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Abstract

The influence of the Hall-term on the width of the magnetic islands of the tearing-mode is examined. We applied the center
manifold (CMF) theory to a magnetohydrodynamic (MHD)-system. The MHD-system was chosen to be incompressible and
includes in addition to viscosity the Hall-term in Ohm’s law. For certain values of physical parameters the corresponding center
manifold is two-dimensional and therefore the original partial differential equations could be reduced to a two-dimensional
system of ordinary ones. This amplitude equations exhibit a pitchfork-bifurcation which corresponds to the occurrence of the
tearing-mode. Eigenvalue-problems and linear equations due to the center manifold reduction were solved numerically with
the Arpack++-library. An important result of this analysis is the growth of the tearing mode island width by increasing the
Hall-parameter, a feature which has been observed in recent numerical simulations of collisionless reconnection.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The term magnetic reconnection corresponds to the process of topological reordering of magnetic field lines.
This process transfers energy stored in the magnetic field to the surrounding plasma. Magnetic reconnection is one
of the most relevant processes in astrophysical, space and laboratory plasmas. Reconnection plays a major role in
understanding phenomena like solar flares, small scale dynamos and sawtooth disruptions in tokamaks.

In the last 10 years much progress has been made to understand why collisional reconnection is so fast. A major
impact milestone was the comparison of kinetic, hybrid and fluid simulations of two-dimensional reconnection in
the GEM frameworK1]. One results of this project was that the Hall-term in Ohm’s law is responsible for speeding

* Corresponding author.
E-mail addressgrauer@tpl.ruhr-uni-bochum.de (R. Grauer).

0167-2789/% — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2005.06.003



60 H. Homann, R. Grauer / Physica D 208 (2005) 59-72

up the process due to the existence of whistler waves, which are also responsible to form a X-point structure in
the reconnection region (see a[2$). The Hall-term alone is not able to change the topology of the magnetic field
lines, so non-ideal terms in Ohm’s law are needed like electron inertia, electron pressure or resistivity.

The goal of this paper is to investigate the influence of the Hall-term on the island width of a tearing mode. In
order to study this effect on the structure of magnetic reconnection analytically, we considered an equilibrium of a
set of MHD-equations and reduced it within the center manifold theory to a low-dimensional system of ordinary
differential equations. This was done [8] for an only resistive MHD-system. The resulting system exhibits a
pitchfork bifurcation which we studied against the Hall-parameter.

In contrast td3] we used the Arpack++-library to solve eigenvalue problems and linear systems which occurred
within the center manifold reduction. This library is designed to solve large, sparse eigenvalue problems for only
a few eigenvalues. By means of Arpack++ we determined the spectrum of the linearized Hall-MHD-system and
checked an important condition for the applicability of the center manifold theory to the underlying MHD-system.

2. The center manifold reduction

The center manifold theory deals with the reduction of a dynamical system in the neighbourhood of a non-
hyperbolic fixed point.
Consider a system of ordinary differential equations,

x=f(x), xeR", f:R"—>R" Q)

Let xo = 0 be a non-hyperbolic fixed point gf and A the linearisation off. If the spectrum ofA only consists of
stable (real park 0) and marginal (real pa#t 0) eigenvalues, the center manifold theory states that there exists a
invariant stable manifold’s and aC’~? invariant center manifold/® atxo which are tangent to the corresponding
eigenspaces. Furthermore the center manifold is attractive, that means that trajectories starting in the neighbourhoo
of xo will converge to a trajectory lying inw®. This situation is illustrated ifrig. 1 For an overview on center
manifold theory see Cafd], Guckenheimer and Holmés], Chow and Halg6,7]

If one is only interested in the longtime asymptotic behaviour of a solution it is sufficient to study the dynamics
restricted to the center manifold.

In order to apply the center manifold reduction to a bifurcation problem of the Hall-MHD equations one has to
incorporate parameters and infinite dimensionality. The first point is achieved by extending the configuration space
and the differential Eqg1) by a parameter spad¥,

p=0,
x = f(x. p).

Obviously the dimension of the center manifold is enlargetl by

Fig. 1. The invariant manifold®s andW¢ at a non-hyperbolic fixed point.
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The center manifold theory also applies to infinite-dimensional problems, if certain restrictions are fulfilled, see
[8]. For example the spectrum must be decomposed into a part containing a finite number of eigenvalues with real
parts equal to zero and a part containing eigenvalues with negative real parts which are bounded away from zero.

For constructing the solution on the center manifold consider a dynamical system given by a PDE

i= f(u,p), f: differential operatarp € R’ : parameter space (2)

with the following assumptions. Ley be a fixed point of2) and the spectrum of the linearisatidnof f consist
of n marginal modes?, ..., u", i.e. Au' = w'u’ with Re@’) = 0, and eigenvalues with negative real part which
are bounded away from zero.

Then an appropriate ansatz for the solution on the center manifold is given by Frigraaid Grauef3]

n

u(t) = Zaiui + Z ajakujk + Z ajakamujkm R (3)

i=1 1<j<k=n+l 1<j<k<m=<n-+l
with

ay = gi(aa, ..., any1)

C-ln = g-n(als ceey an—i—l) (4)
a1 =0
an+l =0

an+i = p;i Parameter

n

j jk Jkl

g,-:ZAiaj—i- Z A ajar + Z A ajara; + - - - (5)
j=1 1<j<k<n+l 1<j<k<l<n+l

The solution(3) is arranged according to the order of the amplitudesTo every order Qg|) corresponds a
direction ofu’/, u/* . ... The amplitudes; contain the temporal evolution. However, the expang®)mnly holds
for a neighbourhood aiy.

3. The basic equations

In order to investigate the influence of the Hall-term of the Ohm'’s law on the islands width of the tearing-mode
we use a simple MHD-system. It contains in addition to the resistivity the kinematic viscosity which stabilizes the
spectrum of eigenvalues of the system. Therefore it is possible to let the spectrum only contain stable and marginal
eigenvalues. Furthermore, it is incompressible.

The basic equations are

1 1
dv=—@W-V)v+—jx B+vAv— —Vp, (6)
cpo 00
&%B=—cV x E, (7)
4
T i—vxB, (8)
C
m; 1 .
E = JxB—-vx B+nj, 9)
cepo c
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V.-B=V.v=0. (10)

Using the following notations

B — EB, L — ZL, V— VAV, V4= \/4?1%’ t— %t, v —> povAZv,
4nvAZ d; 4rnge? c
2 =T opi= mp T g po=mino,
taking the rotation o{6), inserting(8) for j and(9) for E yields
H(Vxv)=Vx(—(-V)v+(V x B) x B+ vAv) (11)
B =—-Vx(@VxB)xB—vxB+nV x B) (12)
V-B=V.-v=0 (13)

We only consider solutions which are independerzt dherefore and due td 3)it is convenient to representand
B by flux functions® andv,

v=—V x (®(x, y)e;) + v (x, y)e; = —03,Pe, + 0, Pe, + v e,

14
B = -V x (¥(x, y)e;) + B;(x, y)e, = —0,We, + 0, We, + Be;. (14)
An equilibrium of (11) and (12)n terms of the flux functions is given by
. E 1
@0 = BZO = Uzo = 0, 3)7l1’0 = lpo = F(y), no = W = W, (15)
0 0

where the prime denotes differentiation with respecy.téollowing [3] we setE = 1 and choose a Harris-like
profile

Wo(y, 1) = tanh.y) = ¥o(y, 1) = % In(cosh¢.y)). (16)

We study the problem in a rectangular area2®] x [—yg, yg] with ygp = 0.5 and periodic boundary conditions
in thex-direction. The geometry and the equilibrium magnetic field are showgirn2.

Fig. 2. The geometry of the problem.
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After inserting(14) into (11) and (12)the equations for the perturbations of the equilibrium are,
BV = AW — W0, ® — a3 B, + [¥ @] + o[¥ B.],
& B, = —W{dv; + n0AB; + 14dy B, + a(Whd AW — W3 W) + [B,, D] + [¥ v,] + o[ AW ],
HAD = W3 W — W, AW + vA2D + [AD, ®] + [ AV, a7)
9, = —W)0yB; + vAv, + [v,, D] + [¥ B.],

where we used the standard Bracket
[A,B] =e.- VA x VB = (3,A)(d,B) — (3yA) (3, B).

As in [3] it turns out the boundary condition are not strongly effecting the solutions and for simplicity we impose
the following boundary conditions:

¥ =¢=B,=v,=0fory=yrand
A® =AY =0fory = ygrand (18)

all variables Z-periodic inx.

4. Center manifolds of the Hall-MHD-system
In this section the center manifold theory will be applied to the Hall-MHD-system introduced in the previous

section. We will study the case that only one eigenvalue becomes marginal. The corresponding eigenspace will be
two dimensional due to the translation symmetry insthdirection.

4.1. The CMF-ansatz

The equation$17) contain the following parameters:

e ): shear of the equilibrium magnetic field
e y:viscosity
e «: Hall-parameter

The parametek andv constitute the parameter space. We teeat an external parameter and use the ar(8tz
with

u=u= B, dv,), (19)
az=Xx—A% as=v-—1" (20)
4.2. The marginal modes

The linearized problem dfL7)is given by

(¥ B;, AD,v;) = L(¥ B;, D, v;)
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with the operator

oA —a¥)d, —avid, O
a[Who,A — W',] noA + nHd 0 —-va
L()\‘,U,a)z /o/x 0 9% o~y , 0% (21)
W0y — W A 0 VA 0
0 —Wpdy 0 VA

and the boundary conditior§$8).
Using a Fourier-ansatz like

W(x,y) = W(y)elr i
k

for every variable leads to the following set of ordinary differential equations

oW = (¥ — k2W) — kWi — iaWkB,,,

wi By, = —ikv, + no(Bl, — k*B.,) + nyB., + o[ Wik, — ik3¥) — ikwg' ], 2
(] — K2By) = kW' Wy — Wik — ik3W) + (kA — 2k20)] + &),

Wy, = —ikWy By, + v(v], — k?v;,),

which is a generalized eigenvalue problem for the eigenfungtign) = (¥« (y), B, (), Px(), vz ().
We normalize the marginal modes by

(', @), (¥, )))) = 8
using the scalar product

((AQx. y), Bx, ) = > (Ai(x. y), Bi(x. y))

l
with

YR

2
(A(x. y). B(x. »)) = /Q Ax. y) - B(x. y)dr = /0 Ax. y) - Blx, y) drdy.

—JYR

We examine the case in which only the= 1-mode becomes marginal. For evdeye computed a few eigen-
values with the largest real part and the corresponding modes. This was done numerically where we dicretised
the y-dependence into 256 steps. For solving the dicretised eigenvalue problem we used the Arpack++-Library
[10].

Letw; be the eigenvalue with the maximal real part for a gikeAin continuous interpolation of the real parts of
wyf, is shown inFig. 3. We constructed the marginal eigenvalue so that it lies at the local maximum of the interpolated
graph. This was done with the simplex-downhill-method and we found the following marginal eigenvalues according
to several Hall-parameters.
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A Ve o Re@S)

3.383 5302 x 1076 0 —1.952x 10°8
3.369 5135x 1076 5 1075x% 108
3.337 4792x 1076 10 —1.904x 1078
3.300 4489x 1076 15 —8516x 1072
3.265 4315x 1076 20 —2.596x 1078
3.233 4296x 1076 25 —2.014x 1078

The imaginary part of»§ vanishes for all parameter. The real part of the second greatest eigenvalue is about
—0.003, so that a constraint of the applicability of the center manifold theory is fulfilled.

From the complex marginal modes one can construct real modes. Due to the fact that with every solution its
complex conjugate is also a solution one obtains the following two real marginal modes:

wl ¥1(y) cos() w2 —¥(y) sinx)
Bl B.,(y) sin() B? B.,(y) cos)

1_ b4 _ 21 . 2 _ b4 _ 21

=gt | T &1(y)sin(x) |’ = g2 |~ P1(y) cosf) @
v! vz () cos(r) V2 —v.,(y) sin(x)

TheFigs. 4 and Show the computed modes for a couple of Hall-parameters.
One observes that the general structure remains nearly the same, while the amplitud®s ekthév,, -modes
rise by increasing the Hall-parameter.

4.3. Series expansion of the basic equations

The amplitude equation8) become easier if one takes into account the symmetries of the problem. The basic
equations possess the following symmetries:

e translationT: if u(x, y) is a solution of the basic equations, Bo(x, y) = u(x + xo, y) as well;
e parity S if u(x, y) is a solution of the basic equations, $o(x, y) = (¥ —B;, —®, v;)(—x, y) as well.

-0.001

-0.002

Re(®))

-0.003

-0.004

-0.005 . 1 . 1 . 1 . I .
0 2 4 6 8 10

Fouriermode k

Fig. 3. Real part of)} vs.k.
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Fig. 4. Marginal¥; and B;,-modes for several Hall-parameteyg, = 0.5.

As shown in Sattingell1] for the Lyaponov—Schmidt procedure and in Gra@ifor the center manifold theory
this symmetries affect the amplitude equations. Due to the symmetries they take the simple form

a1 = Coar + Cra1(a? + a?)

) (24)
az = Coaz + Craz(a? + a3)
Comparing this with(5) yields

Co = A%3a3 +Aag+ -,

C1 = A111+A1113 3+A1114a4+~-~

A13 223 A14 A24

Alll A122 Alll A122

A1113 A1223 A2113

T T T

— a=0
=
—a=10
—a=15
— a=20

<o

Fig. 5. Marginal®; andv;,-modes for several Hall-parameteyg, = 0.5.
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Restricting oneself in considering only linear dependence of the coefficients with respect to the pal@deines
obtains

Co = A%Sag + A%4a4
C1= Al

In order to study the bifurcation of the equilibriu¢gh5) one only needs to compute the coefficieﬁﬂs°’, A%"’ and
AHL

Inserting (3) into the basic equation&l7) yields equations for every order @[). Terms of order Qf|?)
are:

l]/ij lpinh
Bij Binh
. 1C z _ z
E ajajL oi | = | @i (25)
l<i<j=<4 B i
)\

LC is the linear operator defined i§21) for the critical parameter valugs= A®, v = v°. The inhomogeneity is
given by

2 2
=N N algaw’+ Y (@, 9] +elBL w]) = > aias((8asm0)lo(AW)
i=11<i<j<4 1<i<j<2 i=1
— (943 %0)10(3: ") — (B3 %0)|0(Dx BL))
2 2
B =" N" AlajaBi+ > (@ W] +alBl W) = aias(—(3a%)lo(dxvL)
i=11<i<j<4 1<i<j<2 i=1
+(Ba310)|0(A BL) + (3a3110) 10(3y BL) + (345 ¥9)l0(8x A¥") — (335 )lo(3x¥")])
2 2
i ik 1 1 i i 1 " [
dM=N" N Alaa - > (@ AT + (AW, ) — " aias(3a9 ) lo(0:%)
i=11<i<j<4 1<i<j<2 i=1

— (023 W) 0(0x AW)) — 2 ajas A2
i 2 ik . . . . . 2 ] 2 ‘
vlzhh =— Z Z Al ajagv, — Z ([@", v]] +[B¥']) + Zaia3(8a3l1/6)|o(8xB;) — Z%’MAU;
i=11=i=j=4 l=isj=<2 i—1 i=1

Resolvability of(25) (Fredholm alternative) demands that the inhomogeneity is in the rarige ©his is equivalent
to the condition that the inhomogeneity is not in the kernel of the adjoint opeté&tdihe adjoint operator is given

by
oA + 2ngdy + 1y —aWiAd, — 20’ 9,0,  WHAd, + 29 0,0k 0
o a®ho, oA + ngdy 0 who2 (26)
B W' 0 1CA2 0
09x
0 W0, 0 169, A
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with the boundary conditions

U =¢ =B, =7, =0aty = +yz,
AP = A¥ = Oaty = +ygand
all variables are 2-periodic inx.

We denote an element of the kernelidfby it/ = (F4/, B/, &1/, v=/) and choose the following normalization
(@', B, A, WL), (&, B, @, 51))) = &5 (27)

We computed the kernel df¢ by inserting an Fourier-ansatz. The resulting homogeneous ordinary differential
equation has been solved by regarding her as an eigenvalue problem for the eigenvalue zero. Again we treated thi
problem with the Arpack-library.

Projecting the Eq(25) onto i+ yields the coefficients

A = (((34510) 0 A — (345%0)100x D* — (303 W0) 109 BL), ¥ 1Y) + ((3u310)l0A BE — (83 W4) 00 v
+(3a3np) 108y B + a((3az W) 109x AW — (30598 )08 Wh), B + (3059 0dx W 28)
(305 %0)|00x AW, DY) + ((8,5W0) 100 B, T11)

A%4 — (A2¢l, an_l>

In order to compute the coefficient! one has to go to order @(3). Once again projecting the resulting equations
onto the adjoint kernel yields

AT = ([0t @M 4 WM @Y + (Wt BHT + (W BI), U + (B Y] + [BIL o1 + [W vl
+ [ o]+ oAV WM 4 [Awt wl), B + ([t At + (Wt avl] + [0t 01
+[ADY, 1, &) + ([of, &M + [vph, &1 + [, BYY + [WH, B T, (29)
The unknown “slaved” modek!, B, @11, v1Y) is given by Eq(25)withi = j = k = I = 1. Inserting a Fourier-
ansatz yields an ordinary differential equation, which was solved by use of an appropriate function provided by the
Arpack-library.
4.4. The amplitude equations
The amplitude equatior(24) written in polar coordinates:(§), a, § € R are

a = Coa + Cla3,

) 30
§=0, (30)
with
Co = ALz + A%,
C1= A
For C1 = —1 this is a normal form of a pitchfork bifurcation & = 0.

The coefficientCo depends orz anday. In order to study the general behaviour of the amplitad# the
marginal modes with respect to the Hall-parameter waset 0 (keeping the viscosity constant) wherayyonly
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depends on the parameter of the magnetic fieldow we choose. = 0.1 so thau? = —Co/C1 is a fixed point of
(30). We computed the equilibrium amplitude for several Hall-parametets

o ap (x107%)
0 2112
5 2.156

10 2.315

15 2.677

20 3.535

25 7.899

The amplitude increases with respect to the Hall-parameter.
Now we can construct the solutions according to this equilibrium amplitudes. Up to first order they are (in polar
coordinates)

¥ = Yy + aW¥; COSk + 8),
B, = aB, sin(x + §),

@ = ad1sin(x + 3),

v, = avg, Cosfr + 4),

For the visualization we chooske= 7. Fig. 6 shows contour plots of the magnetic flux function in 28] x
[—0.01, 0.01] for the Hall-parameter 0 and 25, respectively. The contour lines correspond to the magnetic field
lines. Compared to the primary equilibriu¢h5) they are reconnected. The separatrices separates the magnetic
islands from the remaining plasma. They are spread at the magnetic X-point with respect to the Hall-parameter.
The Figs. 7 and &how contour plots oB,, @ andv, for « =5 anda = 25, respectively (forx = O the z-
components vanish). Here the entire are2ff] x [—0.5, 0.5] is shown. In the case &, one observes a quadrupole
structure which in numericg®] simulations is found to be characteristic for the influence of the Hall-term on the
reconnection process.
In order to study the influence of thedimension on the results we enlarged thkength of the rectangular
area by a factor of 2, this meang = 1. Now the marginal fix points are abowt®(= 2.9, v = 1.5 x 1073).

0,010
2.000E-5
1.500E-6
0.005 1
3,500E-5

6,250E-5

-6,000E-5
-2,500E-5
-1,000E-5
-4,500E-5

9,000E-5 ~ -8,000E-5

= 0,000 1

0,005 _/\

* 0,000

1,175E-4 1,150E-4

1.450E-4 1.500E-4
1.725E-4 0,005 4

2,000E-4

1,850E-4
2,00E4

-0,010

Fig. 6. Contour plot of the magnetic flux functi@nfor « = 0 anda = 25.
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-9,000E-7 -2,250E-4

-6,625E-7 -1,656E-4

-4,250E-7 -1,063E-4
-1,875E-7 -4,688E-5
5,000E-8 1,250E-5
2 00
2,875E-7 7,187E-5
5,250E-7 1,313E-4
T625E-7 1,906E-4
1000E-6 2,500E-4
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

Fig. 7. Contour plot of3, and for® for « = 5.

The magnetic field parameter is a little bit smaller and the viscosity about three orders of magnitude greater.
Therefore, this configuration is more unstable than the smaller one. The reason for this is the stabilising influence
of the boundaries. The boundary condition prescribes that perturbation (the marginal modes) at the boundaries ar
zero.

For the amplitudeg we found in larger case:

ao (x1073)

8.136

8281

9.655
17.23

Wk oO|R

The corresponding marginal modes are given byRigs. 9 and 10Here amplitude:g is about a factor of 40
greater than in the case of a smaller rectangle with= 0.5. The amplitude increases stronger so that even for a
Hall-parameter about 3 the effect of the Hall-term is significant.

Furthermore, the shape of the marginal modes changed. They are broadened towards the boundaries.

-4,000E-4
-3,000E-4
-2,000E-4
-1,000E-4
0
1,000E-4
2,000E-4
3.000E-4
4,000E-4

Fig. 8. Contour plot ob, for @ = 5.
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Fig. 9. Marginaly; and B, -modes for several Hall-parameterg, = 1.
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Fig. 10. Marginakp; andv_,-modes for several Hall-parameteyg, = 1.

5. Conclusions

In this paper we calculated the influence of the Hall-term on the island width of a tearing instability. This has
been done in the framework of a simple model using resistivity as the non ideal process to achieve a change in the
topology of the magnetic field. Using center manifold theory, we could calculate the dependence of the tearing mode
island width on the Hall-parameter The result was an increase of the island width with increasing the strength of
the Hall-term. This is in agreement with recent numerical simulations (see [2]), which showed that in contrast to a
Sweet-Parker like reconnection in MHD without a Hall-term, the inclusion of a Hall-term could alter the dynamics
to a Petschek like behavior with a pronounced X-point in the reconnection zone. In addition, the center manifold
reduction could also reproduce the quadrupole like structure of the perpendicular magnetic fi€lid.(Seas a
consequence of the enhanced perpendicular velocityHge8) again as observed in numerical simulations. Many
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nontrivial things still have to come, where the major points are more realistic parameters as in the GEM study and
the replacement of resistivity by electron inertia. Work on this is in progress.
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