eb1/c2

)
> π . Thus, the profile

(ϕ1, ϕ2, ϕ3) looks like that presented in Fig. 2 (bump-type
profile);

(2) for λ ∈ (− π
2

∑3
j=1 cj,−

∑3
j=1 cj) we obtain bi < 0, ϕ′′

i > 0,
ϕi ∈ (0, π ) for every i. Thus, the profile (ϕ1, ϕ2, ϕ3) is of
tail-type as that of Fig. 2(b);

(3) for λ = −
π
2

∑3
j=1 cj we obtain bi = 0, ϕi(0) = π and

ϕ′′

i (0) = 0, for every i. Moreover, ϕ′′

i (x) > 0 for x > 0.
Thus, the profile (ϕ1, ϕ2, ϕ3) is similar to that of Fig. 2(c).

The stability result for the stationary profiles, Πλ,δ′ = (ϕ1, ϕ2,
ϕ3, 0, 0, 0), with ϕj = ϕj,bj(λ) defined in (1.8) and (3.4) in the
continuous case is that established in Theorem 1.1. We leave for
a possible future study the stability analysis of other kink-type
profiles, such as those non-continuous at the vertex.

The proof of Theorem 1.1 is a consequence of Theorem 2.4.
Thus we only need to verify assumption (S ) associated to the
3

6

family of self-adjoint operators Wλ in (1.11) (see Proposition 3.1),
with the domain D(Wλ) = D(Tλ) in (3.2) and the kink-profiles ϕj
defined in (1.8).

3.1.3. Spectral study for (Wλ,D(Wλ)) on a tricrystal-junction
In this subsection, the spectral behavior for Wλ on D(Wλ)

will be studied, with the focus on verifying assumption (S3) in
Section 2.

Proposition 3.4. Let λ ∈ (−∞,−
∑3

j=1 cj), cj > 0. Then for
λ ̸= −

π
2

∑3
j=1 cj we have ker(Wλ) = {0}. For λ0 = −

π
2

∑3
j=1 cj,

im(ker(Wλ0 )) = 2. Moreover, σess(Wλ) = [1,+∞).

Proof. We consider u = (u1, u2, u3) ∈ D(Wλ) and Wλu = 0.
hen, from Sturm–Liouville theory on half-lines (see [46], Chapter
, Theorem 3.3), uj(x) = αjϕ

′

j (x), x > 0, j = 1, 2, 3. Thus, for
̸= −

π
2

∑3
j=1 cj we obtain α1/c1 = α2/c2 = α3/c3. Next, from

the jump conditions for u and Ψλ,δ′ = (ϕj), we obtain

α1ϕ
′

1(0)
3∑

j=1

cj = α1λc1ϕ′′

1 (0). (3.5)

Next, suppose α1 ̸= 0. Since ϕ′

1(0) < 0 and for λ ∈ (−∞,

−
π
2

∑3
j=1 cj) we have ϕ′′

1 (0) < 0, relation in (3.5) implies a con-
tradiction because of cj > 0. Now, considering λ ∈ (− π

2

∑3
j=1 cj,∑3

j=1 cj) and from the specific values of ϕ′

1(0), ϕ
′′

1 (0) we obtain
rom (3.5) again a contradiction. Thus, from the two cases above
e need to have α1 = α2 = α3 = 0. For λ0 = −

π
2

∑3
j=1 cj we

recall that ϕ′′

j (0) = 0 for every j. Hence, from the jump-condition
for u follows

∑3
j=1 αj = 0. Then Ψ1 = (ϕ′

1,−ϕ
′

2, 0) and Ψ2 =

(0, ϕ′

2,−ϕ
′

3) belong to D(Wλ0 ) and span{Ψ1,Ψ2} = ker(Wλ0 ).
The statement σess(Wλ) = [1,+∞) is an immediate conse-

quence of Weyl’s Theorem because of limx→+∞ cos(ϕj(x)) = 1
(see [47]). This finishes the proof. □

Proposition 3.5. Let λ ∈ [−
π
2

∑3
j=1 cj,−

∑3
j=1 cj). Then n(Wλ) =

1.

Proof. We will use the extension theory approach, which is
based on the fact that the family (Wλ,D(Wλ)) represents all the
self-adjoint extensions of the closed symmetric operator (̃T ,D(̃T ))
with D(̃T ) ≡ D(T ) defined in (3.1), and

T =

((
−c2j

d2

dx2
+ cos(ϕj)

)
δj,k

)
, ł1 ≦ j, k ≦ 3, (3.6)

with n± (̃T ) = 1. Next, we show that T̃ ≧ 0. If we denote Lj =

−c2j
d2

dx2
+ cos(ϕj) then we obtain

jψ = −
1
ϕ′

j

d
dx

[
c2j (ϕ

′

j )
2 d
dx

(ψ
ϕ′

j

)]
, (3.7)

or any ψ . It is to be observed that ϕ′

j ̸= 0. Then we have for any
Λ = (ψj) ∈ D(̃T ) and integration by parts the relation

⟨̃TΛ,Λ⟩ =

3∑
j=1

c2j

∫
+∞

0
(ϕ′

j )
2
( d
dx

(ψ
ϕ′

j

))2
dx

−

3∑
j=1

c2j ψ
2
j (0)

ϕ′′

j (0)

ϕ′

j (0)
≡ A + P,

(3.8)

where A ≧ 0 represents the integral terms. Next we show that
P ≧ 0. Indeed, since ϕ′′

j (0) ≧ 0 and ϕ′

j (0) < 0, for j = 1, 2, 3, we
obtain immediately P ≧ 0. Then, T̃ ≧ 0.
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Fig. 2. Plots of stationary solutions (1.8) in the case where cj = 1 for all j = 1, 2, 3, for different values of λ ∈ (∞,−
∑
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2 ). Panel (b) shows the profiles of ‘‘tail’’ type for the case
∈ (− 3π

2 ,−3). Panel (c) shows the ‘‘smooth’’ profile solutions when λ = −
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Due to Proposition A.3 (see Appendix), n(Wλ) ≦ 1. Next, for
λ,δ′ = (ϕ1, ϕ2, ϕ3) ∈ D(Wλ) we obtain

⟨WλΨλ,δ′ ,Ψλ,δ′⟩ =

3∑
j=1

∫
+∞

0
[− sin(ϕj)+ cos(ϕj)ϕj]ϕjdx < 0, (3.9)

ecause of 0 < ϕj(x) ≦ π and x cos x ≦ sin x for all x ∈ [0, π].
hen from the minimax principle (see, e.g., [47], p. 76) we arrive
t n(Wλ) ≧ 1. This finishes the proof. □

roof of Theorem 1.1. Let λ ∈ (− π
2

∑3
j=1 cj,−

∑3
j=1 cj). Then,

rom Propositions 3.4 and 3.5 we have ker(Wλ) = {0} and
(Wλ) = 1. Thus, from Theorem 3.2, Proposition 3.3 and The-
rem 2.4 follow the linear instability property of the stationary
rofile Πλ,δ′ = (ϕ1, ϕ2, ϕ3, 0, 0, 0).
Next, we consider the closed subspace in L2(Y), C1 = {(uj)3j=1 ∈

2(Y) : u1 = u2 = u3}, and the case c1 = c2 = c3 (hence
1 = b2 = b3). Then, we can show that on B1 = C1 ∩ D(Wλ) we
btain Wλ : B1 → C1 is well-defined. Moreover, we note that for
0 = −

π
2

∑3
j=1 cj follows ker(Wλ0 |B1 ) = {0} and n(Wλ0 |B1 ) = 1

(because Ψ ′ = (ϕ , ϕ , ϕ ) ∈ B and ⟨W Ψ ′ ,Ψ ′⟩ <
λ0,δ 1 1 1 1 λ0 λ0,δ λ0,δ

7

0). Therefore, from Kato–Rellich Theorem, analytic perturbation
and a continuation argument (see [8–10,48,49] and/or Proposi-
tions 3.10 and 3.11), we can see that for all λ ∈ (−∞,− π

2

∑3
j=1 cj]

he following relations hold: ker(Wλ|B1 ) = {0} and n(Wλ|B1 ) = 1.
hus, the static profiles Πλ,δ′ are also linearly unstable in this
ase.
Now, since the mapping data-solution for the sine–Gordon

odel on H1(Y)×L2(Y) is at least of class C2 (indeed, it is smooth)
y Theorem 3.2, it follows that the linear instability property of
λ,δ′ is in fact of nonlinear type in the H1(Y) × L2(Y)-norm (see
enry et al. [50], Angulo and Natali [49], and Angulo et al. [48]).
his finishes the proof. □

emark 3.6. For the case λ ∈ (−∞,− π
2

∑3
j=1 cj) in

roposition 3.5, the formula for P in (3.8) satisfies P < 0. There-
ore, it is not clear whether the extension theory approach pro-
ides an estimate of the Morse-index of Wλ; see also the related
emark 4.5 in [10]. Likewise, in the case λ ∈ (−∞,− π

2

∑3
j=1 cj)

ith all cj’s not equal, the Morse index may change and to be
igger than or equal to 2, consequently, the stability properties
ay change as well; see the related Remark 3.15 in [11].
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3.2. Kink/anti-kink instability theory on a tricrystal junction

In this subsection we study the existence and stability of
kink/anti-kink profile in (1.10). Since these stationary profiles do
not belong to the classical H2(Y)- space, we need to work with
specific functional spaces suitable for our needs.

3.2.1. The anti-kink/kink solutions on a tricrystal junction
In the sequel, we describe the profiles (ϕj)3j=1 in (1.10) satis-

fying the δ′-condition in (1.7) with γ = Z . Thus, we obtain the
following relations:

sech
(a1
c1

)
= sech

(a2
c2

)
= sech

(a3
c3

)
, (3.10)

and
c1 arctan(e−a1/c1 ) + c2 arctan(e−a2/c2 ) + c3 arctan(e−a3/c3 )

−
(c2 + c3)π

2
=

Z
2
sech

(a1
c1

)
.

(3.11)

Here, we consider the specific class of anti-kink/kink profiles
with the condition a1

c1
=

a2
c2

=
a3
c3
. Thus, from (3.11) and y =

−a1/c1 we get the following equality

(y) ≡
1 + y2

y

[( 3∑
i=1

ci
)
arctan(y) −

(c2 + c3)π
2

]
= Z . (3.12)

Next, we show that the mapping F is strictly increasing for y >
0. Indeed, since for y ∈ (0, 1) we have that 1

y +
y2−1
y2

arctan(y) > 0,

then F ′(y) > 0. Now, for θ =
∑3

i=1 ci, the relation

F ′(y) = θ

[1
y

+
y2 − 1
y2

(
arctan(y) −

π

2

)]
+ θ

[π
2

−
(c2 + c3)π

2
∑3

i=1 ci

]y2 − 1
y2

(3.13)

shows that F ′(y) > 0 for y ∈ [1,+∞). Moreover, it is no difficult
o see that limy→0+ F (y) = −∞, and limy→+∞ F (y) = +∞.

Then, from (3.12) we have the following specific behavior of
the Z-parameter:

(a) for a = 0, Z = −
π (c + c − c ),
1 2 2 3 1 i

8

(b) for a1 > 0, Z ∈ (−∞,− π
2 (c2 + c3 − c1)),

(c) for a1 < 0, Z ∈ (− π
2 (c2 + c3 − c1),+∞).

Moreover, from (3.12) and the properties for F we obtain the exis-
ence of a smooth shift-map (also real analytic) Z ∈ (−∞,+∞) ↦→

a1(Z) satisfying F (e−a1(Z)/c1 ) = Z . Thus, the mapping

Z ∈ (−∞,+∞) ↦→ ΦZ,δ′ = (ϕ1,a1(Z), ϕ2,a2(Z), ϕ3,a3(Z), 0, 0, 0),

epresents a real-analytic family of static profiles for the sine–
ordon equation (1.5) on a tricrystal junction, with the profiles
j,aj(Z) satisfying the boundary condition in (1.10). Hence we
btain, for ai = ai(Z) and ϕi = ϕi,ai(Z), the following behavior:

(1) for Z = −
π
2 (c2 + c3 − c1) we obtain a1 = a2 = a3 = 0,

ϕ2(0) = ϕ3(0) = −π , ϕ1(0) = π , ϕ′′

i (0) = 0, i = 1, 2, 3.
Thus, the profile of (ϕ1, ϕ2, ϕ3) represents one-half positive
anti-kink ϕ1 and two-half negative kink solitons profiles ϕ2,
ϕ3 (connected in the vertex of the graph) such as Fig. 3
shows below;

(2) for Z ∈ (−∞,− π
2 (c2 + c3 − c1)) we obtain a1 > 0, ϕ′′

i (a1) =

0, i = 1, 2, 3. Therefore, ϕ1(0) ∈ (0, π ) and ϕ2(0) = ϕ3(0) ∈

(−π,−2π ). Thus, the profile of (ϕ1, ϕ2, ϕ2), looks similar
to the one shown in Fig. 4 (bump-profile type);

(3) for Z ∈ (− π
2 (c2+c3−c1),+∞) we obtain a1 < 0 and there-

fore ϕ′′

i < 0 for i = 1, 2, 3, Thus, the profile of (ϕ1, ϕ2, ϕ3)
looks similar to that in Fig. 5 (typical tail-profile).

Here, our instability study of anti-kink/kink profiles will be in
the case where the ‘‘magnetic field’’ or ‘‘fluxon’’ is continuous at
the vertex of the tricrystal, namely, whenever ϕ′

1(0) = ϕ′

2(0) =
′

3(0) (c1 = c2 = c3). It is to be observed that we have left
open a possible instability study of other anti-kink/kink soliton
configurations, for instance, profiles not satisfying the continuity
property at zero for the components ϕ2, ϕ3 ( a2c2 ̸=

a3
c3
) and/or the

non-continuity of the magnetic field.
The stability result for the stationary profiles, ΦZ,δ′ = (ϕ1, ϕ2,

3, 0, 0, 0), with ϕj = ϕj,aj(Z) defined in (1.10) is that established
n Theorem 1.2.
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Fig. 4. Plots of the kink/anti-kink profiles (1.10) (panel (a), in blue) and their corresponding derivatives or ‘‘fluxons’’ (panel (b), in red) in the case where cj = 1,
aj = 1.8 > 0, j = 1, 2, 3, and Z ∈ (−∞,− π

2 ). Both plots are depicted in the same scale for comparison purposes. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
Fig. 5. Plots of the kink/anti-kink profiles (1.10) (panel (a), in blue) and their corresponding derivatives or ‘‘fluxons’’ (panel (b), in red) in the case where cj = 1,
aj = −0.5 < 0, j = 1, 2, 3, and Z ∈ (− π

2 ,∞). Both plots are depicted in the same scale for comparison purposes. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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.2.2. Functional space for stability properties of the anti-kink/kink
rofile
The natural framework space for studying stability properties

ssociated to the anti-kink/kink soliton profile Φ = (ϕj)3j=1 de-
cribed in the former subsection for the sine–Gordon model is
(Y) = H1

loc(0,∞)
⨁

H1(0,∞)
⨁

H1(0,∞). Thus we say that a
low t → (u(t), v(t)) ∈ X (Y)× L2(Y) is called a perturbed solution
or the anti-kink/kink profile Φ ∈ X (Y) if for (P(t),Q (t)) ≡

u(t)−Φ, v(t)) we have that (P(t),Q (t)) ∈ H1(Y)×L2(Y) and z =

P,Q )⊤ satisfies the following vectorial perturbed sine–Gordon
odel⎧⎪⎨⎪⎩
zt = JEz + F1(z)

P(0) = u(0) −Φ ∈ H1(Y),
2

(3.14)
Q (0) = v(0) ∈ L (Y), t

9

here for P = (p1, p2, p3) we have

1(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

sin(ϕ1) − sin(p1 + ϕ1)
sin(ϕ2) − sin(p2 + ϕ2)
sin(ϕ3) − sin(p3 + ϕ3)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.15)

hen, the stability analysis of the stationary anti-kink/kinkΦZ,δ′ =

ϕ1, ϕ2, ϕ3, 0, 0, 0) by the sine–Gordon model on X (Y) × L2(Y)
educes to studying the stability properties of the trivial solution
P,Q ) = (0, 0) for the linearized model associated to (3.14)
round (P,Q ) = (0, 0). Thus, via Taylor’s Theorem we obtain
he linearized system in (2.7) but with the Schrödinger diagonal
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perator L in (2.8) now determined by the anti-kink/kink profile
= (ϕj). We denote this operator by LZ in (3.16), with the δ′-

interaction domain D(LZ ) in (2.4). In this form, we can apply ipsis
litteris the semi-group theory results in Section 3.1.1 to the oper-
ator JE and to the local well-posedness problem in H1(Y)× L2(Y)
or the vectorial perturbed sine–Gordon model (3.14). Lastly, we
ote that the anti-kink/kink profile Φ ∈ X (Y), but Φ ′

∈ H2(Y).

.2.3. The spectral study in the anti-kink/kink case
In this subsection we provide the necessary spectral informa-

ion for the family of self-adjoint operators (LZ ,D(LZ )), where

Z =

((
−c2j

d2

dx2
+ cos(ϕj)

)
δj,k

)
, ł1 ≦ j, k ≦ 3, (3.16)

associated to the anti-kink/kink solutions (ϕ1, ϕ2, ϕ3) determined
n the previous Section 3.2.1 and depending of the parameter Z .
ere, by convenience of the reader, we are using the notation
Z ≡ W in (1.11) in order not to cause any confusion with the
otation Wλ in the previous subsection associated to the kink-
rofile (1.8), and D(LZ ) is now the δ′-interaction domain defined
n (1.12) for γ = Z ∈ (−∞,∞).

By completeness and convenience of the reader, we prove the
ollowing result associated to the kernel of the operators LZ for all
alues of c1, c2, c3 and the admissible Z-values. We note that this
esult is expected, due to the break in the translation symmetry of
olutions for the sine–Gordon model on tricrystal configurations.
hen one computes the Morse index of LZ , however, the study

s more delicate and we restrict the analysis to the case c1 =

2 = c3. This restriction is due to the possibility of obtaining a
orse index bigger than or equal to two (we call the attention to
roposition 3.11 and Remark 3.12).

roposition 3.7. Let c1, c2, c3 > 0 and Z ∈ (−∞,∞). Then,
er(LZ ) = {0} for all Z ̸= −

π
2 (c2+c3−c1). For Z = −

π
2 (c2+c3−c1)

we have dim(ker(LZ )) = 2. Moreover, for all Z we obtain σess(LZ ) =

1,∞).

roof. Let u = (u1, u2, u3) ∈ D(LZ ) and LZu = 0. Then, since
(ϕ′

1, ϕ
′

3, ϕ
′

2) ∈ H2(Y), it follows from Sturm–Liouville theory on
half-lines that

uj(x) = αjφ
′

j (x), x > 0, j = 1, 2, 3, (3.17)

for some αj, j = 1, 2, 3, real constant. In what follows, we assume
Z ̸= −

π
2 (c2 + c3 − c1). Thus, from (2.4) and by supposing α1 ̸= 0

we have
α2

α1
=

c1
c2

ϕ′′

1 (0)
ϕ′′

2 (0)
=

c2
c1
,

α3

α1
=

c1
c3

ϕ′′

1 (0)
ϕ′′

3 (0)
=

c3
c1

(3.18)

nd

=
1
α1

( 3∑
j=1

αj

)ϕ′

1(0)
ϕ′′

1 (0)
= (c1 + c2 + c3)

cosh2(a1/c1)
sinh(a1/c1)

. (3.19)

Now, we consider the following cases:

(a) Suppose a1 < 0 (Z ∈ (− π
2 (c2 + c3 − c1),+∞)): then, since

cosh2(a1/c1)
sinh(a1/c1)

≦ −2, for all a1 < 0, (3.20)

we have, from (3.19), − π
2 (c2 + c3 − c1) < −2(c1 + c2 + c3),

which is a contradiction. So, we need to have 0 = α1 =

α2 = α3 and therefore u = 0.
(b) Suppose a1 > 0 (Z ∈ (−∞,− π

2 (c2 + c3 − c1)): then, from
(3.19) we have Z > 2(c1 + c2 + c3). Thus for the case
c + c − c ≧ 0 we obtain immediately a contradiction.
2 3 1

10
Now, for c2 + c3 − c1 < 0 is sufficient to study the case
0 < Z < −

π
2 (c2 + c3 − c1). Indeed, since 2(c1 + c2 + c3) >

−
π
2 (c2+c3−c1) we have again a contradiction. So, we need

to have 0 = α1 = α2 = α3 and therefore u = 0.

Now, suppose that Z = −
π
2 (c2 + c3 − c1). In this case the

Kirchhoff’s condition for u, ϕ′

1(0) ̸= 0 and ϕ′′

1 (0) = 0 we get the
relation α1 + α2 + α3 = 0. Therefore

(u1, u2, u3) = α2(−ϕ′

1, ϕ
′

2, 0) + α3(−ϕ′

1, 0, ϕ
′

3).

Since (−ϕ′

1, ϕ
′

2, 0), (−ϕ
′

1, 0, ϕ
′

3) ∈ D(LZ ) we obtain that
dim(ker(LZ )) = 2.

The statement σess(LZ ) = [1,+∞) is an immediate conse-
quence of Weyl’s Theorem because of limx→+∞ cos(ϕ1(x)) = 1 =

imx→+∞ cos(ϕj(x)). This finishes the proof. □

roposition 3.8. Let c1 = c2 = c3 and Z ∈ [−
π
2 c1, 0). Then

(LZ ) = 1.

roof. Similarly as in the proof of Proposition 3.5 (see formula
3.8)), we obtain via the extension theory that n(LZ ) ≦ 1 for all
∈ [−

π
2 c1,+∞) because of ϕ′′

j (0) ≦ 0 for j = 1, 2, 3.
Now we show that n(LZ ) ≧ 1 for Z ∈ [−

π
2 c1, 0). In-

eed, we consider the following quadratic form QZ associated to
LZ ,D(LZ )) for Λ = (ψi) ∈ H1(Y),

(Λ) =
1
Z

( 3∑
j=1

cjψj(0)
)2

+

3∑
j=1

∫
∞

0
c2j (ψ

′

j )
2
+cos(ϕj)ψ2

j dx. (3.21)

ext, for Λ1 = (ϕ′

1, ϕ
′

2, ϕ
′

3) ∈ H1(Y) we obtain from the equalities
ϕ′′′

j + cos(ϕj)ϕ′

j = 0, c1ϕ′

1(0) = c2ϕ′

2(0) = c3ϕ′

3(0), and from
ntegration by parts, the relation

Z (Λ1) =
9c21
Z

[ϕ′

1(0)]
2
− c1ϕ′

1(0)
3∑

j=1

cjϕ′′

j (0). (3.22)

hus, for Z = −
π
2 c1 we have ϕ′′

j (0) = 0 and therefore QZ (Λ1) <
0. Thus n(L−

π
2 c1 ) = 1. Now, for Z ∈ (− π

2 c1, 0) we have ϕ′′

1 (0) < 0
(a1 < 0) and so since ϕ′′

1 (0) = ϕ′′

2 (0) = ϕ′′

3 (0) we get QZ (Λ1) < 0
if and only if

3
ϕ′

1(0)
ϕ′′

1 (0)
= 3c1

cosh2(a1)
sinh(a1)

< Z, for a1 < 0, (3.23)

which is true by (3.20). Therefore, n(LZ ) = 1 for Z ∈ (− π
2 c1, 0). □

emark 3.9. For the case Z ∈ [0,+∞) in Proposition 3.8, it was
ot possible to show (in an easy way) that the quadratic form QZ
n (3.21) has a negative direction. But we will see in the following,
ia analytic perturbation approach, that we still have n(LZ ) = 1.

roposition 3.10. Let c1 = c2 = c3 and Z ∈ [0,+∞). Then
(LZ ) = 1.

roof. We will use analytic perturbation theory. Initially, from
ection 3.2.1 we have that Z ∈ (−∞,+∞) → a1(Z) represents a
eal-analytic mapping function and so from the relations ϕ1,a1(Z)−
1,a1(0) ∈ L2(0,+∞) for every Z and ∥ϕ1,a1(Z)−ϕ1,a1(0)∥H1(0,+∞) →

as Z → 0, we obtain for Φa1(Z) = (ϕ1,a1(Z), ϕ3,a1(Z), ϕ2,a1(Z))
where we have used that a1(Z) = a2(Z) = a3(Z)) the conver-
ence

Φa1(Z) −Φa1(0)∥H1(Y) → 0 as Z → 0.

Thus, we obtain that LZ converges to L0 as Z → 0 in the
eneralized sense. Indeed, denoting W =

(
cos(ϕ )δ

)
we
Z j,a1(Z) j,k
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btain

δ̂(LZ ,L0) = δ̂(L0 + (WZ − W0),L0)
≦ ∥WZ − W0∥L2(Y) → 0, as Z → 0,

where δ̂ is the gap metric (see [51, Chapter IV]).
Now, we denote by N = n(L0) the Morse-index for L0 (from

the proof of Proposition 3.8, N ≦ 1). Thus, from Proposition 3.7
we can separate the spectrum σ (L0) of L0 into two parts, σ0 =

γ : γ < 0} ∩ σ (L0) and σ1 by a closed curve Γ belongs to the
resolvent set of L0 with 0 ∈ Γ and such that σ0 belongs to the
inner domain of Γ and σ1 to the outer domain of Γ . Moreover,
σ1 ⊂ [θ0,+∞) with θ0 = inf{θ : θ ∈ σ (L0), θ > 0} >

0 (we recall that σess(L0) = [1,+∞)). Then, by [51, Theorem
3.16, Chapter IV], we have Γ ⊂ ρ(LZ ) for Z ∈ [−δ1, δ1] and
δ1 > 0 small enough. Moreover, σ (LZ ) is likewise separated by
Γ into two parts so that the part of σ (LZ ) inside Γ will consist
f a negative eigenvalue with exactly total (algebraic) multiplicity
qual to N . Therefore, by Proposition 3.8 we need to have n(LZ ) =

= 1 for Z ∈ [−δ1, δ1].
Next, using a classical continuation argument based on the

iesz-projection, we can see that n(LZ ) = 1 for all Z ∈ [0,+∞)
(see, e.g., the proof of Proposition 4.6 in [10]). This finishes the
proof. □

The following result gives a precise value for the Morse-index
of the operator LZ , with Z ∈ (−∞,− π

2 c1), when we consider
he domain C ∩ D(LZ ), C = {(uj)3j=1 ∈ L2(Y) : u1 = u2 = u3}.
his strategy will allow the use of the linear instability framework
stablished in Section 2 above. We call upon the attention of
he reader that, in the present case, we do not know the exact
alue of the Morse-index of LZ on the whole domain D(LZ ) (see
emark 3.12).

roposition 3.11. Let c1 = c2 = c3 and Z ∈ (−∞,− π
2 c1].

Consider B = C∩D(LZ ). Then LZ : B → C is well defined. Moreover,
ker(LZ |B) = {0} and n(LZ |B) = 1.

Proof. Initially, since ϕ1 − 2π = ϕ2 = ϕ3 and cos(ϕ1) =

cos(ϕ1 − 2π ) = cos(ϕ2) = cos(ϕ3) follows immediately that, for
u = (uj)3j=1 ∈ B, we have LZu ∈ C.

Next, from the proof of Proposition 3.7 for Z0 = −
π
2 c1 we

have ker(LZ0 |B) = {0}. Moreover, the anti-kink/kink profile for
Z0, Φ0 = (ϕ1,0, ϕ2,0, ϕ2,0), satisfies that Φ ′

0 = (ϕ′

1,0, ϕ
′

2,0, ϕ
′

2,0) ∈

C∩H1(Y). Then, from (3.22) we know that the quadratic form QZ0
associated to (LZ0 ,B) satisfies QZ0 (Φ

′

0) < 0. Therefore, n(LZ0 |B) =

1. Hence, by using a similar strategy as in the proof of Proposi-
tion 3.10 we obtain that n(LZ |B) = 1 for Z ∈ (−∞,− π

2 c1). This
finishes the proof. □

Proof of Theorem 1.2. We consider initially the case Z ∈ (− π
2 c1,

+∞). From Propositions 3.7, 3.8 and 3.10 we have ker(LZ ) =

0} and n(LZ ) = 1. Moreover, from Section 3.2.2 and based in
Proposition 3.3 we verify Assumption (S1) for JE on H1(Y)×L2(Y)
n the linear instability criterion in Section 3.1. Thus, from The-
rem 2.4 follows the linear instability property of the stationary
nti-kink/kink soliton profile ΠZ,δ′ .
For the case Z ∈ (−∞,− π

2 c1] we need to adjust our instability
riterion in Section 2 to the space R = (C∩H1(Y))×C determined
y (3.14). Thus, initially we need to see that JE is the generator
f a C0-semigroup on the restricted subspace R (assumption (S1)).
ndeed, this is a consequence of the mapping JE : (C∩D(LZ ))×(C∩
1(Y)) → (C ∩ H1(Y)) × C is well defined and by using the same
trategy as in Angulo and Plaza [11] (Section 3.1.1 and Proposition
.11). Now, from Proposition 3.11 and Theorem 2.4 we finish the
roof. □
11
Remark 3.12. In the general case where the constants cj are not
ecessarily equal (see Propositions 3.8, 3.10 and 3.11), we do not
now exactly the Morse index of (LZ ,D(LZ )). From the analysis in
ppendix B in [11], it is possible to have n(LZ ) ≧ 2. We conjecture
hat these profiles are still unstable.
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ppendix

For the sake of completeness, in this section we develop the
xtension theory of symmetric operators suitable for our needs.
or further information on the subject the reader is referred to the
onographs by Naimark [52,53]. The following classical result,
nown as the von-Neumann decomposition theorem, can be found
n [54,55].

heorem A.1. Let A be a closed, symmetric operator, then

(A∗) = D(A) ⊕ N−i ⊕ N+i. (A.1)

ith N±i = ker(A∗
∓iI). Therefore, for u ∈ D(A∗) and u = x+y+z ∈

(A) ⊕ N−i ⊕ N+i,
∗u = Ax + (−i)y + iz. (A.2)

emark A.2. The direct sum in (A.1) is not necessarily orthogo-
al.

The following propositions provide a strategy for estimating
he Morse-index of the self-adjoint extensions (see Naimark [53]).

roposition A.3. Let A be a densely defined lower semi-bounded
ymmetric operator (that is, A ≥ mI) with finite deficiency indices,
±(A) = k < ∞, in the Hilbert space H, and let Â be a self-adjoint
xtension of A. Then the spectrum of Â in (−∞,m) is discrete and
onsists of, at most, k eigenvalues counting multiplicities.

roposition A.4. Let A be a densely defined, closed, symmetric
perator in some Hilbert space H with deficiency indices equal
±(A) = 1. All self-adjoint extensions Aθ of A may be parametrized
y a real parameter θ ∈ [0, 2π ) where

D(Aθ ) = {x + cφ+ + ζ eiθφ− : x ∈ D(A), ζ ∈ C},

Aθ (x + ζφ+ + ζ eiθφ−) = Ax + iζφ+ − iζ eiθφ−,

ith A∗φ± = ±iφ±, and ∥φ+∥ = ∥φ−∥.
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