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Abstract

Snaking curves of homoclinic orbits have been found numerically in a number of ODE models from water wave theory and
structural mechanics. Along such a curve infinitely many fold bifurcation of homoclinic orbits occur. Thereby the corresponding
solutions spread out and develop more and more bumps (oscillations) about their own centre. A common feature of the examples
is that the systems under consideration are reversible.

In this paper it is shown that such a homoclinic snaking can be caused by a heteroclinic cycle between two equilibria, one
of which is a bi-focus. Using Lin’s method a snaking of 1-homoclinic orbits is proved to occur in an unfolding of such a cycle.
Further dynamical consequences are discussed.

As an application a system of Boussinesq equations is considered, where numerically a homoclinic snaking curve is detectec
and it is shown that the homoclinic orbits accumulate along a heteroclinic cycle between a real saddle and a bi-focus equilibrium.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ples in dynamical systems theory, in which a relatively
simple configuration generates a highly complicated
Shilnikov’s model of a homoclinic orbitto a saddle- behaviour in its neighbourhood. One of the classical
focus equilibriun22] is one of the most famous exam-  results for this problem concerns the bifurcation of one-
periodic orbits in a neighbourhood of the homoclinic
T Comesponding author. Tel: +44 117 33 17369; loop. Their bifurcation can be described by the curve
fax: +44 117 954 6833, ' shown inFig. 1, see also in the textbod&4]. In this
E-mail addressesuergen.knobloch@tu-iimenau.de context thew in Fig. 1 denotes the minimal period of
(3. Knobloch), t.wagenknecht@bristol.ac.uk (T. Wagenknecht) the periodic orbits and is the system’s parameter that
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A finitely many of these 1-homaoclinic orbits survive the
break-up of the heteroclinic cycle. The bifurcation dia-
gram for 1-homoclinic orbits is given iRig. 1; for the
exact statement we refer Thheorem 1.Dbelow.

The general analysis is illustrated with numerical

/\ N\ computations for one of the aforementioned examples
\/ where the snaking has been observed. The example we

\/ @ are interested in concerns solitary waves in a horizontal
water channel, which are described by the Boussinesq

equations. Numerical studies j4] have shown that
shaking of homoclinic orbits (to a symmetric real sad-
dle) occurs in these equations, compare also with re-
Fig. 1. Bifurcation diagram for both (a) one-periodic orbits bifurcat-  sults in Sectior8, in particularFig. 3. In Section3 we
ing from a Shilnikov homaclinic orbit and (b) 1-homoclinic orbits - gy that actually a second equilibrium exists, which
bifurcating from the heteroclinic cycl€ in Theorem 1.11n both . . . . .
cases the asymptotic behaviour for latges depicted. is of bi-focus type, and using the continuation _SOﬁ'
ware AUTO/HomCon{27] we show that there exists
a heteroclinic cycle between the equilibria. This cycle
unfolds the homoclinic connection. The figure shows is found as the limit of the snaking homoclinic orbits.
a ‘shaking’ of the periodic orbits, such that for= 0,
where the homoclinic orbit exists, infinitely many pe- 1.1. The main result
riodic orbits exist. These orbits vanish in saddle-node
bifurcations of periodic orbits that occur at the min- Let us describe the exact setting for our analysis
ima and maxima along the snaking curve. Only finitely and formulate our main theorem. We consider a one-
many of these orbits survive the break-up of the homo- parameter family of vector fields
clinic connection fon. # 0.

A similar snaking of homoclinic orbits has been ob- ¥ = f(x. 2), 1)
served more recently in_a number of examples ranging where f : R* x R — R4
from structural mechanid4.0,26]to water-wave the-
ory [4] and nonlinear opticg23]. A common prop-
erty of these examples is that the underlying ODE
model is a reversible system. |[#6] a formal discus-  Rf(x, A) = — f(Rx, ). (2)
sion based on geometric arguments shows how the un- ]
folding of a heteroclinic cycle can lead to homoclinic e refer tof25] for a collection of fundamental results
snaking. apout reversible systems. Op;grve, t.hat as an imme-

In this article we will prove analytically that ho-  diate consequence of reversibility tReimageRX of
moclinic snaking in reversible systems indeed occurs @nY OrbitX = {x(r) : 7 € R} of (1) is also an orbit of
in perturbations of a symmetric heteroclinic cycle. The the system. IfRX = X we call the orbit symmetric.
cycle thus acts as an ‘organising centre’ for that dynam- 't turns out that the orbiX is symmetric if and only if
ics and can be seen as the equivalent to the Shilnikov ItS intersection with the fixed point space Rix= {x €

homoclinic orbit, which ‘organises’ the bifurcation of K" : Rx = x} of Ris non-emptyX N FixR 7 . More-
periodic orbits in its neighbourhood. over, any non-periodic symmetric orbit has exactly one

In our analysis we focus on the unfolding of the het- intersection with Fix. For the corresponding solution
eroclinic cycle and prove, by means of Lin’s method *(*) 0f @ symmetric orbit withe(0) € FixR it holds

is smooth. We suppose that
the family is reversible with respect to a linear involu-
tion R, that is

[11,17,18] that homoclinic snaking occurs. More pre- Rx(r) = x(—1). 3)
cisely we prove that in the unperturbed system the cy-
cle is accompanied by countably infinitely many 1- For system(1) there should exist two symmetric

homoclinic orbits (1-homoclinic with respect to the hyperbolic equilibriap; and p2 atA = 0. We may as-
primary cycle) which accumulate at the cycle. Only sume with no loss of generality that theare symmet-
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ric hyperbolic equilibria for all sufficiently smalh|, With a view to the introductory remarks our goal
i.e. we havef(p;,A) =0,i =1, 2. Note further that is to determine the set of 1-homoclinic orbits to
the hyperbolicity of the equilibria implies that Fis p1- A homoclinic orbit is called 1-homoclinic (with
two-dimensional, seg5]. respect to the cycl&) if it lies in a sufficiently small

The eigenvalues of symmetric equilibria in re- neighbourhood/{ of I' and passes a cross-section
versible systems are symmetric with respect to 0 in the X; of I'; exactly once. Our mainresultreads as follows:
complex plane. As a consequence thebeing hyper-
bolic, are either real saddles (with four real eigenvalues)
or bi-foci (with complex eigenvalues). The equilibrium  Theorem 1.1. Consider a heteroclinic cycl€ as de-
p2 is assumed to be a bi-focus with complex eigenval- scribed above

ues At A = O there exist countably infinitely many sym-
) metric 1-homoclinic orbits tgp;. The single homo-
o(D1f(p2, 1)) = {£p(2) £ (1)i}, clinic orbits differ in their transition timew from Xy
o(1), (1) > Oforallx. (4) to Xy := RX1. The difference in transition time tends
asymptotically tor/(2¢).

We finally assume that a heteroclinic orliiy = For A # 0, || small there are only finitely many
{y1(r) : t € R} betweenp; and p; exists atr = 0. By symmetric 1-homoclinic orbits to;.
reversibility I'7 is necessarily part of a heteroclinic cy- With the addition of the parametérto the phase
cleI', consisting of the two equilibrig; and two hete-  space these 1-homoclinic orbits form a one-parameter
roclinic orbitsI, I'> := RI1. Inthe following we im- family parameterised by. The corresponding bifur-
pose certain non-degeneracy conditiong@nAgain, cation diagram(for sufficiently largew) is depicted in
reversibility ensures that those conditions are also ful- Fig. 1.
filled by I.

Throughoutthis paper we denote the stable manifold  The proof ofTheorem 1.1in particular the deriva-
of p; with respectto the vector fiel(-, ) by W(p;, 1) tion of the bifurcation Eq(11), reveals more properties
and write jusS(p;) for W¥(p;, 0). Inthe same manner  of the set of 1-homoclinic orbits near the cycle. First
we useW"(p;, 1) andW"(p;) to denote the correspond-  jt can be shown that there are no non-symmetric 1-
ing unstable manifolds. By our assumptions the stable homoclinic orbits, seeemma 2.2 Further, we want to
and unstable manifold®*(p;) and W¥(p;), i = 1,2 emphasise that the statement of the theorem does not
are two-dimensional. We assume the intersection of the depend on the type (real saddle or bi-focus) of the equi-
stable and unstable manifolds alongto be as clean |iprium p;. This can be seen from the leading term of

as possible, the bifurcation equation which is determined only by
: u s _ the type ofpa.
dimTa@W(p1) N Ty@WH(p2)) = 1 ©) Fig. 1 shows that the homoclinic orbits can be
(By T,M we denote the tangent space of the manifold continued with respect to the parameterThis indi-
M atq.) cates that the homoclinic orbits are robust under per-
Finally, we assume a generic unfolding of the (struc- turbations. Indeed, this agrees with the generic situa-
turally unstable) heteroclinic connection. Let tion in reversible systems where typically the unstable
manifold of the corresponding equilibrium will inter-
W[S\/” = U(WY(p2, A) x {1}) C RS. sect FixR) transversally; in our notations this reads
A WU(p1) M Fix(R). This robustness will be exploited in
) our numerical studies.
We assume thaV’y andWj intersect transversally at At the minima and maxima of the bifurcation curve
v(0) = (y1(0), 0): in Fig. 1— viewed as graph of a functian — A(w) —
WS thyo) WY. (6) fold bifurcations of homoclinic orbits occur. There, two

homoclinic orbits coalesce and vanish. This homoclinic
In particular, this implies that the cycle does not exist bifurcation has been analysed [®,11]. It has been
for A # 0. shown that the bifurcation is caused by a tangency of
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the unstable manifold of the equilibrium and FR)( for exampld5,21]. Note that in general systems bifur-

In Sectiond we explain in a non-rigorous manner why cations of heteroclinic cycles are in contrast to our case
a very complicated dynamics in a neighbourhood of at least of codimension two, since for the unfolding of
the cycle may be expected. As already mentioned the each heteroclinic connection one parameter is needed.
emphasis inthis paper is put upon the explanation of the In the paperg5,16,21]the bifurcation equations are
homoclinic snaking phenomenon. But the discussionin derived by means of an appropriate Poigcarap.
Sectiord, will give a flavour of the dynamical richness,
and we will point out directions for future research. .
2. Proof of the main theorem

1.2. Related studies . .
We will use Lin’s method to prov8heorem 1.1

Apart from our particular motivation the investiga- Restricted to our purpose the goal of this method is to

tion of the dynamics near a heteroclinic cycle is of 1Nd Piecewise continuous 1-homoclinic orbits’ fa,
interestin its own right, since similar to homoclinic or- Which we address a@shomoclinic Lin orbitsSuch or-

bits also heteroclinic cycles can be the source for a very Pits consistof pieceX ; , X12 andX; of actual orbits;
rich dynamics in their neighbourhood. In the example X1 andX; are contained in the unstable and stable
studied here this is indicated by the bifurcation of 1- manifold, respectively, op1. The orbitX; follows I'y
homoclinic orbits near the cycle, which themselves are until it hits the cross sectio’;, while X3 starts in
accompanied by complex dynamics. However, in con- X2 = RX1 and follows > up to the equilibriumpy.
trast to the multitude of articles about homoclinic orbits The orbit X2 starts in the cross-sectiaBy, follows
(see for instance the overview for reversible systems in I'1 until it reaches a neighbourhood pp and then
[3]), noticeably few studies of bifurcations from het- follows I; until it hits X7 after a prescribed time«2
eroclinic cycles in reversible or conservative systems (For our analysis we will assume thay, i = 1, 2 are
can be found in the literature. hyperplanes intersecting aty;(0).) Between two con-
The existence of periodic orbits near heteroclinic Secutive orbits{] andX12 or X12 and X3 there may
cycles in reversible systems has been studid@4i be a jumpZ1 or &7 in distinguished directiong1 or
In [13] variational methods have been used to investi- Z2 = RZ1, respectively. The subspaZe C Ty, 0) X1
gate heteroclinic cycles between bi-foci in fourth-order is complementary t@, o) W"(p1) + Ty,0)W(p2)- By
equations that are both reversible and Hamiltonian. A our first transversality conditiofp) we have diniZ; =
bifurcation analysis of such cycles in Hamiltonian sys- 1. Fig. 2depicts the described situation.
tems can be found ifil6]. There, in particular, se- The first fundamental result reads.
quences of parameter values have been detected fo
which homoclinic fold bifurcations occur. We also refer
to Sectiorbin the present paper, where we give areason

rIA_emma 2.1([11,17,18). There exist positive numbers
A, @, such that for each., |A| < A and eachw > @

for the resemblance of the sets of nearby 1-homoclinic o
orbits in the reversible and Hamiltonian case. But we J\//
want to note that the symbolic dynamics, which has 7

been proved to occur near the cycle in the Hamiltonian
case, sefl 6], cannot be expected inthe reversible case;
this is due the lack of level sets in the latter case. We
refer to[8] for a discussion of this fact. Recent work
by one of the authors concerns heteroclinic cycles near
T-points in three-dimensional reversible systefh2]; IR
see alsg15].

Finally we want to mention that several studies of
generic bifurcations from heteroclinic loops in general %
systems, i.e. systems without any imposed structure
like reversibility, have appeared in the literature, see Fig. 2. A 1-homoclinic Lin orbit near the heteroclinic cycle.
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there exists a unique 1-homoclinic Lin orBif{w, A) to
p1-

Throughout the following we assung < i andw >
w.

By our constructionf, = R¥1andZ2 = RZ;)we
find that theR-image ofX(w, 1) is a 1-homoclinic Lin
orbit to p1, and what is moreRX(w, A) is related to
the same parametetsand A. Hence, because of the
unigueness assertion irrmma 2.1we conclude:

Lemma 2.2. Every 1-homoclinic Lin orbiX (w, A) to
p1is symmetric, i.eX(w, A) = RX(w, A). In particu-
lar every 1-homoclinic orbit tgr1 is symmetric

The Lin orbits have discontinuities only ifi; and X',
and therefore the detection of 1-homoclinic orbitpio
amounts to solvin@;(w, ) = 0,i = 1, 2. Asa conse-
quence oLemma 2.2ve find Z2(w, 1) = RE1(w, 1).
Therefore the bifurcation equation for 1-homoclinic or-
bits just reads
E(w, 1) := E1(w, 1) = 0. @)
BecauseZ, and are one-dimensional can be read
as amappin® x R — R.

In [11,18]expansions for the jumf@ have been de-

rived. We apply the main results here and refer to those

papers for details. The jump(w, A) can be written in
the form

E(w, 1) =§*(0) + &0, V). (8)

The first term in(8) measures the splitting of
WY(p1, 1) and W¥(p2, 1) in Z1-direction. More pre-
cisely: For eachh close to O there is a unique pair
(xf(k)(~), x7 (A)(-)) of solutions of(1) such that

(i) x7()(0) smooth and3"(0)(0) = y1(0);
(i) x7(A)(0) € Z1NWS(p2,4), x1(A)(0) €
210 WH(pa, A);
(iii) |x1“(k)(t) — y1(r)] smallvr € R and|xy (A)(r) —
y1(¢)| smallvt e R™;
(iv) x(A)(0)—x7(A)(0) € Z1.

The solutionsx;™ correspond to the orbitXy. With
that we have

(1) = 21 ()(0) — x (A)(0).

Of cours&®(0) = 0, which represents th#t"(p;) in-
tersects¥S(py) alongI';. Due to our second transver-
sality condition(6) we haveD&*>°(0) # 0. So we may
assume
£7°() = A )

The termé&(w, A) in (8) measures the deviation
of X1o from WS(po, A), again in Z;-direction. Let
x12(A)(:) be the solution of1) corresponding toX12
such thatx12(1)(0) € ¥1 andx12(1)(2w) € X». Then
x7 (A)(0) — x12(1)(0) € Z1, and&(w, 1) measures this
difference. Therefores(w, A) will only be influenced
by the behaviour of12(1)(-) nearp2. In other words,
the computation of(w, 1) and therefore the results
about one-homoclinic orbits tp; do not depend on
whetherp; is a real saddle or a bi-focus.

The leading term of(w, 1) will be determined by
the asymptotic behaviour (as— oo) of x; (A)(w) =
Rx'f(k)(—w) and by the asymptotic behaviour of so-
lutions of the adjoint of the variational equation along
x7 (A)(-) starting inZy. It turns out that

E(w, 1) = e #M2c ) sin(2p(W)w + ¢)

+o(e=2PMe), (10)
with p(1), ¢(A) defined in(4). The functionc(:) is
smooth and:(0) # 0. For a detailed analysis in sim-
ilar cases (where equilibria with non-real eigenvalues
are involved) we refer tf11,12,19,20]

We summarise the results in the final lemma.

Lemma 2.3. All 1-homoclinic orbits top; near the
heteroclinic cyclel” can be found by solving the bifur-
cation equation

E(w, 1) = A + e 2Mc) sin(2p(M)w + ¢)

+o(e™ 2™y = 0, (11)

The solution of(11) gives the bifurcation diagram
in Fig. 1 To see thatin a more rigorous way one solves
Z(w, A) = 0 for A(w) near (@, 1) = (co, 0). Note that
Z(o0, A) is well defined and=(co, 1) = £*°(1) = .
Moreover, a similar estimate as giver(i®)for & holds
for the derivative of with respect to.. This allows an
Implicit Function Theorem type of argument to gain
Mw).
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Fig. 3. Bifurcation diagram for homoclinic orbits (3) with £ = 3,
derived by continuing the starting solution at point (a). Plots of the
solutions at points (a)—(d) are shownFig. 4 below.

Remark. We emphasize that the result about 1-
homoclinic orbits tgy; does not depend on whether this
equilibrium is a real saddle or bi-focus. Indeed, being
contained in a neighbourhood of the primary hetero-
clinic cycle the homoclinic orbits found iftheorem 1.1
are mainly affected by the local flow negg and differ

in their number of rotations arouneb which appear
as oscillations in the solution plots Fig. 4. The 1-
homoclinic orbits under consideration correspond to
certain intersections of the stable and unstable mani-
fold of p1, which we can study ir~;: Note first that
the shape of the local stable and unstable manifojd of
does not depend on the eigenvaluegpfonly the dy-
namics within these manifolds does). We follow these
manifolds along the heteroclinic cycle until they first
intersect¥; and denote these tracesWf/!(py, A) in

>1 by 7¥Y(). While 7V(1) can always be seen as
a straight line, the shape G5(1) will be influenced

by the local flow neamp;. In the situation studied in
Theorem 1.1the curve73S(1) will have the form of

a spiral (due to the spin neak). The analytical re-
sults now imply that for. = 0 the curves's'Y(0) in-
tersect in infinitely many points i1, with the tip of
T5(0) located on7Y(0). For A # O the tip of 75(0)
moves off74(0), and only finitely many intersections
remain.

A similar geometric interpretation explains that the
existence of 2-homoclinic orbits tp; depends cru-
cially on the type of this equilibrium, see Sectidn
where the analysis, again based on Lin’s method, is
carried out.
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3. A numerical example: homoclinic snaking in
a system of Boussinesq equations

To illustrate the theory we deal with solitary waves
in a family of Boussinesq systems of the form

Nt +ux + @n)x + atyxx — by =0

12)
U+ Ny + Uty + CNyxy — ditxyy =0,

which models waves in a horizontal water channel trav-
elling in both directions. Systed.2) has been derived

in [2] as a first order approximation to the full Euler
equations. The function describes the deviation of
water surface from its undisturbed position arid the
horizontal velocity at a certain height above the bottom
of the channel, seig] for details.

The above family includes several well studied sys-
tems as the classical Boussinesq systenuferb =
¢=0,d=1/3, the Kaup system fon = 1/3, b =
¢ =d =0, or the regularised Boussinesq system for
a=c=0andb=d = 1/6. We will concentrate on
the last case, which has been dealt witlliy].

Solitary waves of(12) are sought in the form
n(x, 1) = n(&), u(x, t) = u(&), whereé := x — kt, and
k denotes the speed of the wave. The corresponding
system of ordinary differential equations can be inte-
grated once, and - being interested in the regularised
Boussinesq system - we set= ¢ = 0 andb = 1/6 to
obtain

kn” + 6u — 6kn + 6un =0

13
dku”—ku~|—77+%u2=0. (13)

The prime here denotes differentiation with respect
10 &.

Solitary waves of12) are described by homoclinic
solutions to the 0-equilibrium afL3). We study such
orbits numerically using the homoclinic continuation
software AUTO/HomCon{27]. In particular, we make
use of thereversibility of (13). By that we mean that
the corresponding first order system is reversible (see
(2)) with respect to the involution
R: (7]’ n/v u, “/) = (77, —T)/, u, _u,)a
and investigate symmetric solutions which are in
Fix(R) at & = 0; such solutions are characterised by
n(&) = n(—&), u(&) = u(—¢), see(3). Recall that we
can expect such solutions to exist robustly. Therefore
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Fig. 4. Homoclinic solutions of13) for parameter values at points (a)—(ckig. 3 The left parts show the-component and the right parts the
n-components of the solutions.

bifurcations of symmetric homoclinic orbits can be For d =1/6 andk = 2.5 an explicit homoclinic
studied under variation of one parametefdi). More- solution

over, symmetric homoclinic orbits can be computed by 15 3 3

finding intersections of the unstable manifold of 0 with  n(§) = a <28€Cﬁ <ﬁ)€> — 3sech <ﬁ)€>>
the fixed space FixX), given by those points in phase

space for whichy’ = u’ = 0. The corresponding algo- 15

rithms are included in the HomCont package and have “(6) = secl‘? (ﬁ )
been used in the computations.

(14)
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of (13) has been computed [4]. Following the anal-
ysis in that paper we continue this solution under vari-
ation ofk until the valuek = 3 is reached and study its
behaviour under variation afafterwards. The starting
solution withk = 3 is shown in panel (a) dfig. 4.

The bifurcation scenario we are interested in has
been observed if] under variation of the parameter
d. Increasingd from the starting valuel = 1/6, see
point (a) inFig. 3, we detect a bifurcation of the primary
homoclinic solution a#l; = 0.2022, where it coalesces
with a second homoclinic orbit in a fold bifurcation.
Continuing this second orbit with decreasiiye same
scenario occurs @b = 0.075 and - after increasirdy
again atd = 0.15. Thesal-values correspond the first
turning points after point (a) ifig. 3.

The computations can be continued, and we find
that the parameter values, at which homoclinic fold bi-

89

that is, its linearisation has a quadruple of complex
eigenvalues.

In perfect agreement with tigheorem 1.1he com-
putations suggest that the homoclinic solutions along
the bifurcation curve ifrig. 3accumulate at a hetero-
clinic cycle between the bi-focus and the 0-equilibrium.
This can be verified by continuing the half part of the
homaoclinic solution in point (d) oFig. 3 from the O-
equilibrium to Fix(R). The continuation is successful,
and a plot of the derived heteroclinic solutionis givenin
Fig. 5. We note that because of the reversibility ©8)
heteroclinic orbits between the equilibria will come in
pairs, forming a heteroclinic cycle.

4. More about the dynamics near the
heteroclinic cycler

furcations can be observed, accumulate at some value

dso ~ 0.1206. In particular, the computations suggest
the existence of infinitely many homoclinic solutions
ford = d. An impression of this is given iRig. 3. In
this diagram thd.2-norm of the homoclinic solutions
is plotted against the continuation parametelt can

The homaoclinic snaking causes a very complicated
nearby dynamics which we will discussin the following
in more detail. Lef, be the 1-homoclinic orbit related
to the transition time whose existence has been stated
in Theorem 1.1see alsd~ig. 1, and lety,(:) be the

be seen that the homoclinic solutions are distinguished corresponding solution with,(0) € Fix(R). If I, is

by theirL2-norm, which seems to grow without bounds

along the sequence of solutions. Furthermore, solutions

with small L2-norm are more robust under perturba-
tions ofd than those with biggek.2-norm.
In Fig. 4impressions of certain homoclinic solutions

robust, i.e.

13,0 W) (P1) M) Tru(@ Wi (P2)

this homoclinic orbit will be accompanied by a family

for parameter values along the bifurcation sequence, aSpf symmetric 1-periodic orbits which accumulatégt

indicated by (a)—(c) ifrig. 3, are given. In panel (a) the
n- andu-component of the starting solution is shown,
whereas panels (b) and (c) contain plots of homoclinic
solutions with bigget.2-norm. Along the bifurcation
curve inFig. 3the primary solution develops additional

seg[25].

The set of orbits that intersegi; or X» more than
once, depends on the fixed point typgef (Recall that
the previous results are independent of this.) First we
assume thgp1 is a real saddle. This is the situation we

ripples around the pulse. We note that this effect has encounterinthe numerical example. In order to exclude

also been observed [A] for slightly different values
of bandd.

We finally demonstrate that there exists a hetero-
clinic cycle between 0 and a second equilibrium of bi-
focus type. Byrheorem 1.1his generically causes the
snaking of the homoclinic orbits. Indeed, we see in
Fig. 4that the homoclinic solution in panel (¢) spends
a rather long time near the valugs="-1.842 and
i = 6.562. A straightforward computation shows that
n andu describe a further (symmetric) equilibrium so-
lution of (13) for all values ofd. Moreover, a linear
analysis shows this equilibrium to be of bi-focus type,

degeneracies we will assume th@t approacheg,
tangent along the leading eigendirection,

I ¢ w'p1),

and we assume that the global stable manifold of
p2 intersects the local centre-unstable manifolghgf
transversally,

W3(p2) thyy—1) Wii(pa).

By W"Y(p1) we denote the strong unstable manifold of
p1,and byW2!(p1) we denote the local centre-unstable

(14)

T 0. (15)
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Fig. 5. The heteroclinic solution between the 0-equilibrium and the equilibriur@, &, 0) (in four dimensional phase space), existing for
d=dx.

manifold of p1, for A = 0 in each case. The latter man- Sketch of the proof. We construct the bifurcation

ifold is a flow invariant manifold whose tangent space equation in a similar way as in Secti@nFor that we

at p is spanned by the unstable and the weakest sta-consider 2-homoclinic Lin orbits; those orbits consist

ble eigenvectors. By the reversibility similar conditions  of piecesX;, X"lz, X1, X}L i =1, 2, of actual orbits.

for y, are enforced. From the homoclinic bifurcation  In accordance with our previous notatiaxis, connect

theory (14) and (15)are known as non-orbit flip and ¥ and X, and X»; connectsX, and X1 in forward

non-inclination flip conditions, s€&8,9]. We want to time in each case. The upper indesounts the revolu-

stress that our previous results do not rely on such kind tions alongl". The correspondingjumpi%{C are parallel

of conditions. toZy,i, k = 1, 2; Fig. 6depicts the described situation.
Under these assumptions each two 1-homoclinicor- A 2-homoclinic Lin orbit is symmetric if

bits I, andl,,, w1 # wz, found inTheorem 1.Xorm

together withp; a reversible homoclinic bellows as 1 _ 2 RX™ = X+

considered iff8]. A bellows configuration consists of 12— "1z 1 2

two homaoclinic orbits to the same equilibrium that ap-

proach this equilibrium from the same direction for

positive and similarly for negative time. (Note that un-

der assumptiorf14) all detected 1-homoclinic orbits RE% =

approactp; in the leading eigendirection, becausg

and Xg do so; this again is due to the smoothness

of xf(-)(O) and the non-orbit flip conditiol4).) In .

[8] it has been proved that for eadh € N there are

families of symmetricdN-periodic orbit, but there are

no N-homoclinic orbits caused by the bellows — the

N-periodic orbits accumulate at the bellows configu-

ration. Here we show that there are no 2-homoclinic p,

orbits topj near the cycle; the same should be true for

N-homoclinic orbits but the analysis is more sophisti-

cated.

This implies

G}

2
2. R

[
(=YY
Il

&3]
NP

Lemma 4.1. Let p1 be a real saddleand assume the
non-flip conditiong(14) and (15). Then there are no
symmetric 2-homoclinic orbits tp; nearI". Fig. 6. A 2-homoclinic Lin orbit near the heteroclinic cycle.
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Tracing further the procedure of Secti@éhwe end
up with the bifurcation equation for symmetric 2-
homoclinic orbits top1:

A+ €220 sin(2pw12 + @) + o(e2P*12) = 0
A+ de 21en 4 @=20012¢ sin(2pwio + )
+o(e7%?12) 4 o(e"%H@21) = 0 (16)

Herew;; denotes the transition time frofj to X';; due

to the required symmetry of the 2-homoclinic orbits
X%Z and X%Z take the same time. Further denotes
the principal unstable eigenvalue pf. Note that the
quantitiesc, d p, © and¢ depend om, and for the
smooth functioni(-) it holdsd(0) # 0.

By means of a procedure taking its pattern from
the proof of the implicit function theorem this sys-
tem can be uniquely solved foi (w21)(w12) near
(A, w12, w21) = (0, 00, o0). Note that the transition
time “co0” corresponds to a pair of partial orbits in
the stable and unstable manifolds Iikﬁg(, X7) or
(X7, X;), seeFig. 2 Let (\(»), ») be the solution
of the bifurcation Eq(11) for 1-homoclinic orbits to
p1. Then Q(w12), w12, o0) solves the above bifurcation
Eq. (16) for 2-homoclinic orbits; forwy1 = oo both
equations in(16) coincide, and moreover they coin-
cide with Eq.(11). So, due to the uniqueness, we find
w21(w12) =oc0. O

If p1 is a bi-focus then we face a much more in-
volved dynamics. In this case each 1-homoclinic orbit
to p1 is accompanied by infinitely mary-homoclinic
orbits for eachV € N, see[7]. Again, all these orbits
form homoclinic bellows such that an abundance of
complexity can be found near the cycle.

In the same way as we searched for 1-homoclinic
orbits to p1 we can do that for 1-homoclinic orbits
to po. If p1 is a bi-focus the bifurcation equation for
those orbits coincides witfl1). If p; is a real saddle
the bifurcation equation reads

A+ d(r)e 2o 4 o(e=2 M) = o,

where o is the transition time fromX,; to ;.
If non-flip conditions are fulfilled thend(0) # 0.
Therefore, either forx > 0 or for A < 0 there ex-
ists a unique 1-homoclinic orbit tg,. We re-
mark that in either case the results A] imply
that a complicated set oN-homoclinic orbits ex-

ists whenever a 1-homoclinic to the saddle-foguys
exists.

5. Discussion

In this paper we have discussed the unfolding of
a heteroclinic cycle between two equilibria in a re-
versible system. It has been shown that generically ho-
moclinic snaking occurs if one of the two equilibria is
of saddle-focus type. The bifurcation results have been
illustrated by numerical investigations for a system of
Boussinesq equations. We have also discussed possi-
ble consequences for the recurrent dynamics near the
cycle.

Our approach allows an immediate generalisation
to higher dimensions. Independently of the dimension
of the phase space we get a single one-dimensional
bifurcation equation for 1-homoclinic orbits. Instead
of (4) we simply assume that the leading eigenval-
ues of po are complex. Under conditions similar to
(14) and (15)he structure of the bifurcation E¢L1)
will be preserved, and, finally, the reversibility of the
system vyields a reduction of the bifurcation equa-
tion to a single equation, see the consequences of
Lemma 2.2

In a similar way one can treat the bifurcation of
the heteroclinic cycle in the class obnservative sys-
tems that is, systems possessing a first integral. To
be more precise, let us assume tflgthas a smooth
first integralH, i.e. H : R* x R — R is smooth and
constant along orbits ofl). Moreover, we will as-
sume thatD1 H is non-singular alond? U I'. In this
case, without reversibility, the existence of a hetero-
clinic orbit Iy does not imply the existence of a sec-
ond one,I%». Hence, we have to assume the existence
of a cycle. Although generically the stable and unsta-
ble manifolds of the equilibria will intersect transver-
sally within a level set oH, one parameter is still
needed for the unfolding of the cycle. By changing
that parameter the involved equilibria will move to
different level sets, and hence the cycle will break
up.

In order to show that results similar Thheorem 1.1
are also valid in the conservative case we have to inves-
tigate whether a similar reduction to a one-dimensional
bifurcation equation is possible. The next lemma as-
serts exactly this.
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Lemmab.1.If Z1(w, A) = Ofor somgw, 1), then also has been supported by the EPSRC grant number GR/
EZ2(w, 1) = 0. 535684/01.

As a consequence of this lemma it remains to con-
sider only the single bifurcation equatid@(w, 1) :=
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