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Abstract

We present a method to construct symplecticity-preserving renormalization group maps by using the Liouville operator.
The resultant RG maps accurately reproduce the long-time behavior of the original symplectic maps even when a resonant
island chain appears.
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1. Introduction

There has been a long history to study the asymptotic behavior of Hamiltonian flows by means of singular
perturbation methods such as the averaging method and the method of multiple time-scales. A Hamiltonian flow
can be reduced to a symplectic discrete map called the Poincaré map, which has a lower dimension than the original
flow and is, therefore, extensively studied[1,2].

The perturbative renormalization group (RG) method developed recently may be a useful tool to tackle asymptotic
behaviors of discrete maps as well as flows. The original RG method is an asymptotic singular perturbation technique
developed for differential equations[3]. Secular or divergent terms of perturbation solutions of differential equations
are removed by renormalizing integral constants of the lowest order solution. The RG method is reformulated on
the basis of a naive renormalization transformation and the Lie group[4]. This reformulated RG method based on
the Lie group is easy to apply to discrete systems, by which asymptotic expansions of unstable manifolds of some
chaotic discrete systems are obtained[5]. The extension of the RG method to discrete symplectic systems is not
trivial because the symplectic structures are not preserved in naive RG equations (maps) as shown in Ref.[6], while
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the application of the RG method to Hamiltonian flows does not cause such a problem as the destroyed symplectic
symmetry except for a special case[7].

The application of the RG method to some non-symplectic discrete systems has been attempted in the framework
of the envelope method[8]. However, the method, if applied to a symplectic map, would give only a naive RG map
which destroys the symplectic symmetry. To recover the destroyed symmetry not only the paper[6] has introduced
a process of the “exponentiation” which gives us analytical expressions of some physical quantities[6,9], but also
another paper[10] has used a symplectic integrator by taking the time-continuous limit of the time-step parameter.
Furthermore, Tzenov and Davidson have shown that the exponentiation procedure can be successfully applied
in the Hénon map[11]. They also have found a general way to obtain the symplectic RG method including the
exponentiation method. However, these procedures may seem somewhat artificial, and resonant islands have never
been studied by the RG method.

The main purpose of the present paper is to present a general RG procedure to preserve the symplectic struc-
ture in RG maps and to obtain correctly reduced symplectic RG maps. In this paper, this procedure is called a
symplecticity-preserving RG procedure, which consists of the following two steps. First, using the reformulated
RG method[4], we get a naive RG map near an elliptic fixed point of a symplectic discrete system. The naive
RG map preserves the symplectic symmetry only approximately and fails to describe a long-time behavior of the
original map. Second, in order to recover the symplectic symmetry by means of taking account of higher orders in
the naive perturbation result, we equate the naive RG map to the appropriately discretized Hamiltonian flow, which
is done by using the Liouville operator. In this procedure we identify the small parameterε with the time-step, which
yields a canonical equation in the limit ofε → 0. This process and a symplectic RG map are called, respectively, a
symplecticity-preserving procedure and a symplecticity-preserving RG map. A reduction of the Liouville equation
in a non-integrable Hamiltonian flow has been developed in Ref.[12]. It should be pointed out that Dragt and Finn
[13] have mathematically discussed the relation between symplectic maps and invariant functions. We practically
show how to construct invariant functions, which correspond to Hamiltonians, in the course of obtaining symplectic
RG maps.

In Section 2, a long-time behavior of a simple linear map is analyzed in order to elucidate both the broken
symplectic symmetry in a naive RG map and our process. InSection 3, a symplecticity-preserving RG map is
obtained near elliptic fixed points of a two-dimensional nonlinear symplectic map even when a resonant island
chain appears. InSection 4, we mention the advantages of our newly developed RG method as the summary of this
paper.

2. Linear symplectic map

It may be instructive to analyze a linear symplectic map, which is exactly solvable,(xn, yn) �→ (xn+1, yn+1):

xn+1 = xn + yn+1, yn+1 = yn − axn + 2εJxn.

This map can be rewritten as

Lθx
n = ε2Jxn, (1)

whereε is the small parameter,J is the real parameter,θ andLθx
n are defined as

cosθ ≡
(
1 − a

2

)
, (2)

Lθx
n ≡ xn+1 − 2xn cosθ + xn−1, (3)
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respectively. We assume that the map(1) has an elliptic fixed point at the origin (0, 0). The linear map(1) has the
following exact solutionxnE:

xnE = Aexp(i arccos( cosθ + εJ)n) + c.c.,

xnE = Aexp

[
i

(
θ + ε

−J

sinθ
+ ε2− cosθ

2 sinθ

(
J

sinθ

)2

+ · · ·
)
n

]
+ c.c., (4)

whereA(∈ C) is the complex “integration” constant and c.c. stands for the complex conjugate of the preceding
terms.

Let us derive an asymptotic solution of the map(1) for small ε by means of the RG method. Substituting the
expansion

xn = x(0)n + εx(1)n + ε2x(2)n +O(ε3), (5)

into Eq. (1), we have

Lθx
(0)n = 0, Lθx

(1)n = 2Jx(0)n, Lθx
(2)n = 2Jx(1)nn ,

and

x(0)n = Aexp(iθn) + c.c., x(1)n = −iJA

sinθ
nexp(iθn) + c.c.,

x(2)n = −J2A

2 sin2θ

(
n2 + i

cosθ

sinθ
n

)
exp(iθn) + c.c.,

whereA(∈ C) is the integration constant. To remove secular terms (∝n, n2), we introduce the renormalization
transformationA �→ An [4]:

An ≡ A + ε
−iJA

sinθ
n + ε2 −J2A

2 sin2θ

(
n2 + i

cosθ

sinθ
n

)
+O(ε3). (6)

A discrete version of the RG equation is just the first order difference equation ofAn, whose local solution is given
by Eq. (6). FromEq. (6), we have

An+1 − An =
(

−iε
J

sinθ
− ε2 J2

2 sin2θ

(
2n + 1 + i

cosθ

sinθ

))
A +O(ε3), (7)

whereA should be expressed in terms ofAn. This is done by taking the inversion of the renormalization transfor-
mation(6) iteratively:

A =
(

1 + iε
Jn

sinθ
+O(ε2)

)
An. (8)

Substituting(8) into (7), we obtain the following RG equation (RG map) up toO(ε2)

An+1 =
(

1 + −iεJ

sinθ
+ 1

2!

(−iεJ

sinθ

)2

− iε2J
2 cosθ

2 sin3θ

)
An +O(ε3), (9)

of which the solution is

An =
(

1 + −iεJ

sinθ
+ 1

2!

(−iεJ

sinθ

)2

− iε2J
2 cosθ

2 sin3θ
+O(ε3)

)n

A0. (10)
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On the other hand, fromEq. (4), we haveAn exactly as

An = A0 exp

[
i

(
ε

−J

sinθ
− ε2 cosθ

2 sinθ

(
J

sinθ

)2

+ · · ·
)
n

]
. (11)

Notice that|An|2 is an exact constant of motion while it is merely an approximate conserved quantity of the
(truncated) RG map(9). The symplectic structure is also not exactly preserved in the RG map, that is, for the
truncated RG map(9) up toO(εk), we have

dAn+1 ∧ dA∗n+1 − dAn ∧ dA∗n = O(ε(k+1)) 
= 0,

wherek = 1,2, . . . ; A∗ is complex conjugate toAn and should also be a canonical conjugate toAn.1 However, this
fault of the RG map vanishes in the limit ofε → 0.

In order to remedy a fault like this, we take advantage of the crucial observation that Hamiltonian flows satisfy
the following relation:

Z(t + µ) =
(

1 + µLH + µ2

2!
L2

H + · · ·
)
Z(t) = exp(µLH)Z(t), (12)

wheret is the time variable,µ is a real number,H is a Hamiltonian,Z is a canonical variable(q1, q2, . . . , qN, p1,

p2, . . . , pN) and

LHZ ≡ {Z,H} ≡
N∑

j=1

(
∂Z

∂qj

∂H

∂pj

− ∂Z

∂pj

∂H

∂qj

)
, L2

HZ = LH(LHZ) = {{Z,H, }, H}, (13)

whereLH is the Liouville operator defined by the Poisson bracket. We can identify the relation(12)as the map by
definingZn+1 ≡ Z(t + µ), andZn ≡ Z(t):

Zn+1 = Ψ(Zn;µ), Ψ(Zn;µ) ≡ exp(µLH)Z(t)|Z(t)≡Zn. (14)

This is the symplectic mapping associated with the Hamiltonian system. Identifyingµ = ε in (14), we can obtain
both the Hamiltonian system and the associated symplectic mapping in the following steps:

1. Expanding a HamiltonianH in (12) in powers ofε, H = H(1) + εH(2) + · · · , we obtain the following relation:

Z(t + ε) =
(

1 + εLH + ε2

2!
L2

H +O(ε3)

)
Z(t) =

{
1 + εLH(1) + ε2

(
L2

H(1)

2!
+ LH(2)

)
+O(ε3)

}
Z(t).

(15)

2. H(1) can be found by taking the limit(An+1 − An)/ε → dA/dt (ε → 0) in the naive RG map by comparing
the naive RG map with(15). UsingH(1) and equating the naive RG map with the Liouville operator relation
(15), we obtain the HamiltonianH = H(1) + εH(2). Similarly, we can obtain the higher order Hamiltonian
H(3), H(4), . . . , order by order inε. This procedure yields the approximate Hamiltonian.

3. To obtain the symplecticity-preserving RG mapping, we discretize the continuous-time system obtained in the
second step. The time-step should be chosen to beε.

1 For the corresponding Hamiltonian flows, the truncated RG equation exactly preserves the symplectic structure with canonical variables
(A,A∗) order by order in the small parameter.
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In the present case, we take the limitε → 0 in (9), which gives

dA

dt
= − iJ

sinθ
A = ∂H

∂A∗ = LH(1)A,
dA∗

dt
= − ∂H

∂A∗ = LH(1)A
∗.

Here dA/dt is from (An+1 − An)/ε, and so on. Then we have

H(1) = −i
J |A|2
sinθ

and L2
H(1)A = {{A,H(1)}, H(1)} = −J2A

sin2θ
.

At this stage, the Liouville operator relation is{
1 + εLH(1) + ε2

(
L2

H(1)

2
+ LH(2)

)}
A = A + ε

−iJA

sinθ
+ ε2

(
−J2A

2 sin2θ
+ ∂H(2)

∂A∗

)
.

Equating this to the right-hand side of the naive RG map(9), we have

H(2) = −iJ2 cosθ|A|2
2 sin3θ

.

The HamiltonianH = H(1) + εH(2) leads to the following equation:

dA

dt
= −iJ

sinθ
A + ε

−iJ2 cosθ

2 sin3θ
A = ∂H

∂A
,

dA

dt
= − ∂H

∂A∗ .

The solution of the continuous-time system is

A(t) = A(0)exp

{
i

( −J

sinθ
+ ε

−J2 cosθ

2 sinθ3

)
t

}
,

which yields the symplecticity-preserving RG map:

An+1 = An exp

{
iε

( −J

sinθ
+ ε

−J2 cosθ

2 sin3θ

)}
.

Here the time-step has been chosen to beε. Then we recover the exact solution of(1), is (11), in terms of the original
variablexn.

Finally, the present method is summarized in the following diagram.
A symplecticity-preserving RG method for symplectic maps:
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3. Two-dimensional nonlinear symplectic map

3.1. Non-resonant case

Let us analyze the weakly-nonlinear symplectic map(xn, yn) �→ (xn+1, yn+1):

xn+1 = xn + yn+1, yn+1 = yn − axn + 2εJ(xn)3,

or

Lθx
n = ε2J(xn)3, (16)

whereε is the small parameter,J is the real parameter,θ andLθx
n are defined in(2) and (3)respectively. Expanding

xn as a power series ofε

xn = x(0)n + εx(1)n + ε2x(2)n +O(ε3),

we have

Lθx
(0)n = 0, Lθx

(1)n = 2J(x(0)n)3, Lθx
(2)n = 6J(x(0)n)2x(1)n, (17)

and the solutions of the perturbed equations are given by

x(0)n = Aeiθn + c.c., (18)

x(1)n = −3i|A|2AJ

sinθ
neiθn + JA3

cos 3θ − cosθ
e3iθn + c.c., (19)

x(2)n =
{−9

2

J2|A|4A
sin2θ

n2 − i
J2|A|4A

sinθ

(
3

cos 3θ − cosθ
+ 9 cosθ

2 sin2θ

)
n

}
eiθn

+
{ −9iJ2|A|2A3

( cos 3θ − cosθ) sinθ
n + J2|A|2A3

2( cos 3θ − cosθ)2

{
12− 18

sin 3θ

sinθ

}}
e3iθn

+
{

3JA5

( cos 5θ − cosθ)( cos 3θ − cosθ)

}
e5iθn + c.c. (20)

HereA(∈ C) is the integration constant. To avoid resonant secular terms, we assume in addition that

cosθ 
= cos 3θ, cosθ 
= cos 5θ.

The construction of the reduced map in the case of near resonance is considered inSection 3.2. In order to remove
the secular terms in the coefficient of the fundamental harmonic(exp(iθn)), we introduce the renormalization
transformationA �→ An:

An ≡ A + ε
−3i|A|2AJ

sinθ
n + ε2

{−9

2

J2|A|4A
sin2θ

n2 − i
J2|A|4A

sinθ

(
3

cos 3θ − cosθ
+ 9 cosθ

2 sin2θ

)
n

}
. (21)

Following the same procedure as that in the preceding section, we derive the naive RG map from(21):

An+1 = An + ε
−3iJ

sinθ
|An|2An

+ ε2

{
1

2!

(−3iJ

sinθ
|An|2

)2

An −
(

9i cosθ

2 sin3θ
J2 + 3iJ2

sinθ( cos 3θ − cosθ)

)
|An|4An

}
, (22)
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which destroys symplectic symmetry. This RG map should recover the symplectic symmetry. The naive RG map
can be written in terms of the real variablesAn

1, A
n
2 (An = An

1 + iAn
2):

An+1
1 = An

1 + ε
3J

sinθ
(An2

1 + An2
2 )An

2 + ε2

[
−1

2!

{
3J

sinθ
(An2

1 + An2
2 )

}2

An
1

+
{

9 cosθ

2 sin3θ
+ 3

sinθ( cos 3θ − cosθ)

}
J2(An2

1 + An2
2 )2An

2

]
, (23)

An+1
2 = An

2 + ε
−3J

sinθ
(An2

1 + An2
2 )An

1 + ε2

[
−1

2!

{
3J

sinθ
(An2

1 + An2
2 )

}2

An
2

−
{

9 cosθ

2 sin3θ
+ 3

sinθ( cos 3θ − cosθ)

}
J2(An2

1 + An2
2 )2An

1

]
. (24)

The(ε → 0)-limit yields

dA1

dt
= 3J

sinθ
(A2

1 + A2
2)A2 = ∂H

∂A2
= LH(1)A1,

dA2

dt
= − 3J

sinθ
(A2

1 + A2
2)A1 = − ∂H

∂A1
= LH(1)A2,

where

H(1) = 3J(A2
1 + A2

2)
2

4 sinθ
.

This Hamiltonian generates the relations:{
1 + εLH(1) + ε2

(
L2

H(1)

2!
+ LH(2)

)}
A1(t)

= A1 + ε
3J

sinθ
(A2

1 + A2
2)A2 + ε2

{
−1

2!

(
3J

sinθ

)2 (
A2

1 + A2
2

)2
A1 + ∂H(2)

∂A2

}
, (25)

{
1 + εLH(1) + ε2

(
L2

H(1)

2!
+ LH(2)

)}
A2(t)

= A2 + ε
−3J

sinθ
(A2

1 + A2
2)A1 + ε2

{
−1

2!

(
3J

sinθ

)2

(A2
1 + A2

2)
2A2 − ∂H(2)

∂A1

}
. (26)

According to the general procedure,H(2) is obtained by equating these to(23) and (24). That is,

H(2) =
{

9 cosθ

2 sin3θ
+ 3

sinθ( cos 3θ − cosθ)

}
J2(A2

1 + A2
2)

3

6
.

Then we obtain the approximate HamiltonianH = H(1) + εH(2):

H = α(A2
1 + A2

2)
2 + β(A2

1 + A2
2)

3, α ≡ 3J

4 sinθ
, β ≡ ε

{
9 cosθ

2 sin3θ
+ 3

sinθ( cos 3θ − cosθ)

}
J2

6
.

The canonical transformation dA1 ∧ dA2 = dΘ ∧ dI:

A1 =
√

2I sinΘ, A2 =
√

2I cosΘ,
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gives us the simple canonical equations:

dΘ

dt
= ∂H

∂I
= 8αI + 24βI2,

dI

dt
= −∂H

∂Θ
= 0.

In addition to this expression, there exists the exponential form

A = A1 + iA2 =
√

2I(0)( sinΘ + i cosΘ)

=
√

2I(0)i( cosΘ − i sinΘ) =
√

2I(0)exp

(
−i(8αI(0) + 24βI(0)2)t − iθ(0) + iπ

2

)
.

Therefore, the solution of (ε → 0)-system which is written in the form of an exponential function is

A(t) = A(0)exp

{
−it

(
8

3J

4 sinθ

|A(0)|2
2

+ 24ε

{
9 cosθ

2 sin3θ
+ 3

sinθ( cos 3θ − cosθ)

}
J2

6

|A(0)|4
4

)}

= A(0)exp

{
−it

(
3J

sinθ
|A(0)|2 + ε

{
9 cosθ

2 sin3θ
+ 3

sinθ( cos 3θ − cosθ)

}
J2|A(0)|4

)}
,

where we have used the relation
√

2I(t) = |A(t)| = const. To construct the reduced map, we discretize the
Hamiltonian flow. Identifying

An+1 ≡ A(t + ε), An ≡ A(t),

yields a symplecticity-preserving RG map

An+1 = An exp

[
iε

{−3J |An|2
sinθ

+ εJ2|An|4
(

− 9 cosθ

2 sin3θ
− 3

sinθ( cos 3θ − cosθ)

)}]
. (27)

This map can also be obtained by the exponentiation RG method[6].

3.2. Resonant case

Let us consider a case of resonance in the mapping(16). The solution to the perturbationequation (17)is obtained
in the form(18)–(20)assuming that the parameterθ is far from the resonance with cosθ = cos 3θ. Although resonant
islands are important structures in symplectic maps, they have never been analyzed by the RG method. Here we
demonstrate how our symplecticity-preserving RG method works near a resonant island.

Let us expandθ near the resonance

θ = 1
2π + εθ(1) + ε2θ(2) +O(ε3).

Eq. (16)can then be expressed in the form

Lπ/2x
n = ε(2J(xn)3 − 2θ(1)xn) − 2ε2θ(2)xn,

whereLπ/2x
n is defined by

Lπ/2x
n ≡ xn+1 + xn−1.

The perturbation expansion yields

Lπ/2x
(0)n = 0, Lπ/2x

(1)n = 2J(x(0)n)3 − 2θ(1)x(0)n,

Lπ/2x
(2)n = 6J(x(0)n)2x(1)n − 2θ(1)x(1)n − 2θ(2)x(0)n.
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These equations can be solved, yielding the result

x(0)n = Ain + c.c., x(1)n = (−i)inn[J(A∗3 + 3|A|2A) − θ(1)A] + c.c.,

x(2)n = inn2[ 3
2J

2(−2|A|4A + |A|2A∗3 + A5) + Jθ(1)(3|A|2A − A∗3) − 1
2(θ

(1)2)A] + inniθ(2)A + c.c.

HereA(∈ C) is the integration constant.
As before, we define the renormalization transformation by

An ≡ A + ε(−i)n{J(A∗3 + 3|A|2A) − θ(1)A} + ε2n2{3
2J

2(−2|A|4A + |A|2A∗3 + A5)

+ Jθ(1)(3|A|2A − A∗3) − 1
2(θ

(1)2)A} + ε2niθ(2)A + c.c.

Taking into account the expression

A = An + εin{J((A∗n)3 + 3|An|2An) − θ(1)An} +O(ε3)

which relates the amplitudeA to the renormalization variableAn, we obtain the naive RG map

An+1
1 = An

1 + ε(4J(An
2)

3 − θ(1)An
2)

+ ε2{−24J2(An
1)

3(An
2)

2 + 2Jθ(1)((An
1)

3 + 3An
1(A

n
2)

2) − 1
2θ

(1)2An
1 − θ(2)An

2}, (28)

An+1
2 = An

2 + ε(−4J(An
2)

3 + θ(1)An
1)

+ ε2{−24J2(An
1)

2(An
2)

3 + 2Jθ(1)((An
1)

3 + 3(An
1)

2An
2) − 1

2θ
(1)2An

2 − θ(2)An
1}. (29)

HereAn = An
1 + iAn

2, andAn
1, A

n
2 are real variables.H(1) can be determined by taking the limitε → 0

dA1

dt
= 4JA3

2 − θ(1)A2 = ∂H(1)

∂A2
,

dA2

dt
= −4JA3

1 + θ(1)A1 = −∂H(1)

∂A1
, H(1)(A1, A2) =

(
JA4

1 − θ(1)
A2

1

2

)
+
(

JA4
2 − θ(1)

A2
2

2

)
.

The symplecticity-preserving RG procedure gives the expression forH(2). IdentifyingAn+1 in (28) and (29)as

A(t) + εLHA(t) + ε2L2
H

2!
A(t) = A(t) + ε{A(t),H(1)} + ε2

(
{A(t),H(2)} + 1

2!
{{A(t),H(1)}, H(1)}

)
,

then the truncated Liouville operator relations are

A1(t + ε) = A1(t) + ε(4JA3
2 − θ(1)A2)

+ ε2

[
−24J2A3

1A
2
2 + 2Jθ(1)(A3

1 + 3A1A
2
2) − θ(1)2

2
A1 − θ(2)A2 + ∂H(2)

∂A2

]
, (30)

A2(t + ε) = A2 + ε[−4JA3
2 + θ(1)A1]

+ ε2

[
−24J2A2

1A
3
2 + 2Jθ(1)(A3

1 + 3A2
1A2) − θ(1)2

2
A2 − θ(2)A1 − ∂H(2)

∂A1

]
. (31)

Comparing(30) and (31)with (28) and (29), we have the Hamiltonian whose trajectory can approximately interpolate
the trajectory of the naive RG map,

H = H(1) + εH(2) = J(A4
1 + A4

2) − 1
2(θ

(1) + εθ(2))(A2
1 + A2

2).
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This Hamiltonian system is integrable because of 1 degree of freedom. However, the solution may be too complicated
to write the analytic expression, which yields the difficulty of finding a symplecticity-preserving RG map. Instead
of using the analytical expression to the Hamiltonian flow, we use a symplectic integrator, which is known to be a
discretization method designed for preserving the symplecticity for Hamiltonian flows[14].

We split the Hamiltonian asH1 + H2, notH(1) + εH(2), so that we use a symplectic integrator,

H = H1 + H2 = (JA4
1 − 1

2θ
′(1)A2

1) + (JA4
2 − 1

2θ
′(1)A2

2), θ′(1) ≡ θ(1) + εθ(2).

The HamiltonianH1 provides the mapping

eτDH1 : A1(t + τ) = A1(t), A2(t + τ) = A2(t) + (−4JA3
1(t) + θ′(1)A1(t))τ.

Hereτ is a real number. Similarly,H2 provides

eτDH2 : A1(t + τ) = A1(t) + (4JA3
2(t) − θ′(1)A2(t))τ, A2(t + τ) = A2(t).

Therefore we can obtain the reduced symplectic map

An+1
1 = An

1 + ε[4J{An
2 + 1

2ε(−4JAn3
1 + θ′(1)An

1)}3 − θ′(1){An
2 + 1

2ε(−4JAn3
1 + θ′(1)An

1)}], (32)

An+1
2 = An

2 + 1
2ε(−4JAn3

1 + θ′(1)An
1) + 1

2ε(−4JA(n+1)3
1 + θ′(1)An+1

1 ). (33)

Here we have taken the following symplectic integrator:

eεDH = exp(1
2εDH1)exp(εDH2)exp(1

2εDH1) +O(ε3).

3.3. Numerical results in case of a resonance

In this section we present illustrative numerical results for our symplecticity-preserving RG method in the case
of near resonance with cosθ = cos 3θ. To show that our RG method can successfully be applied to study a resonant
structure for the two-dimensional symplectic map(16), we use both the reduced maps(27), (32) and (33)up toO(ε).

In Figs. 1 and 2the phase portraits to the map near the resonance with cosθ = cos 3θ, are depicted. Although the
exponentiated RG map agrees well with the exact numerical result for near the origin in the phase space, it derivates
considerably from the exact result near the resonance point. In contrast, the map obtained by the Liouville operator

Fig. 1. Phase portraits of the two-dimensional symplectic map model with the parameters areε = 0.01, J = 1.0, andθ(1) = 1.0: (a) the original
map (Eq. (16)), (b) the Liouville operator approach to the RG method (Eqs. (32) and (33)up toO(ε)), (c) the exponentiated RG method (Eq. (27)
up toO(ε)).
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Fig. 2. Phase portraits of the two-dimensional symplectic map model, with the parameters areε = 0.01, J = 1.0, andθ(1) = 10.0: (a) the
original map (Eq. (16)), (b) the Liouville operator approach to the RG method (Eqs. (32) and (33)up toO(ε)), (c) the exponentiated RG method
(Eq. (27)up toO(ε)).

approach to a symplecticity-preserving RG method can globally give a good approximation even in the case of the
first RG approximation. Detailed studies of such resonant island structure by means of the present RG method will
be published elsewhere for other maps including the Hénon map.

4. Conclusions

We have presented the Liouville operator approach to the RG method to preserve symplectic structures in RG maps
near elliptic fixed points of symplectic discrete systems. The symplecticity-preserving procedure is accomplished
by comparing naive RG maps with the Liouville operator relation order by order in the small parameter and gives
symplectic maps, which successfully describes the long-time asymptotic behavior of the original systems. Although
the exponentiation procedure has never been successfully applied to study resonant islands, the Liouville operator
approach to symplecticity preservation has given correctly reduced maps. Furthermore, the advantages of this new
method are not only that a time-step parameter is not needed, but also a reduced map can be explicit, which is done
by choosing an explicit symplectic integrator.

It is easy to see that the present symplecticity-preserving method is also applicable to general weakly-nonlinear
symplectic maps. Other symplecticity-preserving RG maps are to be studied in future.
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