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ABSTRACT

The effects of rotation on the evolution of non-Gaussian statistics of velocity increments in rotating
turbulence are studied in this paper. Following the Lagrangian evolution of the velocity increments over
a fixed distance on an evolving material element, we derive a set of equations for the increments which
provides a closed representation for the nonlinear interaction between the increments and the Coriolis
force. Applying a restricted-Euler-type closure to the system, we obtain a system of ordinary differential
equations which retains the effects of nonlinear interaction between the velocity increments and the
Coriolis force. A priori tests using direct numerical simulation data show that the system captures the
important dynamics of rotating turbulence. The system is integrated numerically starting from Gaussian
initial data. It is shown that the system qualitatively reproduces a number of observations in rotating
turbulence. The statistics of the velocity increments tend to Gaussian when strong rotation is imposed.
The negative skewness in the longitudinal velocity increments is weakened by rotation. The model also
predicts that the transverse velocity increment in the plane perpendicular to the rotation axis will have
positive skewness, and that the skewness will depend on the Rossby number in a non-monotonic way.

Based on the system, we identify the dynamical mechanisms leading to the observations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Rotating turbulence plays an important role in many different
areas, including geophysical, astrophysical and engineering appli-
cations. In rotating turbulence, the effects of rotation enter through
the Coriolis force [1,2]. The relative importance of the Coriolis
force in homogeneous turbulence is qualitatively measured by the
Rossby number, defined as the ratio of the nonlinear advection
term to the Coriolis force. There has been a continuous effort to
understand the effects of the Coriolis force that have led to the pe-
culiar features of rotating turbulence. It is known that in rotating
turbulence the energy transfer in Fourier space is weakened by the
phase-scrambling effects generated by the inertial waves [3,4]. Asa
consequence, a steeper energy spectrum is observed in simulations
and experiments [5-9], which is also predicted by phenomenolog-
ical and analytical models [10,11]. On the other hand, it is argued
that the nonlinear interaction between resonant waves is largely
responsible for the generation of coherent columnar vortex struc-
tures, the tendency towards two-dimensionalization, inverse en-
ergy cascade, and a number of other phenomena [12,13,6,14,8,15],
although recently it has been shown that linear mechanisms may
also make important contributions [16,17].
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For non-rotating turbulence, the small-scale structures of tur-
bulence have received considerable attention. Measured by veloc-
ity increments and velocity gradients, the statistics at small scales
have been shown to be highly non-Gaussian (see, e.g., [18]). The
non-Gaussian statistics are generated by frequent, intense fluctu-
ations in small-scale quantities, which presents great obstacles to
the efforts to develop universal models. Similar approaches have
been adopted in the study of the small-scale structure of rotating
turbulence recently. The statistics of velocity gradients have been
studied in [19]. It is observed that, generally, the statistics tend to
become more Gaussian in rotating turbulence. A phenomenon that
has received considerable attention is the observation that the ver-
tical vorticity component displays positive skewness, which takes
the maximum at some intermediate value of the Rossby num-
ber [13,15,20]. Visually, the observation is related to the preva-
lence of cyclonic vortices in rotating turbulent fields. It is observed
that the maximum in the skewness coincides with the maximum
in the three-dimensional to two-dimensional energy transfer [15].
The phenomenon has been attributed to the instability of anti-
cyclonic vortices in [13]. On the other hand, [21] shows that the
initial growth of the skewness is proportional to the product of the
rotation rate of the frame of reference and the mean vortex stretch-
ing. Since the mean vortex stretching is positive in an isotropic
turbulence, this will lead to an algebraic growth in the skewness
when rotation is imposed. Using data generated by direct numer-
ical simulation (DNS), [20] studies the problem in great detail and
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concludes that the stationary value of the skewness is affected
by a number of other parameters. The properties of velocity in-
crements have also been documented in the experimental and/or
DNS studies reported in [22,19,9,23-25]. The scaling law of the ve-
locity increments is measured, showing reduced anomalous scal-
ing. The skewness of the longitudinal velocity increments is also
observed to be weakened by rotation. Several phenomenological
models have been proposed to explain the observations regarding
the scaling law in rotating turbulence [22,25].

Thus, it appears that there is not yet a consensus as to the mech-
anisms of some observations regarding the non-Gaussian statistics
in velocity increments and velocity gradients. In particular, an un-
derstanding based on the dynamics of the governing Navier-Stokes
(NS) equations is desirable. In this paper, we intend to provide a
partial yet unified explanation for a number of observations via a
simple dynamical model. To provide the background for the model,
we note that it is closely related to recent research on the so-
called restricted Euler approximation and several models for the
small-scale dynamics of turbulence. In the restricted Euler (RE) ap-
proximation, the equation for the velocity gradient is truncated,
and only the nonlinear term and the isotropic part of the pressure
Hessian are retained [26,27]. The velocity gradient predicted from
the RE approximation develops a finite time singularity. How-
ever, the tensorial structure of the gradient reproduces a number
of important features observed in turbulence, such as the prefer-
ential alignment between the vorticity vector and the interme-
diate eigendirection of the strain rate tensor [26-29]. Thus, the
RE approximation has been used as a base model to understand
the small-scale turbulence. A number of models for the pressure
Hessian have been proposed to regularize the approximation. A
useful idea is to follow the Lagrangian evolution of material el-
ements, which has been pursued in [30-33] (see also [34] for a
recent model). The ideas are adopted to study the evolution of ve-
locity increments in [35]. A simple dynamical model for the ve-
locity increments is derived by following the Lagrangian evolution
of a linear element [35]. The model is generalized to turbulence
in two and four spatial dimensions, and to include the increments
of passive scalars in [36]. These models reproduce quite a few im-
portant observations regarding the non-Gaussian statistics of the
increments, and thus have helped clarify the origins of the obser-
vations from a dynamical point of view. It is also predicted that the
increments of a passive scalar [36] are more intermittent in four
spatial dimensions (compared with three spatial dimensions). In
this paper, we applied the ideas to study the evolution of the non-
Gaussian statistics of velocity increments in rotating turbulence.
In order to incorporate the Coriolis force, a local coordinate sys-
tem attached to an evolving material line is introduced. We show
that, with the help of the coordinate system, a system of equations
for the velocity increments over a fixed distance on the material
line can be derived. The analysis of a restricted-Euler-type approx-
imation of the system shows that several features of rotating tur-
bulence can be reproduced, which thus provides explanations for
some of the observations from a dynamical perspective.

The paper is organized as follows. In Section 2, the system of
the equations is derived, and an a priori analysis is conducted.
The numerical solution of the system is presented in Section 3.
Conclusions are summarized in Section 4.

2. Derivation of the equations and a priori tests

Following the idea of [35,36], we keep track of a line element
r(t) and consider the velocity increments over a fixed distance ¢
along the direction of the element £(t) = r/r, where r = |r|
is the length of the line element. In [35,36], where non-rotating
turbulence is considered, a system of two equations for the lon-
gitudinal and transverse velocity increments over ¢ is derived. In
rotating turbulence, however, we first need to define a local Carte-
sian coordinate system in order to better account for the effects of
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Fig. 1. The local coordinate frame defined by the direction of a line element t and
rotation direction.

the Coriolis force. Suppose the rotation axis is k, so that the angular
velocity of the frame of reference is = §2k, which is independent
of time. We define the local Cartesian coordinate system by the fol-
lowing three unit vectors (see Fig. 1):

F(t), S() = @ x #/|| x ||, €(t) =FxS. (1)

With u(x, t) denoting the velocity field, in the above local coordi-
nate frame the velocity increment can be decomposed into three
components:

Su=u(x+ ¢f, t) —ux, t) = Ut + Vs + Wit. (2)

That is, U denotes the longitudinal velocity increment along the
direction of the line element, while V and W denote the two trans-
verse increments.

To derive the equations for the increments, we consider the
coarse-grained NS equations filtered at scale A ~ £. Let U; denote
the filtered velocity field, and A; = 9;ui; denote the filtered velocity

gradient; the equation for A; in a rotating frame of reference reads

~ -~ ~ 2 -
DiAij = —ApAyj — 28 S2kAn — §(Q + rwi) 8 + Hij, (3)

where D; = 9/dt + 1;9; is the material derivative in the filtered
velocity field. The second term on the right-hand side (RHS) comes
from the Coriolis force. Hy = (—=8}p — djmy + vV?A)) — 3
Sij(—Vzii— 8ékrkm) is the anisotropic part of the pressure, subgrid-
scale (SGS) stress, and viscous stress Hessian [27,35]. The first term
in the second line represents the corresponding isotropic part. p is
the filtered pressure, 7; = t;u;—U;l; is the SGS stress, @; = (V xU);
is the filtered vorticity, and Q = —A;;nAnm/2 is the second tensor
invariant of the filtered velocity gradient [27].

According to the Kolmogorov phenomenology, the contribu-
tions to the velocity increment u mainly come from the motions
around the scale £. Therefore, we have §u ~ §u = u(x + £F, t) —
u(x, t), given that A ~ £. Since the filtered velocity field is smooth
over scales ~ ¢, we use linear approximations, and obtain

8T ~ €F - VU = €791 = £7jA;. (4)

As a consequence, U ~ §u - T ~ EZU?,-?]-. Working out the expres-
sions for V and W in a similar way, we find that the increments can
be written as

U=(Aifif,  V=tAfS, W = (A, (5)
Based on Eq. (5), the equations for the velocity increments can be
derived from the equation for the filtered velocity gradient A; and
those for the direction vectors. Using the evolution equation of the
line element D;r; = Ajrj, the equations for the direction vectors

can be deduced from their definitions given in Eq. (1). In doing so,
one finds that

D =Ve s+ welt, (6)
D:§ = Ve (cot 6t — 1), (7)
Dt = —cotoVeT's — we k. (8)
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Angle 6 in the equations is the angle between the line element r and
the rotation axis k, which evolves according the following equa-
tion:

D6 = —we L, 9)

With Egs. (6)-(8) and (3), the equations for the velocity increments
can then be derived from the definitions (Eq. (5)). After some alge-
bra, the final equations are obtained as follows:

DU = —U% '+ Vv + W2 420V sing
2 2 .
DV = —20ve '+ Wve!cotd
—20R(Usin® — W cos ) + £Hjfs;, (11)
DWW = —2UW{ ' — V2 ! coth — 2V 2 cos b
+ CHyfit;. (12)

The equations describe the Lagrangian evolution of the velocity in-
crements over the displacement £. The most prominent feature of
the equations is that the nonlinear interaction between the velocity
increments as well as the Coriolis force is in closed form. Therefore
the system is particularly suitable for examining the interplay be-
tween these two physical factors. On the other hand, the Hy;, Q and
Q2w terms are not closed in the equations. To formulate a model
that can be used to simulate rotating turbulence, models for the
unclosed terms need to be developed. Several models for H;; have
been constructed in the context of the stochastic models for the
velocity gradient [30,33], which can be taken as the basis for this
purpose. Similarly, Q and $2,@y, are closed if we were to work with
a stochastic model for the full velocity gradient. However, as we
have mentioned, our goal is to gain insights into the dynamics be-
hind the observations regarding the non-Gaussian statistics of the
velocity increments, rather than building a model for simulation.
We thus choose to employ a simple restricted-Euler-type closure
to handle the unclosed terms, and focus our attention on under-
standing the effects of the closed nonlinear terms and the Coriolis
force. This approach is partly justified by the successes of previ-
ous research based on similar closure strategies. As will be shown
soon, the resulting model will also be checked against DNS data,
which confirms that the resulting system indeed captures a signif-
icant part of the dynamics of Navier-Stokes turbulence.

Thus, following the idea of the restricted Euler approxima-
tion [26,27], we set H;; as well as §2;a to zero in Egs. (10)-(12). The
term proportional to Q represents the part of the nonlinear self-
interaction that is balanced by pressure to maintain incompress-
ibility. As is shown in [35], part of the Q term is in closed form in
terms of the velocity increments. To see this, note that, in the local
coordinate frame (see Fig. 1), the matrix A; can be written as

- Err Ers grt
A= ésr éss ést > (13)
Ar  Ais  Ax

where A :~U/£,7\;,S = V/{, and Ea = W/, according to Eq.
(5). Ay = —Ay — A = —U/L — A due to incompressibility.
Since Q is a tensor invariant, it is the same for different projections
of A;. Based on the above projection, a simple calculation shows
that Q = —¢~?U? + Q~, where the first term comes from A2 and
part of A%, and Q ~ contains the other unclosed terms [35]. We re-
tain the first term while neglecting Q ~. Applying these approxima-
tions (neglecting H;, 2y@y and Q ™), the final restricted-Euler-type
model is given as

1
DU = —gu%l + V2 4+ Wit 4202V sing (14)

DV = —20ve~' + Wvelcotd
—28£(Usind — W cos0) (15)

DW = —2UwWe™! —V2¢~ ! cot — 2V 82 cos 6. (16)

The above equations, together with Eq. (9), form a closed system.
The system describes the effects of the nonlinear interaction terms
and the Coriolis force on the evolution of the velocity increments.

When 2 = 0, i.e, when there is no rotation, Eqs. (14)-(16)
can be compared with the advected delta-vee system in [35,36].
The advected delta-vee system is a system of two equations for §u
and . In present notation, su and §v correspond to U and (V? +
W?2)1/2 respectively. From Eqgs. (14)-(16), one can easily derive the
equations for §u and dv. When §2 = 0, the equations are the same
as those in the delta-vee system. Therefore the current system
is a generalization to the advected delta-vee system. As having
been pointed out in [35], the advected delta-vee system captures a
number of essential mechanisms that are responsible for the non-
Gaussian statistics in the small scales of turbulence. The current
system also contains these mechanisms. It is well known that, in
turbulence in three spatial dimensions, the longitudinal velocity
increment develops a negative skewness, which is a signature of
the energy cascade process (see e.g. [18]). Eq. (14) shows that the
first term on the RHS, being always negative, will always amplify
the negative fluctuations in U. Therefore, this term produces a
self-amplification mechanism for the negative fluctuations in the
longitudinal velocity increments, and is the source of the negative
skewness. Physically, it represents an effect similar to the front-
steeping process observed in the Burgers’ equation [37]. On the
other hand, numerous observations show that the transverse
velocity increments frequently experience violent fluctuations. As
a consequence, the probability density functions (PDFs) of the
transverse velocity increments display exponential or stretched-
exponential tails, compared with the Gaussian distribution [ 18,38].
This trend can be qualitatively explained by the first term on the
RHS of Eq. (15), and also the first term on the RHS of Eq. (16).
These terms show that, when the longitudinal velocity increment
U is negative, exponential growth, and hence strong fluctuations,
in the transverse increments V and W can be generated. This
mechanism for generating strong fluctuations in transverse
velocity increments is termed the ‘cross-amplification’ mechanism
in [35]. In rotating turbulence, these mechanisms are accompanied
by the Coriolis force, as is shown by Egs. (14)-(16). It is the
goal of this paper to understand the interaction between the
nonlinear terms and the Coriolis force based on the above model
equations. (For more analyses concerning the nonlinear interaction
between the velocity increments in Egs. (14)-(16) in non-rotating
turbulence, we refer readers to [35,36]).

Given the drastic approximations that we have made, it is
desirable to check to what extent the model captures the dynamics
of the Navier-Stokes turbulence. We thus compute the correlation
between the rates of changes of the velocity increments predicted
from the model and the actual rates of changes resulting from the
full Navier-Stokes dynamics, using a DNS data set. The former is
calculated from the right-hand sides of Eqs. (14)-(16), while the
latter is calculated by following the evolution of line elements, as
well as the velocity increments over the line elements, in filtered
DNS velocity fields. In what follows, the latter results are referred
to as the ‘exact’ results. The technical details of the analysis have
been explained in [35]. The DNS data are generated by solving the
NS equations with a pseudospectral method and Adam-Bashforth
second-order time integration. The flow is forced at wavenumbers
|k| < 3, injecting energy at a constant rate. 256> grids are used.
The Coriolis force is integrated exactly, using an integrating factor
based on the helical decomposition of the Fourier modes [4].
The initial velocity field is taken from a fully developed isotropic
velocity field obtained from pre-simulations without rotation. The
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Fig. 2. Energy spectra compensated with k2. Solid line: with rotation; dashed line:
initial spectrum (without rotation).
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Fig. 3. Correlation between the rates of changes of the velocity increments
predicted from model (Egs. (14)-(16)) (model results) and those calculated by
tracking the Lagrangian evolution of the material lines and the increments (the
exact values). Lines with symbols: Ro = 0.2; symbols only: without rotation.
Squares: D, U, circles: D;V, inverted triangles: D;W.k, = 7/ A.

initial Reynolds number Re; = u'A/v ~ 114, where v’ = 0.66
is the initial root-mean-square (rms) velocity fluctuation and A the
Taylor length scale. The initial Rossby number Ro = u'/£2L s set to
0.2, where L = 7 is the forcing scale. The data used in the following
analysis are taken at a time when an approximate k2 spectrum is
observed [5]. Fig. 2 shows the energy spectra for the data with or
without rotation, compensated with k2.

Fig. 3 plots the correlation coefficients for the rates of changes
of the increments at several filter scales A. The results for rota-
ting turbulence are plotted with lines with symbols. The results
obtained from the DNS data of non-rotating turbulence are also
plotted with symbols for comparison. Averaging is taken over all
the grid points and for r along the two coordinate directions in the
plane normal to the rotating axis. Therefore & = 7 /2 and the W
component of the increment is in the direction of the rotation axis.
£ is taken as the same as A in each case. In rotating turbulence,
the figure shows that, for D,U and D;V, the correlation coefficients
are close to 0.6, with only small variation over different scales.
For D;W, the correlation coefficient is somewhat smaller. At small
scales (with larger k4, = m/A), the coefficient ranges between
0.4 and 0.5. At larger scales, the correlation tends to decrease.
Since the W component points along the rotation axis, the Coriolis
force affects its evolution indirectly through the pressure field.
Since the effects of pressure have only been partially accounted
for (by including part of the Q term), this is probably the reason
why the correlation between the model for D;W and the real

10

-10
-10

D Vpns

Fig. 4. Joint PDF of D;Vpns and D;Vyoger (solid lines) and the conditional average
(D¢ VMode1 Dt Vpns) (dashed line). D;Vpys is the rate of change of the transverse
velocity increment V calculated by following the Lagrangian evolution of velocity
increment over a line element. D;Vjodel i the rate of change given by the
model expression calculated using DNS data. Starting from inside, the levels are
107", 1072, 1073, 10~*. The dotted line is the diagonal.

dynamics is relatively weaker at large scales, where the effects
of rotation becomes stronger. Nevertheless, Fig. 3 shows that the
model captures a significant part of the dynamics in rotating
turbulence, particularly for the U and V components. The results
suggest that the model is a better representation of the dynamics
of the Navier-Stokes turbulence for moderate rotation rates.

For non-rotating turbulence, the correlation coefficient for D,U
is about the same as in rotating turbulence at smaller scales. The
values increase slightly at larger scales, whereas in rotating turbu-
lence the values decreases slightly. The values for D;V and D;W are
almost the same at small scales, as one would expect in isotropic
turbulence. At larger scales, some small difference can be observed,
probably due to the residual anisotropy in large scales. The coeffi-
cients for D,V and D;W in non-rotating turbulence are about the
same as the values for D;W in rotating turbulence. Interestingly,
in rotating turbulence, the correlation coefficients for D,V are big-
ger than in non-rotating turbulence. To summarize, the correlation
coefficients in non-rotating turbulence show some differences in
both qualitative and quantitative aspects, but the level of corre-
lation is still significant. The observations are consistent with the
results reported in our previous publications [35,36].

Fig. 4 shows the joint PDF of the exact values of D;V and the
values calculated from the model (solid lines). Also shown is the
conditional average (D;Vyodel|D:Vbns) (dashed line). The data are
calculated at A = ¢ = 165x, where dx = /128 is the grid size.
Note that, for a perfect model, the joint PDF would fall entirely
on the diagonal. For our model, the joint PDF spreads around
the diagonal to some extent. The model appears to somewhat
overpredict the probabilities of large fluctuations. Nevertheless,
the joint PDF clearly shows significant correlation between the
model and the exact values. Similar trends can be observed in the
joint PDF for D.U (not shown). The conditional average, shown by
the dashed line, is consistent with the results for joint PDF. The
curve is only slightly steeper than the diagonal. The results for D, W
are shown in Fig. 5. One can see that the joint PDF for D;W spreads
out relatively more widely around the diagonal, which explains
the somewhat lower correlation coefficient for D,W observed in
Fig. 3. The conditional average is a bit shallower than the diagonal,
indicating that, on average, the model tends to underestimate
the rate of change of W. Overall, the joint PDFs show significant
correlation between the model predictions and the exact values,
complementing the results for correlation coefficients.
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value of the longitudinal velocity increment U.

3. Numerical results and discussions

In this section, we study the evolution of the velocity incre-
ments predicted by the model, starting from initial Gaussian ran-
dom condition. U, V and W are initialized as Gaussian random
numbers with zero mean and unit variance, so that the velocity
scaleisu’ = 1.Initially the material line elements point to different
directions with equal probabilities, so that cos 8 is uniformly dis-
tributed in [—1, 1]. At any time ¢, statistics are accumulated from
the evolving ensemble. Egs. (9), (14)-(16) are solved numerically,
using the same method as in [35]. As noted in [35,36], because the
line elements tend to concentrate in the stretching directions of
the velocity gradient, the statistics of the evolving ensemble will
be different from the statistics taken over random directions. To
compare the results with the latter, the measure correction proce-
dure described in [35,36] is applied. Experimental and DNS results
have so far only been reported for increments defined in the per-
pendicular plane. To compare with these results, we plot the PDFs
of U, V,and W conditioned on cos 8 = cos 90° = 0, corresponding
to the case where the line elements lie in the perpendicular plane.
We set the displacement £ = 1, and define the Rossby number as
Ro=u'/2¢ =1/52.

As abase case for comparison, we first consider the results when
§£2 = 0. Fig. 6 shows the PDFs of U at several times ranging from
t = 0tot = 0.24. The PDFs of V and W at the same times
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Fig. 7. Evolution of the conditional PDFs of V (lines) and W (symbols) when there
is no rotation (Ro = o0). Dotted line: initial Gaussian distribution; solid line and
squares: t = 0.06; dashed line and circles: 0.12; dash-dotted line and inverted
triangles: 0.18; dash-double-dotted line and triangles: 0.24. oy and oy are the root-
mean-square values of the velocity increments V and W, respectively.
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Fig. 8. The conditional PDFs of U at Rossby number Ro = 0.1. The line legend is
the same as in Fig. 6.

are shown in Fig. 7. Note that the time scale defined with initial
parameters is £/u’ = 1. Thus the figures show that the PDFs of
the longitudinal velocity increments develop negative skewness
rapidly. At the same time, exponential or stretched-exponential
tails are built up in the PDFs of the transverse velocity increments.
These trends reproduce the results of [35], and are qualitatively
consistent with the well-known observations in turbulence, as
shown in [35]. The results confirm numerically that the current
system is consistent with the advected delta-vee system derived
in [35]. Fig. 7 shows that, as expected, the PDFs of V and W are
nearly identical to each other, except for some small differences
due to statistical fluctuations.

We now consider the results when rotation is present. The first
results are concerned with the effects of rotation on the skewness
of the longitudinal velocity increments. Figs. 8 and 9 show the
PDFs of U at Rossby number Ro = 0.1 and 0.05, respectively.
Different curves correspond to different times, shown with the
same legend as in Fig. 6. Comparing the two figures with Fig. 6 (for
which £ = 0), one can see that the asymmetry in the PDFs of U
shown in Figs. 8 and 9 is smaller. In other words, the model predicts
that the skewness in U is reduced when rotation is imposed. For
Ro = 0.05, the PDFs are actually very close to Gaussian.

The shapes of the PDFs can be measured quantitatively by the
skewness and the flatness. The skewness of a random variable X
is defined as Sy = (X — X))/ (X — (X)H?)372, where (--)
denotes the ensemble average. The flatness of X is defined as Fx =
(X — (XNH /(X = (X))?)2. Fig. 10 shows the time evolutions of
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Fig. 10. The evolution of —Sy, the magnitude of the skewness of the longitudinal
velocity increment U, at Rossby number Ro = oo (solid line), 0.1 (dash-dotted line),
0.05 (dash-double-dotted line), 0.025 (dotted).

—Sy, calculated by integrating the conditional PDFs [35]. Data for
several Ro numbers are shown. When there is no rotation, —Sy
increases over time, and takes a value around 0.5 at t = 0.24 (solid
line). When the rotation rate increases (the Ro number decreases),
the increase of —Sy over time is suppressed. —Sy appears to
oscillate around zero, with an amplitude that decreases with the
Ro number. With Ro = 0.025, i.e., strong rotation, the skewness
is essentially zero. Fig. 11 plots the flatness of U as a function of
time, for several Ro numbers. Fig. 11 shows that the growth of the
flatness of U over time is again suppressed when strong rotation
is imposed. At Ro = 0.1, Fy stays at a value around 3.1 with little
fluctuation. At Ro = 0.05 and 0.025, Fy is essentially equal to 3,
the value for Gaussian distribution. A small value of F; implies that
large fluctuations happen with less probability. The results thus
indicate that strong rotation tends to reduce the appearance of
large fluctuations in the longitudinal velocity increments. When
Ro = 0.2 (not shown), however, the flatness appears to take
somewhat larger values than in the case without rotation. The
value reaches 3.8 at t = 0.24, compared with the value 3.5 when
there is no rotation. The reason for this increase is not clear at
present. Nevertheless, the overall prediction of the model is that,
when strong rotation is imposed, both the skewness and flatness of
the longitudinal velocity increment are weakened. This prediction
is consistent with DNS and experimental results (see, e.g., [4,9,19]).

We now consider another interesting feature in rotating turbu-
lence, the positive skewness in the cyclonic vorticity component
(i.e., the vorticity component along the rotation axis). Observations
in rotating turbulence have shown that the distribution of cyclonic
vorticity displays positive skewness. As is summarized in Section 1,
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Fig. 11. The evolution of Fy, the flatness of the longitudinal velocity increment U.
The line legend is the same as in Fig. 10.
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Fig. 12. The evolution of the conditional PDFs of V at Rossby number Ro = 0.2.
The line legend is the same as in Fig. 6.

the skewness varies with the Rossby number in a non-monotonic
way, with a maximum reached at an intermediate Rossby num-
ber [13,15]. Two main explanations have been proposed for the
origin of the skewness. The anti-cyclonic vortices are shown to
be unstable under the action of background rotation in [13]. The
mechanism is proposed as an explanation for the positive skew-
ness for the cyclonic vorticity component. On the other hand, [21]
(see also [20]) shows that the initial growth rate of the skewness
is proportional to the product between §2 and the mean vortex
stretching. Since the mean vortex stretching is positive in isotropic
turbulence, positive skewness will be generated when rotation is
imposed.

As our model is developed for the velocity increments over
a single line element, it does not contain sufficient information
to determine the evolution of the vorticity. However, the V
component is related to the cyclonic vorticity component w, when
the line element is perpendicular to the rotation axis. For example,
when the displacement ¢ is along the x direction, , = V /¢ —
duy/dy, according to the definition in Eq. (5). Thus, one may
conjecture that V will also display positive skewness in rotating
turbulence. It is interesting to check if the model will be able to
predict this behavior. Figs. 12-14 give the PDFs of V predicted by
the model, at Rossby number Ro = 0.2, 0.1, and 0.05, respectively.
We recall that there is no skewness in V when the rotation rate is
zero, as is demonstrated by Fig. 7. The PDFs of V at Ro = 0.5 (not
shown) also display no visible skewness. However, Fig. 12 shows
that strong positive skewness for V has been developed at Ro =
0.2, reminiscent of the positive skewness for the cyclonic vorticity
component. Furthermore, Figs. 13 and 14 show that the skewness
tends to decrease when the rotation rate is further increased. At
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Fig. 13. The evolution of the conditional PDFs of V at Rossby number Ro = 0.1.
The line legend is the same as in Fig. 6.
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Fig. 14. The evolution of the conditional PDFs of V at Rossby number Ro = 0.05.
The line legend is the same as in Fig. 6.

Ro = 0.05, the PDFs show little deviation from the Gaussian
distribution. Therefore, the development of the positive skewness
is the strongest around Ro = 0.2. Fig. 15 gives the skewness of V
as a function of time for several Rossby numbers. The skewness
grows initially and then oscillates around a positive value. For
comparison, a power law (£2t/27)", where n = 0.75, is also
plotted in Fig. 15. The power law has been used to fit the initial
growth of the skewness of the cyclonic vorticity component in [20].
Slightly different values for n are used in [9,17]. Fig. 15 shows
that the growth of the skewness of V is approximately algebraic,
but with a rate slightly faster than the empirical power law. The
maxima are reached at roughly the same values of §2t /27w for the
three Rossby numbers, and the values are between 0.2 and 0.3. The
range of the values is similar to that for the skewness of the cyclonic
vorticity component documented in [20].

Finally, Fig. 16 shows the evolution of the flatness of V over
time for different Rossby numbers. Similar to the flatness of the
longitudinal component U, when the rotation rate increases, the
development of the flatness over time is suppressed. The values of
the flatness are smaller compared with the values when no rotation
is present. At the smallest Rossby numbers Ro = 0.05 and 0.025,
the flatness again stays at the Gaussian value 3, consistent with the
results for the PDFs.

The above results demonstrate that the model is able to quali-
tatively reproduce several important trends observed in DNS and
experiments. Besides, the positive skewness in the transverse ve-
locity increment in the plane perpendicular to the rotation axis has
not been reported before. Because of the simplicity of the model, it
is possible to understand the effects of each term in the equations,
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Fig. 15. The growth of the skewness of V over time for Ro = 0.2 (dashed

line), 0.1 (dash-dotted line), and 0.05 (dash-double-dotted line). The dotted line
is (2t /27)0%75.
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Fig. 16. The growth of the flatness of V over time for Ro = oo (solid line), 0.2
(dashed line), 0.1 (dash-dotted line), 0.05 (dash-double-dotted line), and 0.025
(dotted line).

and explain the observations in terms of the interplay between dif-
ferent terms, as we will now show. First of all, when the Rossby
number is small (the rotation is strong), the Coriolis forces in Eqgs.
(14) and (15) dominate. If we neglect the nonlinear terms, the evo-
lution of U and V is decoupled from W, when the displacement is
perpendicular to the rotation axis. In this limit, Eqs. (14) and (15)
are simplified to

DU =2QV, DV =-2QU. (17)

It is trivial to show that an energy-like quantity U%> + V? is con-
served by the system. Thus, U and V are bounded by initial con-
ditions and non-Gaussian tails are prohibited. This explains the
observations in Figs. 9 and 14 that, when Ro is small, the negative
skewness in U is reduced and the PDFs of both U and V stay close
to Gaussian.

The origin of the positive skewness of V at moderate Ro num-
bers can also be understood from Egs. (14)-(16). As we mentioned
before, the positive skewness of V is related to the positive skew-
ness of the cyclonic vorticity component w,. Therefore, the fol-
lowing discussion also applies qualitatively to the latter. We will
compare the explanations based on our model with those proposed
in the literature. At moderate Ro numbers, the PDFs of U still dis-
play significant negative skewness, albeit already weakened by ro-
tation. When U is negatively skewed, the Coriolis force —$2U in the
equation for V (Eq.(15)) has a positive skewness. Thus, according to
Eq. (15), the Coriolis force tends to produce positive skewness in V.
Since the negative skewness in U is an indication of positive vortex
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two parts by the horizontal line V = —£2¢. In the upper part, the orbits point in the clockwise direction, while in the lower part, the orbits point in the counterclockwise

direction, as indicated by the arrows.

stretching in turbulence, this mechanism resembles the one identi-
fied by [21] (see also [20]), where the skewness of the vertical vor-
ticity component is explained in terms of the interaction between
vortex stretching and the Coriolis force. On the other hand, due to
the Coriolis force £2V in the equation for U (Eq. (14)), negative fluc-
tuations in V tend to increase negative skewness of U. Again, be-
cause of the Coriolis force in the equation for V, negative skewness
in U will have an effect to promote the positive fluctuations in V
and reduce its negative fluctuations. In other words, negative fluc-
tuations in V tend to self-diminish, which thus also contributes to
positive skewness in V. In effect, this mechanism affects the skew-
ness of V in a way similar to the destablization of anti-cyclonic vor-
tices due to background rotation. The latter is proposed in [13] to
explain the positive skewness of the cyclonic vorticity component.
Therefore, our model suggests that both the mechanisms proposed
in the literature contribute their parts to the positive skewness in
the cyclonic vorticity component in rotating turbulence. However,
it may not be necessary to invoke any coherent structures in the
flows to explain the phenomenon.

The above analysis implies that the magnitude of the skewness
in V depends on both the rotation rate and the magnitude of
the negative skewness in U. When the rotation is so strong that
the nonlinear self-interaction is negligible, the skewness in U is
suppressed, and so is the positive skewness in V. At very large
rotation rates, the distribution of U becomes symmetric, as in Fig. 9.
As aresult, V also becomes symmetric.

The dynamics of U and V can also be qualitatively understood
via the phase portraits of the system. To simplify the analysis, we
set W as zero in the equations of U and V and consider the case
when the displacement ¢ is perpendicular to the rotation axis. The
resulting system reads

1 2p—1 2p—1
DU = —-U%""+ V2 +20V,
3 (18)

D,V = —2uvet —20U.

Integrating the equation, one can show that the system has the
following invariant:

HU,V) = [uz + g(v + 02072+ 3(9@)2} V420713 (19

Several contours of H(U, V), which are also the trajectories of
(U, V) in the phase plane, are shown in Fig. 17, for (a) Ro = o0
and (b) Ro = 5. When there is no rotation (i.e.,, Ro = 00), the
expression of H(U, V) is reduced to (U? + 3V?/5)V~1/3, which is

the same as the expression in [36] for the invariant of the advected
delta-vee system (in three spatial dimensions). In this case, the
origin is a degenerated fixed point (see Fig. 17(a)). The trajectories
show that, when the phase points move towards the negative U
direction due to the self-amplification mechanism, the magnitude
of V must increase drastically. This behavior is a consequence of
the cross-amplification mechanism. Therefore, the phase portrait
provides an intuitively straightforward picture for the dynamics of
the system. When rotation is imposed, the phase portrait is shifted
downwards, as is shown in Fig. 17(b). Meanwhile, two centers
appear at (0, 0) and (0, —2£2¢) (note that point (0, —£2¢) is not
a fixed point for £2 # 0). The phase portraits allow an intuitive
understanding of the effects of rotation on the skewness in V.
When rotation is absent, the portrait is symmetric with respect to
V = 0; therefore no skewness is generated in V. When rotation is
present, the phase portrait is no longer symmetric. Fig. 17(b) shows
that the values of V between —£2¢ and zero will be increased when
U < 0, and decreased when U > 0. When U has a negative
skewness, the tendency for V to increase prevails over that for V
to decrease. The net effect is to increase V and hence generate the
positive skewness in V. When the values of V fall between —£2¢
and zero, the phase points move in the clockwise direction along
the trajectories. Therefore, there is a tendency to generate negative
skewness in U and, subsequently, positive skewness in V. This
tendency corresponds to the self-diminishing effects of negative
fluctuations of V mentioned above. Therefore, the physical picture
emerging from the phase portrait is consistent with our previous
analysis based on the dynamical equations. Even though the phase
portraits are based on the simplified system, the qualitative picture
is expected to be the same for the full system as far as the dynamics
of U and V is concerned.

Finally, we briefly discuss the results for the other transverse
velocity increment W. Fig. 18 shows the flatness of W as a function
of time, for several Rossby numbers. It can be seen that, even
with strong rotation such that Ro = 0.025, the flatness still
increases over time, departing from the Gaussian value 3. The rate
of increase of the flatness is somewhat slower initially, compared
with the case without rotation (solid line), resulting in smaller
values initially. But the difference is small. The general observation
about the results of W is that the effects of rotation on W are
relatively weak. The DNS analysis in [19] seems to show similar
trends for the gradients of the velocity components. In particular,
itis found in[19] that, while the flatness of the transverse gradients
of all velocity components is reduced by rotation, the flatness
of the transverse gradients of the vertical velocity component
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Fig. 18. The evolution of the flatness of W. The line legend is the same as in Fig. 16.

(corresponding to W) sustains a larger value compared with other
components. In other words, the effects of rotation is weaker on
the vertical component. The model prediction on W is qualitatively
consistent with this observation.

4. Conclusions

To summarize, we have derived a system of equations describ-
ing the evolution of velocity increments over a fixed distance on an
evolving material element in rotating turbulence. The system ex-
tends the ideas presented in previous papers [35,36] to include the
effects of rotation. To do so, a Lagrangian local coordinate frame is
defined. As a result, the nonlinear interaction between the incre-
ments as well as the Coriolis force is closed in the system, which
thus allows detailed investigations of their effects. Focusing on the
dynamical effects of the nonlinear interaction terms as well as the
Coriolis force on the evolution of the velocity increments, we em-
ploy a simple restricted-Euler-type closure to the system, neglect-
ing the anisotropic pressure Hessian and a few other terms. The
resulted model is used to elucidate the basic dynamical mecha-
nisms behind the evolution of the non-Gaussian statistics of veloc-
ity increments. We show via a priori analyses of DNS data that the
model captures important dynamics in the Navier-Stokes equa-
tions. Numerical experiments starting from Gaussian initial con-
ditions show that the model reproduces a number of observations
regarding the effects of rotation on the development of the non-
Gaussian statistics in the increments. In particular, the model re-
produces the trend that the negative skewness in the longitudinal
velocity increments is attenuated by strong rotation. The model
also predicts that the transverse increment in the plane perpen-
dicular to the rotation axis will develop positive skewness, and
the magnitude of the skewness depends on the rotation rate non-
monotonically. This behavior of the velocity increment is closely
related to the positive skewness of the cyclonic vorticity compo-
nent, but has not been reported before. Taking advantage of the
simplicity of the model, we identify the specific processes respon-
sible for the observations, which helps to clarify the roles of differ-
ent explanations proposed in the literature.

We conclude that the model is useful in assisting our under-
standing of the effects of rotation. Nevertheless, a number of terms
have been omitted. Appropriate models for these terms need to be
developed in order to obtain stationary statistics and make quan-
titative comparisons with DNS and experimental data. Our prelim-
inary a priori DNS analyses reported above have provided useful
information as to the overall effects of the neglected terms. How-
ever, the roles of each individual term need to be understood. As
a first step, one could perform a conditional statistical analysis of
the unclosed terms. If we consider the joint PDF of the velocity in-
crements, the unclosed terms will appear as conditional averages

for given values of the velocity increments. These conditional av-
erages determine the probability fluxes generated by the unclosed
terms. DNS analyses of the conditional averages will shed light on
the specific effects of each unclosed term. For the advected delta-
vee system in non-rotating turbulence, an analysis of this kind has
been conducted [39]. One interesting observation is that the pres-
sure Hessian displays distinctively different behaviors from the vis-
cous and SGS stress terms. The viscous and SGS stresses serve as
damping terms so that the probability fluxes produced by these
term terms point to the origin in the phase plane for the veloc-
ity increments. On the other hand, the stream traces of the proba-
bility flux vector field produced by the pressure Hessian originate
from a source near the origin, follow anticlockwise circular paths
and terminate at a sink near the origin. Therefore, the modelling
of pressure Hessian and the other terms requires different treat-
ments. This is our on-going work. For the system reported here, the
behaviors of the conditional averages will be different due to the
presence of rotation. Furthermore, the quantity $2,wy appears as a
new term. Thus it is of considerable interests to look into the statis-
tics of these quantities using DNS or experimental data of rotating
turbulence. The information obtained from such analyses would
be useful resources for the modelling of the unclosed terms. These
could be the next steps in the research along this line.
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