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Abstract

Snaking curves of homoclinic orbits have been found numerically in a number of ODE models from water wave theory and
structural mechanics. Along such a curve infinitely many fold bifurcation of homoclinic orbits occur. Thereby the corresponding
solutions spread out and develop more and more bumps (oscillations) about their own centre. A common feature of the examples
is that the systems under consideration are reversible.

In this paper it is shown that such a homoclinic snaking can be caused by a heteroclinic cycle between two equilibria, one
of which is a bi-focus. Using Lin’s method a snaking of 1-homoclinic orbits is proved to occur in an unfolding of such a cycle.
F

is detected
a uilibrium.
©

P

K

1

f

f

(

ely
ted
ical
ne-
nic
rve

of
at

0
d

urther dynamical consequences are discussed.
As an application a system of Boussinesq equations is considered, where numerically a homoclinic snaking curve

nd it is shown that the homoclinic orbits accumulate along a heteroclinic cycle between a real saddle and a bi-focus eq
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. Introduction

Shilnikov’s model of a homoclinic orbit to a saddle-
ocus equilibrium[22] is one of the most famous exam-
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ples in dynamical systems theory, in which a relativ
simple configuration generates a highly complica
behaviour in its neighbourhood. One of the class
results for this problem concerns the bifurcation of o
periodic orbits in a neighbourhood of the homocli
loop. Their bifurcation can be described by the cu
shown inFig. 1, see also in the textbook[14]. In this
context theω in Fig. 1 denotes the minimal period
the periodic orbits andλ is the system’s parameter th
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Fig. 1. Bifurcation diagram for both (a) one-periodic orbits bifurcat-
ing from a Shilnikov homoclinic orbit and (b) 1-homoclinic orbits
bifurcating from the heteroclinic cycleΓ in Theorem 1.1. In both
cases the asymptotic behaviour for largeω is depicted.

unfolds the homoclinic connection. The figure shows
a ‘snaking’ of the periodic orbits, such that forλ = 0,
where the homoclinic orbit exists, infinitely many pe-
riodic orbits exist. These orbits vanish in saddle-node
bifurcations of periodic orbits that occur at the min-
ima and maxima along the snaking curve. Only finitely
many of these orbits survive the break-up of the homo-
clinic connection forλ �= 0.

A similar snaking of homoclinic orbits has been ob-
served more recently in a number of examples ranging
from structural mechanics[10,26] to water-wave the-
ory [4] and nonlinear optics[23]. A common prop-
erty of these examples is that the underlying ODE
model is a reversible system. In[26] a formal discus-
sion based on geometric arguments shows how the un-
folding of a heteroclinic cycle can lead to homoclinic
snaking.

In this article we will prove analytically that ho-
moclinic snaking in reversible systems indeed occurs
in perturbations of a symmetric heteroclinic cycle. The
cycle thus acts as an ‘organising centre’ for that dynam-
ics and can be seen as the equivalent to the Shilnikov
homoclinic orbit, which ‘organises’ the bifurcation of
periodic orbits in its neighbourhood.

In our analysis we focus on the unfolding of the het-
eroclinic cycle and prove, by means of Lin’s method
[11,17,18], that homoclinic snaking occurs. More pre-
cisely we prove that in the unperturbed system the cy-
cle is accompanied by countably infinitely many 1-
homoclinic orbits (1-homoclinic with respect to the
p nly

finitely many of these 1-homoclinic orbits survive the
break-up of the heteroclinic cycle. The bifurcation dia-
gram for 1-homoclinic orbits is given inFig. 1; for the
exact statement we refer toTheorem 1.1below.

The general analysis is illustrated with numerical
computations for one of the aforementioned examples
where the snaking has been observed. The example we
are interested in concerns solitary waves in a horizontal
water channel, which are described by the Boussinesq
equations. Numerical studies in[4] have shown that
snaking of homoclinic orbits (to a symmetric real sad-
dle) occurs in these equations, compare also with re-
sults in Section3, in particularFig. 3. In Section3 we
show that actually a second equilibrium exists, which
is of bi-focus type, and using the continuation soft-
ware AUTO/HomCont[27] we show that there exists
a heteroclinic cycle between the equilibria. This cycle
is found as the limit of the snaking homoclinic orbits.

1.1. The main result

Let us describe the exact setting for our analysis
and formulate our main theorem. We consider a one-
parameter family of vector fields

ẋ = f (x, λ), (1)

wheref : R
4 × R → R

4 is smooth. We suppose that
the family is reversible with respect to a linear involu-
tionR, that is
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rimary cycle) which accumulate at the cycle. O
f (x, λ) = −f (Rx, λ). (2)

e refer to[25] for a collection of fundamental resu
bout reversible systems. Observe, that as an im
iate consequence of reversibility theR-imageRXof
ny orbitX = {x(t) : t ∈ R} of (1) is also an orbit o

he system. IfRX = X we call the orbit symmetric
t turns out that the orbitX is symmetric if and only i
ts intersection with the fixed point space FixR := {x ∈

4 : Rx = x} ofRis non-empty,X ∩ FixR �= ∅. More-
ver, any non-periodic symmetric orbit has exactly

ntersection with FixR. For the corresponding soluti
(·) of a symmetric orbit withx(0) ∈ FixR it holds

x(t) = x(−t). (3)

For system(1) there should exist two symmet
yperbolic equilibriap1 andp2 atλ = 0. We may as
ume with no loss of generality that thepi are symmet
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ric hyperbolic equilibria for all sufficiently small|λ|,
i.e. we havef (pi, λ) = 0, i = 1,2. Note further that
the hyperbolicity of the equilibria implies that FixR is
two-dimensional, see[25].

The eigenvalues of symmetric equilibria in re-
versible systems are symmetric with respect to 0 in the
complex plane. As a consequence thepi, being hyper-
bolic, are either real saddles (with four real eigenvalues)
or bi-foci (with complex eigenvalues). The equilibrium
p2 is assumed to be a bi-focus with complex eigenval-
ues

σ(D1f (p2, λ)) = {±ρ(λ) ± φ(λ)i},
ρ(λ), φ(λ) > 0 for allλ. (4)

We finally assume that a heteroclinic orbitΓ1 =
{γ1(t) : t ∈ R} betweenp1 andp2 exists atλ = 0. By
reversibilityΓ1 is necessarily part of a heteroclinic cy-
cleΓ , consisting of the two equilibriapi and two hete-
roclinic orbitsΓ1, Γ2 := RΓ1. In the following we im-
pose certain non-degeneracy conditions onΓ1. Again,
reversibility ensures that those conditions are also ful-
filled by Γ2.

Throughout this paper we denote the stable manifold
ofpi with respect to the vector fieldf (·, λ) byWs(pi, λ)
and write justWs(pi) forWs(pi,0). In the same manner
we useWu(pi, λ) andWu(pi) to denote the correspond-
ing unstable manifolds. By our assumptions the stable
and unstable manifoldsWs(pi) andWu(pi), i = 1,2
are two-dimensional. We assume the intersection of the
s n
a
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With a view to the introductory remarks our goal
is to determine the set of 1-homoclinic orbits to
p1. A homoclinic orbit is called 1-homoclinic (with
respect to the cycleΓ ) if it lies in a sufficiently small
neighbourhoodU of Γ and passes a cross-section
Σ1 ofΓ1 exactly once. Our main result reads as follows:

Theorem 1.1. Consider a heteroclinic cycleΓ as de-
scribed above.
At λ = 0 there exist countably infinitely many sym-

metric 1-homoclinic orbits top1. The single homo-
clinic orbits differ in their transition time2ω fromΣ1
toΣ2 := RΣ1. The difference in transition time tends
asymptotically toπ/(2φ).
For λ �= 0, |λ| small, there are only finitely many

symmetric 1-homoclinic orbits top1.
With the addition of the parameterλ to the phase

space these 1-homoclinic orbits form a one-parameter
family parameterised byω. The corresponding bifur-
cation diagram(for sufficiently largeω) is depicted in
Fig. 1.

The proof ofTheorem 1.1, in particular the deriva-
tion of the bifurcation Eq.(11), reveals more properties
of the set of 1-homoclinic orbits near the cycle. First
it can be shown that there are no non-symmetric 1-
homoclinic orbits, seeLemma 2.2. Further, we want to
emphasise that the statement of the theorem does not
depend on the type (real saddle or bi-focus) of the equi-
l of
t by
t

be
c
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table and unstable manifolds alongΓ1 to be as clea
s possible,

dim(Tγ1(0)W
u(p1) ∩ Tγ1(0)W

s(p2)) = 1. (5)

By TqM we denote the tangent space of the mani
atq.)
Finally, we assume a generic unfolding of the (st

urally unstable) heteroclinic connection. Let

s/u
� := ∪

λ
(Ws/u(p2, λ) × {λ}) ⊂ R

5.

e assume thatWs
� andWu

� intersect transversally
(0) := (γ1(0),0):

s
� �γ(0) W

u
�. (6)

n particular, this implies that the cycle does not e
or λ �= 0.
ibrium p1. This can be seen from the leading term
he bifurcation equation which is determined only
he type ofp2.

Fig. 1 shows that the homoclinic orbits can
ontinued with respect to the parameterλ. This indi-
ates that the homoclinic orbits are robust under
urbations. Indeed, this agrees with the generic s
ion in reversible systems where typically the unsta
anifold of the corresponding equilibrium will inte

ect Fix(R) transversally; in our notations this rea
u(p1) � Fix(R). This robustness will be exploited

ur numerical studies.
At the minima and maxima of the bifurcation cu

n Fig. 1– viewed as graph of a functionω �→ λ(ω) –
old bifurcations of homoclinic orbits occur. There, t
omoclinic orbits coalesce and vanish. This homoc
ifurcation has been analysed in[6,11]. It has bee
hown that the bifurcation is caused by a tangenc
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the unstable manifold of the equilibrium and Fix(R).
In Section4 we explain in a non-rigorous manner why
a very complicated dynamics in a neighbourhood of
the cycle may be expected. As already mentioned the
emphasis in this paper is put upon the explanation of the
homoclinic snaking phenomenon. But the discussion in
Section4, will give a flavour of the dynamical richness,
and we will point out directions for future research.

1.2. Related studies

Apart from our particular motivation the investiga-
tion of the dynamics near a heteroclinic cycle is of
interest in its own right, since similar to homoclinic or-
bits also heteroclinic cycles can be the source for a very
rich dynamics in their neighbourhood. In the example
studied here this is indicated by the bifurcation of 1-
homoclinic orbits near the cycle, which themselves are
accompanied by complex dynamics. However, in con-
trast to the multitude of articles about homoclinic orbits
(see for instance the overview for reversible systems in
[3]), noticeably few studies of bifurcations from het-
eroclinic cycles in reversible or conservative systems
can be found in the literature.

The existence of periodic orbits near heteroclinic
cycles in reversible systems has been studied in[24].
In [13] variational methods have been used to investi-
gate heteroclinic cycles between bi-foci in fourth-order
equations that are both reversible and Hamiltonian. A
bifurcation analysis of such cycles in Hamiltonian sys-
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for example[5,21]. Note that in general systems bifur-
cations of heteroclinic cycles are in contrast to our case
at least of codimension two, since for the unfolding of
each heteroclinic connection one parameter is needed.
In the papers[5,16,21] the bifurcation equations are
derived by means of an appropriate Poincaré map.

2. Proof of the main theorem

We will use Lin’s method to proveTheorem 1.1.
Restricted to our purpose the goal of this method is to
find ‘piecewise continuous 1-homoclinic orbits’ top1,
which we address as1-homoclinic Lin orbits. Such or-
bits consist of piecesX−

1 , X12 andX+
2 of actual orbits;

X−
1 andX+

2 are contained in the unstable and stable
manifold, respectively, ofp1. The orbitX−

1 followsΓ1

until it hits the cross sectionΣ1, while X+
2 starts in

Σ2 = RΣ1 and followsΓ2 up to the equilibriump1.
The orbitX12 starts in the cross-sectionΣ1, follows
Γ1 until it reaches a neighbourhood ofp2 and then
follows Γ2 until it hits Σ2 after a prescribed time 2ω.
(For our analysis we will assume thatΣi, i = 1,2 are
hyperplanes intersectingΓi atγi(0).) Between two con-
secutive orbitsX−

1 andX12 or X12 andX+
2 there may

be a jumpΞ1 or Ξ2 in distinguished directionsZ1 or
Z2 = RZ1, respectively. The subspaceZ1 ⊂ Tγ1(0)Σ1
is complementary toTγ1(0)W

u(p1) + Tγ1(0)W
s(p2). By

our first transversality condition(5) we have dimZ1 =

rs
tems can be found in[16]. There, in particular, s
quences of parameter values have been detect
which homoclinic fold bifurcations occur. We also re
to Section5in the present paper, where we give a re
for the resemblance of the sets of nearby 1-homoc
orbits in the reversible and Hamiltonian case. Bu
want to note that the symbolic dynamics, which
been proved to occur near the cycle in the Hamilto
case, see[16], cannot be expected in the reversible c
this is due the lack of level sets in the latter case
refer to[8] for a discussion of this fact. Recent w
by one of the authors concerns heteroclinic cycles
T-points in three-dimensional reversible systems,[12];
see also[15].

Finally we want to mention that several studie
generic bifurcations from heteroclinic loops in gen
systems, i.e. systems without any imposed stru
like reversibility, have appeared in the literature,
r

1. Fig. 2depicts the described situation.
The first fundamental result reads.

Lemma2.1 ([11,17,18]). There exist positive numbe
λ̂, ω̂, such that for eachλ, |λ| < λ̂ and eachω > ω̂

Fig. 2. A 1-homoclinic Lin orbit near the heteroclinic cycle.
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there exists a unique 1-homoclinic Lin orbitX(ω, λ) to
p1.

Throughout the following we assume|λ| < λ̂ andω >

ω̂.
By our construction (Σ2 = RΣ1 andZ2 = RZ1) we

find that theR-image ofX(ω, λ) is a 1-homoclinic Lin
orbit to p1, and what is more,RX(ω, λ) is related to
the same parametersω andλ. Hence, because of the
uniqueness assertion inLemma 2.1we conclude:

Lemma 2.2. Every 1-homoclinic Lin orbitX(ω, λ) to
p1 is symmetric, i.e.X(ω, λ) = RX(ω, λ). In particu-
lar every 1-homoclinic orbit top1 is symmetric.

The Lin orbits have discontinuities only inΣ1 andΣ2,
and therefore the detection of 1-homoclinic orbits top1
amounts to solvingΞi(ω, λ) = 0, i = 1,2. As a conse-
quence ofLemma 2.2we findΞ2(ω, λ) = RΞ1(ω, λ).
Therefore the bifurcation equation for 1-homoclinic or-
bits just reads

Ξ(ω, λ) := Ξ1(ω, λ) = 0. (7)

BecauseZ1 andλ are one-dimensionalΞ can be read
as a mappingR × R → R.

In [11,18]expansions for the jumpΞ have been de-
rived. We apply the main results here and refer to those
papers for details. The jumpΞ(ω, λ) can be written in
the form

Ξ ∞

of
W -
c air
(

(

(

T
t

ξ

Of courseξ∞(0) = 0, which represents thatWu(p1) in-
tersectsWs(p2) along�1. Due to our second transver-
sality condition(6) we haveDξ∞(0) �= 0. So we may
assume

ξ∞(λ) = λ. (9)

The term ξ(ω, λ) in (8) measures the deviation
of X12 from Ws(p2, λ), again inZ1-direction. Let
x12(λ)(·) be the solution of(1) corresponding toX12
such thatx12(λ)(0) ∈ Σ1 andx12(λ)(2ω) ∈ Σ2. Then
x+

1 (λ)(0) − x12(λ)(0) ∈ Z1, andξ(ω, λ) measures this
difference. Therefore,ξ(ω, λ) will only be influenced
by the behaviour ofx12(λ)(·) nearp2. In other words,
the computation ofξ(ω, λ) and therefore the results
about one-homoclinic orbits top1 do not depend on
whetherp1 is a real saddle or a bi-focus.

The leading term ofξ(ω, λ) will be determined by
the asymptotic behaviour (asω → ∞) of x−

2 (λ)(ω) =
Rx+

1 (λ)(−ω) and by the asymptotic behaviour of so-
lutions of the adjoint of the variational equation along
x+

1 (λ)(·) starting inZ1. It turns out that

ξ(ω, λ) = e−2ρ(λ)ωc(λ) sin(2φ(λ)ω + ϕ)

+o(e−2ρ(λ)ω), (10)

with ρ(λ), φ(λ) defined in(4). The functionc(·) is
smooth andc(0) �= 0. For a detailed analysis in sim-
ilar cases (where equilibria with non-real eigenvalues
a

L
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Ξ t
Ξ

M
f
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λ

(ω, λ) = ξ (λ) + ξ(ω, λ). (8)

The first term in (8) measures the splitting
u(p1, λ) andWs(p2, λ) in Z1-direction. More pre

isely: For eachλ close to 0 there is a unique p
x+

1 (λ)(·), x−
1 (λ)(·)) of solutions of(1) such that

(i) x±
1 (·)(0) smooth andx±

1 (0)(0) = γ1(0);
(ii) x+

1 (λ)(0) ∈ Σ1 ∩ Ws(p2, λ), x−
1 (λ)(0) ∈

Σ1 ∩ Wu(p1, λ);
iii) |x+

1 (λ)(t) − γ1(t)| small∀t ∈ R
+ and|x−

1 (λ)(t) −
γ1(t)| small∀t ∈ R

−;
iv) x+

1 (λ)(0) − x−
1 (λ)(0) ∈ Z1.

he solutionsx±
1 correspond to the orbitsX±

1 . With
hat we have

∞(λ) = x+
1 (λ)(0) − x−

1 (λ)(0).
re involved) we refer to[11,12,19,20].
We summarise the results in the final lemma.

emma 2.3. All 1-homoclinic orbits top1 near the
eteroclinic cycleΓ can be found by solving the bifu
ation equation

(ω, λ) = λ + e−2ρ(λ)ωc(λ) sin(2φ(λ)ω + ϕ)

+o(e−2ρ(λ)ω) = 0. (11)

The solution of(11) gives the bifurcation diagra
n Fig. 1. To see that in a more rigorous way one so

(ω, λ) = 0 for λ(ω) near (ω, λ) = (∞,0). Note tha
(∞, λ) is well defined andΞ(∞, λ) = ξ∞(λ) = λ.
oreover, a similar estimate as given in(10)for ξ holds

or the derivative ofξ with respect toλ. This allows an
mplicit Function Theorem type of argument to g
(ω).
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Fig. 3. Bifurcation diagram for homoclinic orbits of(13)with k = 3,
derived by continuing the starting solution at point (a). Plots of the
solutions at points (a)–(d) are shown inFig. 4below.

Remark. We emphasize that the result about 1-
homoclinic orbits top1 does not depend on whether this
equilibrium is a real saddle or bi-focus. Indeed, being
contained in a neighbourhood of the primary hetero-
clinic cycle the homoclinic orbits found inTheorem 1.1
are mainly affected by the local flow nearp2 and differ
in their number of rotations aroundp2 which appear
as oscillations in the solution plots inFig. 4. The 1-
homoclinic orbits under consideration correspond to
certain intersections of the stable and unstable mani-
fold of p1, which we can study inΣ1: Note first that
the shape of the local stable and unstable manifold ofp1
does not depend on the eigenvalues ofp1 (only the dy-
namics within these manifolds does). We follow these
manifolds along the heteroclinic cycle until they first
intersectΣ1 and denote these traces ofWs/u(p1, λ) in
Σ1 by T s/u(λ). While T u(λ) can always be seen as
a straight line, the shape ofT s(λ) will be influenced
by the local flow nearp2. In the situation studied in
Theorem 1.1the curveT s(λ) will have the form of
a spiral (due to the spin nearp2). The analytical re-
sults now imply that forλ = 0 the curvesT s/u(0) in-
tersect in infinitely many points inΣ1, with the tip of
T s(0) located onT u(0). For λ �= 0 the tip of T s(0)
moves offT u(0), and only finitely many intersections
remain.

A similar geometric interpretation explains that the
existence of 2-homoclinic orbits top1 depends cru-
cially on the type of this equilibrium, see Section4
where the analysis, again based on Lin’s method, is
c

3. A numerical example: homoclinic snaking in
a system of Boussinesq equations

To illustrate the theory we deal with solitary waves
in a family of Boussinesq systems of the form

ηt + ux + (uη)x + auxxx − bηxxt = 0

ut + ηx + uux + cηxxx − duxxt = 0,
(12)

which models waves in a horizontal water channel trav-
elling in both directions. System(12)has been derived
in [2] as a first order approximation to the full Euler
equations. The functionη describes the deviation of
water surface from its undisturbed position andu is the
horizontal velocity at a certain height above the bottom
of the channel, see[2] for details.

The above family includes several well studied sys-
tems as the classical Boussinesq system fora = b =
c = 0, d = 1/3, the Kaup system fora = 1/3, b =
c = d = 0, or the regularised Boussinesq system for
a = c = 0 andb = d = 1/6. We will concentrate on
the last case, which has been dealt with in[1,4].

Solitary waves of(12) are sought in the form
η(x, t) = η(ξ), u(x, t) = u(ξ), whereξ := x − kt, and
k denotes the speed of the wave. The corresponding
system of ordinary differential equations can be inte-
grated once, and - being interested in the regularised
Boussinesq system - we seta = c = 0 andb = 1/6 to
obtain

kη′′ + 6u − 6kη + 6uη = 0

T ect
t

ic
s h
o ion
s e
u t
t (see
(

R

a in
F by
η

c fore
arried out.
dku′′ − ku + η + 1
2u

2 = 0.
(13)

he prime here denotes differentiation with resp
o ξ.

Solitary waves of(12)are described by homoclin
olutions to the 0-equilibrium of(13). We study suc
rbits numerically using the homoclinic continuat
oftware AUTO/HomCont,[27]. In particular, we mak
se of thereversibilityof (13). By that we mean tha

he corresponding first order system is reversible
2)) with respect to the involution

: (η, η′, u, u′) �→ (η,−η′, u,−u′),

nd investigate symmetric solutions which are
ix(R) at ξ = 0; such solutions are characterised
(ξ) = η(−ξ), u(ξ) = u(−ξ), see(3). Recall that we
an expect such solutions to exist robustly. There
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Fig. 4. Homoclinic solutions of(13) for parameter values at points (a)–(c) inFig. 3. The left parts show theu-component and the right parts the
η-components of the solutions.

bifurcations of symmetric homoclinic orbits can be
studied under variation of one parameter in(13). More-
over, symmetric homoclinic orbits can be computed by
finding intersections of the unstable manifold of 0 with
the fixed space Fix(R), given by those points in phase
space for whichη′ = u′ = 0. The corresponding algo-
rithms are included in the HomCont package and have
been used in the computations.

For d = 1/6 and k = 2.5 an explicit homoclinic
solution

η(ξ) = 15

4

(
2sech2

(
3√
10

ξ

)
− 3sech4

(
3√
10

ξ

))

u(ξ) = 15

2
sech2

(
3√
10

ξ

)
(14)
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of (13) has been computed in[4]. Following the anal-
ysis in that paper we continue this solution under vari-
ation ofk until the valuek = 3 is reached and study its
behaviour under variation ofdafterwards. The starting
solution withk = 3 is shown in panel (a) ofFig. 4.

The bifurcation scenario we are interested in has
been observed in[4] under variation of the parameter
d. Increasingd from the starting valued = 1/6, see
point (a) inFig. 3, we detect a bifurcation of the primary
homoclinic solution atd1 = 0.2022, where it coalesces
with a second homoclinic orbit in a fold bifurcation.
Continuing this second orbit with decreasingd the same
scenario occurs atd2 = 0.075 and - after increasingd -
again atd = 0.15. Thesed-values correspond the first
turning points after point (a) inFig. 3.

The computations can be continued, and we find
that the parameter values, at which homoclinic fold bi-
furcations can be observed, accumulate at some value
d∞ ≈ 0.1206. In particular, the computations suggest
the existence of infinitely many homoclinic solutions
for d = d∞. An impression of this is given inFig. 3. In
this diagram theL2-norm of the homoclinic solutions
is plotted against the continuation parameterd. It can
be seen that the homoclinic solutions are distinguished
by theirL2-norm, which seems to grow without bounds
along the sequence of solutions. Furthermore, solutions
with smallL2-norm are more robust under perturba-
tions ofd than those with biggerL2-norm.

In Fig. 4impressions of certain homoclinic solutions
for parameter values along the bifurcation sequence, as
i e
η n,
w linic
s n
c al
r has
a s
o

ero-
c bi-
f he
s in
F ds
a
u hat
η o-
l r
a pe,

that is, its linearisation has a quadruple of complex
eigenvalues.

In perfect agreement with theTheorem 1.1the com-
putations suggest that the homoclinic solutions along
the bifurcation curve inFig. 3accumulate at a hetero-
clinic cycle between the bi-focus and the 0-equilibrium.
This can be verified by continuing the half part of the
homoclinic solution in point (d) ofFig. 3 from the 0-
equilibrium to Fix(R). The continuation is successful,
and a plot of the derived heteroclinic solution is given in
Fig. 5. We note that because of the reversibility of(13)
heteroclinic orbits between the equilibria will come in
pairs, forming a heteroclinic cycle.

4. More about the dynamics near the
heteroclinic cycleΓ

The homoclinic snaking causes a very complicated
nearby dynamics which we will discuss in the following
in more detail. LetΓω be the 1-homoclinic orbit related
to the transition timeω whose existence has been stated
in Theorem 1.1, see alsoFig. 1, and letγω(·) be the
corresponding solution withγω(0) ∈ Fix(R). If Γω is
robust, i.e.

Tγω(0)W
u
λ(ω)(p1) �γω(0) Tγω(0)W

s
λ(ω)(p1)

this homoclinic orbit will be accompanied by a family
o
s

o t
t t we
a we
e lude
d
t

Γ

a d of
p f
t

W

B of
p ble
ndicated by (a)–(c) inFig. 3, are given. In panel (a) th
- andu-component of the starting solution is show
hereas panels (b) and (c) contain plots of homoc
olutions with biggerL2-norm. Along the bifurcatio
urve inFig. 3the primary solution develops addition
ipples around the pulse. We note that this effect
lso been observed in[4] for slightly different value
f b andd.

We finally demonstrate that there exists a het
linic cycle between 0 and a second equilibrium of
ocus type. ByTheorem 1.1this generically causes t
naking of the homoclinic orbits. Indeed, we see
ig. 4 that the homoclinic solution in panel (c) spen
rather long time near the values ˆη = −1.842 and

ˆ = 6.562. A straightforward computation shows t
ˆ andû describe a further (symmetric) equilibrium s
ution of (13) for all values ofd. Moreover, a linea
nalysis shows this equilibrium to be of bi-focus ty
f symmetric 1-periodic orbits which accumulate atΓω,
ee[25].

The set of orbits that intersectΣ1 or Σ2 more than
nce, depends on the fixed point type ofp1. (Recall tha

he previous results are independent of this.) Firs
ssume thatp1 is a real saddle. This is the situation
ncounter in the numerical example. In order to exc
egeneracies we will assume thatΓ1 approachesp1

angent along the leading eigendirection,

1 �⊂ Wuu(p1), (14)

nd we assume that the global stable manifol
2 intersects the local centre-unstable manifold op1

ransversally,

s(p2) �γ1(−T ) W
cu
loc(p1), T � 0. (15)

y Wuu(p1) we denote the strong unstable manifold
1, and byWcu

loc(p1) we denote the local centre-unsta
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Fig. 5. The heteroclinic solution between the 0-equilibrium and the equilibrium (ˆη,0, û,0) (in four dimensional phase space), existing for
d = d∞.

manifold ofp1, for λ = 0 in each case. The latter man-
ifold is a flow invariant manifold whose tangent space
at p1 is spanned by the unstable and the weakest sta-
ble eigenvectors. By the reversibility similar conditions
for γ2 are enforced. From the homoclinic bifurcation
theory(14) and (15)are known as non-orbit flip and
non-inclination flip conditions, see[18,9]. We want to
stress that our previous results do not rely on such kind
of conditions.

Under these assumptions each two 1-homoclinic or-
bitsΓω1 andΓω2,ω1 �= ω2, found inTheorem 1.1form
together withp1 a reversible homoclinic bellows as
considered in[8]. A bellows configuration consists of
two homoclinic orbits to the same equilibrium that ap-
proach this equilibrium from the same direction for
positive and similarly for negative time. (Note that un-
der assumption(14) all detected 1-homoclinic orbits
approachp1 in the leading eigendirection, becauseX−

1
and X+

2 do so; this again is due to the smoothness
of x±

1 (·)(0) and the non-orbit flip condition(14).) In
[8] it has been proved that for eachN ∈ N there are
families of symmetricN-periodic orbit, but there are
no N-homoclinic orbits caused by the bellows – the
N-periodic orbits accumulate at the bellows configu-
ration. Here we show that there are no 2-homoclinic
orbits top1 near the cycle; the same should be true for
N-homoclinic orbits but the analysis is more sophisti-
cated.

L e
n o
s

Sketch of the proof. We construct the bifurcation
equation in a similar way as in Section2. For that we
consider 2-homoclinic Lin orbits; those orbits consist
of piecesX−

1 , Xi
12, X21, X

+
2 , i = 1,2, of actual orbits.

In accordance with our previous notationsXi
12 connect

Σ1 andΣ2 andX21 connectsΣ2 andΣ1 in forward
time in each case. The upper indexi counts the revolu-
tions alongΓ . The corresponding jumpsΞi

k are parallel
toZk, i, k = 1,2;Fig. 6depicts the described situation.

A 2-homoclinic Lin orbit is symmetric if

RX1
12 = X2

12, RX−
1 = X+

2 .

This implies

RΞ1
1 = Ξ2

2, RΞ2
1 = Ξ1

2.

Fig. 6. A 2-homoclinic Lin orbit near the heteroclinic cycle.
emma 4.1. Letp1 be a real saddle, and assume th
on-flip conditions(14) and (15). Then there are n
ymmetric 2-homoclinic orbits top1 nearΓ .
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Tracing further the procedure of Section2 we end
up with the bifurcation equation for symmetric 2-
homoclinic orbits top1:

λ + e−2ρω12c sin(2φω12 + ϕ) + o(e−2ρω12) = 0

λ + de−2µω21 + e−2ρω12c sin(2φω12 + ϕ)

+ o(e−2ρω12) + o(e−2µω21) = 0 (16)

Hereωij denotes the transition time fromΣi toΣj; due
to the required symmetry of the 2-homoclinic orbits
X1

12 andX2
12 take the same time. Furtherµ denotes

the principal unstable eigenvalue ofp1. Note that the
quantitiesc, d ρ, µ andφ depend onλ, and for the
smooth functiond(·) it holdsd(0) �= 0.

By means of a procedure taking its pattern from
the proof of the implicit function theorem this sys-
tem can be uniquely solved for (λ, ω21)(ω12) near
(λ, ω12, ω21) = (0,∞,∞). Note that the transition
time “∞” corresponds to a pair of partial orbits in
the stable and unstable manifolds like (X+

2 , X−
1 ) or

(X+
1 , X−

2 ), seeFig. 2. Let (λ(ω), ω) be the solution
of the bifurcation Eq.(11) for 1-homoclinic orbits to
p1. Then (λ(ω12), ω12,∞) solves the above bifurcation
Eq. (16) for 2-homoclinic orbits; forω21 = ∞ both
equations in(16) coincide, and moreover they coin-
cide with Eq.(11). So, due to the uniqueness, we find
ω21(ω12) ≡ ∞. �

If p1 is a bi-focus then we face a much more in-
volved dynamics. In this case each 1-homoclinic orbit
t
o s
f of
c

linic
o its
t or
t e
t

λ

w
I
T -
i
m
t -

ists whenever a 1-homoclinic to the saddle-focusp2
exists.

5. Discussion

In this paper we have discussed the unfolding of
a heteroclinic cycle between two equilibria in a re-
versible system. It has been shown that generically ho-
moclinic snaking occurs if one of the two equilibria is
of saddle-focus type. The bifurcation results have been
illustrated by numerical investigations for a system of
Boussinesq equations. We have also discussed possi-
ble consequences for the recurrent dynamics near the
cycle.

Our approach allows an immediate generalisation
to higher dimensions. Independently of the dimension
of the phase space we get a single one-dimensional
bifurcation equation for 1-homoclinic orbits. Instead
of (4) we simply assume that the leading eigenval-
ues ofp2 are complex. Under conditions similar to
(14) and (15)the structure of the bifurcation Eq.(11)
will be preserved, and, finally, the reversibility of the
system yields a reduction of the bifurcation equa-
tion to a single equation, see the consequences of
Lemma 2.2.

In a similar way one can treat the bifurcation of
the heteroclinic cycle in the class ofconservative sys-
tems, that is, systems possessing a first integral. To
be more precise, let us assume that(1) has a smooth
fi d
c -
s
c ero-
c ec-
o nce
o sta-
b er-
s ill
n ing
t to
d eak
u

a ves-
t onal
b as-
s

op1 is accompanied by infinitely manyN-homoclinic
rbits for eachN ∈ N, see[7]. Again, all these orbit

orm homoclinic bellows such that an abundance
omplexity can be found near the cycle.

In the same way as we searched for 1-homoc
rbits to p1 we can do that for 1-homoclinic orb

o p2. If p1 is a bi-focus the bifurcation equation f
hose orbits coincides with(11). If p1 is a real saddl
he bifurcation equation reads

+ d(λ)e−2µ(λ)ω + o(e−2µ(λ)ω) = 0,

here ω is the transition time fromΣ2 to Σ1.
f non-flip conditions are fulfilled thend(0) �= 0.
herefore, either forλ > 0 or for λ < 0 there ex

sts a unique 1-homoclinic orbit top2. We re-
ark that in either case the results in[7] imply

hat a complicated set ofN-homoclinic orbits ex
rst integralH, i.e. H : R
4 × R → R is smooth an

onstant along orbits of(1). Moreover, we will as
ume thatD1H is non-singular alongΓ1 ∪ Γ2. In this
ase, without reversibility, the existence of a het
linic orbit Γ1 does not imply the existence of a s
nd one,Γ2. Hence, we have to assume the existe
f a cycle. Although generically the stable and un
le manifolds of the equilibria will intersect transv
ally within a level set ofH, one parameter is st
eeded for the unfolding of the cycle. By chang

hat parameter the involved equilibria will move
ifferent level sets, and hence the cycle will br
p.

In order to show that results similar toTheorem 1.1
re also valid in the conservative case we have to in

igate whether a similar reduction to a one-dimensi
ifurcation equation is possible. The next lemma
erts exactly this.
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Lemma5.1. IfΞ1(ω, λ) = 0 for some(ω, λ), then also
Ξ2(ω, λ) = 0.

As a consequence of this lemma it remains to con-
sider only the single bifurcation equationΞ(ω, λ) :=
Ξ1(ω, λ) = 0.

Sketch of the proof. By our assumptions bothZ1 and
Z2 are transversal to the level sets ofH(·, λ) which we
may assume to be flat in a neighbourhood ofγ1(0) and
γ2(0).

Let Ξ1 = 0. ThenX−
1 ∪ X12 forms a partial orbit

lying in the unstable manifold ofp1. HenceX−
1 ∪ X12

andX+
2 are in the same level set ofH, and therefore

Ξ2 = 0. �

Consequently, we can derive a bifurcation equation
for 1-homoclinic orbits top1 in the same way as in
Section2. Based on our discussion in Section4 we
can expect a very complex dynamical behaviour near
the cycleΓ . It is worth mentioning that bellows to real
saddles (p1 real saddle) in conservative systems (in dif-
ference to reversible systems) cause families (parame-
terised by the level sets) of shift dynamics, see[8]. If
p1 is a bi-focus one can expect an even more involved
dynamics. In[16] a description of that dynamics is pre-
sented for the case thatf is a Hamiltonian vector field.

We finally remark that in[26] homoclinic snaking
near a heteroclinic cycle between a bi-focus and a pe-
riodic orbit has been discussed. Such a cycle emerges
in a supercritical Hamiltonian–Hopf bifurcation or re-
v f the
‘ the
c ach
c in
[
a het-
e ect
t sta-
b ems
w ch
o ci.)
A
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ex-
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