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We study the hydrodynamic-type system of differential equations modeling isothermal no-slip
drift flux. Using the facts that the system is partially coupled and its subsystem reduces to the
(1+1)-dimensional Klein-Gordon equation, we exhaustively describe generalized symmetries, cosym-
metries and local conservation laws of this system. A generating set of local conservation laws under
the action of generalized symmetries is proved to consist of two zeroth-order conservation laws.
The subspace of translation-invariant conservation laws is singled out from the entire space of local
conservation laws. We also find broad families of local recursion operators and a nonlocal recursion
operator, and construct an infinite family of Hamiltonian structures involving an arbitrary function of a
single argument. For each of the constructed Hamiltonian operators, we obtain the associated algebra
of Hamiltonian symmetries.
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1. Introduction

The drift flux model introduced in [1] is a simplified model
of a well-known two-phase flow phenomenon [2,3]. The former
was thoroughly studied in [4-7], where several submodels easier
to tackle but still real-world applicable were suggested. Amongst
them is the isothermal no-slip drift flux model given by the
system

o +upy +up' =0,
pF +up? + uyp® =0,
(p" + p*)ue + uuy) + A(pg + p) =0,

which we denote by S. This model describes the mixing motion
of liquids (or gases) rather than their individual phases. Here u =
u(t, x) is the common velocity, p! = p'(t,x) and p? = p(t, x)
are the densities of the liquids, and the constant parameter a
can be set to 1 by scaling (x, u) with a. Any constraint meaning
that p! and p? are proportional, e.g., p> = p! or p? = 0,
reduces S to the system &, describing one-dimensional isentropic
gas flows with constant sound speed, cf. the system (3)-(4) with
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v = 0 in [8, Section 2.2.7]. The system & is a diagonalizable
hydrodynamic-type system since it can be equivalently rewritten
as

t2+(t1+t2+1)t; =0, (1a)
@+ -1 =0, (1b)
4+ + P =0 (1c)

by changing the dependent variables (u, p', p?) to the Riemann
invariants (¢!, v2, ¢3) via

1 u+In(p" + p?) tz_u—ln(p”rpz) tg_pj
- 2 ’ - 2 ’ T opl
The corresponding characteristic velocities
Vied 4241, V=42 -1, V=144 (2)

are distinct, meaning that the system S is strictly hyperbolic.
Besides, the characteristic velocities satisfy the system

k k
Ve Ve
Yvi—vk T Yyi_ vk
Thus, the system S is semi-Hamiltonian and, since Vf; =0, it
is not genuinely nonlinear with respect to ¢; see [9] for related
definitions. The system S is also partially coupled. The essential
subsystem So consisting of Egs. (1a)-(1b) coincides with the
diagonalized form of the system Sy [8, Section 2.2.7, Eq. (16)].

0, for all i,j, k € {1,2,3} with i,j#k.
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Hydrodynamic-type systems are extensively studied in the
literature in view of their various physical applications in fluid
mechanics, acoustics and gas and shock dynamics [8,10] and
rich differential geometry [9,11-13]. See [14-22] and references
therein for an assortment of examples.

In view of the above properties, the system S can be inte-
grated in an implicit form. In [23] for this system we expressed
the general solution in terms of the general solution of the
(1+1)-dimensional Klein-Gordon equation using the generalized
hodograph transformation [13] and described the entire set of
local solutions via the linearization of the subsystem S, to the
same equation. Since the practical use of the derived representa-
tions for solutions of S is limited because of their implicit form
and complicated structure, in [23] we also began the extended
classical symmetry analysis of the system S. In particular, for
this system we constructed the maximal Lie invariance algebra g,
the algebra of generalized symmetries of order not greater than
one, the complete point symmetry group and group-invariant
solutions. Thus, the algebra g is spanned by the vector fields

Gi=1tdh+3d1, G =20d1—d2,
P =0, W(R)=2(:)ds,

D =t + xdy,
Pt =4,

where £ runs through the set of smooth functions of 3. The
maximal Lie invariance algebra go of the essential subsystem S
is wider than the projection of the algebra g to the space with the
coordinates (t, x, v!, v+?) and is spanned by the vector fields

D=t +x0 Gi=td+3d1, G =0d1—0da,

P(r0, 8% = (¢!, )3 + &(x', )y,

. 1 1 1
T=(=x—tc"+D))o+t{c' == (" +2P+ =)0,
2 2 2
+ 'on — %92,

where (7, £) is a tuple of smooth functions of (¢!, v?), running
through the solution set of the system &1 = V?ta, &2 =
V'z,. In [23], for the system S we also found the zeroth-order
local conservation laws using the direct method and, follow-
ing [24], constructed the entire space of first-order conservation
laws with (t, x)-translation-invariant densities and a subspace of
(t, x)-translation-invariant conservation laws of arbitrarily high
order. Building on the description of a subalgebra of general-
ized symmetries of order not greater than one, we obtained
an infinite-dimensional subspace of generalized symmetries of
arbitrarily high order for S. (In the present paper we show that
this subspace is an ideal in the entire algebra of generalized
symmetries of the system S.)

At the same time, the system S possesses two properties
that allow us to exhaustively describe the entire spaces of gen-
eralized symmetries, cosymmetries and local conservation laws.
Firstly, the system is partially coupled with the essential sub-
system Sy being linearizable through the rank-two hodograph
transformation to the (1+1)-dimensional Klein—-Gordon equation,
which was thoroughly studied in [25] from the point of view
of generalized and variational symmetries and local conservation
laws. Secondly, in addition to being not genuinely nonlinear with
respect to ¢>, the system & is decoupled with respect to 3, and
the third equation of S is linear in ¢>. Thus, speaking of the
degeneracy of the system S, we mean both its linear degeneracy
and decoupling with respect to v>. Due to the dual nature of this
degeneracy, the system S admits not only an infinite number of
linearly independent conservation laws of arbitrarily high order,
that are related to the degeneracy, cf. [24,26], but also similar
generalized symmetries.

Substantially generalizing results of [23], in the present paper
we comprehensively study generalized symmetries, cosymme-
tries and local conservation laws (see [27] for definitions) of the
system S. This includes both a description of the corresponding
spaces and their interrelations, which are described in terms of
recursion operators and Noether and Hamiltonian operators. Our
modus operandi to study the system S is to select appropriate
symmetry-like objects of the Klein—-Gordon equation (generalized
symmetries, cosymmetries and conservation laws), to find their
counterparts for the system S and to complement these counter-
parts with the objects of the same kind that are related to the
degeneracy of the system. Then we prove that the constructed
objects span the entire spaces of objects of the corresponding
kinds for the system S. As a result, we obtain one more example,
in addition to a few ones existing in the literature, cf. [25], where
generalized symmetries and local conservation laws are exhaus-
tively described for a model arising in real-world applications and
possessing symmetry-like objects of arbitrarily high order.

The structure of this paper is as follows. In Section 2 we
reduce the system S to the (1 + 1)-dimensional Klein-Gordon
equation and show that any regular solution of the former is
expressed in terms of solutions of the latter. In Section 3 we lay
out notations and auxiliary results to be used throughout the re-
mainder of the paper. It is proved in Section 4 that the algebra of
reduced generalized symmetries of the system S is a (non-direct)
sum of an ideal related to the degeneracy of S and consisting
of generalized vector fields with zero t'- and t?>-components
and of a subalgebra stemming from generalized symmetries of
the Klein-Gordon equation. At the same time, not all general-
ized symmetries of the Klein—-Gordon equation have counterparts
among those of the system S, and we solve the problem on
selecting appropriate elements of the algebra of generalized sym-
metries of the Klein-Gordon equation. This differs from cosym-
metries and conservation laws of S, for which there are injections
from the corresponding spaces for the Klein-Gordon equation to
those for the system S, see Sections 5 and 6, respectively. The
space of conservation laws of S is proved to be generated, under
the action of generalized symmetries of S, by two zeroth-order
conservation laws. We also find the space of conservation-law
characteristics of S. The knowledge of them helps us to single
out the conservation laws of orders zero and one as well as the
(t, x)-translation-invariant ones. In Section 7 we construct a fam-
ily of compatible hydrodynamic-type Hamiltonian operators for
the system S, parameterized by an arbitrary function of the
degenerate Riemann invariant v>. For each of these operators, we
find the space of its distinguished (Casimir) functionals and the
associated algebra of Hamiltonian symmetries. The partition of
symmetry-like objects in accordance with the above two proper-
ties of the system S also manifests itself in recursion operators
studied in Section 8. The independent local recursion operators
constructed turn out either to nontrivially act in the subspace
of generalized symmetries arising due to the degeneracy of S
and annihilate the counterparts of generalized symmetries of
the Klein-Gordon equation or vice versa. A nonlocal recursion
operator is also found. Section 9 is left for the conclusions, where
we underline the nontrivial features encountered in the course of
the study of the system S in the present paper and discuss further
problems to be considered for this system within the framework
of symmetry analysis of differential equations.

2. Solution through linearization of the essential subsystem

Using the facts that the system S is partially coupled and the
subsystem Sy can be linearized, we construct an implicit repre-
sentation of the general solution for the diagonalized form (1) of
the system S in terms of the general solution of the
(14 1)-dimensional Klein-Gordon equation; cf. [23, Section 8].
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At first, we reduce the system (1) by a point transformation
to a system containing the (1 + 1)-dimensional Klein-Gordon
equation. It is convenient to derive this transformation as a chain
of simpler point transformations. We begin with the rank-two
hodograph transformation, where

y=r'/2,
p=t,

(For convenience of the presentation, we compose the hodograph
transformation with scaling of ¢! and t2.) This transformation
maps the system (1) to the system

z = —t?/2 are the new independent variables and

3

g=x, s=rtv arethe new dependent variables.

4: —(2y—2z+1)p, =0, (3a)
ay —(2y -2z —-1)p, =0, (3b)
Syp; +s:py = 0. (30)

After representing Eq. (3a) in the form
(@-(y—2z+1)p),-2p=0,

it becomes natural to make the change § = q — (2y — 2z + 1)p
of g. Then Eqs. (3a) and (3b) take the form p = §,/2 and g, +
2py 4 2p = 0, respectively. Excluding p from the second equation
in view of the first one, we obtain the second-order linear partial
differential equation ¢y, + g, + g, = 0 in ¢, which reduces by the
change q = ¢ of ¢ to the (1 + 1)-dimensional Klein-Gordon
equation for q in light-cone variables, q,, = q. Carrying out this
chain of two transformations in the whole system (3), we obtain
the system K, which reads

qyz = (q, (43)
K's, = K?s,, (4b)
where

K':=q,—2q,+q, K*:=gqy,+q,—2q.

We have K' = (D, — 1)?q and, on solutions of (4a),

K? = —(D, — 1)(D, — 1)q, D,K'=K? D,K*=K".

Here D, and D, are the total derivative operators with respect to y
and z, respectively. We exclude p from the system (4) in view of
the equation

1 _,_
p=5e”(a: —q) (5)
as well as we neglect this equation itself. The composition of the
above three transformations is the transformation
ol 2
> zZ=—-—, = t’
2 2 P 6)
q= e(‘L‘z)/z(X — ('c1 ++ 1)t), s =3,

T y=

Therefore, to make the inverse transition from the system (4) to
the system (1), we should attach Eq. (5) to the system (4), thus
extending the tuple of dependent variables (q, s) by p, and carry
out the inverse to the transformation (6),

T t=p, x=e ¥ Pq+Qy—2z+1)p, )
ol = 2y, = -2z, e =s.

It is convenient to collect the expressions for low-order deriva-

tives of p and q and for their combinations in terms of the old

variables in view of the system (1), which will be needed below:

1 1
py - 'C)]( ’ pZ - t)% )
3
Kl _ 22 g2 20-dn Sy _ o-dnk

’

2 el K2 2’

Q= e(tl_tz)/z (E] +x— Vlf _ 2[’) , g = e(t1—t2)/2(x _ sz),

X

Qor = &7 )2 (—32 +x— V2t + 2t> .
tx

Following the procedure analogous to that in [23], we find
the complete set of local solutions of the system (1) via the
linearization of the subsystem (1a)-(1b).

We are allowed to make the point transformation (6) if and
only if the nondegeneracy condition tv}«? — t1¢2 # 0 holds, which
is equivalent, on solutions of (1), to the inequality tlt? # 0.
Therefore, ¢/t # 0 as well, and thus both Riemann invari-
ants ¢! and ¢* are not constants. In this case, we introduce the
“pseudopotential” ¥ defined by the potential system

l]/y:q—l]/’ lI/z:qz_llp

for Eq. (4a). In fact, this “pseudopotential” is a modification, ¥ =
e Y72y, of the standard potential ¥ for Eq. (4a) associated with
the conserved current (e’?q,, —e¥*?q) of this equation via the
potential system

B, = 02q, B, = &g,

It is easily seen that the function ¥ satisfies the Klein-Gordon
equation ¥, = ¥. Moreover, solutions of Egs. (4a), (4b) and (5)
are locally expressed in terms of ¥,

1,
q=¥%+Vv, p:iey HUZEH)

s=W (e (¥ + w, —2w)).

Here and in what follows W is an arbitrary smooth function of its
argument. Returning to the old coordinates, we obtain the regular
family of solutions of the system (1), which is expressed in terms
of the general solution of the Klein—-Gordon equation. Note that
the nondegeneracy condition for this inverse transformation is
K'K? # 0, where, in terms of ¥,

K'=¥, -0, +W¥,-W, K=W, -V, +¥, V.

In view of the Klein-Gordon equation ¥,, = ¥, the inequalities
K' # 0 and K? # 0 are equivalent to each other as well as to the
condition

Wog (e e (y — 2)e").

If the nondegeneracy condition v/t — t1+2 # 0 does not
hold, then at least one of the Riemann invariants ¢! and ¢ is a
constant. If only one Riemann invariant is a constant, we derive
the singular family of solutions of (1). Let ¢! be a constant, ¢! = c.
Then Eq. (1a) is trivially satisfied, and we make the rank-one
hodograph transformation

2

Z =1, 3

t=t, G=x S=t

in the two remaining Eqs. (1b) and (1c), exchanging the roles of x
and ¢, that is, t and Z are the new independent variables, g and §
are the new dependent variables. This yields the system

Gg=z+c—1, s;+q:t=0.

Integrating the first equation to ¢ = (Z+c— 1)t +€°©?, where ©?
is an arbitrary function of z. It is chosen with a help of a hindsight
to represent the general solution of the second equation in the
form

S=W(e 7t - 02 - 0?).

The consideration when % being a constant is similar.
When the both Riemann invariants ¢! and ¢ are constants, we
obtain an ultra-singular family of solutions of (1).
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Theorem 1. Any solution of the system (1) (locally) belongs to one
of the following families; below W is an arbitrary function of its
argument.

1. The regular family, where both the Riemann invariants ¢! and 2
are not constants (the general solution):

t = —e 2w, 4 w),
X = e(tz—‘l)/z((ZlPJ + lp) _ (t’l + 1‘2 4 1)(g/t1 + g/tz ))7
S =W (e (W — W — ).

Here the function ¥ = (¢!, v?) runs through the set of solutions of
the Klein-Gordon equation W12 = —¥ /4 with

2_.1 1_.2 1_.2
/2 ¢ (e(: —t )/2’ e(t —r )/2, (’Cl +t2)e(t —r )/2>.

2. The two singular families, where exactly one of the Riemann
invariants v' and +* is a constant:

=g, x:(t2+c—1)t+e‘2@f, t3:W(e"2t—(~)r22—@2);
P=c, x=('+c+N+eT O, F=we't+0) -0

Here c is an arbitrary constant and @' = @(x!') and ©? = ()
are arbitrary functions of their arguments.

3. The ultra-singular family, where ! and ? are arbitrary constants
and 3 = W(x — (¢! + ¢2)t).

The regular, singular and ultra-singular families of solutions of
the system S are associated with solutions of the subsystem Sy
of rank 2, 1 and 0, respectively; cf. [28].

Alternatively, to get the subfamily of regular solutions with
nonconstant parameter function W, one can employ the general-
ized hodograph transformation [13], see details in [23, Section 9].

3. Preliminaries

Given a system £ of differential equations, we denote by £(*
the manifold defined by the system £ and its differential con-
sequences in the associated jet space. A local object associated
with £ within the framework of symmetry analysis of differential
equations, like a generalized symmetry, a conserved current of
a local conservation law, a conservation-law characteristic or a
cosymmetry, is called trivial if it vanishes on solutions of £ or,
equivalently, on £, Two such local objects of the same kind
are naturally assumed equivalent if their difference is trivial, and
thus such local objects of the same kind in total are considered
up to this equivalence relation.

The system S glven by (1) is of the evolution type. The jet
variables t, x and ¢, = aw/ax i=1,2,3, k € Ny, constitute
the standard coordinates on the manifold S(>). Therefore, up to
the above equivalence relation on solutions of S, for the coset
of each of local symmetry-like objects associated with S we can
consider a representative whose components do not depend on
the derivatives of v involving differentiation with respect to t.!
A symbol with [t], like f[r], denotes a differential function of ¢
that depends at most on t, x and a finite number of derivatives
of v with respect to x, f = f(t,X,v0,...,%), kK € Ny. Below
we consider only such differential functions and assume that the
components of any local symmetry-like objects associated with S
are such differential functions. For i € {1, 2, 3}, the order ord,; f[t]
of a differential function f[t] with respect to ¢ is defined to be
equal max{k € Ny |f # 0} unless this set is empty and —oo
otherwise.

1 Here, for conservation-law characteristics we need to use Lemma 3 in [29],
see also [30, Lemma 4.28].

We restrict the total derivative operators D, and D, with
respect to x and t to the set of above differential functions
of v, and additionally exclude the derivatives of ¢ that involve
differentiation with respect to t from D; in view of the system S,
respectively obtaining the (commuting) operators

co 3 co 3
Dy = + ZZ\{(H%, De =0 — Z ZDQ(ViVQ)ag

k=0 i=1 k=0 i=1

We also define the commuting operators

2 1
A=e""TD, and B:=D+ (' +2)D,, AB=BA.

It is convenient to introduce the modified coordinates t, x,
rl =+ and o := A%t for k € Ny and j = 1, 2 on the manifold
S() instead of the standard ones.? In this notation, we have

1 1 2 2
Br' = —r;, Br-=ry,

Aw* = o1, o =0, Kk €Ny,
Dx—8x+2 Pl 0 120 e T 0 g0),
k=0
o0

(Vo + DE(V2r)a,2

+(r' +r?)e ri-r? @19 )

We define the orders ord,; f, j = 1, 2, and ord,, f of a differential
function f = f[r] with respect to 1/ and “w” to be equal

max{xler #0} and max{« | fx # 0},

respectively, unless the corresponding set is empty and —oo
otherwise. Note that ord,, f = ords f. The notation like f[r!, %],
or equivalently f[t',¢?], denotes a differential function f of
(r, r?) = (¢, ¥2).

Lemma 2. A differential function f = f[t] satisfies the equation
Bf = 0 if and only if it is a smooth function of a finite number
of w's, f = f(o° ") with k € Ng.

Proof. Provided f being a smooth function of a finite number
of w’s, it satisfies the equation Bf = 0 because of Bw* = 0 for
all k € No.

Conversely, using the modified coordinates on S we denote
kj = ord,f, j = 1,2. Suppose that x; > 0 for some j. Then
collecting coefficients of r 1 in the equation Bf = 0 yields
of /arf =0, which gives a ' contradiction. Hence the function f
does not depend on rl, k € Ny. The equation Bf = 0 takes
the form f; + (r! + r?)f, = 0, splitting with respect to (r!, r?)
tofy=f,=0. O

As the standard coordinates on the manifold K> associ-
ated with the system (4), we can take the jet variables y, z,
q = d'q/ay*ift > 0and q = 97'q/9z™" ift < 0, ¢ € Z,
se = 0“s/0y", k € Np. In these coordinates, the restrictions of
the total derivative operators with respect to y and z respectively
take the form

+00 +00
®y = ay + Z ql+]8ql + ZSKHBSK,

1=—00 =0
S 1aq,+z@ (KZ )a
1=—00

2 The operator A and the modified coordinates are related to the
degeneration of V? meaning, that V3 = 0; cf. [24, Theorem 5.2].
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where K := q_, — 2q_1 + qo, K? :== q1 + q_1 — 2qo. The infinite
prolongation of the transformation (6) induces pushing forward
of the operators D¢, Dy, A and B to the operators

R +z +z

Dy = -5y =22+ 1Dy — - (2y — 22 = 1)1,
N ey-l—z ey+z

Dy = Kisz + FQD

“ e V2 e V2 R eytz eytz
A= KTDy + ?pz, B = _FDy + F927

and thus AB = BA.

A symbol with [g, s], like f[q, s], denotes a differential function
of (q, s) that depends at most on y, z and a finite, but unspecified
number of q,, ¢t € Z, and s, k € Ny. The order ordsf of a
differential function f = f[q, s] with respect to s is defined to
be equal max{x € Ny | f;, 7 0} unless this set is empty and —oo
otherwise. Analogously, a symbol with [q], like f[q], denotes a
differential function of q that depends at most on y, z and a finite,
but unspecified number of q,, t € Z.

We also use the modified coordinates y, z, §, = q,, t € Z and
& = A¥s, k € Np, on the manifold x(°)

Lemma 2 implies the following assertion.

Corollary 3. A differential function f = f|q, s] satisfies the equation
Bf =0, ie,
K'D,f = K*D,f,

if and only if it is a smooth function of a finite number of @'s,
f=f(&° ...,& with k € Ny.

The infinite prolongation of the transformation (7) induces
pushing forward of the operators D, and D, to the (commuting)
operators

1 - 1
—t—l(Dt+(t1+t2—1)Dx), D, = —t—z(Dt+(t]+t2+l)®X).

X X

Dy =

4. Generalized symmetries

The following two facts allow us to exhaustively describe
generalized symmetries of the system (1). Firstly, Eq. (1c) is
partially coupled with Egs. (1a) and (1b). Secondly, the subsys-
tem (1a)-(1b) is linearized by the hodograph transformation, and
the associated linear system reduces to the (1 + 1)-dimensional
Klein-Gordon equation.

We denote by X the algebra of generalized symmetries of the
system (1), and by X"V the algebra of its trivial generalized sym-
metries, whose characteristics vanish on solutions of (1). The quo-
tient algebra X9 = X/ X"V can be identified, e.g., with the sub-
algebra of canonical representatives in the reduced evolutionary
form,

3
= {Z n"[t]a,,- € E} .
i=1

The criterion of invariance of the system (1) with respect to
the generalized vector field Z?:r n'[r]d, results in the system of
three determining equations for the components 7/,

Dt + (' + 2 + 1)Dyn! —l—t(n +nh) = (8a)
Den? + (¢ 4+ 2 — 1)Dyn? —l—tz(r] +nh) = (8b)
Den’ + (¢ + 2)Dyp® + (0" +1°) = 0. (8¢)

Lemma 4. For any generalized vector field Z?:r n'[t]d. from sa,
its components n' and n? do not depend on derivatives of ¢,
ie, n' =n'[t!, v¥] and n* = *[!, 2].

Proof. Suppose that «; := ord; o> 0 for some j € {1,2}.
Collecting the coefficients of the jet variable ¢ i1 in the jth equa-
tion of (8) yields the equation arﬂ/at =0, wh1ch contradicts the
assumption. Hence «; = —oo for anyj =1,2. O

Lemma 4 is the manifestation of partial coupling of the sys-
tem (1). In view of this lemma, the subalgebra Eq of 9 consti-
tuted by elements with vanrshmg n and 7? is an ideal of S,
and the quotient algebra Z‘ = Eq/Eq is isomorphic to the
subalgebra of reduced generalized symmetries of the subsys-
tem (1a)-(1b) that admit local prolongations to .

The ideal 2;‘ is described by the following corollary of
Lemma 2.

Corollary 5. A generalized vector field n333 belongs to a if and
only if the coefficient n® is a smooth function of a finite number
of w’s.

Proof. The invariance of the system (1) with respect to the gener-
alized vector field 7333 leads to the single determining equation
813 = 0. Further we use Lemma 2. O

Therefore, the infinite prolongation of an element f9,3 of >a
is equal to Y =y( lf o, and thus the commutator of elements
f19,3 and f293 of X9 is

oo

> (AT

1=0

o0
— (A'f*)f))ds, where fl:Zw“Hawr.

We specify the form of canonical representatives of cosets
of Z‘

Lemma 6. Each coset of ﬁ‘g contains a generalized vector field of
the form

S, 219, (9)

where the coefficients n', n* and 7 satisfy the system of determining
Egs. (8a), (8b) and

D', 210 + n2le!, 12100 + e

D + (¢ + )00 + e (0! +72) = 0. (10)
Proof. In view of Lemma 4 and Corollary 5, it suffices to show
that the third components of canonical representatives for ele-
ments from the quotient algebra 2 can be chosen to be of the
form n? = e~ 33!, +2]. After substituting the representation
n}=e i [*] into Eq. (8c), we derive Eq. (10). We use the
modified coordinates on the manifold S, If the coefficient 73
depends on w* for some k € Ny, then a differential function of
(¢!, ¢?) obtained from 3 by fixing values of all involved w*’s in
the domain of #3 is also a solution of (10) for the same value

of (', n*). D

The elements of the form (9) from the algebra ﬁ_q constitute
a subalgebra of this algebra, w_hich we denote by 2?2. Unfortu-
nately, the algebras >, and X7, are not isomorphic. Although
2a4=5% + 53, this sum is not direct since

2905 = (e o).

The algebra 2
DRI e ! 0 3)
Deriving the exhaustive description of the algebra 2?2 is quite
complicated. For this purpose, we reduce the system (1) to a sys-
tem (4) containing the (1 + 1)-dimensional Klein-Gordon equa-
tion. Similarly to the system (1), we denote by & the algebra of
generalized symmetries of the system (4), and by 6" the algebra
of its trivial generalized symmetries, whose characteristics vanish

is naturally isomorphic to the quotient algebra
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on solutions of (4). The quotient algebra 69 = &/ can be
identified, e.g., with the subalgebra of canonical representatives
in the evolutionary form,

&%= {xlq, s]9q + 01q, s]9s € &}.

The Lie bracket on &9 is defined as the modified Lie bracket of
generalized vector fields in the jet space with the independent
variables (y, z) and the dependent variables (q, s), where all aris-
ing mixed derivatives of q and all arising derivatives of s that
involve differentiation with respect to y are substituted in view
of the system (4) and its differential consequences. The system of
determining equations for components of elements of &is

DyDx = X, (11a)
2 K' 2

s1(D; — 1)*x + K1Dyo = K—Zsty +D, —2)x +K?*D,6. (11b)
The algebra &9 is isomorphic to the algebra £9. This isomor-
phism is induced by the pushforward of X onto & that is gen-
erated by the point transformation (6), excluding the derivatives
of p (including p itself) in view of Eq. (5) and its differential conse-
quences and the successive projection of the obtained generalized
vector fields to the jet space with the independent variables (y, z)
and the dependent variables (q, s). To map & into X, we need to
prolong the elements of & to p according Eq. (5) and make the

pushforward by the point transformation (7).

Lemma 7. The g-component of every element of &9 does not depend
on s and its derivatives.

Proof. Suppose that Q = x9d; 4+ 60s € &9, and k == ords x > 0
Then invariance criterion for the equation q,, = ¢q and the
generalized vector field Q implies, after collecting coefficients
of s,42, the equation x;, = 0, which contradicts the assumption.
This is why ord; x = —oco. O

Remark 8. Only simultaneously nonvanishing of K' and K? is
essential for Lemma 7, but not the specific form of these coef-
ficients.

Lemma 7 is the counterpart of Lemma 4 for the system (4) and
is the manifestation of partial coupling of this system. In view of
Lemma 7, the subalgebra é? of &9 constituted by elements with
vanishing g-components is an ideal of &9. In view of Corollary 3
(or Corollary 5), this ideal consists of generalized vector fields
of the form 69;, where 0 is a smooth function of a finite, but
unspecified number of &'s. Since the ideal & of &9 corresponds
to and is isomorphic to the ideal 2"; of £4, for our purpose it
suffices to describe the quotient algebra 6§ = &9/&¢.

Denote by R4 the algebra of reduced generalized symmetries
of the (1 + 1)-dimensional Klein-Gordon equation (4a),

R4 = {x[ql9, | DyD,

The quotient algebra 62 is naturally isomorphic to the subal-
gebra 2 of R&9 that consists of elements of &9 admitting local
prolongations to s. It was proved in [25] that the algebra Ra
is the semi-direct sum of its subalgebra A9 and its ideal &~
RY= A9e &, where

Al = ((3“q)9q, (D‘yakq)aq, (D,3°q)dq, ¥ € Ng, t € N),

X =x}

R = {f(y.2)9, | f € KG},
Jd = yDy, — zD,;, and KG denotes the solution set of the
(1 + 1)-dimensional Klein-Gordon equation (4a), i.e., f € KG

means that f,, = f.

Lemma 9. 2 = {Q == ((Dy + 1)¢ +¢q)dq | ¢ = ¢[q]: DyD,¢ =
L, ce€ R}, and an appropriate prolongation of the generalized vector
field Q%€ to s is given by

0= K2(93y+9>z —2). (12)

Proof. Denote
A={Q% = ((Dy+ 1)t +¢q)dy | ¢ = ¢[q): DyDL =, c € R}

Note that here the form of ¢ is defined up to summands propor-
tional to e™V7%,

For any solution ¢ of the equation D,D,¢ = ¢, the differential
functions x = (D, + 1)¢ and 6 defined by (12) satisfy the
system (11). The tuple (x, ) = (q, 0) is a solution of (11) as well.
Hence 2 D 9.,

Suppose that a generalized vector field x[q]d; belongs to 2.
This means that there exists 6 = 6[q, s] such that xd,+6d; € &°.
Then the tuple (x, 0) satisfies the system (11). By the substitution
6 = s1(K?)7'0, Eq. (11b) is reduced to

K'(Dy4+1)0 —K*(D,+1)0 = K'(Dy+D,—2)x —K*(D,—1x. (13)

We use the modified coordinates on the manifold (>, If the
function 6 depends on * for some x € Ny, then a differential
function of g obtained from 6 by fixing values of all involved &*’s
in the domain of 0 is also a solution of (13) for the same value
of x. Therefore, without loss of generality we can assume that
6 = 0[q]. Then Eq. (13) rewritten in the form

K'((Dy + 1) — (Dy + D, — 2)x) = K*((D; + 1)§ — (D, — 1*x)
implies that there exists a differential function © = w[q] such
that

Dy + 1 Dy + D, —2)x = uk?,

(Dy+ 10 — (Dy + D, —2)x = 1 (14)

(D + 1) — (D, — 1 x = uk'.

We exclude @ from these equations by acting the operators D, + 1
and D, + 1 on the first and the second equations, respectively,
and subtracting the first obtained equation from the second one,
which gives the equation on u alone, K'Dyp = K?D, . In view of
Corollary 3, u is a constant, and hence Eqs. (14) can be rewritten
as

(Dy + 1)6 = (Dy + D, — 2)(x + 1q),
(D, + 10 = (D, — 1(x + 1q).

We subtract the second equation from the result of acting the
operator D, on the first equation and thus derive the equation
(DyD, — 1)0 = 0. Theg the differential function ¢ = ¢[q] that is
defined by ¢ = —1(6 — (D; + 1)(x + uq)) satisfies the same

equation, (DyD, — 1) = 0. We express 6 from the equality
defining ¢,

6 = —47 + (D, + 1)(x + nq),

and substitute the obtained expression into (15
equations

—4(Dy + 1)t = —4(x + nq), —4AD;+ 1)¢ = —4D,(x + 1q).

The first of these equations gives the required representation
for x, x = (Dy+1)¢ — ng. The second equation is identically sat-
isfied in view of the above representation for x and the equation
DyD,¢ = ¢. We also get

(15)

), deriving the

6 = —4¢ + (D, + 1)(Dy + 1)¢ = (Dy + D, — 2)¢.

Therefore, 24 C 91, ie., A = 9, and the equality (12) defines an
appropriate prolongation of Q%€ € Atos. O
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In other words, Lemma 9 implies that an element of A9 can be
mapped to a generalized symmetry of the system (1) if and only
if the associated operator belongs to the subspace

(1, (Dy + 1)Dy3*, (D, + 1)D,3%, k,t € No).

In particular, this subspace contains all polynomials of D, and
all polynomials of D,. A complement subspace to it in the entire
space of operators associated with elements of A9 is (7, « € N).
Elements of A9 associated with operators from the complement
subspace are mapped to nonlocal symmetries of the system (1).
Such nonlocal symmetries are generalized symmetries of certain
potential systems for the system (1) that are related to potential
systems for the (1 + 1)-dimensional Klein-Gordon equation (4a).
We plan to study generalized potential symmetries of (1) in the
sequel of the present paper.

Completing the above consideration, we prove the following
theorem.

Theorem 10. The quotient algebra X% of generalized symmetries of
the system (1) is naturally isomorphic to the algebra X' spanned by
the generalized vector fields

W(R) = 203,
P(D) = &2 (D420 )l 0 + (0 =202 )20 + 201203) ,
D= (x — (24 ])t)tiag + (x — (42— 1)t)t)2(3tz

+ (x — '+ rz)t)tfa,a,
R(I) = e~ (D, M+ T )l + (D, I+ )02 + 2I203)

where I runs through the set {3*q, D,3*q, D,3*q, « € No, t € N}
with

. 1
Dy = —t—l(Dt + (' - I)Dx),

X
- 1
D, = == (D + (' + 72+ 1)D,),

T

X

1 2

J= %ﬁy + %@Z, q= e(‘lf‘z)/z(x — '+ + l)t),
the parameter function ® = &(x!, v?) runs through the solution set
of the Klein-Gordon equation @1 = —® /4, and the parameter

function 2 runs through the setzof smooth functions of a finite, but
. 1
unspecified number of @ = (e ~° Dy)“t3, k € Ny.

Proof. For computing the counterpart of an element Q = x 9, +
00 € &% in X9, one should make the following steps:

e prolong the generalized vector field Q to p in view of (5),

e push forward the prolonged vector field by an appropriate
prolongation of the transformation (7),

e convert the obtained image to the evolutionary form and

e substitute for all derivatives of v with differentiation with
respect to t in view of the system (1) and its differential
consequences.

This procedure gives the generalized vector field
Q = = 25lg, — e 2D, 7 020,
2_.1 ~ o~ ~
+ (9 - %e(‘ 2D, 5+ X)rﬁ)a@.

Here and in what follows tildes mark the counterparts of involved
operators and differential functions that are computed according
to the procedure.

The ideal &¢ of &9 corresponds to and is isomorphic to the

ideal ﬁ‘;‘ of 39, and the form of elements of ﬁ‘;‘, W(£2), is already
known. The generalized vector field qd,; is mapped to —D. We

also prolong each generalized vector field of the form Q¢° =
(Dy 4+ 1)¢ 9,4 from 2 to s according to (12) and then employ the
above procedure, getting the generalized vector field

Q80 = =2 (1D, 4+ 1)Eda + 2D, + 1)Eda +263003)

where ¢ = ¢[q] runs through the characteristics of elements
of /9 and is defined up to summands proportional to e™¥~#, and
¢ denotes the pullback of ¢ by the infinite prolongation of the
transformation (6). According to the splitting 8% = A% & 87,
for 0, € AY and ¢3; € R~ we obtain generalized vector
fields of the forms —R(I") and —P(@), respectively, where I'd,
can be assumed to run through the chosen basis of A9, and the
parameter function ® = @(¢!, v?) runs through the solution set
of the Klein-Gordon equation @12 = —®/4 and is defined up to
summands proportional to e —*/2, O

Remark 11. The subspaces Z' and Z? that consist of all gen-
eralized vector fields of the forms P(®) and W(£2) from the
algebra Sa, respectively, are (infinite-dimensional) ideals of sa,
Moreover, the ideal Z'! is commutative. Since P(e" ') = W(w!)
= e ~'t33,5, these ideals are not disjoint, 7' N 7% = (e ~'33,3),
which displays the above indeterminacy of @.

Remark 12. The algebra of first-order reduced generalized sym-
metries of the system (1) can be identified with the subspace
of 39 spanned by D, R(G), R(D,q), P(P), W(£2), where the
parameter function ® = &(¢!,?) runs through the solution
set of the Klein-Gordon equation ®.1. = —@/4, and the pa-
rameter function £2 runs through the set of smooth functions of
o’ = ¢ and 0! = e“z‘”ltf. As was noted in [23, Remark 19],
this subspace is closed with respect to the Lie bracket of gener-
alized vector fields, and thus we can call it an algebra. The indi-
cated property is shared by all strictly hyperbolic diagonalizable
hydrodynamic-type systems. In the notation of [23, Theorem 18],

R(@) =2D —G1), R(D.q)=2(D+ G +G),

where G; = (tr] — 1031 + t2d2 + tc2ds and G = 31 — 2.
Moreover, the generalized vector fields

B, G, G, P( 4+ 2), P 2), W) (16)

with an arbitrary £2 depending on > only are the evolutionary

forms of Lie-symmetry vector fields —D, —G1, Gy, 2Pt, —2P*
and W(£2) of the system (1), respectively, which span the entire
Lie invariance algebra of this system. Therefore, any element
of £9 that does not belong to the span of (16) is a genuinely
generalized symmetry of the system (1).

5. Cosymmetries

The space T of cosymmetries of the system (1) can be com-
puted in a way that is similar to the computation of generalized
symmetries and involves the partial coupling of this system and
the linearizability of the subsystem (1a)-(1b) by the hodograph
transformation. Let Y™ C 7" denote the space of trivial cosym-
metries of the system (1), which vanish on solutions thereof. The
quotient space Y9 = T /Y™ can be identified, e.g., with the sub-
space that consists of canonical representatives of cosymmetries,
79 = {(Al[x],i=1,2,3) € T'}. This subspace coincides with the
solution space of the system

DAL+ (' + 0% + 1)DAT = 2% — A1) + 243, (17a)
DeA? + (¢ + 1% — 1)DA% = cl(A — A% + 243, (17b)
DA + (¢ +2)DA° + (v) +2)A% =0, (17¢)
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which is formally adjoint to the system (8) for ge?erzalizeq sym-
metries of (1). The substitution (A!, A2, A3) = e* (A1, A%, A3)
reduces the system (17) to

DA+ (¢ + DA = (A + 3 + 222, (18a)
DA+ (¢ 462 — D2 = (A + 1) + 2, (18b)
D32+ (¢! + )0, = 0. (18¢)
We again use the modified coordinates on S, In view of

Lemma 2, any solution of the last equation, which can be shortly
rewritten as ~BA3 = 0, is a smooth function of a finite number
of w's, A3 = A3(°, @) with kg € Ny. The subsystem (18a)-
(18b) implies the representation
- AR &
A= — with A= Zw““awk

k=0
and a smooth function 2 = 2(«° 0), Thus, (2, —£2)is a
particular solution of this subsystem as a linear inhomogeneous
system with respect to (A!, A2), and its general solution can be
represented in the form

=ity Roit_g

The tuple (A, 2" is the general solution of the corresponding
homogeneous system,

DA+ '+ + 1D, =
DA 4+ (' + % — 1D, A% =

tﬁ(i]h +X2h),

(A" 4 27,

Following the proof of Lemma 4, we can show that any solution of
this system does not depend on a)z's,Ni.e.,}Jh = )Ji‘[ﬂ ,Ntz],j =1,2.
The counterpart (A1, A2h) = et (A 11 32h) of (X110, %2h) satisfies
the system (17a)-(17b) with A3 =0,
2(42h
(AT —
t,](()\lh -

)\'lh)
)\Zh).

DA™ + (¢! + 2+ 1)Da ™ =
DA 4+ (' % — 1D, =

(19a)
(19b)

Therefore, the triple A = (1!, 12, 13) belongs to 79 if and only if
it can be represented, in the above notation, in the form

=" (2, -2, (AR)/0") + (A1, 271, 0).

The substitution (1™, A2") e =*2(31 32) reduces the

system (19) to the system

Deal 4 (1 + 2 + 1)DAT =242,

D[)ALZ + (t1 +% = 1)DX)A»2 = t;)Axl,

which can be rewritten in terms of the operators ﬁy and D,,

DA = 52, B2 = il
Therefore, both the components A1 and A2 satisfy the image
of Eq. (11a) under the transformation (7) and thus are the reduced
forms of the pullbacks of the characteristics of elements of &9 by
this transformation.

As a result, we have proved the following assertion.

Theorem 13. The space T of canonical representatives of cosym-
metries is spanned by cosymmetries from three families,

Le' (2, -2, (AR2)/w") with the operator A = "% § w* 19,
and with £2 running through the space 2of smooth functions of a
finite, but unspecified number of w* = (e* —'p U3, ke No.

2.e' =220, &, 0), with the parameter function @ = (!, 1?)
running through the solution space of the Klein-Gordon equation
Pi2=—-D/4

3, ' =)2 (—=DyQq, 97, 0), where the operator Q runs through
the set {J*, 5"@;, 3D., k € No, t € N}, and

~ 1
Dy = _F(Qt + (! + 1 = 1)Dy),
X

~ 1
D, = —?Z(Dt + (' 7+ 1)Dy),

X
: > V2 (x
) 2
Remark 14. The first and the second families from Theorem 13,
which are linear spaces, are not disjoint in the sense of linear
spaces. Their intersection is one-dimensional and is spanned by
1_.2 .
the cosymmetry e* ~* (1, —1, 0) corresponding to 2 = 1 and

® = —e'=")2 The span of these two families has the zero
intersection with the span of the third family.

6. Conservation laws

Theorem 15. The space of conservation laws of the system (1) is nat-
urally isomorphic to the space spanned by the following conserved
currents of this system:

1. (etl 0, (! + e ‘1*”29) where the parameter function §2
runs through the space gf smooth functions of a finite, but unspeci-
fied number of w* = (e* —'p «)t3, k € Ny, and such two functions
should be assumed equivalent if thelr difference belongs to the image
of the operator A = Y20 | @ *19,.

2. (e 2201 4+@), e 22>+ 1)d (2 P —1)D)),
where the parameter function @ = &(¢!,?) runs through the
solution space of the Klein-Gordon equation @12 = —® /4.

3. (2p+rie, (' =12 p+(c" +e2+1))6) with p = —4D, 94,
& = (D,3)Q4, where the operator 9 runs through the set
[3, k" €2No+ 1, (G+1/2)DL, (3 — /25D,

k €Np, t€N, k+1€2Ng+ 1},

and
~ 1
Dy = —t—l(ﬂ + (¢! + 2 = 1)Dy),
X
~ 1
Dy 1= = (D4 (¢! 7+ 1)Dy),
X
~ el . - (1—2)2 1 2
J==Dy+—=D;, G:=¢ (x—(t + ¢ +1)t).

2 2

Proof. We compute the space of local conservation laws of the
system (1) combining the direct method of finding conserva-
tion laws [31,32], which is based on the definition of conserved
currents, with using the linearization of the essential subsys-
tem (1a)-(1b) to the (14 1)-dimensional Klein-Gordon equation.
Up to the equivalence of conserved currents, meaning that they
coincide on the solution set of the corresponding system of dif-
ferential equations, it suffices to consider only reduced conserved
currents of the system (1), which are of the form (p, o), where
p = plt] and o = o[t]. A tuple (p[t], o[t]) is a conserved current
of the system (1) if and only if D;p + Dyo = 0. We should also
take into account the equivalence of conserved currents up to
adding null divergences, which means that conserved currents
(plxl, o[t]) and (o'[t], o'[t]) belong to the same conservation law
if and only if there exists a differential function f = f[x] such that
p =p+Df and 06’ = o — Df.
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We associate each reduced conserved current 2(,o[1t], olx]) of
the system (1) with the modified density p := e“ " p and the
modified flux & = o — (¢! +?)p, i.e.,

(etl —2

and Dip + Dyo = e (Bp + Ac). Therefore, the equality
Dip + Dyo = 0 for conserved currents is equivalent to the
equality Bp + Ac = 0 for modified conserved currents, and the
equivalence of conserved currents up to adding a null divergence
is modified to p’ = p + Af and ¢’ = ¢ — Bf.

Fixing a reduced conserved current (p[t], o[r]) and using the
modified coordinates on S(°, we define

(p.0) = (e, (' + 2" +5),

« := max(ord,, p, ord, &)

and prove by mathematical induction with respect to x € {—oo}U
No that up to adding a modified null divergence we have the
representation p = ,o [r rz] +p ( ") for some differ-

ential functlons 20 = P>, @) and p = plr', r?], and
¢ =o[rl, r?].
The base case k = —oo0 is obvious.

For the inductive step, we fix k € Ny, suppose that the
above claim is true for all ¥ < « and prove it for «. Collecting
coefficients of w**! in the equality Bp + A5 = 0, we derive
o =0, i.e, in fact ord, & < k. Then we differentiate the same
equality twice with respect to w*, which leads to Bp,«,« = 0.
In view of Lemma 2, this means that the p,«,« can depend at
most on (w?, . .., ). Therefore, there exist differential functions
P10 = p1%(w0, ..., ), p!1 = p'[r] and p'? = p'[¢] such that
ord, p'! < «, ord,, p'* < k and

b= p2lele* + 5] + 5 ..., ).

Since 851 = 0, the tuple (5'°, 0) is a modified conserved current
of the system (1). Hence the tuple (p?w* + p!', &) is a modi-
fied conserved current of this system as well. Adding the modi-
fied null divergence (—A [ p'? dw*", B [ p'? dw* 1) to the latter
modified conserved current, we obtain an equivalent modified
conserved current (0, 6") with max(ord,, p’, ord, 6’) < «. The
induction hypothesis implies that up to adding a modified null

divergence, the component p’ admits the representation
v/ _ 1)21[', r ]+ VZO(

for some dlfferentlal functions p%° = p? ( ) a n P2l
P21 r!, r?], and ¢’ = &'[r", r?]. Setting p° = p“’ n p2 ol =
and ¢ = ¢/, we complete the inductive step.

In other words, we have proved that up to adding a null diver-
gence, any conserved current of the system (1) can be represented
as the sum of a conserved current from the first theorem’s family
and of a conserved current of the form (p[r', r?], o[r', r?]). The
subspace of conserved currents of the latter forms is the pull-
back of the space of reduced conserved currents of the essential
subsystem (1a)-(1b) by the projection

(t,x,v) = (t,x,¢',¢%),

..,a)")

P

cf. [33, Proposition 3]. The latter space is naturally isomorphic to
the space of conservation laws of the essential subsystem (1a)-
(1b), which is the pullback of the space of conservation laws of
the Klein-Gordon equation (4a) with respect to the composition
of the restriction of the transformation (6) to the space with co-
ordinates (t, x, t', t?) (i.e., the s-component of this transformation
should be neglected) with the projection

v.z,q9,p) = (¥.2,9).

We take the space of conservation laws of the (14 1)-dimensional

Klein-Gordon equation, which was constructed in [25], and per-

form the above pullbacks,
1

2~ 1=
p = —=(tpxc + t0ke), o0 =

1 . -
5 —E(Vztipkc + V'ti6kc),

where pgc and oy are, as differential functions, the pullbacks of
the density pxg and the flux oxc of a conserved current of (4a),
respectively; see [31, Section III] or [ 34, Proposition 1]. As a result,
we obtain, up to the equivalence on solutions of the system (1)
and up to rescaling of conserved currents, the other families of
the conserved currents of this system that are presented in the
theorem.

More specifically, Eq. (4a) is the Euler-Lagrange equation for
the Lagrangian

1
L=—2(a9 + 7).

Hence characteristics of generalized symmetries of this equation
are also its cosymmetries, and vice versa. The quotient alge-
bra 89 = &/&"V of generalized symmetries of (4a), where &
and A"V are the algebra (of evolutionary representatives) of gen-
eralized symmetries of the Lagrangian (4a) and its ideal of trivial
generahzed symmetries, is naturally isomorphic to the algebra
= A% & £, which is the semidirect sum of the subalgebra

A% = ((“@)3g, U

with the abelian ideal

D,q)dg. (JDyq)dq, « € No, ¢ € N)

R = {f(y,2)94 | f € KG}

[25, Theorem 4]. Here D, and D, are the operators of total deriva-
tives in y and z, respectively, and ] := yD, — zD,. Denote by
Y, T"W and 79 the algebra (of evolutionary representatives) of
variational symmetries of the Lagrangian L, its ideal of trivial
variational symmetries and the quotient algebra of variational
symmetries of this Lagrangian, i.e., ¥ C &, 7™ := T N &"" and
Y9 := T /Y. The quotient algebra 79 is naturally isomorphic
to the algebra 79 = A% € £, where

A% = ((Qe00)dg. k' € 2No + 1,
(29)0g, (Qq)dg, kK €No, t €N, k +1 € 2Ny + 1)

with
L K
Q= (j+ 5) D;,, k,t € Ny,
_ L\K
QKLz(J—E) D,, keNy, (€N,

is the subspace of A9 that is associated with the space of for-
mally skew-adjoint differential operators generated by D,, D,
and ]. Note that in the context of Noether’s theorem, we need
to consider the algebra &9 instead of the algebra &9 of reduced
generalized symmetries of (4a), which is mentioned in Section 4,
since cosets of T in 7" do not necessarily intersect the alge-
bra &9, see Remark 9 in [25]. The space of conservation laws
of (4a) is naturally isomorphic to the space spanned by the
conserved currents

(¢} = (—f.9.fgy). Ca=(—qD.Qq. q,9q),

where the parameter function f = f(y,z) runs through the
solution set of (4a), and the operator 9 runs through the basis
of A% [25, Proposition 10]. The conserved current Cf is equivalent
to the conserved current

¢ = (fa.. —£,9).

We map conserved currents of the form Cq, where Qqd, runs
through the basis of A9, to conserved currents of the system (1),
which leads to the third family of the theorem. Possible modifica-
tions of the form of these conserved currents up to recombining
them and adding null divergences are discussed in Remark 23.
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At the same time, it is convenient to modify conserved cur-
rents of the form C? before their mapping in order to directly ob-
tain hydrodynamic conservation laws.> We reparameterize these
conserved currents, representing the parameter function f in the
form f = f, + f; + 2f, where the function f = f(y, z) also runs
through the solution set of the (14 1)-dimensional Klein-Gordon
equation (4a). Then f, = f,, + 2f, + f. Adding the null divergence
(D.R, —DyR) with R := fq, — f,q — 2fq to —C we obtain the
equivalent conserved current (fKy, —f;K3), which is mapped to
the conserved current from the second family with
@ = f(c!/2, —%/2).

Note that the first and second theorem’s families are in fact
subspaces in the space of conserved currents of the system (1).
Analyzing the equivalence of modified conserved currents, we
see that conserved currents from the first theorem’s family are
equivalent if and only if the difference of corresponding £2’s
belongs to the image of the operator A = Ziio @**t19,¢. The in-
tersection of the first and the second familie]s i;. one—dimen§iogla1
and spanned by the conserved current (et (el 4 e2)er T )
The sum of these two families does not intersect the span of the
third family. The equivalence of conserved currents within the
span of all the three families is generated by the equivalence of
conserved currents within the first family. O

Remark 16. The kernel ker E of the operator

oo k-1

E_ZZw (= Ay

k=1 /=0

O — 1

is contained in the kernel ker E’ of the operator
(o]

E'=) (—Afdur,

k=0

kerE C kerE/, since the operator identity AE = —w'E’ holds. In
view of [30, Theorem 4.26], Theorem 18 implies that (locally) the
image of the operator A coincides with ker ENker E’ = ker E. The
kernel ker E’ of E’ is spanned by the constant function 1 and the
image of A. Hence im A = kerE ¢ kerE'.

Remark 17. The conserved currents from Theorem 15 that are
associated with

_ o _ 1
I B

)

1 2

b = e(tl_:z)/Z(tl +t2 _ 1)’ b = ge(rl_t )/2 ((tl +t2)2 _ 4t2)

correspond to the conservation of masses of the both individ-
ual phases and of mixture mass as well as the conservation of
mixture momentum and of energy in the drift flux model, respec-
tively, cf. [2, Chapter 13]. The related equations in conserved form
are

pl+(p'ul =0, pf +(p*u) =0,
(p'+ 0"+ (0" + p*u), =0,
(0" + p* ), + (o' + p*)* + 1)), =0,
(o' + p*) (u*/2 + In(p" + p%))),
+((p" + 0% (U?/2+1In(p" + p*) + 1)u) = 0.

In particular, the magnitude In(p! + p?) can be interpreted as
(proportional to) the internal mixture energy. The first, second
and fourth equations constitute the conserved form of the sys-
tem S in the original variables (p!, p?, u).

3 Recall that a conservation law is called hydrodynamic if its density p is a
function of dependent variables only.

Theorem 18. In the notation of Theorem 15, the associated reduced
conservation-law characteristics of the system (1) are respectively

oo k—1
1e (9 =Y o T (AN R
K:;ok/zgl oo
24+ > (AN Z(—A)mwx)
k=1 k'=0 k=0

2.6 2 (200 + 200 + 1d, Do — Dy — @, 0).
3, et'=?12(—D,a3, 9, 0).4
The space spanned by these characteristics is naturally isomor-

phic to the quotient space of conservation-law characteristics of the
system (1).

Proof. Since the system (1) is a system of evolution equations,
its conservation-law characteristics can be found from reduced
densities of the associated conservation laws by acting the Euler
operator,

[e¢]
E= (Z(—watﬂ, i=12, 3) ,
k=0

see e.g. [35, Proposition 7.41]. This perfectly works for char-
acteristics related to the second family of conserved currents
presented in Theorem 15 but does not give reasonable represen-
tations for characteristics related to the first and third families,
for which we use different methods.

Characteristics related to the third family can be obtained from
conservation-law characteristics of the (14 1)-dimensional Klein-
Gordon equation (4a). A characteristic of the conservation law
of (4a) containing the conserved current Cy, is

r=(Q—-9"g=29q

for (2q)d, € A% 1t is trivially prolonged to the conservation-law
characteristic (A, 0) of the system (4a), (5). Denote by R!, R?, L!
and I? the differential functions associated with Egs. (1a), (1b),
(4a) and (5), respectively,

R! —tt-i-(t +2 +1) R2:=tf+(t1+t2—1)tf,
1 _
P=p—ze” 7 —q)
These differential functions are related via the transformation 7,

T*RY, R2)T = om(L', 12)" with

L':= Qy: — 4,

4
0 _=
M = 2 A ,
Ze‘y‘z —Dy+1)
and
0 Ee_y_z
mt = A .
- _(Dy - 1)
where
A = (DyTYD,T*) = (D, 7YDyT), T A = —4(x]? — th?).

The conservation-law characteristic (1!, A?) of the system (1a),
(1b) that is associated with the conservation-law characteristic
(A, 0) of the system (4a), (5) is defined by

MmiAT*AY, AT*A2) = (A, 0)".
4 Here we omitted the multiplier —2, which is needed for the direct

correspondence between these conservation-law characteristics and conserved
currents from the third family of Theorem 15.
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Therefore, the conservation-law characteristic A of (4a) is mapped
to the conservation-law characteristic %ey“(—Dy)\, A, 0) of the
system S, where all values should be expressed in terms of
the variables (¢, x, t). This gives a conservation-law characteristic
from the third family of the theorem.

Characteristics related to the first family are found following
the procedure of defining them via the formal integration by
parts, cf. [30, p. 266]. We denote by A and B the counterparts
of the operators A and B, respectively, in the complete total
derivative operators with respect to t and x,

A:=e"""'D,, B:=D;+(c' +2)Dy.

Then
e 1 2y el —?

Di(e" 7 2) + Dy((x! +*)e’ T R2)

> 20
e e 4+ Z e~ 2, B, (20)

k=0

Here £* denotes the left-hand side of the kth equation of the
system (1), &k = ¢ + V&K k = 1,2, 3. Note that £2 = B’
Since £2 depends on a finite number of w’s, there is no issue with
convergence.

We derive using the mathematical induction with respect to ¢
that

1_.2
—e' T le_

k—1
F=AE ) A (0 (e - ). (21)
k’'=0
Indeed, for the base case k = 0, we have B’ = Bt®> = &3. The
induction step follows from the equality

Bw*t! = BAw® = ABo* + o T1(g% — ).

Using again the mathematical induction with respect to «, we
prove the counterpart of the Lagrange identity in terms of the
operator A,

k—1
erl_tZFAKG —e 1_2 ((—A)KF)G +D, Z((_A)K’F)AK—K’_IG’
k'=0
for any « € Ny and any differential functions F and G of t. We ap-

ply this identity to each summand of the expression e v 2,xBw*
expanded in view of (21), which gives

e 2, B = € % (=AY 2,0)E3

Kk—1

+ e:hrz Z((_A)K’ka)w)(*)(’(gz _&l

k'=0
where H is a differential function of v that vanishes on the
manifold S and whose precise form is not essential. When
acting on functlons of w's, the operator A can be replaced by the
operatorA Z Ow““{)wk Substituting the derived expression
for e"'~2,4Bo* into (20) and collecting coefficients of £, £2
and &3, we obtain a characteristic from the first family of the
theorem. 0O

)+ DiH,

Remark 19. Since the common element e‘l“z(l,—l,O) of
cosymmetry families, which is mentioned in Remark 14, is a
conservation-law characteristic of the system S, it was expected
that the families of conserved currents and of conservation-
law characteristics from Theorems 15 and 18 have the same
properties as the properties of cosymmetry families indicated in
Remark 14. Thus, the above conservation-law characteristic,
which spans the intersection of the first and the second fam-
ilies from Theorem 18, corresponds to the conserved current
e ~(1,¢! + 2) spanning the intersection of the respective
families from Theorem 15, cf. the end of the proof of this theorem.

Remark 20. The second family of cosymmetries presented in
Theorem 13 coincides with the second family of conservation-
law characteristics from Theorem 18 up to reparameterization. In
other words, each cosymmetry in this family is a conservation-
law characteristic. This is not the case for the first” and third
families of cosymmetries from Theorem 13, which properly con-
tain the first and third families of conservation-law characteristics
from Theorem 18, respectively.

Theorem 21. Under the action of generalized symmetries of the
system (1) on its space of conservation laws, a generating set of con-
servation laws of this system is constituted by the two zeroth-order
conservation laws respectively containing the conserved currents

(22a)
(22b)

ethZ (t3, (tl + t2)t3 )

e (x—=V, Vx—V3t)—t) with V=1 ++
Proof. The action of the generalized symmetry £29,; on the con-
served current (22a) gives the conserved current

("2, '+’ 2).

Varying the parameter function §2 through the space 9f slmooth
functions of a finite, but unspecified number of w* = (e" ~% D)3
k € Ny, we obtain the first family of conserved currents from
Theorem 15.

Conserved currents from the other two families are con-
structed by mapping conserved currents of the (1+1)-dimensional
Klein-Gordon equation (4a) in the way described in the proof
of Theorem 15. In view of [25, Corollary 11], a generating set
of conservation laws of (4a) is constituted, under the action of
generalized symmetries of (4a) on conservation laws thereof,
by the single conservation law containing the conserved cur-
rent (qf, —q?). The counterpart of this conserved current for the
system (1) is the conserved current

2
et (tﬁ(){—vzt)2 -

which is equivalent to the conserved current (22b) multiplied
by 2. It follows from Lemma 9 that not all generalized symmetries
of (4a) can be naturally mapped to those of the system (1). This
is why we need to carefully analyze the result on generating
conservation laws of (4a) before adopting it for the system (1).

The conserved current Cf = (fq., —fyq) of Eq (4a) can be ob-
tained by acting the generalized symmetry fy qze R of this
equation on the chosen conserved current (qz, . Here the pa-
rameter function f = f(y, z) runs through the solutlon set of (4a).
Each conserved current from the second family of Theorem 15 is
the image of a conserved current of the form C}), and each Lie
symmetry vector field fd; of (4a) is mapped to an element of
the ideal 7! of the algebra 9. Therefore, the second family of
conserved currents from Theorem 15 is generated by acting the
elements of Z' on the conserved current (22b)

The action of the generalized symmetry 2(Dyﬂq)aq, where
(99)9q € A9, on the conserved current (g2, —q?) gives the con-
served current (q,DyD,9q, —qDyQq), which is equivalent to the
conserved currents (q,Qq, —qDy9Qq) and, therefore, to

Cqy = (—qD;9Qq, q,2Qq).

=V, vzrf(x—vzt)z—vlt;(x—vlt)z),

5 In the notation of Remark 16, upon formally interpreting ° as a single

dependent variable of a single independent variable, say g, and o', ®?,... as
the successive derivatives of w°, the operators 9, + A and E/ become the total
derivative operator with respect to ¢ and the Euler operator with respect to °
respectively. Suppose that a smooth function £2 of a finite number of w’s belongs
to imE. Then (AR)/w' € imE’ and thus the Fréchet derivative of (A£2)/w'
with respect to «° is a formally self-adjoint operator. This is not the case
for any £2 of even positive order. Therefore, any cosymmetry from the first
family of Theorem 13 with §£2 of even positive order is not a conservation-law
characteristic of the system (1).
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The conservation law containing the obtained conserved currents
has the characteristic (Q — Q1)q.

We denote by U the subalgebra of A9 constituted by the
elements of A9 that have counterparts among generalized sym-
metries of the system (1), and

J:=(Jq)9, k € N).

We also introduce the corresponding spaces U_ and J_ of linear
generalized symmetries associated with formally skew-adjoint
counterparts 5(Q—9") of operators 9 from U and J, respectively.
Note that U_ > 0N A? and J_ = 3N A%, In view of Lemma 9,
(Qq)3; € U if and only if the operator Q is represented in the
form

Q= (Dy+ 1)Q; + (D; + 1) +¢

for some Qi € (DJ‘,J", K, t € No), some Q; € (DLJ“, k,t € Np)
and some ¢ € R. Hence A9 is the direct sum of U and J as vector
spaces, A =9 + 3, and thus A = U_ + J_, where the sum is
not direct by now. We are going to show that %_ > J_, which
implies that A? = 2_. Indeed, for any Q = (Dy + 1)J — 1/2)¢
with ¥ € 2Ny + 1 we have

Q-9 =, +1)(J—1/2) —( + 1/2)(D, — 1)

=(0-1/2) +0+1/2),

ie, (J—1/2)q+0+1/2)q)d4 € V_ since (2q)d, € V. Therefore,

(U"9)3q. x € 2No + 1)
=((0—1/2)q+( + 1/2)q)dg, k € 2No + 1) C U_.

J-

As a result, for any (2q)d; € AY the conserved current Cq
is equivalent to a conserved current of (4a) that is obtained by
the action of a generalized symmetry from 2 on the chosen con-
served current (qg, —g?). For the system (1), this means that the
third family of conserved currents from Theorem 15 is generated
by acting the generalized symmetries of the form R(I") on the
conserved current (22b). O

Remark 22. The conserved currents from the second family of
Theorem 15 can be represented in a more symmetrical form.
Reparameterizing them in terms of the potential & defined via &
by the system

- 1- - 1-

@g-l—i@:z@g, _d)r2+5d}=(p’

cf. Section 2, we obtain another representation for these con-
served currents,

e =92 (@‘1 _ (5:2 + P,
(' +? + 1)@,1 e 1)533 + (' + )P ),

where the parameter function @ = @(¢!, +?) runs through the
solution space of the Klein-Gordon equation @12, = —®/4 as
well. The successive point transformation

b = 2
reduces the above representation to
(@tl - 55[2, (tl +? 4+ 1)@0 - (171 +? — 1)@@ ),

where the parameter function @ = &(x!,+?) runs through the
solution space of the equation 2@ = @2 — @.. It is the last
representation that was employed in [23, Theorem 22]. In terms
of @, the associated characteristics take the form

(@rm - (irltz, QN)tltz - QN)tzrz, 0).

Remark 23. The advantage of using conserved currents of the
form Cg, for mapping to conserved currents of the system S is that
we obtain a uniform representation for elements of the third fam-
ily of Theorem 15. At the same time, it is not obvious how to find
equivalent conserved currents of minimal order for elements of
this family or how to single out conserved currents in this family
that are equivalent to ones not depending on (¢, x) explicitly. The
former problem can be solved by replacing conserved currents of
the form C, in the mapping by equivalent conserved currents

c! c, C

KL? KL? KL?

t €N, c!

KL?

Kk € Np, k,t € Np,

presented in [25, Section 4] although an additional “integration
by parts” may still be needed for lowest values of (k,t) after
the mapping, cf. the proof of Theorem 21. For solving the latter
problem, we use an analog of the trick used in the proof of
Theorem 15 for deriving the second family of conserved currents,
which leads to Theorem 26.

Corollary 24. (i) The space of hydrodynamic conservation laws of
the system (1) is infinite-dimensional and is naturally isomorphic to
the space spanned by the conserved currents from the second family
of Theorem 15 and from the first family with $2 running through the
space of smooth functions of w° = 3.

(ii) The space of zeroth-order conservation laws of the system (1)
is naturally isomorphic to the space spanned by its hydrodynamic

conserved currents and the conserved current (22b).

Proof. This assertion was proved in [23, Theorem 22] by the
direct computation. At the same time, it is a simple corollary of
Theorems 15 and 18. Indeed, when linearly combining conserved
currents from different families of Theorem 15, the maximum
of their orders is preserved. The selection of zeroth-order con-
served currents from the first and the second families is obvious.
Theorem 18 implies that the space of zeroth-order characteristics
related to the third family is one-dimensional and spanned by the
characteristic

e(c‘—cz)/z(a, —5,3, 0)

of the conservation law with the conserved current (22b). O

Corollary 25. The space of zeroth- and first-order conservation laws
of the system (1) is naturally isomorphic to the space spanned by
the conserved currents from the second family of Theorem 15 and
from the first family, where the parameter function $2 runs through
the space of smooth functions of (0°, ') = (¢3, e~ ) and such
two functions should be assumed equivalent if their difference is of
the form f(w®)w!, as well as the conserved currents from the third
family, where the operator 9 runs through the set

{iz’ i)” gv ®29 (5— ‘1)@?}.

Proof. In the same spirit as in the proof of Corollary 24, we select
the zeroth- and first-order conserved currents equivalent to those
listed in Theorem 15 using Theorem 18 for estimating the orders
of the associated conservation laws. Thus, the selection of the
conserved currents from the second family is again obvious since
all of then are of order zero. The order of a conservation law
related to the first family coincides with the minimal order of the
associated £2’s. In general, for zeroth- and first-order conservation
laws of the system (1), the order of corresponding reduced char-
acteristics is not greater than two. This is why a conservation law
related to the span of the third family is of order not greater than
one if and only if it contains a conserved current corresponding
to 9 € (D;, Dy, 4, DI, (3— 1)D2). O



S. Opanasenko, A. Bihlo, R.0. Popovych et al. / Physica D 411 (2020) 132546 13

Theorem 26. The space of (t, x)-translation-invariant conservation
laws of the system (1) is naturally isomorphic to the space spanned
by the conserved currents from the first and second families of
Theorem 15 as well as the conserved currents from the span of the
third family that have the form Cy of elements of this family,
(tﬁ[) + t}ﬁ, (! 4% — l)t,z(,b + '+ + 1)1‘;5‘)

e iz (23)
o = (Dyq)Qq,

with p = —gD,04,

where the operator 9 runs through the set T constituted by the
operators

3= (D, + 1)%(F — ¢/2)DY(D, — 1),
Dicera = (Dy + 13 + 1/2)Dy(Dy — 17%,
Kk,t € Ngwithk +1€2Ng+ 1;
i)Kl = (j + ]/Z)K(by + {bz - 2)
+(D; 4+ 2)@ — 1/2)(D; — 1),
@KZ = 2gk(‘@y + iz —-2)+ (j + 1)K(®y - 1)2
+(@—1Y(D, — 1% Kk €2Ng+1;
Qj»d = (g - 1/2)'((®y + ﬁz -2)
+(Dy 4 2)T 4 1/2)(Dy — 1%,

Kk € 2Np;

K € ZNO

Proof. Denote by € a complementary subspace of the span of T
in the span of the set run by £ in the third family of Theorem 15.
Since conserved currents from the first and second families of
Theorem 15 are (t, x)-translation-invariant, it suffices to prove
that conserved currents of the form (23) with Q € ¥ (resp.
with nonzero e %) are equivalent (resp. not equivalent) to
(t, x)-translation-invariant ones.

For each O € T we explicitly construct a related (t,x)-
translation-invariant conserved current. To this end, we consider
the associated operator £ in A%, choose an appropriate con-
served current of the Klein-Gordon equation (4a) among those
equivalent to C5 and map it to a conserved current of the sys-
tem (1). Each operator Q € A% associated with some 9 € ¥ is
equivalent, on solutions of (4a), to an operator of the form

(D, + 1)*B(D, — 1> with (Pq)d, € A%,

where the operator ‘B coincides with (J—t!Z)KPLZ, (]+L/2+%)" D;+4,
(J+1/2)D,, J 4 1)DZ, (J +3/2)D; for 3¢, Vic,i+4, D1, V2 and
2.3, respectively. For such Q we obtain

Ca ~ (—K'D,BK, K2BK1)

2y (o ~e(thé)/z )n . ~e(rhcz)/z
> 260 ) ((Dz+1)‘137t2 » (VD + VP ——— )
X X

which is obviously a (t, x)-translation-invariant conserved cur-
rent of the system (1).
As a subspace complementary to the span of ¥, we can choose

T= (P J+1*7'DZ, 0+ 1/2)%D;, (+3/2)*D}, k € Ny ).

We prove by contradiction that for any nonzero 9 € %, i.e.,

N
Q=" (o + call + 1**'DZ + c5.(J + 3/2)D; )
k=0

for some N € Ny and some constants c¢’s with (con, C1n, Can, C3N)
# (0,0, 0, 0), the corresponding conserved current of the form
(23) is not equivalent to a (t, x)-translation-invariant one. Sup-
pose that this is not the case. If a conservation law of the sys-
tem (1) is (t, x)-translation-invariant, then its characteristic is
also (t, x)-translation-invariant. The conservation-law character-
istic associated with 9 (see Theorem 18) does not depend on

the variables x and t if and only if (A7), = Qe ~*)/2 = 0 and
Q) = —9(x" + * 4+ 1)e" ~/2) = 0. In the coordinates (6),
these conditions, after re-combining, take the form

Q7 =0, Q((y —2)e") = Q' =0,

or, equivalently,

N
R' =" (ol + caell + 1% + 1] + 1/2)
k=0
+es(J+3/2)% ) & =0,
N
R =Y (o™ + ol + 17710 - 2)
k=0

+on(+ 17270 = D+ +3/2*0 - 3)) e =0.

The left-hand sides of these equations, R! and R?, are polynomials
of y — z and y + z multiplied by ¢’#, and the highest degrees
of y—z correspond to the highest degrees of J. Recombining these
equations to

N
R —JR" = =" (2c2(J+ 1" + e+ 1/2)

k=0
+3c3(J+3/2) &+ =0,
N
R —(-2R =) (20" + 1+ 1/2)*

k=0
—c3(J+3/2)% ) & =0,

we easily see that coy = coy = 0 and thus also ciy = cov = 0,
which contradicts the supposition that tuple (con, €1y, Can, C3n)
has nonzero components. O

In order to construct a lowest-order (t, x)-translation-invariant
conserved current for conservation laws associated with opera-
tors from %, for the respective operator ‘8 we should take the
respective (up to a constant multiplier) conserved current among
Cl,x € Ng,t € N, C!, C2, C?, k,. € Ny, presented in [25,
Section 4], formally replace (x,y, u) by (y,z,K') and map the
obtained conserved current. In particular, linearly independent
(t, x)-translation-invariant inequivalent conserved currents up to
order two from the span of the third family of Theorem 15 are
exhausted by the following:

8 =90 =52~ 2D, + D, B=D,. Ca~ (~K"P (K7P)

2t17t2 1 1 Vv? V1
s (gtw e w)
X X

X X

Q=Dos =D} — 2D, + Dt P=D2, Co~ (K2, —(DyK?P)
2
()

1.2
e " ((Zt;x+t;t§)2—t§(t;)3,

V](Zt,]“ + t;tf)z - Vztz(t;f ),
Q=30 =D —2D; + D;: P=1D;, Cq~ (DK, —(K'Y)
-2 1_2 12

T 2
= We ((th — Tt
X

P — (),
V22t — r2)” — V() ),
{2 = 310 = (952 + 1)25(952 — ‘1)2; P =47,
Ca ~ (—¥(K'? — 2(DK"), y(K*)? + 2(K')?)
B e G Vi V),
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7. Hamiltonian structures of hydrodynamic type

A system & of evolution differential equations u; — K[u] = 0,
where K is a tuple of functions of independent variables (t, X)
and spatial derivatives (including ones of order zero) of the de-
pendent variables u = (u', ..., u™), is called Hamiltonian if it
can be represented in the form u, = $ §#. Here § is a Hamil-
tonian differential operator, i.e. a formally skew-adjoint matrix
differential operator, whose associated bracket {-, -} defined by
{z,7} = fSI - 87 dx for appropriate functionals Z and 7,
satisfies the Jacobi identity and thus is a Poisson bracket, § stands
for the variational derivative, and the functional # is called a
Hamiltonian of £ with respect to £, see [12].

A procedure for finding a Hamiltonian structure for the sys-
tem & is as follows:

e For the left hand side F := u; — K[u] of the system &, one
defines the universal linearization operator ¢r of F [36] (also
known as the Fréchet derivative of F [30]) and its formally
adjoint E; to determine the linearization of the system £ and
the system adjoint to the linearization,

() =0, €i(n)=0.

The differential vector functions n and A of u, that is, vec-
tor functions of t, X, u and their spatial derivatives (time
derivatives are excluded in view of the evolutionary form
of the equations), satisfying the above systems in view of
the system £ are nothing else but symmetries (more pre-
cisely, characteristic-tuples of generalized symmetries) and
cosymmetries for the system &, respectively.

e By making an ansatz one finds Noether operators, which are
by definition matrix differential operators mapping cosym-
metries of the system to its symmetries.

e One selects a Hamiltonian operator $ amongst Noether
ones, by requiring that it is skew-adjoint and the associated
bracket satisfies the Jacobi identity.

e Choosing an ansatz for a Hamiltonian #, one finds it from
the condition $H5H = K.

Skew-adjoint Noether operators of systems of evolution equa-
tions are believed to satisfy the Jacobi identity automatically
except for first-order scalar equations [37, Theorem 5]. This re-
sult was rigorously proved for systems of evolution equations
of order greater than one in [38], while the same assertion for
non-scalar systems of first-order evolution equations was conjec-
tured in [39]. In spite of the fact that, in general, the verification
of this conjecture for the system S can be done directly, we
use a geometrical interpretation of hydrodynamic-type Hamilto-
nian differential operators for hydrodynamic-type systems. Here-
after we consider a (1 + 1)-dimensional (translation-invariant)
hydrodynamic-type system &, the indices i, j, k and I run from 1
to n, and the Einstein summation convention is assumed for
the index I. A matrix differential operator ® = (®¥) and the
associated bracket are said to be of hydrodynamic type or of
Dubrovin-Novikov type if the entries of ® are of the form ©V =
g(u)Dy + b} (u)ul.

The cornerstone of the geometric interpretation of hydro-
dynamic-type Hamiltonian operators, discovered in the seminal
paper [11], is the fact that under a point transformation u =
U(u) of dependent variables only, the coefficients g/ of © are
transformed as components of a second-order contravariant ten-
sor on the space with the coordinates u and, if the tensor (g)
is nondegenerate (which is a perpetual assumption below), the
coefficients by are transformed so that I}, defined by g'I}, =
—b;f are the Christoffel symbols of a connection V on this space.
The bracket associated with © is skew-symmetric if and only

if the tensor (g¥) is symmetric, ie., g = (grj) = (g1 is a
(pseudo-)Riemannian metric, and the connection V agrees with g,
Vg = 0. The bracket satisfies the Jacobi identity if and only if the
metric g is flat and the connection V is the Levi-Civita connection
of g, i.e., the curvature tensor of g and the torsion tensor of V
vanish.

Recall that two Hamiltonian operators are called compatible if
any their linear combination is a Hamiltonian operator as well.
Two nondegenerate hydrodynamic-type Hamiltonian operators
for a hydrodynamic-type system are compatible if the Nijenhuis
tensor A of the tensor (s;) defined by s; = &g vanishes,

e = 810,18, — S, 0,S) — 5{(,iS} — dxs)) = 0,
see [40,41]. Here g and g are the metrics corresponding to the
Hamiltonian operators. In terms of g and g, the condition of

vanishing the Nijenhuis tensor A takes the form
Vivigh + vivigh — vivigh — vivight = 0. (24)

The covariant differentiation in (24) corresponds to the metric g.
The conditions (24) are preserved by the permutation of g and g,
so that they are indeed the compatibility conditions of the two
metrics.

When the tensor g degenerates at some point, the associ-
ated hydrodynamic-type system loses its geometric charm and
one needs to proceed otherwise. To show that the bracket of
a skew-symmetric Noether operator 9N for &£ satisfies the Ja-
cobi identity, one may equivalently check that the variational
Schouten bracket [91, 91] vanishes. To show the compatibility
of two hydrodynamic-type Hamiltonian operators $; and £,
9, = gDy + bjtl, k = 1,2, one may check that [$, 5] = 0,
cf. [27, Section 10.1]. Since £ is a system of evolution equations,
one may consider the cotangent covering T*£ of £ (i.e., the joint
system F = 0, 6;(%) = 0) and substitute the latter condition by
the equivalent one

n
E D ((EuFs XEFo,) + (ExiFo, XEuFs,)) =0,
j=1
where E = (Ey1,...,Eum, E;1,..., Exn) is the Euler operator on

T*e, and Fy, = Y (0 (D)W + bllaAld)), k=1,2.

Theorem 27. The system (1) admits an infinite family of compatible
Hamiltonian structures $o parameterized by a smooth function ®
of e,

Ho =€ ¢ diag(—1, 1, @(t3)€t2_tl)Dx

2 1.1 2 3
! t)é — t){ t,{ — t,é —2t,§ (25)
- Ty — T Ty — T -2t
2 2 —2f B
X X

with the corresponding family of Hamiltonians Hey z = fHCO,de
defined by densities

2 12
Hep s = (14226~ foo(e +02)4+2 (¢ =24+ 5 ()X ). (26)
Here f33 = e2@~2! (2 —})® +120.3), o is an arbitrary con-
stant and the function 5 of ©> satisfies the auxiliary condition
1
10|85 + 70a8s =,

Proof. For the first step of the algorithm expounded above we
need to consider the joint system of equations

vk =0, (27a)
k k k 1 2\ k

D" +VDun™ +(n° + 0, =0, (27b)

DeAX + Dy(VFAF) — a8} 4+ 82) =0, (27¢)
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where the system (27a) is the system S itself, the system (27b)
is the linearization of S, and the system (27c) is adjoint to (27b).
If »' and A are differential functions of v, then the tuples n =
(n', n%, n°) and A = (A1, A%, A3) are a symmetry characteristic
and a cosymmetry of the system S, respectively. Here and in
what follows a summation with respect to i, j and I, which run
through the set {1, 2, 3}, is assumed, there is no summation with
respect to k, which is a fixed number from the set {1, 2, 3}, and
6} stands for the Kronecker delta. We are looking for a Noether
operator 9 = (M) with entries of the form

¥ = WD + (e, ) )

for some smooth functions h¥ and f¥ of their arguments. By
definition of Noether operators, for any solution (t, A) of (27a),
(27¢) the expressions n' := MV = D, + fi)J give a solution
of (27b). This implies the system

—h¥V'e D AT + WD, (~Dy(VIN) + ! (5] + 87))
1 (Ve (el )
—FPVIAT + F9 (—Dy(ViX) + ! (8] + 82))
+ V¥ (W6 + W9DD + [0 + f7d, 3 + 19D )
+ (WD + f93 + HID + f74) = 0.

Collecting coefficients of DA/ immediately leads to h¥ = 0 for all
j # k, and further collecting coefficients of Dy}’ yields

1
fZl — _le — (h]]t)% + h22t:) ,
f31 — _f hl] 3’ f23 — _f32 — h22t3’
h =0, hY=hn", mZ =0 h}=-h"?

W = =20, h3 =2n*.

Finally, splitting with respect to A/ and derivatives of ¢' allows us
to deduce that the operator 91 is of the form (25) with

f33 — @(tB)eZIZ—Zt (t — )+ !I/( 3 et 21 )el‘z—tl,
where ® and ¥ are arbitrary smooth functions of their argu-
ments. To be qualified as a Hamiltonian operator, the operator 91
should be formally skew-adjoint, i.e., ' = —9N, yielding the
Noether operator £ of the form (25) with £33 as in the statement
of the theorem.

First consider the case when ® is nonvanishing. The oper-
ator $He is of hydrodynamic type with the pseudo-Riemannian
metric

g =diag(—e" ", &7, O ), (29)

It is easy to show that the coordinates v are Liouville ones, cf. [12].
The connection V associated with $)o in the sense discussed
above is the Levi-Civita connection for g. Thus we should check
that the corresponding Riemann curvature tensor vanishes. Due
to its symmetries, we only need to verify that R =0 fori # j.
This is easily computed to be true. Thus the Noether operator $e
is a Hamiltonian one.

Finally, we are looking for a Hamiltonian # = [ H(x)dx of S
with respect to $e. It satisfies the condition

Vil

SH ]
~‘7)(“)7 = - Vzt)% ’

St 33

Vo

where §7 /8¢ is the vector of variational derivatives of # with
respect to the Riemann invariants ¢!, +? and ¢, §#/8¢t = (H,1, Hz,

H.)" due to the fact that H is a function of v only. Expanding this
condition we find the system of differential equations on H,

2 1
T, — ¢
e (—DXHCI + X X(H; —Hy) —i—tiva) = —2v'y

(30a)

2 .1
- (Dthz b 5 i (H2 —Ha)+ rﬁH,z) = —2V%2,  (30b)

22! ( B(H, + Ha)e"' = + Dy(Hz)®
(30c)
+ (2 =t)O +}Os) Hs ): —2V3e.
Successively splitting with respect to ¢}, 2 and 2 and solving
the obtained overdetermined system of differential equations,
we find the final form (26) for Hamiltonian densities and the
auxiliary condition on Z'.

For the system (1) the tensor (sj) takes a particularly 51mple
form, (s ) = diag(1, 1, ®/0), where ® and @ are functions of 3
parameterlzmg the metrics g and g. It is trivial to verify that
its Nijenhuis tensor vanishes. Since eigenvalues of (s}) are not
distinct, we need also to verify the conditions (24), and they
also hold.

If ® is a somewhere vanishing function, then the geometric
reasoning for Hamiltonian operators is no longer available, and
we should proceed by establishing that the corresponding varia-
tional Schouten brackets vanish, which is done symbolically. O

Remark 28. It is worth noting that provided Z;
condition on & can be equivalently represented as

# 0 the

where c; is an arbitrary constant.

For preliminary computations and testing the above results,
we used the package Jets [42,43] for Maple.

Below we consider only canonical representatives of
symmetry-type objects, where derivatives involving differentia-
tions with respect to t are replaced by their expressions in view
of the system S, which is necessary for relating different kinds of
such objects via Hamiltonian structures.

For any Hamiltgnian operator §) from Theorem 27, we can
endow the space 79 of canonical representatives for cosymme-
tries of S with a Lie-algebra structure, cf. [44] and [45, Sec-
tion 3.1], where the corresponding Lie bracket is defined by

' ¥ 1ne = 62907  + €y + (0 — )96y

for any y', y? € 79 Here ¢, and ¢} are the universal lineariza-
tion operator of y € 79 and its formal adjoint, respectively.
Denote the Lie algebra with the underlying space 79 and the
Lie bracket [-, -]y, by 74. The operator $e establishes a ho-
momorphism from the Lie algebra TS to the Lie algebra S,
The image $e T(; of this homomorphism is a proper subalgebra
of £9 of canonical representatives for generallzed symmetries of
the system S. More specifically, the image ﬁoTO is spanned by
generalized symmetries from three families that are the images
of the respective families from Theorem 13 and whose elements
are, in the notation of Theorems 10 and 13, of the following form:

1. W(29), where 2° = A((AR)6 /o),

2. P(®), where & = D — cb and thus the parameter func-
tion @ = @(¢!, %) runs through the solution space of the
Klein-Gordon equation @12 = —® /4 as well,

3. R(I"), where I = (D, — 1)Q3.
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For the nonvanishing function @, the kernel of the above homo-
morghlsm is two- d1men5210r1al and spanned by the cosymmetries
e* v(1,—1,0)and e ¥ (O, -0, O .3) with an antiderivative 6
of 1/0, ()t3 = 1/6. The former cosymmetry is special due to
being a single (up to linear independence) common element of
the first and the second families from Theorem 13, see Remark 14.
Both the cosymmetries are conservation-law characteristics and
are associated with the conserved currents e‘I*‘2(1 !+ ?)
and e (@, (x" + ¢*)®), which belong to the first family of
Theorem 15. As a result, the space of distinguished (Casimir)
functionals of the Hamiltonian operator ¢ is spanned by two
functionals,

Ci = / e dx, ¢ = / e A(3) dx.

In the degenerate case with ® = 0, the kernel of the above ho-
momorphism is infinite-dimensional and coincides with the first
family of Theorem 13. Elements of this family are conservation-
law characteristics if and only if they belong to the first family of
Theorem 18 and are thus associated with conserved currents from
the first family of Theorem 15. This means that the space of dis-
tinguished (Casimir) functionals of the Hamiltonian operator £,
consists of the functionals

/ef‘*‘zrz(wo,wl, . )dx,

where the parameter function §2 runs through the space of
smooth functions of a finite, but unspecified number of
o = (e ! D)3, k€ N.

Consider the constraints that single out the space of canonical
representatives conservation-law characteristics of S, which is
described in Theorem 18, from the space 79 of canonical rep-
resentatives of cosymmetries of S. Imposing these constraints on
£ and 9 that parameterize families spanning HeT9, we single
out the algebra of Hamiltonian symmetries of S associated with
the Hamiltonian operator $g.

Theorem 29. Given a smooth function @ of w° := 3, the algebra
of Hamiltonian symmetries of the system (1) for the Hamiltonian
operator He is spanned by the generalized vector fields

W(2°) = 2933,

P(B) = e (@420 k0,1 + (202 )20 + P203) ,
R([) = &2 ((Dy I+ 1)y da + (D I+ T 0202 + Tryda),
where 20 = A(O Y27 ((—A)R.) with the operator A =

> @ *13,. and with 2 running through the space of smooth

=
functions of a finite, but unspecified number of w* = (e‘z’r1 D, )3
k € Ny, the parameter function ® = ®(t!, ) runs through the
solution space of the Klein-Gordon equation ®.1. = —& /4, and

I = 3(Dy — 1)Qq with the operator 9 running through the set

{39, k" €2No+ 1, (F+1/2)DL, (5—1/2) D,
Kk €No, teN, k+1€2Ng+1}.

Here
s 1
Dy = t—](DtJr(t‘ + % — 1)Dy),
X
. 1
Dy i= = (D4 (! ¢+ 1)D),
X
I . - (1-2)2 1 2
3——®y+z®z, gi=e¢ (x— @'+ + ).

N

8. Recursion operators

Some semi-Hamiltonian hydrodynamic-type systems admit
Teshukov’s recursion operators [46] which are specific first-order
differential operators without pseudo-differential part. According
to [47], such recursion operators exist if the Darboux rotation
coefficients for an associated metric g, Bi = 0.i(~/I8k|)/~/18i]
for i # k and By = 0, depend at most on pairwise differences of
Riemann invariants. For the system S, this condition is satisfied
by the metric g of the form (29) with constant ®. A canonical
Teshukov’s recursion operator for the system S and such a metric
is easily computed, cf. [9, Eq. (8.1)],

1 2 2 1
W% X X 0

1 2
2t} 2t

2 1 1 2
+ W% X X 0
2t} 2t2
X X

’

Rt =Dy o diag(

xﬁ_-‘ —_
xﬁw‘ —_
xﬂw‘ —_

The operator 9y acts on the generalized vector fields spanning
the algebra X9 as follows
— Gy +W(1),

. y . 1.~ .
D~ —26; R(IM) —~ 5R(@yr —D,T),

P(®) > P(Da + D2), W) W (A(R/w")).

At the same time, we can construct many more local recursion
operators, including higher-order ones. For this purpose, we use
the complete description of generalized symmetries of the sys-
tem S that is presented in Theorem 10. Here the basic fact is again
that the algebra Sajs _decomposed into a (non direct) sum of its
subalgebras Efz and Eq The subalgebra E is a counterpart of
the algebra of generallzed symmetries of the (1 + 1)-dimensional
Klein-Gordon equation (4a), and thus the recursion operators
preserving 212 are related to recursion operators of this equation.
The ideal Eq underlaid by the degeneracy of the system S is
preserved by the operators of the form diag(0, 0, 2.A4*), where
the coefficient £2 is a smooth function of a finite but unspecified
number of w* = A't3, 1 € Ny, and k € Ny. The above gives a hint
about the form of more local recursion operators for the system S.

Theorem 30. The system (1) admits recursion operators of the form

(D, +1) 0 0 |

@-2 | 20 e =2
m]yg =e tX(DZ+1) 0 0 907],
T
2t 00 ¥
0 (Dy+1) 0 2y
(2—c1)/2 25 el
Myn=e 0 Z(D,+1) 0]|Qo o
0 22 0 *
0 o0 0
Ryp=P[ 0 0 0 ,
-1 1 Ao(wH)!

where 9 € (3, D3, DLJ¥, k € No, 1 € N), T = Y y_ 254
for some N € Ny, A = e‘z“le, the coefficients 2 are smooth
functions of a finite but unspecified number of w* = A't3, 1 € Ny,

and

- 1 1

Dyi= =5 (D4 VD), Byi= —5 (D + VDY),
X X

I

J:= Eﬂy"‘EDz
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Proof. We directly compute the action of the operators 9 g,
Ry n and M3y on the generalized vector fields spanning the
algebra X9, obtaining

R0 D> R(QY), R(IT)— R(QDy + 1)),
P(®) > P(QP +20.1)), W(2) 0.

Mpa: D> R(QD,G), R R(QD, + 1)),
P(@) > P(QP — 20.2)), W(R2)— 0.

Rygp: D> WP = W(R°), R(IN), P(@) 0,
W(2) > W(BA(R/w")).

This means that the above operators are recursion operators of
the system S. O

Remark 31. The action of the Teshukov’s recursion operator Rt
on symmetries of the system (1) coincides with that of the recur-
sion operator 3911 — 19%,1 + %3 1.

One can also find nonlocal recursion operators for the sys-
tem (1). We construct an example of such an operator. Let n =
(n', n, n*)7 be an arbitrary solution of the system (27b). Consider
a first-order pseudo-differential operator %, acting nonlocally
on 1 as

Ran = A(t)Dxn + Blr, v)n + C(r, w)Y, (31)

where A = (A¥) and B = (BY) are smooth 3 x 3 matrix functions
of their arguments, C is a three-component column of smooth
functions of (t,ty) and Y is the potential associated with the
conserved current (n' + 7%, V'n' + V2»?) of the system (27b),
which is the linearized counterpart of the conserved current
(' + %, 2(x" +2)? + ¢! —?) of the system (1). In other words,
the potential Y is defined by the system

DY = Vgl — V22, DY =n' 4+ 9% (32)

By definition, the operator 94 is a recursion operator of the
system (1) if for an arbitrary solution » of the system (27b), R4n
is a solution of the same system. We successively substitute the
ansatz (31) for MRyn, the expressions (32) for D;Y and D,Y and
the expressions for D;n in view of the system (27b) into the
system (27b) for $R47n, which leads to the system

(AYD + B + Chy) (v — V')
+ (B0 + CEYI((VF = Vel — (o) + )
—ADy(VIDp + (n" + 1)) — BY(V/Dyr + (0" + "))

_ CI{(Vlnl + VZT]Z) + Vk(Ak]D)%ﬂl + Bijxn] + Ck(ﬂl + 772))
+%(AYDyy + BYy + C'Y + A¥Dyrf + B¥y + C?Y) = 0.
Here and in what follows the indices j, k, k" and [ run from 1
to 3, we assume summation with respect to the repeated indices j
and [, and there is no summation over k and k'. The splitting of

the obtained system with respect to D2*, D,7*, n¥ and Y yields
the system of determining equations for entries of A, B and C,

Akk/(vk _ Vk/) — 0

A (VF = Vil — A% (e} 4 12) — (8 + 85)AYY, + (VF — V¥ B
+ A 4 4% =0,

B (VE — vy + B’:L"/ ((VF = Vel — (] + ) + (B 4 B2
— (8 + 82)(A9Y,, + BYd — (vk — vK)ck) =0,

chvk— vy + Crki ((VE = Ve — (ef + D)) +e&(c + ) =0,

solving which, we prove the following proposition.

Proposition 32. The system (1) admits the formally pseudo-
differential recursion operator %R, acting on a symmetry character-
istic n as

Xﬁw ><dl\-) Xﬂ.—l

2 0 0
R4n =By +CY, where B=|0 -2 0], C=
0 0 O

and Y is the potential of the system (27b) that is defined by (32).
9. Conclusion

To study the diagonalized form (1) of the system S, we heavily
rely on its two primary features. The first feature is the degener-
acy of S in the sense that this system is not genuinely nonlinear
with respect to > and, moreover, it is partially decoupled since
the first two equations of S do not involve 3. To take into account
the degeneracy efficiently, we introduce the modified coordinates
on S, where derivatives of ¢ are replaced by w's constituting
a functional basis of the kernel of the operator B. This operator is
nothing else but the differential operator in the total derivatives
that is associated with the equation on «>. From another perspec-
tive, the infinite tuple of w's, @° = 3, w**! := Aw*, Kk € Ny, can
be seen to be generated by the differential operator A := e Dy,
commuting with B, [A, B] = 0, cf. [24]. The introduction of
the modified coordinates essentially simplifies computations of
all kinds of symmetry-like objects for the system S. Due to the
partial decoupling of the system S, we recognize its essential
subsystem Sy constituted by Eqgs. (1a), (1b). The second primary
feature of S is the linearization of Sy to the (1 4 1)-dimensional
Klein-Gordon equation, which was thoroughly studied from the
point of view of generalized symmetries and conservation laws
in [23].

In turn, these features allow us to describe symmetry-like
objects for the system S by working within the following general
approach. For a given kind of symmetry-like objects for S, we
show that the chosen space U of canonical representatives of
equivalence classes of such objects is the sum of three subspaces,

U=U;+ U, + Us.

One of them, say, Uy, stems from the degeneracy of S, and thus
its elements are parameterized by an arbitrary function of a
finite but unspecified number of w’s. The other two subspaces,
U, and Us, are related to the linearization of Sy to the (1 + 1)-
dimensional Klein-Gordon equation (4a). Singling out these two
subspaces is induced by decomposing the objects of the same
kind for the Klein-Gordon equation as sums of those underlaid by
linear superposition of solutions of (4a) and those associated with
linear generalized symmetries of (4a). This is why the elements
of the subspaces U, and Us; are parameterized by an arbitrary
solution of the (1+1)-dimensional Klein-Gordon equation and by
characteristics of reduced linear generalized symmetries of this
equation, respectively. Although (U; + Uy) N U3 = {0}, the sum
U; + U, + Us is not direct since the subspaces U; and U, are not
disjoint, and their intersection is one-dimensional.

The first kind of objects we exhaustively describe for the
system S is given by generalized symmetries. Not all generalized
symmetries of the Klein-Gordon equation (4a) have counterparts
among generalized symmetries of the system S, which was also
noted in [23] for first-order generalized symmetries. The most
difficult problem here, which is solved in Lemma 9, is to single
out the subalgebra 2 of canonical representatives of generalized
symmetries of the Klein—-Gordon equation (4a) that have such
counterparts. A complementary subalgebra to 2l is

A= ((3q)9q, k €N).
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We conjecture that elements of 2 have counterparts among non-
local, or specifically potential, symmetries of the system S. To
show this, we plan to study certain Abelian coverings and po-
tential symmetries of the system S and of the Klein-Gordon
equation (4a). We expect that the main role in this consideration
will be played by the conservation laws of the Klein—-Gordon
equation (4a) with characteristics of the form g“e’*?, x € Ny, and
by their counterparts for the system S.

Considering cosymmetries and local conservation laws, we
do not need to make the selection among those for the Klein-
Gordon equation (4a) since all of them have counterparts for the
system S. For conservation laws, this follows directly from the
general assertion proved in [33, Theorem 1]. Amongst cosym-
metries, local conservation laws and their characteristics, the
complete description of the space of cosymmetries for the sys-
tem S is the simplest, though it still requires utilizing a couple of
nontrivial tricks within the framework of our general approach.

To construct the space of local conservation laws of S, we have
to make use of the direct method [31,32] whose essence is the
direct construction of conserved currents canonically represent-
ing conservation laws using the definitions of conserved currents
and of their equivalence. The standard approach [36] based on
singling out conservation-law characteristics among cosymme-
tries is not effective for the system S since its application to S
leads to too cumbersome computations. At the same time, we still
need to know conservation-law characteristics for the system S,
in particular, to look for special-feature conservation laws, like
low-order and translation-invariant ones. The known formula [35,
Proposition 7.41] relating characteristics of conservation laws of
systems in the extended Kovalevskaya form [48, Definition 4] to
densities of these conservation laws gives suitable expressions
only for characteristics of conservation laws from the second
family of Theorem 15, which are of zeroth order. The other two
families should be tackled differently. For the first family, we in
fact derive an analogue of the above formula in terms of the
operator A using the formal integration by parts. Characteristics
of conservation laws from the third family are constructed from
their counterparts being variational symmetries of the Klein-
Gordon equation (4a). We also prove that under the action of
generalized symmetries of the system S on its space of conserva-
tion laws, a generating set of conservation laws of this system is
constituted by two zeroth-order conservation laws. One of them
belongs to and generates the first subspace of conservation laws,
which is related to the degeneracy of S. The other is the counter-
part of a single generating conservation law of the Klein-Gordon
equation (4a). It belongs to the third subspace of conservation
laws of S but generates the second subspace as well. The claim on
generation of the entire third subspace is unexpected since only a
proper part of linear generalized symmetries of the Klein-Gordon
equation (4a) are naturally mapped to generalized symmetries
of S but the amount of the images still suffices for generating
all required conservation laws.

Interrelating generalized symmetries and cosymmetries, we
construct a family of compatible Hamiltonian operators for the
system S parameterized by an arbitrary function of +3, and a
Hamiltonian operator from this family is degenerate if the corre-
sponding value of the parameter function vanishes at some point.
This fundamentally differs from the case of genuinely nonlin-
ear hydrodynamic-type systems, for which the number of local
Hamiltonian operators of hydrodynamic type is known not to
exceed n + 1, where n is the number of dependent variables,
see [49]. Note that the conjecture from [37] that skew-symmetric
Noether operators for non-scalar systems of first-order evolution
equations are Hamiltonian ones holds for Noether operators of S
with entries of the form (28).

Finally, having the comprehensive description of the algebra
of generalized symmetries of the system S at our disposal, we

find ad hoc broad families of local recursion operators, which
are presented in Theorem 30. The system S admits the canonical
Teshukov’s recursion operator 9 but this operator is equivalent
to a linear combination of the three simplest local recursion
operators from Theorem 30. We also construct a nonlocal recur-
sion operator of S. It is clear that one can construct many such
operators, in particular, using the relation of the system S to the
Klein-Gordon equation (4a), which will be a subject of our further
studies.

We should like to emphasize that the local description of
the solution set of the system S in Theorem 1 is implicit and
involves the general solution of the (1 + 1)-dimensional Klein-
Gordon equation. This is why it is difficult to further use this
description, and thus it is still worthwhile to comprehensively
study the system S within the framework of symmetry analysis
of differential equations.

As the essential subsystem S, coincides with the diagonalized
form of the system describing one-dimensional isentropic gas
flows with constant sound speed [8, Section 2.2.7, Eq. (16)],
symmetry-like objects of Sy deserve a separate consideration
but in fact they are implicitly described in the present paper.
In contrast to the system S, all the quotient spaces of symmetry-
like objects of the subsystem Sy are isomorphic to their coun-
terparts for the system (4a), (5) and thus to their counterparts
for the Klein-Gordon equation (4a). Therefore, to construct an
algebra of canonical representatives of generalized symmetries
for the subsystem Sy, we take the respective algebra for Eq. (4a)
and follow the procedure given in the first paragraph of the proof
of Theorem 10, just ignoring the t3—compogents in the point
transformation (7) and in the vector field Q. As a result, we
obtain that the quotient algebra of generalized symmetries of the
subsystem Sy is naturally isomorphic to the algebra spanned by
the generalized vector fields

(x — 4+ l)t)t;8t1 + (X — 4 1)r)r§at2,
e(‘27‘1)/2(1"t;8t1 —l—@zf‘tﬁi)rz),
N2 (@ 420, )6 0 + (D — 202)202)

where the parameter function @ = &(¢!, +?) runs through the
solution set of the Klein-Gordon equation @,1,. = —®/4, I' runs
through the set {3“q, D}3“q, D,3“q, x € No, ¢ € N} with

. 1
Dy = —F(Dt—i—(tl—i—tz—l)@){),
X
. 1
D, = —t—z(Dt+(r1+tz+1)®x),
X
B U -2y 1
§=5D+5D, Gi=e (x— '+ + 1)),

and instead of the complete operators D; and D, defined in
Section 3, one should use their restrictions to (¢!, t2),

oo 2 oo 2
Dyi=et D D thdi, De=0—y Yy DEV), .

k=0 i=1 k=0 i=1
The descriptions of cosymmetries and conservation laws of Sy are
derived from those for the system S by excluding the first families
of cosymmetries and conservation laws, which are related to the
degeneracy of S, in Theorems 13 and 15.
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