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Integrability and asymptotic behaviour of a
differential-difference matrix equation
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act

this paper we consider the matrix lattice equation Un,t(Un+1 − Un−1) = g(n)I, in bo
omous (g(n) = 2) and nonautonomous (g(n) = 2n − 1) forms. We show that each of
atrix lattice equations are integrable. In addition, we explore the construction of M
which relate these two lattice equations, via intermediate equations, to matrix analo
omous and nonautonomous Volterra equations, but in two matrix dependent variables
last systems, we consider cases where the dependent variables belong to certain sp
s of matrices, and obtain integrable coupled systems of autonomous and nonautonom
equations and corresponding Miura maps. Moreover, in the nonautonomous case we pr
integrable nonautonomous matrix Volterra equation, along with its Lax pair. Asymp

tions to the matrix potential Korteweg-de Vries and matrix Korteweg-de Vries equation
iven.

ights
give Miura maps for autonomous and nonautonomous matrix lattice equations and syst
prove the integrability of an autonomous and also of a nonautonomous matrix lattice.
obtain integrable multicomponent autonomous and nonautonomous lattices and Miura m
give a new integrable nonautonomous matrix Volterra equation along with its Lax pair.
give asymptotic reductions of matrix lattices to matrix potential KdV and matrix KdV.
ords: Integrability, Asymptotics, matrix equations, differential-difference equations

troduction

e aim of the present paper is to undertake a study of the nonautonomous lattice

Un,t = (2n − 1)(Un+1 − Un−1)−1,

ll as of its autonomous limit

Un,t = 2(Un+1 − Un−1)−1.

ion (1.1) may be derived using the auto-Bäcklund transformations (aBTs) of a certain m
l differential equation (PDE), or alternatively those of a matrix second Painlevé (PII) equ
ee also [2]). The limiting process from (1.1) to (1.2) is presented later.
e scalar case of the autonomous equation (1.2), that is
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, (1.3)
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is known to be a completely integrable equation. The transformation

wn =
1

un+1 − un−1
, (1.4)

maps

(1.5)

Altern

(1.6)

as a B ay in
turn b

(1.7)

using
(1.8)

Equat ions.
The a tions
betwe an be
found osite
Miura at in
[18] t own
integr n of)
(1.3)

O bove
chain e our
objec o the
matrix cond
aim is hese
topics atrix
lattice se —
with t ction
of no es as
limiti ous
scalar on of
the pa

2. Th

2.1. I
W

(2.1)

It can

(2.2)

to sol

Journal Pre-proof
solutions of (1.3) to solutions of the equation

wn,t = −2w2
n(wn+1 − wn−1).

atively, we may regard the system

wn =
1

un+1 − un−1
, un,t = 2wn,

äcklund transformation (BT) between (1.3) and (1.5). Solutions of equation (1.5) m
e mapped to solutions of the (rescaled) Volterra lattice

yn,t = −2yn(yn+1 − yn−1),

the transformation
yn = wnwn+1.

ion (1.5) and the Volterra equation (1.7) are well-known completely integrable equat
bove three scalar equations (1.3), (1.5) and (1.7), results on their integrability, rela
en them as well as to other known equations, and also various generalisations thereof, c
in [3]—[21]. In particular, the Miura transformation from (1.5) to (1.7), and the comp
transformation from (1.3) to (1.7), can be found for example in [13, 18]. We recall th

he integrability of scalar lattices is shown by constructing Miura transformations to kn
able cases. For example, the existence of a Miura transformation from (a generalisatio
to the integrable Volterra equation (1.7) is used to prove the integrability of the former.
ne aim of the present paper is to consider to what extent it is possible to extend the a
of transformations for the scalar autonomous lattice (1.3) to the matrix case (1.2). Her

tive is two-fold: to establish the integrability of (1.2) by extending the mapping (1.4) t
case; and to obtain matrix generalisations of equation (1.7) and the mapping (1.8). A se
to consider asymptotic reductions of autonomous matrix lattices to matrix PDEs. T
are considered in Section 2. In Section 3 we turn our attention to the nonautonomous m
(1.1), and study the possible extension of the above chain of transformations to this ca

he same two-fold objective as in the autonomous case — as well as the asymptotic redu
nautonomous matrix lattices to matrix PDEs, and the derivation of autonomous lattic
ng cases of nonautonomous lattices. We also briefly consider results in the nonautononm
case. In each of sections 2 and 3 a variety of new results are presented. The final secti
per consists of a discussion and conclusions.

e autonomous matrix lattice

ntegrability of the autonomous matrix lattice
e start by considering the autonomous matrix equation (1.2), that is

Un,t = 2(Un+1 − Un−1)−1.

be shown that solutions of this equation are mapped by the transformation

W = (U − U )−1,
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n n+1 n−1

utions of the equation
Wn,t = −2Wn(Wn+1 −Wn−1)Wn. (2.3)
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As with the scalar case (1.6), we may regard the system

Wn = (Un+1 − Un−1)−1, Un,t = 2Wn, (2.4)

as a B fined
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T between equations (2.1) and (2.3). Let the shift (E) and difference (∆) operators be de

E fn = fn+1, ∆ = E − E−1,

fn = fn+k for any integer k and ∆ fn = fn+1 − fn−1. The matrix equation (2.3) has the Lax

Eφn = Fnφn, φn,t = Gnφn,

Fn =

(
2λW−1

n I
−I 0

)
, Gn = −4λ

(
λI Wn

−Wn−1 −λI

)
,

is the identity matrix. The compatibility condition of the system (2.6),

0 = Fn,t + FnGn −Gn+1Fn,

he definitions (2.7), yields (2.3). Thus equation (2.3) is integrable, and we may deduce
classifications of scalar autonomous lattice equations in [18] — that equation (2.1) is

able since it is related to (2.3) by the Miura-type transformation (2.2). We note that (2.3
l case of the Jordan-algebraic multi-component generalisations of (1.5) given in [13] a
heir Lax pairs, and that the Lax pair (2.6), (2.7) readily gives that for the scalar case (
te in addition that equation (2.3) can be found in [20] (see also references therein).
e Miura map (2.2) from (2.1) to (2.3) is a matrix version of (1.4) from (1.3) to (1.5). I

ection we turn to the question of matrix generalisations of (1.7) and (1.8): we are unawa
rix version of the Miura map (1.8), even though it is straightforward to write down a pos

version of (1.7). We note the remark made in [13] that (1.8) is an example of a s
ormation which is lacking in the multi-component case, and that (1.7) does not have na
component analogs corresponding to Jordan algebraic structures.

atrix Volterra systems
t us now consider this question of generalising the transformation (1.8) in order to o
ping from solutions of (2.3) to solutions of a matrix analog of the Volterra equation (
ver, this process is complicated by the noncommutativity of matrix multiplication, an
straightforward matrix generalisation of (1.7) need not in fact be our sought-after m
g of (1.7). We define the two products

Yn = WnWn+1, Zn = Wn+1Wn,

imply

Yn,t = − 2(YnZn+1 − Zn−1Yn), (
Zn,t = − 2(Yn+1Zn − ZnYn−1). (

s, solutions of (2.3) are mapped to solutions of the system (2.10), (2.11). We note, how
the system (2.10), (2.11), the entries of the matrices Yn and Zn will be subject to constra
ample, if the entries of a k × k matrix Wn constitute a set of k2 independent function
-system (2.3) has k2 degrees of freedom, then the system (2.10), (2.11) will also ha
her than 2k2 — degrees of freedom, and so the entries of Yn and Zn will be subject
aints. Such restrictions on the dependent variables of the system (2.10), (2.11) are impo
understanding of its relationship to equation (2.3) under the transformation (2.9).
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s an example of the constraints that may be required, let us consider the case where

Wn =

(
an bn

0 cn

)
. (2.12)
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Equation (2.3) is then written
(
an,t bn,t

0 cn,t

)
= −2

(
a2

n∆an anbn∆an + ancn∆bn + bncn∆cn

0 c2
n∆cn

)
, (2.13)

where ute,
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the operator ∆ is defined as in (2.5). In general matrices of the form (2.12) do not comm
the matrices Yn = WnWn+1 and Zn = Wn+1Wn (2.9) are distinct: we have

Yn =

(
un yn

0 vn

)
, Zn =

(
un zn

0 vn

)
,

un = anan+1,
vn = cncn+1,

yn = anbn+1 + bncn+1,
zn = an+1bn + bn+1cn.

(

t the expressions for yn and zn are similar, in general yn , zn. So the transformation
the system (2.13) in the three variables (an(t), bn(t), cn(t)) to the system (2.10), (2.11) i
ariables (un(t), vn(t), yn(t), zn(t)), that is,

un,t = − 2un(un+1 − un−1), yn,t = − 2yn(vn+1 − un−1) − 2unzn+1 + 2vnzn−1, (
vn,t = − 2vn(vn+1 − vn−1), zn,t = − 2zn(un+1 − vn−1) − 2vnyn+1 + 2unyn−1. (

there must be a consistency condition between the four variables (un, vn, yn, zn). From (
hat

1yn = an+1anbn+1 + an+1bncn+1 = unbn+1 + cn+1(zn − bn+1cn) = bn+1(un − vn) + cn+1zn, (

cnyn = anbn+1cn + bncncn+1 = an(zn − an+1bn) + bnvn = anzn + bn(vn − un). (

us obtain

bn+1 =
an+1yn − cn+1zn

un − vn
, bn =

anzn − cnyn

un − vn
, bn+1 =

an+1zn+1 − cn+1yn+1

un+1 − vn+1
, (

the first two formulae are obtained from (2.17) and (2.18), and the third formula is a
second. Equating the two expressions for bn+1 gives

an+1

(
yn

un − vn
− zn+1

un+1 − vn+1

)
= cn+1

(
zn

un − vn
− yn+1

un+1 − vn+1

)
, (

an+1

cn+1
=

zn(un+1 − vn+1) − yn+1(un − vn)
yn(un+1 − vn+1) − zn+1(un − vn)

,
an

cn
=

zn−1(un − vn) − yn(un−1 − vn−1)
yn−1(un − vn) − zn(un−1 − vn−1)

, (

, as in (2.19), the second expression is a shift of the first. Taking the product of these
lae yields

un

vn
=

[zn(un+1 − vn+1) − yn+1(un − vn)][zn−1(un − vn) − yn(un−1 − vn−1)]
[yn(un+1 − vn+1) − zn+1(un − vn)][yn−1(un − vn) − zn(un−1 − vn−1)]

, (

is the required consistency condition on (un, vn, yn, zn). This constraint means that the sy
, vn, yn, zn), that is, (2.15)—(2.16), corresponding to (2.13) under the mapping (2.9), is in
dimensional. We note that the expression (2.22) has no explicit dependence on (an, bn,

e believe that the mapping (2.9) from equation (2.3) to the system (2.10), (2.11) is new
stem (2.10), (2.11) — along with any associated consistency conditions on the entries o
atrices Yn and Zn implied by the mapping (2.9) — that is our sought-after matrix anal
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In the following two subsections, we consider two special subcases of the mapping (2.9) and
stem (2.10), (2.11), defined in terms of properties of the solutions Wn of (2.3). We believe
general discussion of these two special subcases is also new.
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2.2.1. Symmetric Wn

If we assume that the matrices Wn are symmetric (that is, WT
n = Wn), then we find ZT

n = Yn,
since ZT

n = (Wn+1Wn)T = WT
n WT

n+1 = WnWn+1 = Yn. (Note, however, that the symmetry of Wn

does not imply that Y = W W is symmetric.) Using the relation Z = YT to replace Z in the
system

2.23)

since ill be
constr Wn

consti grees
of fre has
k(k + 2.23)
are im ation
Yn =

2.2.2.
Le = Yn

and e

2.24)

and
2.25)

respec also
comm

2.26)

from
W ation

(2.25)

2.27)

and so with
YT

n in se of
which pair
for th tions
of the in).

Fr ecial
case i ving
the pr that
althou ch a
constr . For
the co te, a
Lax p s of
lattice n+1.

A
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n n n+1 n n n

(2.10), (2.11) yields the single equation

Yn,t = −2(YnYT
n+1 − YT

n−1Yn), (

(2.11) becomes the transpose of (2.10). We note once again, however, that there w
aints on the entries of Yn. For example, if the entries of a k × k symmetric matrix
tute a set of k(k + 1)/2 independent functions, so the W-system (2.3) has k(k + 1)/2 de
edom, then the entries of Yn will be subject to constraints so that equation (2.23) also
1)/2 degrees of freedom. Such restrictions on the dependent variables of equation (
portant for an understanding of its relationship to equation (2.3) via the transform

WnWn+1.

Commuting Wn

t us assume that for all integers n and m, the matrices Wn and Wm commute. Then Zn

quations (2.10) and (2.11) give rise to

Yn,t = −2(YnYn+1 − Yn−1Yn), (

Yn,t = −2(Yn+1Yn − YnYn−1), (

tively. However, since if all matrices Wn, Wm commute then all matrices Yn, Ym must
ute, we obtain in fact the single equation

Yn,t = −2Yn(Yn+1 − Yn−1), (

both (2.24) and (2.25).
e remark that for any matrix Yn, that is, whether or not all Yn and Ym commute, equ
has the Lax pair (see equations (2.6) and (2.8))

Eφn =

(
I Yn

λ−1I 0

)
φn, φn,t = 2

(−Yn λYn

I −Yn−1 − λI

)
φn, (

is integrable. A Lax pair for (2.24), again for any matrix Yn, is given by replacing Yn

(2.27) (since this will have as compatibility condition equation (2.25) in YT
n , the transpo

then gives equation (2.24)). The Lax pair (2.27) readily reduces to the well-known Lax
e scalar Volterra equation (1.7). Equations (2.24) and (2.25) are known matrix generalisa
Volterra equation (1.7), and can be found for example in [20] (see also references there
om the above we see that we also have a Lax pair for the special case (2.26). This sp
s the equation satisfied by the combination Yn = WnWn+1 of solutions Wn of (2.3) ha
operty that for all integers n and m the matrices Wn and Wm commute. We remark
gh all such solutions Yn of (2.26) also have the property that all Yn, Ym commute, su
uction still allows us to obtain nontrivial integrable coupled systems of lattice equations
rresponding special case of (2.3), with solutions Wn such that any Wn and Wm commu
air is provided by equations (2.6) and (2.7). This then yields integrable coupled system
equations related to those given by (2.26) by transformations obtained from Yn = WnW

s an example let us consider the special case of 2 × 2 matrices,
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Wn =

(
an bn

cn dn

)
. (2.28)
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The commutativity condition WnWn+1 = Wn+1Wn gives rise to the equations

bncn+1 = bn+1cn, anbn+1 + bndn+1 = an+1bn + bn+1dn, cnan+1 + dncn+1 = cn+1an + dn+1cn. (2.29)

U case
cn = b us to

2.30)

where ssion
of the on in
(2.29)

2.31)

which ond,
and th

W d Ym

also c

2.32)

where
2.33)

Equat

2.34)

This a

2.35)

where

2.36)

and

2.37)

respec both
consta ation
of (2. f the
coupl stem
in (an each
of the

W

Ellipt

Journal Pre-proof
p to transposition (note that Wn →WT
n is a symmetry of (2.3)), and excluding the trivial

n = 0 which gives Wn diagonal and leads to uncoupled systems, equations (2.29) lead

Wn =

(
an bn

Kbn an + Mbn

)
, (

K and M are arbitrary functions of t (in Appendix A we undertake a further discu
derivation of commuting matrices). We may obtain (2.30) by writing the first equati
as

(E − 1)
(

cn

bn

)
= 0, (

gives cn/bn = K and so cn = Kbn. The third equation in (2.29) then reduces to the sec
is second we solve similarly to the first to obtain dn − an = Mbn.
e note that if Wn is of the form (2.30), then all Wn and Wm commute, and so all Yn an
ommute (where Yn is given by Yn = WnWn+1). We also note that Yn is then given by

Yn =

(
rn sn

Ksn rn + Msn

)
, (

rn = anan+1 + Kbnbn+1, sn = anbn+1 + an+1bn + Mbnbn+1. (

ion (2.3) may then be written as

Wn,t = −2W2
n(Wn+1 −Wn−1). (

nd equation (2.26), which, using the operator ∆ introduced in (2.5), we rewrite as

Wn,t = −2W2
n∆Wn and Yn,t = −2Yn∆Yn, (

Wn and Yn are given by (2.30) and (2.32), then give the coupled systems

an,t = − 2(a2
n + Kb2

n)∆an − 2K(2anbn + Mb2
n)∆bn,

bn,t = − 2(a2
n + Kb2

n)∆bn − 2(2anbn + Mb2
n)(∆an + M∆bn), (

rn,t = − 2rn∆rn − 2Ksn∆sn,

sn,t = − 2rn∆sn − 2sn∆rn − 2Msn∆sn, (

tively. In the above coupled systems in (an(t), bn(t)) and (rn(t), sn(t)), K and M are now
nt, as is required by the consistency of each of the entries of the second row in each equ

35). Equation (2.33) maps solutions of the coupled system in (an(t), bn(t)) to solutions o
ed system in (rn(t), sn(t)). Since (2.6), (2.7) provides us with a Lax pair for the coupled sy
(t), bn(t)), and (2.27) provides us with a Lax pair for the coupled system in (rn(t), sn(t)),
se coupled systems is integrable.
e may recover standard examples of commutative 2 × 2 matrices as follows:
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ic/complex case. We set K = −1 and M = 0 to obtain

Wn =

(
an bn

−bn an

)
, Yn =

(
rn sn

−sn rn

)
, (2.38)
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with the corresponding systems of equations in (an, bn) and (rn, sn), being given by

an,t = 2(b2
n − a2

n)∆an + 4anbn∆bn, bn,t = 2(b2
n − a2

n)∆bn − 4anbn∆an,

rn,t = − 2rn∆rn + 2sn∆sn, sn,t = − 2rn∆sn − 2sn∆rn.

These pairs
of var nbn+1

and s

Dual/

2.39)

with t

2.40)

and th bn.

Hyper

2.41)

with t

These vari-
ables and
sn = a

A gen

2.42)

The c

2.43)

2.44)

With

2.45)

and c

2.46)

The tr

2.47)

follow

Fo

Journal Pre-proof
are several special cases of (2.36) and (2.37), with the transformation between these
iables being given by the corresponding special case of (2.33), that is, rn = anan+1 − b

n = anbn+1 + an+1bn.

shear case. We set K = 0 and M = 0 to obtain

Wn =

(
an bn

0 an

)
, Yn =

(
rn sn

0 rn

)
, (

he corresponding systems of equations in (an, bn) and (rn, sn) being given by

an,t = − 2a2
n∆an, bn,t = − 2a2

n∆bn − 4anbn∆an,

rn,t = − 2rn∆rn, sn,t = − 2sn∆rn − 2rn∆sn, (

e transformation between these pairs of variables by rn = anan+1 and sn = anbn+1 + an+1

bolic/cyclic case. We set K = 1, M = 0, to obtain

Wn =

(
an bn

bn an

)
, Yn =

(
rn sn

sn rn

)
, (

he corresponding systems of equations in (an, bn) and (rn, sn), being given by

an,t = − 2(a2
n + b2

n)∆an − 4anbn∆bn, bn,t = − 2(a2
n + b2

n)∆bn − 4anbn∆an,

rn,t = − 2rn∆rn − 2sn∆sn, sn,t = − 2rn∆sn − 2sn∆rn.

are special cases of (2.36) and (2.37), with the transformation between these pairs of
being given by the corresponding special case of (2.33), that is, rn = anan+1 + bnbn+1

nbn+1 + an+1bn.

eralised hyperbolic case. We set K = 1, M = −2, an = en + fn and bn = fn to obtain

W =

(
en + fn fn

fn en − fn

)
. (

orresponding system of equations in en and fn is

en,t = − 2(e2
n + 2 f 2

n )∆en − 8en fn∆ fn, (

fn,t = − 4en fn∆en − 2(e2
n + 2 f 2

n )∆ fn. (

rn = yn + zn and sn = zn we obtain

Yn =

(
yn + zn zn

zn yn − zn

)
, (

orresponding system of equations

yn,t = −2yn∆yn − 4zn∆zn, zn,t = −2zn∆yn − 2yn∆zn. (

ansformation between (en, fn) and (yn, zn), namely

yn = enen+1 + 2 fn fn+1, zn = en fn+1 + en+1 fn, (

Jo
ur
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l P
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ro
of
s from that between (an, bn) and (rn, sn), that is, (2.33).

r a discussion of higher-dimensional commuting matrices, see Appendix A.
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2.3. Asymptotic reduction of the autonomous U-equation to matrix potential KdV
We consider the matrix autonomous equation (2.1), which we write as

2I = U ∆U = U (t) [ U (t) − U (t) ] . (2.48)

We u (y),
corres

2.49)

Here . For
these f U j.
The s

2.50)

Expan

2.51)

Befor ntro-
duce

2.52)

so tha

2.53)

Ex

2.54)

hence

2.55)

where plic-
ity, an = kI,
so tha

2.3.1.
Th

2.56)

from

2.57)

From
highe
also U

Journal Pre-proof
n,t n n,t n+1 n−1

se asymptotic techniques to approximate long waves introducing a long spatial scale
ponding to large values of n, that is, n = O(h−1) with h � 1, and a fast timescale (τ) via

y = hn, τ = hσt, U(x, t) = Ũ(y, τ) = U0(y, τ) + h2U1(y, τ) + h4U2(y, τ) . . . . (

we have expanded the long-wave solution (U) as a power series in the small parameter h
asymptotic calculations, we make no assumptions about commutativity or symmetry o
patial difference of f (n) = f̂ (y) is expanded in terms of derivatives

∆ f (n) = f̂ (y + h) − f̂ (y − h) = 2h f̂ ′(y) + 2
6h3 f̂ ′′′(y) + . . . (

ding all quantites in (2.48), we find

2I = 2hσ+1
(
U0,τ + h2U1,τ + h4U2,τ + . . .

) (
U0,y + h2U1,y + h4U2,y

+1
6h2U0,yyy + 1

6h4U1,yyy + 1
120h4U0,yyyyy + . . .

)
. (

e equating terms of equal order in h, we transform to a moving coordinate frame and i
a new longer timescale via

z = y − cτ, T = h2τ, ∂y = ∂z, ∂τ = ∂τ − c∂z + h2∂T , (

t (2.51) becomes

I =hσ+1
(
U0,τ − cU0,z + h2U0,T + h2U1,τ − ch2U1,z + h4U1,T + h4U2,τ − ch4U2,z + . . .

)

×
(
U0,z + h2U1,z + h4U2,z + 1

6h2U0,zzz + 1
6h4U1,zzz + 1

120h4U0,zzzzz + . . .
)
. (

panding and equating leading order terms, we find

I = h1+σ(U0,τ − cU0,z)U0,z, (

we assign σ = −1 and choose

U0 = zK + τM + L(T ), M = cK + K−1, (

K is an arbitrary constant matrix, and L(T ) is an arbitrary matrix function of T . For sim
d to obtain the most general form of solution for the higher order term U1, we take K
t M = (ck + k−1)I.

First correction terms
e first correction terms from (2.53) imply

0 = (U0,τ − cU0,z)(U1,z + 1
6U0,zzz) + (U0,T + U1,τ − cU1,z)U0,z, (

which, using the leading order solution (2.55), we find

0 = k−2U1,z + L′(T ) + U1,τ − cU1,z. (
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this equation, we determine the speed of the wave, c, leaving U1 to be determined from
r order equations. We assume L′(T ) = 0 so there is no evolution of U0 on the long timescale;

1,τ = 0, so that U1 has no τ-dependence. Then, from the coefficients of U1,z, we find c = k−2.
8



2.3.2. Second correction terms
The second correction terms in (2.53) yield

0 = (U0,τ − cU0,z)(U2,z + 1U1,zzz + 1 U0,zzzzz) + (U2,τ − cU2,z + U1,T )U0,z

2.58)

using

2.59)

where f the
poten tions
on U1

2.4. A
To ame-

ter, h

2.60)

Using

2.61)

At lea
U

2.62)

which
2.63)

In the then
diago

Th

2.64)

which

2.65)

a wel s any
specia

3. Th

In s are
analo show
how t
and a

Journal Pre-proof
6 120

+ (U1,τ − cU1,z + U0,T )(U1,z + 1
6U0,zzz); (

the formulae (2.55) for U0, this simplifies to

0 = 1
6U1,zzz − k−1U2

1,z + k2U1,T , (

we have assumed no dependence of U2 on τ. This last equation is the matrix form o
tial KdV equation; U1,z satisfies the matrix KdV equation. Here there are no other restric
: it may be asymmetric and we have not imposed any commutativity properties.

symptotic reduction of the autonomous W-equation to matrix KdV
consider the small amplitude behaviour of solutions of (2.3), we introduce a small par
� 1, writing

Wn(t) = W̃0(z,T ) + h2W̃1(z,T ) + h4W̃2(z,T ) + . . . . (

the same notation as in (2.50) and (2.52), we obtain

(cW̃0,z − h2W̃0,T + ch2W̃1,z − h4W̃1,T + ch4W̃2,z + . . .)

= 4(W̃0 + h2W̃1 + h4W̃2 + . . .)(W̃0,z + 1
6h2W̃0,zzz + 1

120h4W̃0,zzzzz

+ h2W̃1,z + 1
6h4W̃1,zzz + h4W̃2,z + . . .)(W̃0 + h2W̃1 + h4W̃2 + . . .). (

ding order, we find cW̃0,z = 4W̃0W̃0,zW̃0, which has the solution W̃0 = K(T ).
sing W̃0 = K(T ), the first correction terms give

(cW̃1,z − W̃0,T ) = 4W̃0W̃1,zW̃0, (

simplifies to
cW̃1,z −K′(T ) = 4K(T )W̃1,zK(T ). (

case K(T ) = kI we have c = 4k2, and this equation is trivially satisfied. Since W̃0 is
nal, it commutes with any other matrix.
e second correction terms give

(cW̃2,z − W̃1,T ) = 4W̃0(W̃2,z + 1
6W̃1,zzz)W̃0 + 4W̃0W̃1,zW̃1 + 4W̃1W̃1,zW̃0. (

, with W̃0 = K(T ) = kI and W2 = 0, simplifies to the matrix KdV equation

0 = W̃1,T + 2
3k2W̃1,zzz + 4kW̃1,zW̃1 + 4kW̃1W̃1,z, (

l-known integrable equation. Here there is no assumption that W̃1 is symmetric or ha
l properties to allow commutativity with other matrices.

e nonautonomous matrix lattice

this section we give results for the nonautonomous matrix lattice (1.1). These result
gous to those given in the previous section for the autonomous case. In addition, we
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of
he autonomous case may be derived from the nonautonomous case via a limiting process,
lso briefly discuss results for the scalar case of the nonautonomous lattice.
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3.1. Integrability of the nonautonomous matrix lattice
Let us consider the nonautonomous matrix equation (1.1), that is

Un,t = (2n − 1)(Un+1 − Un−1)−1. (3.1)

Soluti

(3.2)

to sol

(3.3)

We m

(3.4)

as a B (see
equat

(3.5)

where le, as
it is re

3.2. T
In

(3.6)

relate

(3.7)

to the

(3.8)

In add
(3.9)

maps

3.10)

This e β0 =

2 and , 16].
We no ulti-
comp pair
(3.5) ous
equat later
subse .

W (see
also [ to be
new. W ) via
the tra ions;
we no o the
matrix once
again
of the
multi-

Journal Pre-proof
ons of this equation are mapped by the transformation

Wn = (Un+1 − Un−1)−1,

utions of the equation

Wn,t = −Wn [ (2n + 1)Wn+1 − (2n − 3)Wn−1 ] Wn.

ay alternatively regard the system

Wn = (Un+1 − Un−1)−1, Un,t = (2n − 1)Wn,

T between equations (3.1) and (3.3). Equation (3.3) has the nonisospectral Lax pair
ions (2.6) and (2.8)),

Eφn =

(
2λ(t)W−1

n I
−I 0

)
φn, φn,t = 2λ(t)

(−2(n − 1)λ(t)I (1 − 2n)Wn

(2n − 3)Wn−1 2(n − 1)λ(t)I

)
φn,

λ(t) satisfies λt(t) = −4λ(t)3, and so is integrable. Thus equation (3.1) is also integrab
lated to (3.3) via the Miura-type transformation (3.2).

he scalar case
the scalar case we obtain the nonautonomous equation

un,t =
2n − 1

un+1 − un−1
,

d by the transformation

wn =
1

un+1 − un−1
,

nonautonomous equation

wn,t = −w2
n [ (2n + 1)wn+1 − (2n − 3)wn−1 ] .

ition, the transformation
yn = wnwn+1,

solutions of (3.8) to solutions of the nonautonomous Volterra equation

yn,t = yn
[
(2n − 3)yn−1 − (2n + 3)yn+1 − 2yn

]
. (

quation and its nonisospectral Lax pair can be found in [17] (equation (67) with α1 = 1,
β1 = 0); nonisospectral Volterra flows have also been discussed for example in [8, 14
te that the nonautonomous matrix lattice (3.3) is a special case of Jordan-algebraic m

onent generalisations of (3.8) given in [13] along with their Lax pairs, and that the Lax
readily gives that for the scalar case (3.8). Moreover, the limiting process to autonom
ions, and the asymptotic reductions of (3.1) and (3.3) to matrix PDEs, as discussed in
ctions, also readily give corresponding results for the case of scalar dependent variables
e believe the matrix and scalar nonautonomous equations (3.1) and (3.6) derived in [1]
2]), and their relation to (3.3) and (3.8) under the mappings (3.2) and (3.7) respectively,

e also believe the relation between the scalar nonautonomous equations (3.8) and (3.10
nsformation (3.9) to be new. This mapping relies on the commutativity of scalar funct
w turn to the question of generalising the transformation (3.9) and equation (3.10) t
case, where (in general) multiplication is noncommutative. At this point we recall

Jo
ur

na
l P

re
-p

ro
of
the remark made in [13], albeit in the autonomous case, that a multi-component version
transformation (3.9) is lacking, and that the scalar equation in yn does not have natural

component analogs corresponding to Jordan algebraic structures.
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3.3. Nonautonomous matrix Volterra systems
In order to address the question spelt out above, we proceed as in the autonomous case. We

use the definitions (2.9), namely Yn = WnWn+1, Zn = Wn+1Wn, which imply

3.11)

3.12)

That case,
the m tions
on the of its
relatio such
consis sults
to be s of
prope

3.3.1.
If e the

system

3.13)

since , that
there ding
of the

3.3.2.
In rices

Wn an

3.14)

3.15)

respec n the
single

3.16)

from
Le

Eφn = I

)
φn,

3.17)
where ity of
any m

3.18)
3.19)

which

3.20)

where
believ

Journal Pre-proof
Yn,t =(2n − 3)Zn−1Yn − (2n + 3)YnZn+1 − 2Y2
n, (

Zn,t =(2n − 3)ZnYn−1 − (2n + 3)Yn+1Zn − 2Z2
n. (

is, solutions of (3.3) are mapped to solutions of (3.11), (3.12). As in the autonomous
apping (2.9) implies constraints on the entries of the matrices Yn and Zn. Such restric

dependent variables of the system (3.11), (3.12) are important for an understanding
nship to equation (3.3) under the mapping (2.9). It is this system, along with any
tency conditions, that is our sought-after matrix analog of (3.10). We believe these re
new. We now consider, as in the autonomous case, two special cases defined in term
rties of the solutions Wn of (3.3).

Symmetric Wn

Wn is symmetric, then from (2.9) we have ZT
n = WT

n WT
n+1 = WnWn+1 = Yn, henc

(3.11), (3.12) yields the single equation

Yn,t = (2n − 3)YT
n−1Yn − (2n + 3)YnYT

n+1 − 2Y2
n, (

(3.12) becomes the transpose of (3.11). We note once again, as in the autonomous case
will be constraints on the entries of Yn, such restrictions being important for an understan
relationship of (3.13) to (3.3) via the transformation Yn = WnWn+1.

Commuting Wn

the case of commuting matrices Wn, that is, such that for all integers n and m the mat
d Wm commute, then Zn = Yn and equations (3.11) and (3.12) yield

Yn,t =(2n − 3)Yn−1Yn − (2n + 3)YnYn+1 − 2Y2
n, (

Yn,t =(2n − 3)YnYn−1 − (2n + 3)Yn+1Yn − 2Y2
n, (

tively. Since if all matrices Wn, Wm commute then so do all matrices Yn, Ym, we obtai
equation

Yn,t = Yn [ (2n − 3)Yn−1 − (2n + 3)Yn+1 − 2Yn ] , (

(3.14) and (3.15).
t us now consider the nonisospectral Lax pair (see equations (2.6) and (2.8))
(

I Yn

λ(t)−1I 0

)
φn, φn,t =

(−(2n − 1)Yn − 2Xn (2n + 1)λ(t)Yn

(2n − 1)I −(2n − 3)Yn−1 − 2Xn−1 − (2n + 1)λ(t)
(

λ(t) satisfies λt(t) = 2λt(t)2, but where no assumptions are made about the commutativ
atrices Yn, Ym, Xn, Xm. The compatibility condition of this Lax pair yields the system

Yn,t = (2n − 3)YnYn−1 − (2n + 1)Yn+1Yn + 2 (YnXn−1 − Xn+1Yn) , (
Xn+1 − Xn = Yn+1, (

is therefore integrable. This system can be written alternatively as

Yn,t = (2n − 3)YnYn−1 − (2n + 3)Yn+1Yn − 2Y2
n + 2 [Yn,Xn] , (

Jo
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Xn+1 − Xn = Yn+1, (3.21)

the last term on the right-hand-side of (3.20) is (twice) the commutator of Yn and Xn. We
e the matrix system (3.20), (3.21) and its nonisospectral Lax pair (3.17) to be new.
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In the special case where, for all integers n and m, all matrices Yn, Ym, Xn and Xm commute, the
above result gives a Lax pair for equation (3.16) (along with equation (3.21) to be satisfied by the
potential Xn). This special case (3.16) is the equation satisfied by the combination Yn = WnWn+1

of solutions W of (3.3) having the property that all matrices W and W commute. We remark
that ev e, we
are st ions.
For th ute,
which

3.22)

a Lax ous
lattice n+1.

In pair
for (2 ous
case, give
Lax p ative
gener e the
nonco

3.23)
3.24)

(note g Yn

and X T
n as

comp rk in
passin

3.25)

where
A s in

the au 3.22)
and (3

an, ],

bn, ]
3.26)

and

3.27)

respec n, sn)
are re able:
(3.5) m in
(rn, sn

3.28)

Th , zn),
corres
hyper
be fou

Journal Pre-proof
n n m

en though all such soluctions Yn of (3.16) have the property that all Yn and Ym commut
ill able to obtain nontrivial integrable coupled systems of nonautonomous lattice equat
e corresponding special case of (3.3), with solutions Wn such that all Wn and Wm comm
we may write as

Wn,t = −W2
n [ (2n + 1)Wn+1 − (2n − 3)Wn−1 ] , (

pair is provided by (3.5). This then yields integrable coupled systems of nonautonom
equations related to those given by (3.16) by transformations obtained from Yn = WnW
the autonomous case, whether or not all Yn and Ym commute, we were able to give a Lax
.25) (and for (2.24), equivalent to (2.25) under Yn → YT

n ). However, in the nonautonom
without making the additional assumption that all Yn and Ym commute, we are unable to
airs for equations (3.14) and (3.15). Whereas in the autonomous case, the noncommut
alisation of (2.26) is the similar-looking (2.25) (or (2.24)), in the nonautonomous cas
mmutative generalisation of (3.16) is the system (3.20), (3.21), or the equivalent system

Yn,t = (2n − 3)Yn−1Yn − (2n + 3)YnYn+1 − 2Y2
n − 2 [Yn,Xn] , (

Xn+1 − Xn = Yn+1, (

the sign of the last term of (3.23)). A Lax pair for (3.23), (3.24) is given by replacin
n in (3.17) by YT

n and XT
n , since this will then have the system (3.20), (3.21) in YT

n and X
atibility condition, the transpose of which then gives the system (3.23), (3.24). We rema
g that the solution Xn of (3.21), or (3.24), may be expressed nonlocally as

Xn = Γ(t) +

n∑

j=−∞
Y j, (

Γ(t) is an arbitrary matrix function of t.
s an example, we consider once again the special case of commuting 2 × 2 matrices. A
tonomous case, we obtain the expressions (2.30) and (2.32) for Wn and Yn. Equations (
.16) then give rise to the systems

t = − (a2
n+Kb2

n)[(2n+1)an+1 − (2n−3)an−1] − Kbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1

t = − (a2
n+Kb2

n)[(2n+1)bn+1 − (2n−3)bn−1] − bn(2an+Mbn)[(2n + 1)an+1 − (2n − 3)an−1

− Mbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1], (

rn,t = rn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn] + Ksn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn],
sn,t = rn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn] + sn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn]

+ Msn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn], (

tively where K and M are arbitrary constants. Here the pairs of variables (an, bn) and (r
lated by (2.33) (obtained from Yn = WnWn+1). Each of the above two systems is integr
gives us a Lax pair for the system in (an, bn), and (3.17) gives us a Lax pair for the syste
). We note that in this commutative case, we may take Γ(t) in (3.25) to be given by

Γ(t) =

(
r(t) s(t)

Ks(t) r(t) + Ms(t)

)
. (

e systems of nonautonomous lattice equations in (an, bn) and (rn, sn), or (en, fn) and (yn
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ur

na
l P

re
-p

ro
of
ponding to standard examples of commutative 2 × 2 matrices (elliptic/complex, dual/shear,
bolic/cyclic, generalised hyperbolic), as considered previously in the autonomous case, can
nd in Appendix B.
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3.4. Autonomous limits
Let us consider how to obtain (1.2), (2.3) and the system (2.10), (2.11) as autonomous limits

of (3.1), (3.3) and the system (3.11), (3.12), respectively.
If

3.29)

for an

3.30)

In far

3.31)

that is
Si

3.32)

for an

3.33)

which

3.34)

that is
Fi

3.35)

for an

3.36)

3.37)

When

3.38)

3.39)

that is

3.5. A
W

Journal Pre-proof
we write
Un = U(n, t) =

√
p Û(m, t), n = m + p, (

y given p ∈ N, then we obtain from (3.1) a lattice equation in Ûm = Û(m, t), given by

Ûm,t =

(
2m − 1

p
+ 2

) (
Ûm+1 − Ûm−1

)−1
. (

-field limit when p→ ∞ this then yields

Ûm,t = 2
(
Ûm+1 − Ûm−1

)−1
, (

, the autonomous lattice (1.2).
milarly, defining Ŵm = Ŵ(m, t) via

Wn = W(n, t) =
1√
p

Ŵ(m, t), n = m + p, (

y given p ∈ N, we obtain from (3.3) the equation

Ŵm,t = −Ŵm

[(
2m + 1

p
+ 2

)
Ŵm+1 −

(
2m − 3

p
+ 2

)
Ŵm−1

]
Ŵm, (

, in the far-field limit p→ ∞ then gives

Ŵm,t = −2Ŵm

(
Ŵm+1 − Ŵm−1

)
Ŵm, (

, the autonomous lattice (2.3).
nally, defining Ŷm = Ŷ(m, t) and Ẑm = Ẑ(m, t) by

Yn = Y(n, t) =
1
p

Ŷ(m, t), Zn = Z(n, t) =
1
p

Ẑ(m, t), n = m + p, (

y given p ∈ N, we obtain from (3.11) and (3.12) the system

Ŷm,t =

(
2m − 3

p
+ 2

)
Ẑm−1Ŷm −

(
2m + 3

p
+ 2

)
ŶmẐm+1 − 2

p
Ŷ2

m, (

Ẑm,t =

(
2m − 3

p
+ 2

)
ẐmŶm−1 −

(
2m + 3

p
+ 2

)
Ŷm+1Ẑm − 2

p
Ẑ2

m. (

p→ ∞ this system becomes

Ŷm,t = 2Ẑm−1Ŷm − 2ŶmẐm+1, (

Ẑm,t = 2ẐmŶm−1 − 2Ŷm+1Ẑm, (

, the automomous system (2.10), (2.11).

symptotic reduction of the nonautonomous U-equation to matrix potential KdV
e return to the non-autonomous differential-difference equation
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(2n − 1)I = Un,t ∆Un, (3.40)
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which was previously studied in [2]. We start by transforming the independent variable n via
2n− 1 = 2x so that the equation has a more symmetric form 2xI = Ut∆U, where now U = U(x, t).
We then apply the same far-field expansion of this equation as in [2], by defining

3.41)

The in

3.42)

thus w
W r dy-

namic

3.43)

where
Th

3.44)

We as
Ex

3.45)
3.46)

3.47)

Solvin

3.48)

where rality
of sol

U

3.49)

Our a Thus
we de

3.50)

C nd

3.51)

which

3.52)

This e n be
remov

3.53)

to lea

Journal Pre-proof
x = ah−5 + h−1y, τ = hσt, Un(t) = U0(y, τ) + h2U1(y, τ) + h4U2(y, τ) + . . . (

itial expansion of this leads to

2h−5(a + h4y) = 2hσ+1(U0,τ + h2U1,τ + h4U2,τ + . . .)
(
U0,y + h2U1,y + h4U2,y + 1

6h2U0,yyy

+1
6h4U1,yyy + 1

120h4U0,yyyyy + . . .
)
, (

e choose σ = −6.
e now introduce a long timescale (T ) at the same time assuming that the leading orde
s are governed by a travelling wave; thus we define

z = y − acτ, T = h2τ, ∂τ = ∂τ − ac∂z + h2∂T , y = z + h−2acT, (

h � 1 is a small parameter, c is a wavespeed that will be determined later.
e expansion (3.42) thus becomes

(a + h4z + acTh2)I =
(
U0,τ − acU0,z + h2U0,T + h2U1,τ − h2acU1,z + h4U1,T + h4U2,τ

−h4acU2,z + . . .
) (

U0,z + h2U1,z + h4U2,z + 1
6h2U0,zzz

+1
6h4U1,zzz + 1

120h4U0,zzzzz + . . .
)
. (

sume that U1,U2 depend only on (z,T ) and not on τ.
panding (3.44) leads to a sequence of equations at successive powers of h, namely

aI = (U0,τ − acU0,z)U0,z, (
acT I = (U0,τ − acU0,z)(U1,z + 1

6U0,zzz) + (U0,T − acU1,z)U0,z, (
zI = (U0,τ − acU0,z)(U2,z + 1

6U1,zzz + 1
120U0,zzzzz)

+ (U0,T − acU1,z)(U1,z + 1
6U0,zzz) + (U1,T − acU2,z)U0,z. (

g the leading order terms gives

U0 = zK + τM + L(T ), M = acK + aK−1, (

K is an arbitrary constant matrix and L is an arbitrary function of T . To allow the gene
utions obtained at higher order, we take K = kI, then M = a(1 + ck2)I/k.
sing (3.48) to simplify (3.46), we find

acTk−1I = ak−2U1,z + L′(T ) − acU1,z. (

im here is to find the speed, c, leaving U1 to be determined by higher order equations.
fine

c = 1/k2, L′(T ) = ack−1T I, so that L(T ) = 1
2ack−1T 2I + C. (

onsidering now the next order terms, namely (3.47), and, using (3.48) to simplify, we fi

zkI = aU2,z + 1
6aU1,zzz + kL′(T )U1,z − ackU1,zU1,z + k2U1,T − ack2U2,z, (

can be simplified by using c = k−2 to give a perturbed matrix potential KdV equation

k2U1,T − ackU2
1,z + 1

6aU1,zzz = kzI − acTU1,z. (

quation has the form of a forced matrix potential KdV system. The forcing terms ca
ed by the transformation

U1(z,T ) =
zT
k

I +
1
ck

V(ξ, θ), ξ = z +
acT 2

2k2 , θ =
aT
6k2 , (
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ve the matrix potential KdV system

Vθ − 6V2
ξ + Vξξξ = 0. (3.54)
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3.6. Asymptotic reduction of the nonautonomous W-equation to matrix KdV
We outline asymptotic reduction of the nonautonomous differential-difference equation for Wn

to the matrix KdV equation. In

3.55)

we in , and
then e

3.56)

in the

3.57)

Takin

3.58)

We tr

3.59)

where used
below sume
W(x,

3.60)

Hence

3.61)

W

3.62)

We ta
A

W̃0,T 3.63)

which
3.64)

From nt, k,
W̃1(z,

A

W̃1,T

W̃0

3.65)

which

3.66)

using atrix
KdV

3.67)

by the

Journal Pre-proof
Wn,t = −Wn [ (2n + 1)Wn+1 − (2n − 3)Wn−1 ] Wn, (

troduce a shifted independent variable, x = n − 1
2 , to symmetrise the discrete difference

xpand

Wt(x, t) = −2W(x, t) [ (x + 1)W(x + 1, t) − (x − 1)W(x − 1, t) ] W(x, t), (

far field (x � 1), using the new variables given by

x = ah−5 + yh−1, t = h4τ, h � 1, W(x, t) = W̃(y, τ). (

g the continuum limit of (3.56), we find the first few terms, up to O(h4) as

W̃τ = −4W̃
[
aW̃y + 1

6ah2W̃yyy + 1
120h4W̃yyyyyy + h4yW̃y + h4W̃

]
W̃. (

ansform to a moving coordinate frame given by

z = y − cτ, T = h2τ, (

T is a long timescale. We assume that there is no τ-dependence in W̃0, W̃1 or W̃2

, so (y, τ) are replaced by (z,T ) via y = z + cT/h2, and ∂τ = −c∂z + h2∂T . We as
t) = W̃(y, τ) can be described by an asymptotic expansion of the form

W(x, t) = W̃(y, τ) = W̃0(z,T ) + h2W̃1(z,T ) + h4W̃2(z,T ) + . . . . (

(3.58) becomes, up to order O(h4)

h2W̃0,T − cW̃0,z + h4W̃1,T − ch2W̃1,z − ch4W̃2,z

= − 4[W̃0 + h2W̃1 + h4W̃2]
[
aW̃0,z + ah2W̃1,z + ah4W̃2,z + 1

6ah2W̃0,zzz + 1
6ah4W̃1,zzz

+ 1
120ah4W̃0,zzzzz + h4(z + cTh−2)W̃0,z + cTh4W̃1,z + h4W̃0

]
[W̃0 + h2W̃1 + h4W̃2]. (

e now consider terms at each order of h, finding at leading order

−cW̃0,z = −4aW̃0W̃0,zW̃0. (

ke the solution W̃0,z = 0, which implies W̃0 = L(T ).
t next order, we find

− cW̃1,z = −4aW̃0W̃0,zW̃1 − 4aW̃1W̃0,zW̃0 − 4W̃0

[
aW̃1,z + 1

6aW̃0,zzz + cTW̃0,z

]
W̃0, (

simplifies to
L′(T ) − cW̃1,z = −4aW̃0W̃1,zW̃0. (

this equation we choose L′(T ) = 0, and then if W̃0 = L = kI for some arbitrary consta
T ) is arbitrary, with the speed c being given by c = 4ak2.

t the following order, from (3.61) we have

− cW̃2,z = − 4aW̃2W̃0,zW̃0 − 4aW̃0W̃0,zW̃2 − 4aW̃1W̃0,zW̃1

− 4W̃0

[
aW̃1,z + 1

6aW̃0,zzz + cTW̃0,z

]
W̃1 − 4W̃1

[
aW̃1,z + 1

6aW̃0,zzz + cTW̃0,z

]

− 4W̃0

[
aW̃2,z + 1

6aW̃1,zzz + cTW̃1,z + 1
120aW̃0,zzzzz + zW̃0,z + W̃0

]
W̃0, (

can be simplified to

W̃1,T = −4akW̃1,zW̃1 − 4akW̃1W̃1,z − 2
3ak2W̃1,zzz − 16ak4TW̃1,z − 4k3I, (

the leading order solution W̃0 = kI, with c = 4ak2. This has the form of a forced m
equation which can be mapped onto the standard matrix KdV equation

Vθ = 3(VVξ + VξV) + Vξξξ, (
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transformation

W̃1(z,T ) = −4k3T I + 1
2kV(ξ, θ), ξ = z + 8ak4T 2, θ = −2

3ak2T. (3.68)
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4. Conclusions

We have considered the matrix lattice equation Un,t(Un+1 − Un−1) = g(n)I, in both its au-
tonomous (g(n) = 2) and nonautonomous (g(n) = 2n − 1) forms. For each of these cases we have
prove Wn,
that is these
equat s, in
two m ill be
subjec Lax
pairs

Th rties
of the es of
Yn an mute
— wh pled
system Lax
pairs. any
size o h the
struct pled
system 1.7),
in the ation
(3.10) nent
system tivity
assum that
yields orth
noting d the
nonis ng to
one c .20),
(3.21) s for
multic

In ous
and n KdV
equat e au-
tonom atrix
lattice g for
exam e.

Ackn
Th sup-

portin

Appe

Appen
To n, let

us con

(A1)

The e Kb,
we ne f the
produ

Journal Pre-proof
d integrability by constructing a Miura map to a corresponding integrable equation in
, equations (2.3) and (3.3) respectively. We have also sought transformations from

ions in Wn to corresponding autonomous and nonautonomous matrix Volterra system
atrix dependent variables Yn and Zn. However, in general, the entries of Yn and Zn w
t to consistency conditions. Such constraints would seem difficult to embody in any

wherein the only dependent variables are matrices.
is then led us to consider special classes of matrices Yn and Zn defined in terms of prope
matrices Wn. The case of symmetric matrices Wn still requires constraints on the entri
d Zn to be taken into account. However, in the case where all matrices Wn, Wm com
ich implies that Zn = Yn and that all Yn, Ym also commute — we obtain integrable cou
s of autonomous and nonautonomous lattice equations, along with Miura maps and
Such coupled systems, Miura maps and Lax pairs can be obtained beginning with

f square matrix; here we have considered in detail the example of 2 × 2 matrices, wit
ure of commuting 3 × 3 matrices being explored in Appendix A. These integrable cou

s are multicomponent analogs of the scalar equation (1.5) and the Volterra equation (
autonomous case, and of the scalar equation (3.8) and the nonisospectral Volterra equ
, in the nonautonomous case. In the autonomous case, the Lax pairs for the multicompo
s are obtained from Lax pairs for matrix equations in Wn and Yn under a commuta

ption, and it is the link we obtain between these equations in commuting matrices
multicomponent Miura transformations. Similarly in the nonautonomous case. It is w
that in the nonautonomous case, even the relation between the scalar equation (3.8) an

ospectral Volterra equation (3.10) via the transformation (3.9) — that is, correspondi
omponent — seems to be new. Moreover, the nonisospectral matrix Volterra system (3

and its Lax pair — which under a commutativity assumption gives rise to Lax pair
omponent nonautonomous lattice equations of Volterra type — also appear to be new.
addition, we have considered asymptotic reductions to matrix PDEs. In both the autonom
onautonomous cases, the U-equation admits such a reduction to the matrix potential
ion, and the W-equation to the matrix KdV equation. Finally, we have shown how th
ous matrix lattice systems can be obtained as limiting cases of the nonautonomous m
systems. In future work, we will explore further the systems discussed here, includin

ple their connections with auntonomous and nonautonomous matrix lattices of Toda typ
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ndix A. General classes of commuting matrices

dix A.1. Commuting 2x2 matrices
construct the most general class of 2x2 matrices which commute under multiplicatio
sider (

a b
c d

) (
â b̂
ĉ d̂

)
=

(
â b̂
ĉ d̂

) (
a b
c d

)
.

lements on the leading diagonal imply b̂c = b̂c, or, equivalently, ĉ/̂b = c/b, thus if c =

cessarily have ĉ = Kb̂, with the same constant K. Similarly, the upper right element o
̂ ̂ ̂
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cts implies âb + bd = ab + bd, so we may set

d̂ − â

b̂
=

d − a
b

= M, (A2)
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for some constant M. It can be confirmed that the equation from the lower left element is auto-
matically satisfied. Thus the most general class of commuting 2x2 matrices is

(
a b

)
(A3)

where
W two

matric
(

a
Kb (A4)

This c ause
they a ttice
equat d lat-
tice e dent
variab .)

Appen
Fo iven

by

(A5)

where

k7 (A6)

O two
matric , b̂, ĉ
— ha

(A7)

where

(A8)

This c ause
they a ttice
equat f the
form

A

Journal Pre-proof
Kb a + Mb ,

a, b can be chosen freely and K, M are fixed.
e note that this class of matrices is closed under multiplication, that is, the product of
es of the form given in (A3) has this same form (see (2.32) and (2.33)):

b
a + Mb

) (
â b̂

Kb̂ â + Mb̂

)
=

(
(âa + Kb̂b) âb + b̂a + Mb̂b

K (̂ab + âb + Mb̂b) (âa + Kb̂b) + M(̂ab + âb + Mb̂b)

)
.

lass of matrices is also closed under linear combination. These facts are important bec
ssure the consistency of the coupled systems of autonomous and nonautonomous la

ions derived in Sections 2.2.2 and 3.3.2. (In fact, they assure consistency of the couple
quations derived from a matrix lattice equation, where the evolution of the matrix depen
le is polynomial in shifs of the same, when the matrices are assumed to be of this form

dix A.2. Commuting 3x3 matrices
llowing the same procedure, we obtain the general class of commuting 3x3 matrices g


a b c

k7b + k8c a + k4b + k5c k1b + k2c
k8b + k9c k5b + k6c a + k2b + k3c

 ,

a, b, c can be chosen freely, k j (1 ≤ j ≤ 6) are fixed, and k j (7 ≤ j ≤ 9) are given by

= k1(k5 − k3) + k2(k2 − k4), k8 = k6k1 − k5k2, k9 = k5(k5 − k3) + k6(k2 − k4).

nce again, this class of matrices is closed under multiplication, that is, the product of
es of the form given in (A5) — one given in terms of a, b, c and the second in terms of â

s this same form, given by


r s t
k7s + k8t r + k4s + k5t k1s + k2t
k8s + k9t k5s + k6t r + k2s + k3t

 ,

r = k7b̂b + k8(̂bc + b̂c) + k9ĉc + âa,

s = k4b̂b + k5(̂bc + b̂c) + k6ĉc + âb + âb,

t = k1b̂b + k2(̂bc + b̂c) + k3ĉc + âc + âc.

lass of matrices is also closed under linear combination. These facts are important bec
ssure the consistency of any coupled systems of autonomous and nonautonomous la

ions derived as explained in Sections 2.2.2 and 3.3.2 using 3x3 commuting matrices o
given in (A5).
second class of commuting 3x3 matrices is given by


a b k0b



Jo
ur

na
l P

re
-p

ro
of
k1b a + k2b k3b
k4b k5b a + k6b

 , (A9)
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where a, b can be chosen freely and k j (0 ≤ j ≤ 6) are fixed. However, in the general case,
matrices of this form are not closed under multiplication. They are closed under multiplication in
the special case where

k1 = k k6).
A10)

They cy of
any co ed in
Sectio

Appe

H orre-
spond ener-
alised hese
system

an, ],

bn, ]
(B1)

and

(B2)

Th tions
for (a

a

b (B3)

and

(B4)

In

(B5)

(B6)

Th

(B7)

and
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0k5(k0k5−k6)−k6(k2 + k0k5−k6) + k0k2k5, k3 = k0(k2 + k0k5−k6), k4 = k5(k0k5−
(

are also closed under linear combination. Thus in this special case (A10), the consisten
upled systems of autonomous and nonautonomous lattice equations derived as explain
ns 2.2.2 and 3.3.2 is assured.

ndix B. Examples of coupled systems in the nonautonomous case

ere we return to the nonautonomous systems (3.26) and (3.27), and quote the results c
ing to the standard examples — elliptic/complex, dual/shear, hyperbolic/cyclic, and g
hyperbolic — of commuting 2x2 matrices, as referred to at the end of Section 3.3.2. T
s are

t = − (a2
n+Kb2

n)[(2n+1)an+1 − (2n−3)an−1] − Kbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1

t = − (a2
n+Kb2

n)[(2n+1)bn+1 − (2n−3)bn−1] − bn(2an+Mbn)[(2n + 1)an+1 − (2n − 3)an−1

− Mbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1],

rn,t = rn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn] + Ksn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn],
sn,t = rn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn] + sn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn]

+ Msn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn].

e elliptic/complex case is given by M = 0, K = −1, which leads to the governing equa
n, bn), (rn, sn) as

n,t = − (a2
n − b2

n)[(2n + 1)an+1 − (2n − 3)an−1] + 2anbn[(2n + 1)bn+1 − (2n − 3)bn−1],

n,t = − (a2
n − b2

n)[(2n + 1)bn+1 − (2n − 3)bn−1] − 2anbn[(2n + 1)an+1 − (2n − 3)an−1],

rn,t = rn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn] + sn[(2n − 3)sn−1 − (2n + 3)sn+1 − 2sn],
sn,t = rn[(2n − 3)sn−1 − (2n + 3)sn+1 − 2sn] + sn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn].

the dual/shear case with K = M = 0, the systems for (an, bn), (rn, sn) are

an,t = − a2
n[(2n + 1)an+1 − (2n − 3)an−1],

bn,t = − a2
n[(2n + 1)bn+1 − (2n − 3)bn−1] − 2anbn[(2n + 1)an+1 − (2n − 3)an−1],

rn,t = rn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn],
sn,t = rn[(2n − 3)sn−1 − (2n + 3)sn+1 − 2sn] + sn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn].

e hyperbolic/cyclic case is given by K = 1, M = 0, which leads to

an,t = − (a2
n+b2

n)[(2n+1)an+1 − (2n−3)an−1] − 2anbn[(2n+1)bn+1 − (2n−3)bn−1],

bn,t = − (a2
n+b2

n)[(2n+1)bn+1 − (2n−3)bn−1] − 2anbn[(2n + 1)an+1 − (2n − 3)an−1],
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rn,t = rn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn] + sn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn],
sn,t = rn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn] + sn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn]. (B8)
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Our generalised hyperbolic case is given by K = 1, M = −2, with an = en + fn, bn = fn, which
leads to

en,t = − (e2
n + 2 f 2

n )[(2n + 1)en+1 − (2n − 3)en−1] − 4en fn[(2n + 1) fn+1 − (2n − 3) fn−1],

f (B9)

and, w
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