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Abstract

Nonlinear doubly diffusive convection in two-dimensional enclosures driven by lateral temperature and concentration
differences is studied using a combination of analytical and numerical techniques. The study is organized around a special
case that allows a static equilibrium. The stationary states that bifurcate from this equilibrium are either symmetric or
antisymmetric with respect to diagonal reflection. Local bifurcation analysis around the critical aspect ratio at which both
modes appear simultaneously is complemented using numerical continuation. Perturbation of this situation to one in which no
static equilibrium exists provides important information about the multiplicity of steady states in this system. ©2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Doubly diffusive convection is of fundamental importance in many industrial applications as well as in geophysical
flows [1–4]. Such flows are the result of diffusive instabilities that depend for their existence on the presence of two
scalar fields (usually temperatureT and concentrationC) with different diffusivities, and occur when these contribute
to the fluid buoyancy in opposite ways. For such states the buoyancy ratioN < 0, whereN ≡ βC1C/βT 1T ,1T
and1C are the temperature and concentration differences imposed across the fluid, andβT,C ≡ ∂ρ/∂(T , C) are
the corresponding expansion coefficients. The resulting flows can take the form of fingers or overstable motions
such as traveling waves, all of which have been observed in experiments. These observations which have motivated
a number of theoretical and numerical studies of doubly diffusive instabilities and their nonlinear development, and
doubly diffusive convection is now considered a paradigm in the study of dynamical systems [5].

In this paper we study doubly diffusive flows driven by imposedhorizontal temperatureand concentration
gradients, focusing on the interesting caseN < 0. This situation is different from the cases usually considered,
either imposed vertical gradients [6,7] or a stably stratified fluid cavity heated from the side [8–10]. In the latter
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situation the imposed concentration and temperature gradients are orthogonal and no motion-free equilibrium is
possible. This situation differs from that considered here in which the two imposed gradients are parallel, albeit
horizontal. In this situation a motion-free equilibrium exists providedN = −1. This is no longer so whenN 6= −1
and in this case experiments in small cavities and numerical simulations both indicate that the preferred sense
of motion depends on the sign ofLe − 1. Here the Lewis numberLe is the ratio of the thermal and solutal
diffusivities. However, the comparison between the experimental and numerical results remains qualitative rather
than quantitative. One of the reasons is that whenLe ≈ 100 both unicellular and multicellular states can be observed
in the range−10< N < 10 [11–17], depending on the values of the thermal and solutal Rayleigh numbers [15]. In
addition, the observed states may be steady or time-dependent. These observations which have been corroborated
by the numerical simulations of Bennacer and Gobin [18] and Gobin and Bennacer [19] are furthermore sensitive
to the value of the Schmidt number (kinematic viscosity divided by the solutal diffusivity) [12,15–17]. Turner [1]
summarizes the dependence of the observed state on the values of the thermal and solutal Rayleigh numbers for
large Lewis numbers whenN 6= −1. The possible mechanisms responsible for the observed time dependence have
been discussed by Chang and Lin [20], and Alavyoon [21].

In this paper we combine numerical continuation techniques with bifurcation theory to analyze in the first instance
the states that develop from the instability of the conduction state whenN = −1 and then investigate the behavior of
the system for nearby values ofN with a view to understand the multiplicity of states in this system. This approach
eliminates one parameter from the problem; moreover, the linear stability properties of the conduction state now
depend only on the productRa(Le − 1) [22]. The linear analysis for a vertically infinite system was carried out
by Xin et al. [23]. Ghorayeb and Mojtabi [22] present the corresponding results for bounded domains as a function
of the aspect ratioA of the cavity. Symmetry considerations of the equations indicate that, depending onA, the
primary steady state bifurcation is either a pitchfork or a transcritical bifurcation. For aspect ratioA = 1, Xin et
al. [23] and Bergeon et al. [24] computed the solution branches emerging from these bifurcations using numerical
continuation and showed that near the transcritical bifurcation the solutions take the form of a three roll state. With
increasing amplitude supercritical solutions take the form of a large counterclockwise cell slanted across the cavity
with smaller cells located in opposite corners, while the subcritical solutions gradually evolve into a single clockwise
cell. The pitchfork bifurcation was found to be subcritical. Extensions of this work to inclined cavities have also
been discussed [24].

In the next Section we formulate the mathematical problem followed by linear analysis of the pure conductive state
as a function of the aspect ratio of the cavity. This analysis locates an important codimension-two bifurcation point
Ac at which the conduction state loses stability simultaneously to an odd (antisymmetric) and an even (symmetric)
mode. To understand the parameter dependence of the solutions we perform in Section 4 a weakly nonlinear analysis
for A 6= Ac; this analysis is based on a Galerkin truncation and is performed analytically. Two situations withA

nearAc are discussed in detail. The stability of the conduction state with respect tofinite amplitude perturbations
is addressed in Section 5 where an energy method is used to establish the presence of finite amplitude saddle-node
bifurcations. Section 6 is devoted to a discussion of the behavior near the codimension-two point and the interaction
between the symmetric and antisymmetric states. The results obtained are compared with accurate numerically
computed bifurcation diagrams in Section 7. Finally, in Section 8 the analysis is extended to the caseN 6= −1 with
no conduction state present.

2. Mathematical model and basic equations

We consider a two-dimensional container of lengthL and heightH filled with a non-reactive Boussinesq binary
fluid mixture (see Fig. 1), and subject to lateral forcing due to imposed temperature and concentration differences:
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Fig. 1. Cavity configuration.

T = T1, C = C1 at x = 0, andT = T2, C = C2 at x = L, with 1T ≡ T1 − T2 > 0,1C ≡ C1 − C2 > 0.
The mixture has densityρ, kinematic viscosityν, and thermal and solutal diffusivitiesχ andD. Soret and Dufour
effects will not be explicitly taken into account but can be easily incorporated in the treatment that follows by means
of a transformation that takes the Soret–Dufour equations into those used below (see [25]).

We assume that in the expected range of temperatures and concentrations the density varies linearly with the
temperature and concentration,

ρ(T , C) = ρref(1 − βT (T − Tref)− βC(C − Cref)), (1)

whereρref is the density at temperatureTref = T2 and concentrationCref = C2. In the following we assume that
the volume expansion coefficientsβT andβC are constant. For most fluids,βT is positive. Assuming thatC is the
concentration of the heavier component,βC is negative.

The dimensionless temperature and concentration are taken to be(T −Tref)/(T1−T2) and(C−Cref)/(C1−C2).
Distance, time and velocity are non-dimensionalized withL,L2/ν andν/L, respectively. The resulting dimension-
less equations are:

∇ · uuu = 0, (2)

∂uuu

∂t
+ (uuu · ∇)uuu = −∇p +1uuu+Gr(T +NC)zzz, (3)

∂T

∂t
+ (uuu · ∇)T = 1

Pr
1T, (4)

∂C

∂t
+ (uuu · ∇)C = 1

Sc
1C, (5)

whereuuu = uxxx + wzzz is the dimensionless velocity vector, andGr = L3βT (T1 − T2)g/ν
2 andN = βC(C1 −

C2)/βT (T1 − T2) are, respectively, the thermal Grashof number and the buoyancy number. The Prandtl, Schmidt
and Lewis numbers are given byPr = ν/χ , Sc = ν/D andLe = Sc/P r. For future reference we also define the
thermal Rayleigh numberRa = Pr Gr.

In the dimensionless variables the flow domain is(x, z) ∈ Ω = [0,1] × [0, A], whereA = H/L is the cavity
aspect ratio. The horizontal walls are taken to be insulating and across these two walls the normal mass flux is zero.
No-slip boundary conditions are imposed along all boundaries. Thus

u = w = 0 along∂Ω, (6)
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T (x = 1, z) = C(x = 1, z) = T (x = 0, z)− 1 = C(x = 0, z)− 1 = 0 ∀z ∈ [0, A], (7)

∂T

∂z
(x, z = 0, A) = ∂C

∂z
(x, z = 0, A) = 0 ∀x ∈ [0,1]. (8)

We consider here the particularly interesting situation in which the buoyancy forces due to the thermal and solutal
gradients are opposed and equal in magnitude:

N = βC(C1 − C2)

βT (T1 − T2)
= −1. (9)

In this case, the double-diffusive stateuuu = 0 andT0 = C0 = 1 − x is a solution of Eqs. (2)–(5) with the boundary
conditions (6)–(8).

It is convenient to rewrite Eqs. (2)–(5) as evolution equations for perturbations about this equilibrium state.
We denote the perturbation by(uuu′, p′, T ′, C′) and introduce the streamfunctionψ ′ such thatu′ = −∂ψ ′/∂z and
w′ = ∂ψ ′/∂x. Eliminatingp′ we obtain

∂

∂t



1ψ ′

T ′

C′


 =




12 Gr(∂/∂x) −Gr(∂/∂x)
−∂/∂z 1/P r 0

−∂/∂z 0 1/Sc





ψ ′

T ′

C′


+



N1(ψ

′, ψ ′)
N2(ψ

′, T ′)
N2(ψ

′, C′)


 , (10)

where for any pair(f, g) of real functions

N1(f, f ) = ∂f

∂z

(
∂3f

∂x∂z2
+ ∂3f

∂x3

)
− ∂f

∂x

(
∂3f

∂z∂x2
+ ∂3f

∂z3

)
, (11)

N2(f, g) = ∂f

∂z

∂g

∂x
− ∂f

∂x

∂g

∂z
. (12)

These equations are to be solved subject to the homogeneous boundary conditions:

T ′(x = 1, z) = C′(x = 1, z) = T ′(x = 0, z) = C′(x = 0, z) = 0 ∀z ∈ [0, A], (13)

∂T ′

∂z
(x, z = 0, A) = ∂C′

∂z
(x, z = 0, A) = 0 ∀x ∈ [0,1] (14)

and (
∂ψ ′

∂x

)
x=0,1

=
(
∂ψ ′

∂z

)
z=0,A

= (ψ ′)∂Ω = 0. (15)

Eqs. (10) with boundary conditions (13)–(15) are invariant under rotations byπ about the point(1/2, A/2). This
rotation is described by the operatorS defined by

S


ψ ′

T ′

C′


 (x, z) =


 ψ ′

−T ′

−C′


 (1 − x,A− z) (16)

and is a generalized reflection sinceS2 = 1. The resulting symmetry groupZZZ2 ≡ {I, S} plays an important role
in the bifurcation analysis described in Section 4. In particular, it is known that in the presence of this symmetry
group, the conduction state can only lose stability to states that are either symmetric or antisymmetric with respect
to S [26]. The former occurs when the marginally stable eigenfunction is invariant underS; the latter when it
breaks invariance underS. The next two sections provide a concrete illustration of these results using the evolution
equations (10) with the boundary conditions (13)–(15).
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3. Linear stability

In this section we describe the stability properties of the conduction state for aspect ratiosA = 1 andA =
2.6 and parameter values typical of molten salts, i.e.,Pr ∼ 1, Sc ∼ 10 − −100 [27]. The choice of aspect
ratios follows Ghorayeb and Mojtabi [22] and Bergeon et al. [24]. The linearized equations (10) have solutions
of the form(ψ ′, T ′, C′)(x, z)exp((σ + iω)t), whereω is a real number and i= √−1. At a steady bifurcation
σ = ω = 0, whereas at a Hopf bifurcationσ = 0 andω 6= 0. The bifurcation points are located by solving the
system

1(1− iω)ψ ′ = Gr
∂(C′ − T ′)

∂x
, (17)

(1− Pr iω)T ′ = Pr
∂ψ ′

∂z
, (18)

(1− Sc iω)C′ = Sc
∂ψ ′

∂z
. (19)

This is done by means of a Galerkin method using the following expansions:

ψ ′(x, z) =
n∑
i=0

m∑
j=0

aij sin(πx) sin(iπx) sin(πz/A) sin(jπz/A), (20)

T ′(x, z) =
n∑
i=0

m∑
j=0

bij sin(iπx) cos(jπz/A), (21)

C′(x, z) =
n∑
i=0

m∑
j=0

cij sin(iπx) cos(jπz/A). (22)

These expansions satisfy the boundary conditions (13)–(15). Substitution into Eqs. (10) yields a linear algebraic
system of the formLXXX = 000 withXXX = (aij , bij , cij )i=0,n;j=0,m. For particular values(Gr, ω), the determinant of
L is zero indicating a bifurcation point. Fig. 2 shows the modulus of the determinant forPr = 1, Sc = 11, when

Fig. 2. Isovalues of the modulus of the determinant detL for Pr = 1, Sc = 11, A = 1 and (5,4) modes truncation.



96 G. Bardan et al. / Physica D 138 (2000) 91–113

A = 1 and am = (5,4) mode truncation is used. For 0< ω < 10 and 0< Gr < 4000 the results indicate that
no Hopf bifurcation occurs. Fig. 2 indicates that there are two steady state bifurcations (ω = 0) atGr = 1795 and
Gr = 2728. With seven modes one finds that these bifurcations occur atGr = 1717 andGr = 2590, respectively.
The corresponding results forA = 2.6 areGr = 934 andGr = 942 for the (5,4) mode truncation andGr = 765
andGr = 805 for the fully resolved calculation. ForA = 1 andA = 2.6 no Hopf bifurcations were found for the
following parameter combinations(P r, Sc) = (1,2), (1,5), (1,20), (10,15) and(10,50).

Within the Galerkin truncation the steady state bifurcations can be studied analytically. Due to theZZZ2 symmetry, the
associated eigenmodes are either symmetric with respect toS, i.e.,S(ψ ′, T ′, C′) = (ψ ′, T ′, C′), or antisymmetric,
i.e., S(ψ ′, T ′, C′) = −(ψ ′, T ′, C′). The symmetric eigenmodes contain an odd number of cells, whereas the
antisymmetric ones contain an even number of cells. Eqs. (20)–(22) indicate that the contribution to the symmetric
modes comes from terms withi + j even, while the contribution to the antisymmetric modes comes from terms
with i + j odd. The linear stability problem thus splits into two separate problems:

LXXX =
(
(MGr) 0

0 (NGr)

)





aij

bij

cij



i+j even


aij

bij

cij



i+j odd




=
(

0
0

)
, (23)

where(MGr) and(NGr) are matrices. We used the softwaremaple to find the values ofGr, aij , bij andcij at
which detL = ω = 0; det(MGr) = 0 at a bifurcation to a symmetric mode, while det(NGr) = 0 at a bifurcation to
an antisymmetric one. The analytical calculations reported below were all carried out withn = m = 4 forψ ′ and
n = m = 3 for T ′ andC′.

Elimination of the variablesC′, T ′ from Eqs. (17)–(19) in favor ofψ ′ shows that the solution of the linear stability
problem determines the productGrc|Sc − Pr|. It follows that the lowest value of the thermal Grashof number for
symmetric eigenmodes is given by an expression of the form

Grc =
∣∣∣∣ 1

Sc − Pr

∣∣∣∣ f (A), (24)

with a similar expression for the lowest value of the thermal Grashof number for antisymmetric eigenmodes:

Grc =
∣∣∣∣ 1

Sc − Pr

∣∣∣∣ g(A). (25)

Heref andg are two real functions of the aspect ratio. The graphs off andg from the (4, 3) truncation are shown
in Fig. 3; seven modes in each field are required to reproduce accurately the results obtained by Bergeon et al. [24]
and Xin et al. [23] for 1< A < 3.4.

Fig. 3 shows that the neutral stability curvesGrc(A) for the two modes cross atAc ≈ 2.526; forA < Ac the first
instability is to a symmetric mode, while forA > Ac it is antisymmetric close to the onset. The pointA = Ac is called
a mode interaction point: at this point the conduction state loses stability simultaneously to modes of both types.
As discussed by Riley and Winters [28], Winters et al. [29] and Hirschberg and Knobloch [30] mode interaction
between odd and even modes is typical in systems with reflection symmetry. For example, in two-dimensional
Boussinesq convection with no-slip sidewall boundary conditions the marginal stability curves for symmetric and
antisymmetric modes cross repeatedly with increasing aspect ratio.
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Fig. 3. Critical Grashof numbers of the first two steady primary bifurcations using four modes for the streamfunction and the temperature and
concentration fields. Continuous (dashed) line indicates bifurcation to a symmetric (antisymmetric) mode. The computations were carried out
with n = m = 4 forψ ′ andn = m = 3 for T ′ andC′.

In the next section we use the Galerkin truncation to analyze the parameter dependence of the codimension-one bi-
furcations arising whenGr is increased forA = 1 andA = 2.6 and perform analytically the required center-manifold
reduction [31] to describe the resulting weakly nonlinear state and its stability. The codimension-two mode inter-
action point is considered in Section 6.

4. Weakly nonlinear analysis

In the weakly nonlinear regime the properties of the system are captured by simpler equations called normal
forms. Appendix A summarizes the details of the derivation of these equations from Eqs. (10) for the two cases of
interest, when the primary bifurcation is to a symmetric state and to an antisymmetric state. Both reductions are
valid near the onset of the primary instability, i.e., for|Gr −Grc|/Grc � 1, whereGrc denotes the corresponding
critical Grashof number. In either case the reduction procedure yields an equation of the form

dK

dτ
= V (Gr −Grc,K), (26)

whereK measures the amplitude of the unstable mode andτ is a suitable slow time. In the following we define the
quantitys byS(Kφ) = s(K)φ, whereφ(x, z) is an eigenmode ofL. SinceV (Gr−Grc,K) is derived by a procedure
that preserves the symmetries of the original problemV (Gr − Grc,K) must also respect these symmetries, i.e.,
s(V (Gr −Grc,K)) = V (Gr −Grc, s(K)). This is the requirement of equivariance [26,32]. We refer tos = 1 as
the symmetric case, and tos = −1 as the antisymmetric case.

In the symmetric case we obtain the normal form

∂Ks

∂t(1)
= V (Gr −Grc,Ks) ≡ K(Gr(1)|Pr − Sc| +Ks(b + (P r + Sc)c))

(d + (P r + Sc)e)
(27)
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with

b = 〈N1(f1, f1), f
∗
1 〉
/〈

∂f2

∂x
, f ∗

1

〉
, (28)

c = 〈N2(f1, f2), f
∗
2 〉
/〈

∂f2

∂x
, f ∗

1

〉
, (29)

d = 〈1f1, f
∗
1 〉
/〈

∂f2

∂x
, f ∗

1

〉
, (30)

e = 〈f2, f
∗
2 〉
/〈

∂f2

∂x
, f ∗

1

〉
. (31)

In these expressions the quantity〈X, Y 〉 represents the scalar product
∫ ∫

Ω
XY dx dz; Gr(1) ≡ (Gr − Grc)/ε is

the bifurcation parameter andεKs is the amplitude of the symmetric mode evolving on the timescalet (1) ≡ t/ε.
In the antisymmetric case the quadratic term must vanish and the reduction must be carried to third order. The

result is (see Appendix A)

∂Ka

∂t(2)
≡ V (Gr −Grc,K) = Ka(Gr

(2)|Sc − Pr| +K2
a(b + (P r2 + Sc2)c + f (P r + Sc)+ g P r Sc))

(d + (P r + Sc)e)
,

(32)

whereGr(2) ≡ (Gr − Grc)/ε
2 is now the bifurcation parameter andεKa is the amplitude of the antisymmetric

mode evolving on the slower timescalet (1) ≡ t/ε2. We omit the detailed expressions for the coefficients.

4.1. CaseA = 1: the symmetric caseS(f1(x, z)) = f1(x, z)

For aspect ratioA = 1 the critical eigenmode is invariant under the symmetryS. For the streamfunction this
property implies that

S(ψ ′(x, z, t(1))) ≡ ψ ′(1 − x,A− z, t(1)) = ψ ′(x, z, t(1)) (33)

and consequently that

s(K) = K, (34)

whereK is the amplitude of the symmetric mode. Thus the symmetryS does not impose any constraint on the
amplitude equation (27), i.e., we expectV (Gr −Grc,K) to satisfy the non-degeneracy conditions:

∂2V

∂(Gr −Grc)∂K
(0,0) 6= 0 and

∂2V

∂2K
(0,0) 6= 0. (35)

These properties indicate that the bifurcation is transcritical. Thus near the bifurcation point the amplitude of the
streamfunction is a linear function of the thermal Grashof number.

Our symbolic computations confirm these expectations and giveb ≈ −1120,c ≈ 1302124,d ≈ 292 and
e ≈ 890; the purely diffusive solutionK = 0 is stable if and only ifGr(1) < 0, i.e., for thermal Grashof numbers
smaller than the critical thermal Grashof number. From relation (27), we now obtain the equation of the bifurcating
branch:

ψ ≈ εψ(1) = − 1

b + (P r + Sc)c
(Gr −Gr(0))|Sc − Pr|f1(x, z). (36)
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Fig. 4. Schematic bifurcation diagram, at fixedLe, showing the streamfunction at the center of the cavity as a function of the Rayleigh number
Ra for (a)Le < 1 and (b)Le > 1. Positiveψ indicates clockwise rotation. The slope at the primary bifurcation increases asPr decreases.

For the computed values ofb, c, d ande, Eq. (27) shows that the convective solutionK 6= 0 is linearly stable for
Gr(1) > 0, whileK 6= 0 is linearly unstable forGr(1) < 0.

This analytical approach allows us to understand the sense of rotation of the flow. We found thatf1 is positive
(resp. negative) atx = z = 0.5 for Le > 1 (resp.Le < 1). For most fluids,b + (P r + Sc)c is posi-
tive and consequently, forGr(1) > 0, the streamfunction at the midpoint is negative whenLe > 1 and pos-
itive whenLe < 1. This implies that the sense of rotation is counterclockwise forLe > 1 and clockwise
for Le < 1. This result is sensible: whenLe > 1 the sense of rotation is determined by the concentration
of the heavier component since temperature perturbations diffuse away more rapidly. A counterclockwise flow
produces a negative concentration perturbation in the upper half of the cell and a positive perturbation in the
lower half. The resulting concentration distribution opposes the flow and results in equilibration at small ampli-
tude. In contrast, a clockwise flow produces a positive concentration perturbation in the upper half which tends
to accelerate the flow. Thus whenLe > 1 we associate a counterclockwise flow with the small amplitude su-
percritical state, and a clockwise flow with the unstable subcritical branch. This interpretation is confirmed in
Section 8. WhenLe < 1 the sense of rotation is determined instead by the temperature and the circulations are
reversed.

Fig. 4 shows the dependence of the streamfunction amplitude onRa in the two casesLe > 1 andLe < 1.
Solid lines correspond to stable solution branches and dashed lines to linearly unstable solutions. The two situations
(Le < 1 orLe > 1) are identical except for the opposite sense of rotation. In the following we therefore only consider
the caseLe > 1. Fig. 5 shows the flow structure of the critical eigenmode forLe = 11 andPr = 1 confirming that
the eigenmode is symmetric. The critical Rayleigh number depends onlyLe and is equal tof (1)/|Le− 1|, but the
slope of the non-trivial solution branches emerging at the transcritical bifurcation depends on both the Prandtl and
Schmidt numbers. In particular, relation (36) shows that at fixedLe the slope increases when the Prandtl number
decreases. We return to this point in Sections 5 and 6.

Fig. 5. Streamlines (left) and isovalues of temperature perturbations (right) of the critical eigenmode forA = 1,Le = 11 andPr = 1.
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Fig. 6. Schematic bifurcation diagram, at fixedLe, showing the streamfunctionψ at x = z = 0.25 as a function of the Rayleigh numberRa.
The slope increases (in magnitude) asPr decreases.

4.2. CaseA = 2.6: the antisymmetric caseS(f1(x, z)) = −f1(x, z)

In this case the critical eigenmode is antisymmetric,

S(ψ ′(x, z, t(1))) ≡ ψ ′(1 − x,A− z, t(1)) = −ψ ′(x, z, t(1)), (37)

and hence

s(K) = −K. (38)

Consequently, equivariance requires that

V (Gr −Grc,−K) = −V (Gr −Grc,K), (39)

implying that the condition(∂2V/∂2K)(0,0) 6= 0 fails. One now expects a non-degenerate pitchfork bifurcation
provided that(∂3V/∂3K)(0,0) 6= 0. Our symbolic calculations confirm that all quadratic terms vanish and yield
the valuesb ≈ 3280, c ≈ 10 553 802, d ≈ 320, e ≈ 1193, f ≈ 1 298 192 andg ≈ 21 207 874 for the coefficients
in the normal form (32). Thus for any value ofPr andSc, the pitchfork bifurcation is subcritical and the emerging
solutions are linearly unstable. The convection amplitude is given by

ψ2 ≈ ε2ψ(1)2 = − f 2
1

b + (P r2 + Sc2)c + f (P r + Sc)+ g P r Sc
(Gr −Gr(0))|Sc − Pr|. (40)

Fig. 6 shows a schematic representation of the resulting bifurcation diagram. For a fixed Lewis number the
curvature of the solution branches near onset decreases when the Prandtl number decreases (see (32)). Fig. 7 shows
the structure of this critical eigenmode whenLe = 11 andPr = 1 confirming that the flow structure and isotherm
perturbations are antisymmetric.

Fig. 7. Streamlines (left) and isotherm perturbations (right) of the critical eigenmode forA = 2.6,Le = 11 andPr = 1.
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4.3. Heat and mass transfer

We now turn to the characterization of the transport efficiency of the resulting motion. Using the asymptotic
expansion in the vicinity of the bifurcation point we obtain the following expressions for the Nusselt and the
Sherwood numbersNu(x) andSh(x):

Nu(x) ≡ −
∫
∂T

∂x
dz = 1 − ε P r K

∫
∂f2

∂x
dz− ε2

∫
∂T (2)

∂x
dz− · · · , (41)

Sh(x) ≡ −
∫
∂C

∂x
dz = 1 − ε ScK

∫
∂f2

∂x
dz− ε2

∫
∂C(2)

∂x
dz− · · · . (42)

These quantities measure, respectively, the dimensionless horizontal heat and concentration fluxes. In these expres-
sions the orderε terms vanish. At orderε2 one finds that

(Sh− 1) = Le2(Nu− 1). (43)

This relation describes the relative efficiency with which heat and concentration are transported in the weakly
nonlinear regime; we find, however, that in the strongly nonlinear regime this relation between the fluxes no longer
holds.

Result (43) follows from the second order relation (see Appendix A)

− 1

Pr

∂ψ(2)

∂z
+ 1

Sc

∂ψ(2)

∂z
+ 1T (2)

P r2
− 1C(2)

Sc2
= 0. (44)

Integration of (44) fromz = 0 to z = 1 together with expressions (20)–(22) now yields

ci0 = Le2bi0 (45)

for all i and hence the relation (43).

5. The energy method

In this Section, we compute the critical Grashof number above which finite amplitude perturbations grow. In
order to do this we rescale the variablesT andC: T → T/

√
λGr,C → C/

√
µGr and letR = √

Gr. Eqs. (2)–(5)
become:

∇ · uuu = 0, (46)

∂uuu

∂t
+ (uuu · ∇)uuu = −∇p +1uuu+ R

(
T√
λ

− C√
µ

)
zzz, (47)

∂T

∂t
+ (uuu · ∇)T = −R

√
λuuu · ∇(1 − x)+ 1

Pr
1T, (48)

∂C

∂t
+ (uuu · ∇)C = −R√

µuuu · ∇(1 − x)+ 1

Sc
1C, (49)

with the boundary conditions (6)–(8). Hereλ andµ are positive real numbers. Next we define a positive functional
which is a measure of the energyE of the perturbations:

E = 1

2

∫ ∫
Ω

(uuu · uuu+ T 2 + C2)dΩ. (50)
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The temporal evolution of this energy is given by

dE

dt
= −A2

1

(
1 − R

A2

A2
1

)
, (51)

where

A2
1 =

∫ ∫
Ω

(
|∇uuu|2 + |∇T |2

Pr
+ |∇C|2

Sc

)
dΩ, (52)

A2 =
∫ ∫

Ω

((
T√
λ

− C√
µ

)
uuu · zzz−

√
λTuuu · ∇ (1 − x)− √

µCuuu.∇ (1 − x)

)
dΩ. (53)

It follows that there is a positive (modified) Grashof numberRc below which the pure conduction state is the
only solution of the problem. This critical number is defined by the condition(1/Rc) = max(A2) subject to the
constraintsA2

1 = 1 and∇ · uuu = 0 inΩ. Thus forR < Rc the energyE of the perturbation necessarily decays to
zero ast → ∞ [33]; Rc also provides the lower limit on the Grashof number at which a saddle-node bifurcation
can be present and hence on the extent of any hysteresis between the conduction and finite amplitude states.

The associated Euler–Lagrange equations written in the perturbation variablesψ ′, T ′ andC′ are

21T ′ − R Pr

(√
λ
∂ψ ′

∂z
− 1√

λ

∂ψ ′

∂x

)
= 0, (54)

21C′ − R Sc

(√
µ
∂ψ ′

∂z
− 1√

µ

∂ψ ′

∂x

)
= 0, (55)

212ψ ′ − R

(√
λ
∂T ′

∂z
− 1√

λ

∂T ′

∂x
+ √

µ
∂C′

∂z
− 1√

µ

∂C′

∂x

)
= 0. (56)

with the boundary conditions (13)–(15).
To solve these equations the perturbations are expanded as in the preceding linear stability analysis. The solution

determines the eigenvalueR as a function ofλ andµ. We now seek the maximum of this value over all possible
values ofλ andµ in order to identify the largest range of values ofR in which the energy necessarily decays. For
any(m, n) truncation the corresponding value ofR provides alower bound on the critical Rayleigh numberRacE

below which convection ceases. Since Eqs. (54)–(56), written as a single equation, depend only on the Rayleigh
and Lewis numbers the value ofRacE depends only on the aspect ratio andLe. Fig. 8 shows the Lewis number
dependence of the critical Rayleigh numberRac for the onset of linear instability of the conduction state, and of
the critical Rayleigh numberRacE obtained by the energy method, whenA = 1 andA = 2.6, computed using
n = m = 22 for A = 1 andn = 20, m = 28 for A = 2.6. These truncations ensure the convergence of the
Galerkin method. WhenLe → ∞, the productRacELe → 6940 forA = 1 and 4530 forA = 2.6. It follows that
the saddle-node bifurcation at which the subcritical solution branch turns around must lie between the two curves
shown in Fig. 8. We show the streamfunctions for these two aspect ratios obtained from Eqs. (54)–(56) atRacE in
Fig. 9. As expected both aresymmetricand consist of a clockwise (resp. counterclockwise) one-cell flow forLe > 1
(resp.Le < 1). These results are in agreement with the extrapolation of the weakly nonlinear ones obtained for
the subcritical transcritical branch in Section 4.1 (see Fig. 4), although it must be emphasized that whenA > Ac

there may be regimes in which the lowest-lying saddle-node lies on the branch ofantisymmetricsolutions; in this
case the variational solution would have a structure quite different from that shown in Fig. 9. Note that at fixed
Lewis numberRacE is uniquely determined (and independent of the Prandtl number), while the amplitude of the
variational solution increases asPr decreases.
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Fig. 8. (a) Linear theory critical Rayleigh numberRac (filled diamonds) and energy critical Rayleigh numberRacE (filled circles) versus the
Lewis numberLe whenA = 1. The computations were carried out withn = m = 22 forψ ′, T ′ andC′. (b) Linear theory critical Rayleigh
numberRac (filled diamonds) and energy critical Rayleigh numberRacE (filled circles) versus the Lewis numberLe whenA = 2.6. The
computations were carried out withn = 20 andm = 28 forψ ′, T ′ andC′.

Fig. 9. Streamlines of the variational solution atRacE whenA = 1 (left) andA = 2.6 (right) andLe = 11,Pr = 1. In both cases the flow is
clockwise.
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6. Mode interaction

In this section we analyze the mode interaction that takes place atA = Ac. At this aspect ratio the conduction
state loses stability simultaneously to an antisymmetric mode and a symmetric mode. NearA = Ac these two
modes are set in close succession and therefore interact at small amplitude. To study this interaction we denote the
amplitudes of these modes byKa andKs, respectively, and consider finite values ofPr for which the bifurcation to
the symmetric mode atAc is transcritical. The resulting interaction between transcritical and pitchfork bifurcations
has been analyzed by Langford [34] in the context of his study of Hopf-steady-state mode interactions. Wittenberg
and Holmes [35] provide an extensive review of this type of analysis and its usefulness to PDE investigations, again
in the context of Hopf-steady-state interaction. We summarize here the relevant results.

Since the equations for(Ka,Ks) must commute withs : (Ka,Ks) → (−Ka,Ks) they take the form (to third
order in the amplitudes)

τ0
dKa

dt
= µaKa + τ1KsKa + τ2K

3
a + τ3K

2
sKa +O(4), (57)

σ0
dKs

dt
= µsKs + σ1K

2
a + σ2K

2
s + σ3K

2
aKs + σ4K

3
s +O(4), (58)

whereµs andµa are linear combinations ofGr−Grc,A−Ac. HereGrc andAc are the critical Grashof number and
aspect ratio at which the two primary bifurcations coalesce. The quantitiesσi (i = 0, . . . ,4) andτi (i = 0, . . . ,3)
are real functions of the Prandtl and Schmidt numbers; provided appropriate degeneracy conditions are satisfied
these can be calculated atGr = Grc, A = Ac.

Much of the resulting behavior (but not all) is captured by the truncation of these equations atsecond order. A
simple rescaling then yields the system

ṙ = εr + arz+O(3), ż = δz+ br2 − z2 +O(3), (59)

wherea = −σ0τ1/τ0σ2, b = −sgnσ1σ2, andε = µa/τ0, δ = µs/σ0. Thusb = ±1. In all cases the fixed
point at the origin becomes unstable via a transcritical bifurcation atδ = 0 giving rise to a non-trivial equilibrium
(r0, z0) = (0, δ). This fixed point (hereafter PM), corresponding to thesymmetricstates, may then undergo a further
pitchfork bifurcation, atδ = −ε/a, generating the steady states(r0, z0) = (±√

(bε/a)((ε/a)+ δ),−ε/a). These
states are in turn born in a pitchfork bifurcation atε = 0 and correspond to theantisymmetricstates. This is because
nearε = 0, |z0| � |r0| � 1; however, with increasing amplitude these states gradually cease to be antisymmetric
and becomemixed paritystates; we call them mixed modes (hereafter MM). In most cases nothing else happens
locally near(ε, δ) = (0,0). However, in the casea > 0, b = −1 the state(r0, z0) undergoes a Hopf bifurcation as
ε increases through−aδ/2, δ > 0 [34]. As also noted in [34], this bifurcation is degenerate within the quadratic
truncation. Thus to determine the direction of branching it is necessary to include cubic terms as in Eqs. (57) and
(58). Our calculations, summarized in Fig. 10, suggest that this situation does not in fact arise in the present problem.
Instead, the results are consistent with Eqs. (59) provideda < 0, b < 0 with δ > 0 whenε = 0.

As already mentioned numerical calculations reveal that the transcritical state(0, z) acquires stability at a sec-
ondary saddle-node bifurcation (see Fig. 11). Such a bifurcation can be included in the above analysis by rewriting
Eqs. (59) in the form

ṙ = εr + arz+ cr3 + drz2 +O(4), ż = δz+ br2 − ηz2 + er2z+ f z3 +O(4), (60)

whereη is a third unfolding parameter andf < 0. Whenη � 1 the secondary saddle-node bifurcation occurs at
small amplitude and is correctly captured by Eqs. (60). Numerically we find thatη is small for small values ofPr.
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Fig. 10. Schematic 3D bifurcation diagram showing the productKsf1 (if Le > 1) or−Ksf1 (if Le < 1) at the center of the cavity as a function
of the thermal Grashof numberGr whenA < Ac. The symmetric solutions lie in the vertical plane and the antisymmetric ones in the horizontal
plane. The signs of the stability eigenvalues obtained from the system (57) and (58) are indicated along each branch, with the first describing
stability relative to symmetric perturbations and the second relative to antisymmetric perturbations.

Fig. 11.(a1) The vertical velocityw(x = 0.388,0.5) in a container of aspect ratioA = 1.8 as a function ofGr. The resolution is 15× 19.(a2)

Enlargement of(a1). (b1) The corresponding bifurcation diagram for aspect ratioA = 2.3 with resolution 15× 25. (b2) Enlargement of(b1).
Stable (unstable) solutions are indicated by continuous (dashed) lines.
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The steady states are now given by

PM (0, z0) : δ − ηz0 + f z2
0 = 0 (61)

and

MM (r0, z0) : ε + az0 + cr2
0 + dz2

0 = 0, δz0 + br2
0 − ηz2

0 + er2
0z0 + f z3

0 = 0. (62)

The stability of the pure mode(0, z0) is determined by the eigenvalues

s1 = δ − 2ηz0 + 3f z2
0, s2 = ε + az0 + dz2

0. (63)

The saddle-node bifurcation occurs whens1 = 0, i.e., atz0 = η/2f , δ = η2/4f , cf. Fig. 10. The pitchfork to MM
occurs whens2 = 0.

An interesting possibility arises whens2 vanishes at the saddle-node. This occurs at the codimension-two point

εc = − aη
2f

− dη2

4f 2
, δc = η2

4f
. (64)

At this point there is a codimension-two bifurcation on the PM branch. This bifurcation is an interaction between a
saddle-node and a pitchfork bifurcation and is described by the normal form [31,34]:

ṙ = µ1r + Arz+O(3), ż = µ2 + Br2 − z2 +O(3), (65)

wherez ∝ z− z0,A andB are coefficients, andµ1 andµ2 are new unfolding parameters linearly related toε − εc

andδ − δc. As before|B| = 1 if r is suitably rescaled. A straightforward calculation shows that

A = −2

η
(a +O(η)), B = −b, (66)

µ1 = ε − εc − a

η
(δ − δc), µ2 = − η2

4f
(δ − δc)+O(δ − δc)

2, (67)

where|ε − εc| � η, |δ − δc| � η2. Since Fig. 10 is consistent with the choicea < 0, b < 0, η > 0, f < 0,
it follows thatA > 0, B = 1. This is Case I in the classification of [31]; in this case there is no tertiary Hopf
bifurcation on the mixed mode branch, i.e., this codimension-two bifurcation does not introduce any new dynamics.
Indeed, a stability calculation for the mixed mode state shows that whena < 0, b = −1 it is everywhere a saddle,
provided that|ε| � 1, |δ| � 1, |z0| � 1. These conditions also exclude the presence of a saddle-node bifurcation
on the MM branch.

7. Numerical study

7.1. Numerical methods

We used two numerical methods to solve Eqs. (2)–(5): time integration and a continuation method. Time integra-
tion was carried out using a pseudo-spectral method. The fields are discretized using the spectral element method
[36] with Chebyshev polynomials along the Lobatto–Chebyshev points. The linear terms are integrated implicitly
and the nonlinear terms explicitly using the pressure boundary conditions given by Karniadakis et al. [37]. The
resulting Poisson problem for the pressure and the Helmholtz problems arising from the diffusion terms are solved
using a variational formulation.
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The continuation method uses a time integration scheme adapted to compute steady states using a Newton method
[38–41]. The linear Newton system is solved using an iterative conjugate gradient method. Once a solution has been
computed classical continuation is performed, enabling us to follow any branch of steady solutions.

7.2. Numerical results

We now describe the results of a numerical study of the nonlinear problem using continuation. Since the fully
resolved Galerkin truncation shows that 2.11< Ac < 2.14 we focus on the two aspect ratios,A = 1.8 andA = 2.3,
fixing Pr = 1 andSc = 11. These aspect ratios correspond to the two cases discussed in Section 4. The results
are fully resolved and confirm the qualitative conclusions reached on the basis of the analytic but weakly nonlinear
calculations using the Galerkin truncation. These conclusions include not only the direction of branching of the two
primary branches but also their dependence on the Prandtl and Schmidt numbers.

The results are presented in terms of bifurcation diagrams describing the evolution of a component of the velocity
at a given point of the cavity as a function of the thermal Grashof numberGr. The choice of the point is unimportant
provided that the variations of the reported quantity clearly exhibit the behavior of the whole solution. In the
following, branches of stable (unstable) steady solutions are denoted by continuous (dashed) curves. Although the
unstable solutions cannot be observed physically, they indicate how stable solutions are created, annihilated, or
related to one another. The subscripts P, T, S and SN denote primary pitchfork, primary transcritical, secondary
pitchfork and saddle-node bifurcations, respectively.

WhenA = 1.8 the conduction solution remains stable untilGr = GrT ≈ 901.5 (Fig. 11(a)). AtGrT it undergoes
a transcritical bifurcation, and two branches of convective solutions emerge: a stable supercritical branch present
forGr > GrT and an unstable subcritical branch present forGr < GrT. Close toGrT, the solutions are symmetric
three-roll flows. AtGrSN ≈ 445, the subcritical branch undergoes a saddle-node bifurcation and becomes stable.
It remains stable at least up toGr = 1300, the end of our computational domain. Along this stable branch, the
solutions consist of symmetric one-roll flow structures. The transition from the three-roll structure to the one-roll
structure takes place near the saddle-node: the central roll grows at the expense of the two corner rolls until the
corner rolls disappear. During this transition the solution retains its symmetry. The supercritical branch is stable
up toGrS, 1042.5 < GrS < 1042.8. At GrS it undergoes a pitchfork bifurcation and two subcritical branches of
solutions emerge forGr < GrS. Neither solution is symmetric, but at a fixedGr, each is transformed into the other
by the symmetryS. These two unstable branches of mixed modes terminate at a (second) primary bifurcation that
takes place atGrP ≈ 1001.8> GrT.

WhenA = 2.3 the first primary bifurcation is a pitchfork atGrP ≈ 812.4 where two subcritical unstable branches
are created (Fig. 11(b)). With decreasingGr, these branches of mixed modes approach one another and terminate
at a secondary bifurcation pointGrS, 797.7< GrS < 798.0. This point is located on the subcritical branch created
at the second primary bifurcation atGrT ≈ 838. This branch is twice unstable down toGrS below which it is
only once unstable. The branch acquires stability at a saddle-node bifurcation atGrSN ≈ 475 and remains stable at
least up toGr = 1000 (the end of our computational domain). The supercritical branch emerging atGrT has one
unstable eigenvalue and remains unstable at least up toGr = 1000. For comparisonGrSN = 676 whenA = 1, and
GrSN = 502 whenA = 2.6.

Note that the location of the secondary pitchfork bifurcation switches from the supercritical transcritical branch
to the subcritical one asA increases toAc.

8. Imperfect bifurcation

In this Section, we focus on the influence of a small deviation from the special caseN = −1 and investigate the
two casesN = −1.01 andN = −0.99 in a square cavity (A = 1). The Prandtl number and the Schmidt numbers
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Fig. 12. The amplitudeKs from Eq. (68) withGr(1) ≡ Gr −Gr(0) as a function ofGr for Pr = 1, Sc = 11 and (a)ε′ = −0.1, (b)ε′ = 0.1.

are fixed atPr = 1 andSc = 11. For this aspect ratio the first bifurcation is transcritical and we therefore focus
primarily on the effects of departures fromN = −1 on this bifurcation. The main effect of this perturbation is the
destruction of the trivial equilibrium. It is important to note, however, that the departure ofN from −1 doesnot
break the symmetryS, i.e., rotation byπ around the center of the cavity remains a symmetry of the system (2)–(5).
As a result, the pitchfork bifurcations will remain, although they will be shifted to new locations.

8.1. Analytical approach

WhenN 6= −1 the primary bifurcation becomes imperfect since the conduction state is no longer a solution of the
equations. Locally, the resulting bifurcation is completely described by adding a small constantε′ to the amplitude
equation (27):

∂Ks

∂t(1)
= V (Gr −Grc,Ks) ≡ Ks(Gr

(1)|Pr − Sc| +Ks(b + (P r + Sc)c))

(d + (P r + Sc)e)
+ ε′. (68)

HereGr(1) ≡ Gr −Gr(0). Stationary solutionsKs(Gr) for a square cavity are shown in Fig. 12 forPr = 1 and
Sc = 11 in the two cases: (a)ε′ < 0 or (b)ε′ > 0.

8.2. Numerical study

Although the above analytical approach provides the correct local unfolding of the transcritical bifurcation when
N 6= −1 it is helpful to compare its predictions with numerically computed bifurcation diagrams. Such diagrams for
a square container andN = −1.01 andN = −0.99 are shown in Figs. 13 and 14, respectively. Comparison with Eq.
(68) shows thatN = −0.99 corresponds toε′ > 0 whileN = −1.01 corresponds toε′ < 0. Fig. 13 shows that when
N = −1.01 convection develops continuously asGr increases and that its sense is counterclockwise (Le > 1).
This is as expected: whenN = −1.01, 1C = 1.01|βT /βC |1T , i.e., the concentration on the left boundary is
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Fig. 13. (a) The vertical velocityw(0.388,0.5) in a square container withN = −1.01 as a function of the Grashof numberGr. (b) Enlargement
of (a). The resolution is 15×15. Stable (unstable) solutions are indicated by continuous (dashed) lines. Positivew implies clockwise circulation.

higher than whenN = −1. Consequently the fluid near the boundary is heavier and therefore sinks setting up a
counterclockwise circulation. This circulation is present at all Grashof numbers and its strength increases withGr.
This conclusion agrees with that forN = −1 in Section 4.1, viz. that the circulation on the supercritical branch is
counterclockwise. Conversely, whenN = −0.99 the concentration deficit at the left boundary drives a clockwise
circulation and this results (see Fig. 14) in a continuous connection between this circulation and the clockwise flow
near the original saddle-node bifurcation found in Fig. 11. There is no longer a primary transcritical bifurcation (in
comparison with the caseN = −1) and the secondary pitchfork bifurcation then becomes a first primary pitchfork.

Note that if a similar calculation were done forA = 1.8 (see Fig. 11) andN only slightly greater than−1 there
would be adisconnectedinterval of stablecounterclockwise solutions in the lower right, instead of the unstable

Fig. 14. The vertical velocityw(0.388,0.5) in a square container withN = −0.99 as a function of the Grashof numberGr. The resolution is
15× 15. Stable (unstable) solutions are indicated by continuous (dashed) lines. Positivew implies clockwise circulation.
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branch seen in Fig. 14. On the left these solutions terminate at the saddle-node bifurcation, while on the right they
lose stability at a (subcritical) pitchfork bifurcation that creates a branch of unstable mixed modes that connects to
another pitchfork on the other side of the saddle-node. With decreasingε′ < 0 or decreasingA < Ac these two
pitchfork bifurcations coalesce at the saddle-node bifurcation eliminating the disconnected stable counterclockwise
solutions. Thereafter, the only stable states are clockwise ones, and these exhibit hysteresis if|ε′| is not too large as
in Fig. 14. Such bifurcation diagrams are found in the unfolding

ṙ = εr + arz+O(3), ż = ε′ + δz+ br2 − z2 +O(3), (69)

corresponding to Eqs. (59). Whenab > 0 (our case) no additional transitions take place near(ε, δ, ε′) = (0,0,0).

9. Conclusion

In this paper we have investigated in some detail the nonlinear states in doubly diffusive convection in a rectangular
cavity driven by lateral temperature and concentration differences. Unlike natural convection this configuration does
admit, under appropriate conditions, a static equilibrium. We have used this fact to understand the properties of
nearby configurations, i.e., configurations that do not admit a trivial solution and which resemble instead natural
convection. WhenA = 1 two possibilities were uncovered. In the first, arising whenN < −1, the strength of
convection increases continuously with increasing Grashof number and the circulation is counterclockwise. For
sufficiently large Grashof numbers finite amplitude perturbations exist which result in finite amplitude clockwise
convection. The counterclockwise state may also lose stability at a pitchfork bifurcation (see Fig. 13) resulting
in a hysteretic transition to the clockwise state. When 0> N > −1 the situation is more interesting because
the small amplitude clockwise circulation that develops with increasing Grashof number loses stability at a finite
Grashof number resulting in a hysteretic transition to large amplitude clockwise convection (see Fig. 14). After
a gap inGr a smaller amplitude counterclockwise state may acquire stability, resulting once again in bistability
between states of opposite circulation. For typical parameter values our calculations indicate, however, that this
counterclockwise state is in fact everywhere unstable so that bistability will not be present. These results were
obtained semi-analytically by focusing on the neighborhood of a special aspect ratio at which the static equilibrium
loses stability simultaneously to symmetric and antisymmetric modes, and by numerical continuation for other
aspect ratios. The results shed substantial light on the mechanism by which multiple stable states arise. However,
the restriction|N + 1| � 1 imposed on the basic state precludes a direct comparison with existing experimental
and numerical results for which|N | > 3 [12,15,16]. Interestingly, for realistic values of the remaining parameters
no Hopf bifurcations were located, and no time-dependence is therefore expected when the basic flow consists of a
weak circulation and the Grashof number remains moderate.

Appendix A. Weakly nonlinear analysis

In this section we summarize the multiple scale analysis used to compute the normal forms (27) and (32).

A.1. The symmetric case

Near the onset of the primary instability to a symmetric mode we employ the following expansion in powers of
a small parameterε > 0:

ψ ′ = εψ(1) + ε2ψ(2) + · · · , (A.1)
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T ′ = εT (1) + ε2T (2) + · · · , (A.2)

C′ = εC(1) + ε2C(2) + · · · , (A.3)

∂

∂t
= ε

∂

∂t(1)
+ ε2 ∂

∂t(2)
+ · · · , (A.4)

Gr = Gr(0) + εGr(1) + ε2Gr(2) + · · · . (A.5)

At order ε we recover the eigenvalue problem. The lowest critical Grashof number satisfying the characteristic
equation is

Gr(0) |Sc − Pr| = Grc |Sc − Pr| = Rac |Le − 1| = f (A)org(A), (A.6)

depending on the mode parity. Noting thatC(1) = Le T (1), the critical eigenmode can be written in the form

ψ(1)

T (1)

C(1)


 = Ks(t

(1))




f1(x, z)

P r f2(x, z)

Sc f2(x, z)


 , (A.7)

where the amplitudeKs depends on the slow timet (1) and the functionsfi (i = 1 or 2) depend only on the spatial
variables. These functions are computed using the Galerkin method. InterchangingSc andPr changesf1(x, z) into
−f1(x,A− z) andf2(x, z) into f2(x,A− z).

At orderε2 the equations are:


12 Gr(0)(∂/∂x) −Gr(0)(∂/∂x)
−∂/∂z 1/P r 0

−∂/∂z 0 1/Sc





ψ(2)

T (2)

C(2)




= −




0 Gr(1)(∂/∂x) −Gr(1)(∂/∂x)
0 0 0

0 0 0





ψ(1)

T (1)

C(1)


−



N1(ψ

(1), ψ(1))

N2(ψ
(1), T (1))

N2(ψ
(1), C(1))


+ ∂

∂t(1)



1ψ(1)

T (1)

C(1)


 . (A.8)

The existence of a convective solution requires the solvability lemma [42] to be satisfied, i.e., there must exist a
non-zero solution to the following adjoint linear eigenvalue problem:

 12 ∂/∂z ∂/∂z

−Gr∗(0)(∂/∂x) 1/P r 0
Gr∗(0)(∂/∂x) 0 1/Sc




ψ∗

T ∗

C∗


 =


 0

0
0


 (A.9)

with identical boundary conditions. This condition yields the result

Gr∗(0)|Sc − Pr| = f (A)org(A), (A.10)

the corresponding non-zero solution is
ψ∗

T ∗

C∗


 =


 (P r − Sc)f ∗

1 (x, z)

P r f ∗
2 (x, z)

−Sc f ∗
2 (x, z)


 . (A.11)

The amplitude equation (27) now follows on applying the Fredholm alternative.
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A.2. The antisymmetric case

In this case the quadratic terms necessarily vanish and we can setGr(1) = 0 and omit the timescalet (1).
In order to obtain the first non-zeroGr(i) for i = {1,2,3, . . . , n}, we solve the orderε2 problem forψ(2), T (2)

andC(2). We find:

ψ(2)

T (2)

C(2)


 = K2

a(t
(2))



g1(x, z, P r, Sc)

g2(x, z, P r, Sc)

g3(x, z, P r, Sc)


 . (A.12)

At orderε3, we obtain


12 Gr(0)(∂/∂x) −Gr(0)(∂/∂x)
−∂/∂z 1/P r 0

−∂/∂z 0 1/Sc





ψ(3)

T (3)

C(3)




= −




0 Gr(2)(∂/∂x) −Gr(2)(∂/∂x)
0 0 0

0 0 0





ψ(2)

T (2)

C(2)


−



N1(ψ

(1), ψ(2))

N2(ψ
(1), T (2))

N2(ψ
(1), C(2))


−



N1(ψ

(2), ψ(1))

N2(ψ
(2), T (1))

N2(ψ
(2), C(1))




+ ∂

∂t(2)



1ψ(1)

T (1)

C(1)


 . (A.13)

The Fredholm alternative now yields the result (32).
General theory [32] shows that the above normal forms need not be arbitrarily truncated at second and third order,

respectively; instead all higher order terms can be transformed away by near-identity transformations, provided the
non-degeneracy conditions stated in Section 4 hold. This is the case here.
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