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Abstract

We present a method to construct symplecticity-preserving renormalization group maps by using the Liouville operator.
The resultant RG maps accurately reproduce the long-time behavior of the original symplectic maps even when a resonant
island chain appears.
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1. Introduction

There has been a long history to study the asymptotic behavior of Hamiltonian flows by means of singular
perturbation methods such as the averaging method and the method of multiple time-scales. A Hamiltonian flow
can be reduced to a symplectic discrete map called the Poincaré map, which has a lower dimension than the original
flow and is, therefore, extensively studiggd?].

The perturbative renormalization group (RG) method developed recently may be a useful tool to tackle asymptotic
behaviors of discrete maps as well as flows. The original RG method is an asymptotic singular perturbation technique
developed for differential equatiof®]. Secular or divergent terms of perturbation solutions of differential equations
are removed by renormalizing integral constants of the lowest order solution. The RG method is reformulated on
the basis of a nhaive renormalization transformation and the Lie ddjuhis reformulated RG method based on
the Lie group is easy to apply to discrete systems, by which asymptotic expansions of unstable manifolds of some
chaotic discrete systems are obtaifigd The extension of the RG method to discrete symplectic systems is not
trivial because the symplectic structures are not preserved in naive RG equations (maps) as sho6l jmiReé.
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the application of the RG method to Hamiltonian flows does not cause such a problem as the destroyed symplectic
symmetry except for a special cg3g.

The application of the RG method to some non-symplectic discrete systems has been attempted in the frameworl
of the envelope methd®]. However, the method, if applied to a symplectic map, would give only a naive RG map
which destroys the symplectic symmetry. To recover the destroyed symmetry not only théghduasrintroduced
a process of the “exponentiation” which gives us analytical expressions of some physical quénilidsit also
another papdl0] has used a symplectic integrator by taking the time-continuous limit of the time-step parameter.
Furthermore, Tzenov and Davidson have shown that the exponentiation procedure can be successfully appliec
in the Hénon mapl1]. They also have found a general way to obtain the symplectic RG method including the
exponentiation method. However, these procedures may seem somewhat artificial, and resonant islands have nev
been studied by the RG method.

The main purpose of the present paper is to present a general RG procedure to preserve the symplectic struc
ture in RG maps and to obtain correctly reduced symplectic RG maps. In this paper, this procedure is called a
symplecticity-preserving RG procedure, which consists of the following two steps. First, using the reformulated
RG method/4], we get a naive RG map near an elliptic fixed point of a symplectic discrete system. The naive
RG map preserves the symplectic symmetry only approximately and fails to describe a long-time behavior of the
original map. Second, in order to recover the symplectic symmetry by means of taking account of higher orders in
the naive perturbation result, we equate the naive RG map to the appropriately discretized Hamiltonian flow, which
is done by using the Liouville operator. In this procedure we identify the small parasmeitirthe time-step, which
yields a canonical equation in the limit of 0. This process and a symplectic RG map are called, respectively, a
symplecticity-preserving procedure and a symplecticity-preserving RG map. A reduction of the Liouville equation
in a non-integrable Hamiltonian flow has been developed in[R2f. It should be pointed out that Dragt and Finn
[13] have mathematically discussed the relation between symplectic maps and invariant functions. We practically
show how to construct invariant functions, which correspond to Hamiltonians, in the course of obtaining symplectic
RG maps.

In Section 2 a long-time behavior of a simple linear map is analyzed in order to elucidate both the broken
symplectic symmetry in a naive RG map and our proces§dction 3 a symplecticity-preserving RG map is
obtained near elliptic fixed points of a two-dimensional nonlinear symplectic map even when a resonant island
chain appears. IBection 4we mention the advantages of our newly developed RG method as the summary of this
paper.

2. Linear symplectic map

It may be instructive to analyze a linear symplectic map, which is exactly solabley”) — (x*11, y*+1):
xn+l =x" 4+ yn+1 yn—i-l — yn —ax" + 2eJx".
This map can be rewritten as
Lox" = £2XX", Q)
wheres is the small parametey, is the real parametef,andLyx" are defined as

cost = (1 — %) , (2

Lox" = X"t — 2¥" cosf + x" 72, 3
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respectively. We assume that the nfajphas an elliptic fixed point at the origin (0, 0). The linear nfaphas the
following exact solution’;:

X = Aexpliarccog cost + eJ)n) + c.c.,

1 aexpli(o+e—L 42200 (L 2+ +cc 4)
X = & E A n Ly
E P sing 2sing \ sing

whereA(e C) is the complex “integration” constant andaccstands for the complex conjugate of the preceding
terms.

Let us derive an asymptotic solution of the m@p for smalle by means of the RG method. Substituting the
expansion

K = xOn o ogxDn g 2, @m 4 08, (5)

into Eq. (1) we have

LoxOm =0,  Lex®m =201 [yx@n = 20xn,
and
x" = Aexp(ibn) + c.c., x = sinen exp(ibn) + c.c.,

x@n _ —J%A n? 4 i cos@n exp(ién) + c.c
~ 2sin% sing U

where A(e C) is the integration constant. To remove secular terts, (2), we introduce the renormalization
transformationd — A" [4]:

—iJA —J2A cost
AT=A 2 24 O(e®). 6
tesing” T 2sin% (n + sin0n> +06E) ©

A discrete version of the RG equation is just the first order difference equatidh, @fhose local solution is given
by Eqg. (6) FromEq. (6) we have

J J? cosd
An+1 _ An — i _ 2 1 [ttt A 3 7
( e sind ° 2sin?0 2n+1+1 sing +0E, )

whereA should be expressed in termsAf. This is done by taking the inversion of the renormalization transfor-
mation(6) iteratively:

Jn
A=(1+i 2)) A", 8
( +|85in0+0(8)> 8)
Substituting(8) into (7), we obtain the following RG equation (RG map) up@¢?)
—ied 1 [—ie]\? J2cosd
A= 14 — — (= —ig? A" 4+ O(3), 9
( + sing + 2! <sm9) e 23in39> +OE ©

of which the solution is

—ieJ 1 [—ieJ\? J? cosh !
A" =1[1 - = - — i 1+ 0% | AL 10
( + sing + 2! (sm@) ® 2sin% +0E (10)
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On the other hand, frorq. (4) we haveA” exactly as

2
—J cosH J
A" = A%expli s ) 11
p[ <8 sing ¢ 2sind \ sind + " (11)

Notice that|A”|? is an exact constant of motion while it is merely an approximate conserved quantity of the
(truncated) RG may9). The symplectic structure is also not exactly preserved in the RG map, that is, for the
truncated RG maf®) up toO(¥), we have

dA" A dA T — dA” A dA* = 0% £ 0,

wherek = 1, 2, ...; A* is complex conjugate ta” and should also be a canonical conjugata’td However, this
fault of the RG map vanishes in the limit f—> 0.

In order to remedy a fault like this, we take advantage of the crucial observation that Hamiltonian flows satisfy
the following relation:

2
Z(t+pn) = (1+ uly+ %E% + .- ) Z(t) = exp(uly)Z(), (12)

wherer is the time variabley is a real number# is a HamiltonianZ is a canonical variabléy1, g2, . . ., gn, p1,
p2,--.,py) and

N
0Z 0H 9Z oH
LyZ=1{Z H)= = =), L27 =Ly(LyZ) ={{Z, H Y, H), 13
nZ =12 H) ;(aqjapj ap,aq,) WZ=Lu(LuZ)=(Z H.}. H} (13)

whereLy is the Liouville operator defined by the Poisson bracket. We can identify the re{agpas the map by
definingZz"+1 = Z(tr + ), andZ" = Z(1):
2 =Wzt ), W2 ) = expuly) Z()] 2=z - (14)

This is the symplectic mapping associated with the Hamiltonian system. Identjfyiag in (14), we can obtain
both the Hamiltonian system and the associated symplectic mapping in the following steps:
1. Expanding a Hamiltonia#l in (12)in powers ofe, H = H®Y + ¢H® 4+ ... we obtain the following relation:

2 L2
Z(t+¢) = (1 +eLy + %ﬁ,%, + 0(83)) Z(1) = {1 + &Ly + € ( HD EH(2)> + 0(53)} Z(1).

2!
(15)

2. HD can be found by taking the lim{tA”*1 — A”)/e — dA/dr (¢ — 0) in the naive RG map by comparing
the naive RG map witlf15). Using HV and equating the naive RG map with the Liouville operator relation
(15), we obtain the Hamiltoniat! = H® + ¢H®@. Similarly, we can obtain the higher order Hamiltonian
H® H@,_ ... order by order ire. This procedure yields the approximate Hamiltonian.

3. To obtain the symplecticity-preserving RG mapping, we discretize the continuous-time system obtained in the
second step. The time-step should be chosen to be

1 For the corresponding Hamiltonian flows, the truncated RG equation exactly preserves the symplectic structure with canonical variables
(A, A*) order by order in the small parameter.
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In the present case, we take the limit> 0 in (9), which gives

dAa iJ oH r dAa* IH "
G T snet T gar D LawA G = Toxe = Lnedn

Here d4/dr is from (A"T1 — A™) /e, and so on. Then we have

@ _ i JIAP 2 @y @
H =—|m and Ly0A={{A, H7}, H7} =

At this stage, the Liouville operator relation is

—J2A
sin20°

L2 —iJA —J2A  9H®
1 L 2 LIS A=A - 2= .
[ +eLyy +¢ ( 5 + Ly +8S|n9+8 23in29+ e

Equating this to the right-hand side of the naive RG r{8pwe have

O _ —iJ2cost|A|?
o 2sin3g

The Hamiltonian? = HY + ¢H@ |eads to the following equation:

dA  —iJ A —iJ?cos oH dA oH

— = — e - = —, - = .

dr sing 2 sin36 9A dr JA*
The solution of the continuous-time system is

s —J?cosd
A(,)ZA(O)eXP{' (sin9+8 2sing3 )t}

which yields the symplecticity-preserving RG map:

-J e —J2cosh
sing 2sin36 '

AL = A7 exp{ie <

Here the time-step has been chosen te.Aéen we recover the exact solution(dj, is (11), in terms of the original
variablex”".

Finally, the present method is summarized in the following diagram.

A symplecticity-preserving RG method for symplectic maps:

discrete-time | [continuous-time

Symp. maps
naive RG J
naive RG maps

. Liouville operator
(dissipative maps)

RG Eqgs.

( canonical Egs. )

Symp.-Pres. discretizations

Symp.-Pres. RG maps
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3. Two-dimensional nonlinear symplectic map
3.1. Non-resonant case

Let us analyze the weakly-nonlinear symplectic niep y") — (x"*1, y"+1):
Ly yn+1 yn+1 =y —ax' + 2@](x”)3
or
Lox" = e2J(x")3, (19

whereg is the small parameter,is the real parametet,andLyx" are defined irf2) and (3yespectively. Expanding
x"" as a power series of

X' = x(O)n + 8x(1)n + 82)6(2)" + 0(83),
we have
Lox Q" =0, Lox®" = 2J(xOm)3, Lox®@" = 6J(xOm)2xDn (17)

and the solutions of the perturbed equations are given by

xOn = A" 4 cc, (18)
—3ilA]2A) JA3 -

On _ Tt T Q8ion o 19
* sing + cosP — cosh tec (19)
Jon _[Z9THAIA o JAAIMA 3, 90w |

2 sin29 sind cosP — cosd  2sin2d
—9iJ2|A1243 J21A12A8 18 sind 3o
—n - .
(cos P — cosh) sind 2(cos P — cosh)? sing
30A° 5i6
e’ +c.c. 20
+ {(cos&?—cos@)(cos&9—cos€)} + (20)

Here A(e C) is the integration constant. To avoid resonant secular terms, we assume in addition that
COSH # C0S J), Ccosf # cosD.

The construction of the reduced map in the case of near resonance is considggetian 3.21n order to remove

the secular terms in the coefficient of the fundamental harm@p(ién)), we introduce the renormalization

transformatiolM +— A"

—3i|AJ2AJ —9 J?|A*A CJ2IA*A 3 9 coy

l.—|7’l+82 — l_ | n?—i l_l + — n (21)
sing 2 sin29 sing cosP — cosh  2sin2g

A=A +¢
Following the same procedure as that in the preceding section, we derive the naive RG mgijrom

=3iJ
An+1= An + S_|An|2An
siné

1 /-3iJ 2 9i cost 3iJ2
+82{ (—|A”|2> A”—( J2 + Cos@))m”ﬁm}, (22)

21 \ sing 2 sin30 siné(cos 3 —
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which destroys symplectic symmetry. This RG map should recover the symplectic symmetry. The naive RG map
can be written in terms of the real variablé$, A5 (A" = A] +1A%):

AT = AL e

3J —1( 3J 2
i An2 An2 Al A n2 An2 A
sme( 1T ADA e 2! sme( 20 M

9cos 3 2 n2 2.2
J(AY A%HeAY |, 23
{Zsin39 + sinf(cos 3 — cos@)} (A" 420742 (23)

~3J ~1( 3J 2
Ag = AG 4 e (AT + AB)AT + 62 [ {—(A'12+A;2>} A

2! | sing
9cos) 3 2 n2 2.2
— - - Jo(AY Al AT | . 24
{25|n39Jr sm@(cos&?—cos@)} (A7 + 42074 (24)
The (¢ — 0)-limit yields
—— = Ap=—— = LywAg, <= Al =——— =LywAz,
dt sme( L+42)4z 9As HO AL dt sme( I+ 424 9A1 H® A2
where
O _ 3J(A3 + A3)?
45sinf
This Hamiltonian generates the relations:
L2,
{1+ eLya) + &2 ( g:) + CH<2)> } A1(D)
3/ 3J 5 2 dH®?
A AS5)A A A A , 25
Arte o (AT + AD Az +e [ZI (Sm) (A2+43) a1+ s (25)
L2,
{1+8£H(1) +82( g:) —i—ﬁH(z))}Az(t)
-1(3J A2)2 IH®?
=A A ASA A Ap — . 26
2+8 ( + 2) 1+te {2' (SIH@) ( A5)Az 0AL (26)

According to the general proceduté® is obtained by equating these(@8) and (24) That is,

2 2
g [ 9co9 3 JHAT+AD®
2sin30 = sind(cos P — cosh) 6

Then we obtain the approximate Hamiltonigh= HV + ¢ H@:

—, - + —
4sind 2sin36  sind(cos P — cosh)
The canonical transformatiomdd A dA> = d® A dI:

A1 =+2IsinB, Ao = /21 CcosB,

3J 9co¥ 3 J?
H=a(A? + A3)? 4+ B(A2 + A3)3, a= Es{ }—
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gives us the simple canonical equations:
d® 0H dr oH
— = — = 8al + 24812, e
dr ol +24p dr 00
In addition to this expression, there exists the exponential form
A=A1+iA2 =/21(0)(Sin® + icos®)

=/21(0)i(cos® —isin®) = \/T(O)exp(_i(gal(o) + 2481(0)))t — i6(0) + %T) '

Therefore, the solution ot(— 0)-system which is written in the form of an exponential function is

B : 3/ |A0)? 9 coy 3 J21A0)*
A0 =40 eXp{_lt (84sin9 2 {25in39 * Sine(cos @ — cos@)} 6 4

_ (8] 2 9 cow 3 5 4

o A(O)exp{ o < sin9|A(0)| te { 2 sin30 + sinf(cos P — cos@)} 7140 )} ’

where we have used the relatiqf2I(r) = |A(r)] = const To construct the reduced map, we discretize the
Hamiltonian flow. Identifying

A" = A+ o), A" = A(),

yields a symplecticity-preserving RG map

. [—3J]A"? 9 cos 3
A = AT explie | ———— + eS| AMH  ————r — — . 27
Pt siné +eloAT 2sin30  sind(cos P — cosh) 27

This map can also be obtained by the exponentiation RG mé#od
3.2. Resonant case

Let us consider a case of resonance in the mapii® The solution to the perturbati@yuation (17)s obtained
in the form(18)—(20)assuming that the paramef&s far from the resonance with cés= cos 3. Although resonant
islands are important structures in symplectic maps, they have never been analyzed by the RG method. Here wi
demonstrate how our symplecticity-preserving RG method works near a resonant island.

Let us expand near the resonance

0= %n + 60D + 620 4+ O3,
Eq. (16)can then be expressed in the form
Lyjox" = e(2J(x")2 — 200 ") — 26202y,
whereL,/»>x" is defined by
Lox" = "1 4471,

The perturbation expansion yields

Lﬂ/zx(o)” =0, Ln/zx(l)" = 2J(xOm)3 _ 29D, On
Ln/zx(Z)n — 6.]()6(0)”)2)6(1)” _ 29(1))6(1)” _ 29(2))6(0)’1.
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These equations can be solved, yielding the result
x©@7 = Ai* + c.c., xD" = (—)i"n[J(A*2 + 31A)%A) — 6D A] + c.c.,
x@m =i 3U2(—2|A1*A + |AIPA™ + AD) + U0 (31A1PA — A — 2(0DH)A] +i"ni6P A + c.c.

Here A(e C) is the integration constant.
As before, we define the renormalization transformation by

A=A+ e(—n{J(A* + 3|APA) — 0D AY + 2n2(372(—2|A1* A + |A)PA™3 + A®)
+ 60314124 — A*3) — 30D A) + 2ni0@ A + cc.
Taking into account the expression
A= A" + in{J((A*)2 + 314" |2A") — 6D A"} + O(3)
which relates the amplitudé to the renormalization variablé”, we obtain the naive RG map
AT = AT+ e(40(A%)3 — 6D AY)
+e2{—247%(A5)3(A%)? + 270V (A9 + 345 (AD?) — 26M2AL — 9D AY), (28)

AGH = A5 + e(—4J(A3)°% + 00 AT
+e2{—247%(AD)?(A%)® + 2701 (A9 + 3(45)?A%) — 26M2A5 — 9D A7) (29)

HereA" = A} + 1A, andA’, A} are real variables?M can be determined by taking the linait—> 0

dAq 3 dHD
= =4 -0V Ay = ——
dr 2 27 94,
dA dHD A2 A2
2o a3 0WA =T HD (A, Ay = A oD EL) 4 (Al — D22 )
dr 0A1 2 2

The symplecticity-preserving RG procedure gives the expressial ®r Identifying A*+1 in (28) and (29)ps

22

A) + Ly A + & ;'HA(r) = A®) + e{A®), HD} + &2 <{A(t), H@Yy + %{{A(r), HDY, H<1>}> i

then the truncated Liouville operator relations are

A1t 4 &) = A1(D) + £(4IA3 — 6D Ap)

2 24342 1 3 2 9(1)2 2 aH(Z) |
+2 | —2472A3A3 + 200V (A3 4 34143) — —A1- 0P Az + o | (30)
2
Aa(t 4 &) = Ap + e[—4IA3 4+ 0P A4]
B o2 dH®
+62 | —24J2A2A3 4 2760 (A3 4 3424) — — A2 - 0P A1 — T (31)
1

Comparing30) and (31)vith (28) and (29)we have the Hamiltonian whose trajectory can approximately interpolate
the trajectory of the naive RG map,

H=HY+eH? = J(AT+ A3) — 30D + £0@) (A2 + A)).
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This Hamiltonian system is integrable because of 1 degree of freedom. However, the solution may be too complicated
to write the analytic expression, which yields the difficulty of finding a symplecticity-preserving RG map. Instead
of using the analytical expression to the Hamiltonian flow, we use a symplectic integrator, which is known to be a
discretization method designed for preserving the symplecticity for Hamiltonian Fleljis

We split the Hamiltonian a&l; + Hy, not HY + ¢ H@, so that we use a symplectic integrator,

H=Hi+ Hy = (AT — 30D A2) + A3 — 10D A3), oD =D 4 0@,
The HamiltonianH1 provides the mapping

el 1 At + 1) = A1(D), At + 1) = Ag(r) + (—4IA3() + 0D A1 ()T
Herer is a real number. Similarlyel, provides

el 1 A+ 1) = A1(1) + (AIAS() — 0D A0, At + 1) = Ax(D).

Therefore we can obtain the reduced symplectic map

AT = AT+ e[4T{AY + Je(—AIA3 + 0D AT — 0D (AL + Je(—4IAP + 0D AD)], (32)
AR = A%+ 3e(—a0AR + 0D AY) + Le(—a0AT D oD AntY), (33)

Here we have taken the following symplectic integrator:

&P1 = exp(3eDp,) exple Dps,) exp(3e D) + O(e3).
3.3. Numerical resultsin case of a resonance

In this section we present illustrative numerical results for our symplecticity-preserving RG method in the case
of near resonance with cs= cos 3. To show that our RG method can successfully be applied to study a resonant
structure for the two-dimensional symplectic n{ag), we use both the reduced mggg), (32) and (33)p toO(e).

In Figs. 1 and 2he phase portraits to the map near the resonance with £a0s 3, are depicted. Although the
exponentiated RG map agrees well with the exact numerical result for near the origin in the phase space, it derivate:
considerably from the exact result near the resonance point. In contrast, the map obtained by the Liouville operator

y
A b LY o 2w s

y
A b A o 2N w s
,
AN Ao a2 w s~
.

43210
(@) x (b)

Fig. 1. Phase portraits of the two-dimensional symplectic map model with the parametees @rel, 7 = 1.0, andd™® = 1.0: (a) the original
map Eg. (16), (b) the Liouville operator approach to the RG methigadg. (32) and (33)p toO(¢)), (c) the exponentiated RG methdgly, (27)
up toO(e)).
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g/
0
X

Fig. 2. Phase portraits of the two-dimensional symplectic map model, with the parameters-a0®1, J = 1.0, andé® = 10.0: (a) the
original map Eg. (16), (b) the Liouville operator approach to the RG methBdg. (32) and (33)p toO(¢)), (c) the exponentiated RG method
(Eq. (27)up to O(e)).

approach to a symplecticity-preserving RG method can globally give a good approximation even in the case of the
first RG approximation. Detailed studies of such resonant island structure by means of the present RG method will
be published elsewhere for other maps including the Hénon map.

4. Conclusions

We have presented the Liouville operator approach to the RG method to preserve symplectic structures in RG maps
near elliptic fixed points of symplectic discrete systems. The symplecticity-preserving procedure is accomplished
by comparing naive RG maps with the Liouville operator relation order by order in the small parameter and gives
symplectic maps, which successfully describes the long-time asymptotic behavior of the original systems. Although
the exponentiation procedure has never been successfully applied to study resonant islands, the Liouville operator
approach to symplecticity preservation has given correctly reduced maps. Furthermore, the advantages of this new
method are not only that a time-step parameter is not needed, but also a reduced map can be explicit, which is done
by choosing an explicit symplectic integrator.

It is easy to see that the present symplecticity-preserving method is also applicable to general weakly-nonlinear
symplectic maps. Other symplecticity-preserving RG maps are to be studied in future.
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