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a b s t r a c t

We report on a number of careful numerical experimentsmotivated by the semiclassical (zero-dispersion,
ϵ ↓ 0) limit of the focusing nonlinear Schrödinger equation. Our experiments are designed to study
the evolution of a particular family of perturbations of the initial data. These asymptotically
small perturbations are precisely those that result from modifying the initial-data by using formal
approximations to the spectrum of the associated spectral problem; such modified data has always been
a standard part of the analysis of zero-dispersion limits of integrable systems. However, in the context of
the focusing nonlinear Schrödinger equation, the ellipticity of the Whitham equations casts some doubt
on the validity of this procedure. To carry out our experiments, we introduce an implicit finite difference
scheme for the partial differential equation, and we validate both the proposed scheme and the standard
split-step scheme against a numerical implementation of the inverse scattering transform for a special
case in which the scattering data is known exactly. As part of this validation, we also investigate the use
of the Krasny filter which is sometimes suggested as appropriate for nearly ill-posed problems such as we
consider here. Our experiments show that that the O(ϵ) rate of convergence of the modified data to the
true data is propagated to positive times including times after wave breaking.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

In their pioneering work, Lax & Levermore [1–3] used the
inverse scattering transform (IST) to study the zero-dispersion
limit of the initial-value problem for the Korteweg–de Vries
equation:

∂ty − 6y∂xy = ϵ2∂3x y, (1.1a)

y(x, 0) = y0(x). (1.1b)

That is, they were able to characterize the limiting behavior of the
family, indexed by ϵ > 0, of solutions y(ϵ)(x, t) of (1.1) in the limit
ϵ ↓ 0. Their results (and those of others who have since extended
and refined the analysis of (1.1), e.g., [4–8]) show – as one might
guess – that for small times, y(ϵ)(x, t) converges strongly to ȳ(x, t),
the solution of

∂t ȳ − 6ȳ∂xȳ = 0, (1.2a)
ȳ(x, 0) = y0(x). (1.2b)
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For any fixed ϵ > 0, solutions of (1.1) with smooth, decaying
data exist and remain smooth for all t > 0. By contrast, the lim-
iting equation (1.2a) is known to support solutions which develop
shocks in finite time regardless of the smoothness of the data.
Indeed, a major impetus for the study of this problem has been
to understand how the dispersive term in (1.1a) prevents shock
formation. Roughly, the solution develops rapid nonlinear oscil-
lations which carry energy away from a developing shock, and
Lax–Levermore theory provides a rather precise description of the
character of these oscillations in various regions of the xt-plane. An
integral component of this description are the Whitham or modu-
lation equations; these partial differential equations describe the
local evolution of the large-scale structures in the solution. No-
tably, in the case of (1.1a), these equations are of hyperbolic type.

The solution of (1.1) by IST is intimately connected with the
spectrum of the Schrödinger operator,

−ϵ2
d2

dx2
+ y0,

and the first step in Lax & Levermore’s analysis was to replace
the true spectrum with WKB approximations. This replacement
creates a sequence of reflectionless potentials y(ϵ)0 (x) which
converge to y0(x) in L2(R) as ϵ ↓ 0. Using the IST, Lax & Levermore
were then able to write down essentially explicit representations
of the family of solutions of (1.1a) corresponding to this sequence
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of modified data, and they were able to analyze and describe the
limiting structure of this family.

These ideas and their extensions have also been used to
address other problems including the semiclassical limit of the
defocusing nonlinear Schrödinger equation [9], the continuum
limit of the Toda lattice [10], and a continuum limit of a discrete
nonlinear Schrödinger equation [11]. In all of these analyses, a step
corresponding to the modification of the initial data, as described
above for (1.1), has been the starting point of the analysis. In
each of these cases, the Whitham equations are hyperbolic, hence
locally well posed. Thus, in view of the L2-convergence of the
modified data to the true data, it seems reasonable to expect that
the convergence holds for t > 0 aswell. Here, however,we address
a case in which the Whitham equations are elliptic, and such an
expectation seems much more dubious. Our aim here is to better
understand the effect of modifying the data in such a case.

1.2. Focusing nonlinear Schrödinger equation and semiclassical limit

We consider the initial-value problem for the semiclassically-
scaled focusing nonlinear Schrödinger (NLS) equation:

iϵ∂tu +
ϵ2

2
∂2x u + |u|2u = 0, (1.3a)

u(x, 0) = u0(x). (1.3b)

Eq. (1.3a) is a universal model equation that arises in models of
diverse physical scenarios; it describes the envelope dynamics of
a monochromatic wave in a weakly dispersive nonlinear medium
in which diffusive effects are negligible [12–14]. For example, it is
a simple model for the propagation of light in optical fibers [15].
In (1.3a), 0 < ϵ ≪ 1 is a constant parameter which measures the
ratio of dispersion to nonlinearity.

Our interest is the semiclassical or zero-dispersion limit of (1.3).
That is, we suppose that the initial data u0 is fixed, and we solve
(1.3) for each small ϵ > 0. We describe below our assumptions
on u0 which guarantee the existence of a unique global solution to
(1.3) so that, in principle at least, this first step is possible. Then,
given the resulting family (indexed by ϵ) of solutions,

u(x, t) = u(ϵ)(x, t),

the goal is to describe the asymptotic behavior of these solutions
in the limit ϵ ↓ 0. The first breakthrough for this problem was due
to Kamvissis et al. [16] for initial data of the form

u0(x) = A0(x), (1.4)

where A0 : R → (0, A] is even, bell-shaped, and real analytic.More
precisely, A0 is assumed to

(i) decay rapidly at ±∞;
(ii) be an even function, i.e., A0(x) = A0(−x) for all x ∈ R;
(iii) have a single genuine maximum at x = 0, i.e., A0(0) = A,

A′

0(0) = 0, A′′

0(0) < 0; and
(iv) be real-analytic.

Henceforth, we adopt these assumptions.
We remark that for fixed ϵ > 0, well-posedness for the Cauchy

problem (with ϵ-independent data, as in (1.3b)) is well known.
For example, we note that Ginibre & Velo [17] have shown that if
u0 ∈ H1(R)∩ L∞(R), then (1.3a) has a unique global solution u(t)
in C (R;H1(R)∩L∞(R)); the solution depends continuously on the
data. Moreover, in the case (as we consider here) that u0 ∈ S (R)—
the Schwartz space of rapidly decaying functions, it is known that
u(·, t) is also in S (R) for each t [18]. The issue is that this well-
posedness is not uniform in ϵ [19].
1.3. Inverse scattering transform

As in the other problems to which Lax–Levermore theory has
been applied, Eq. (1.3a) is integrable, i.e., there is an associated
Lax pair. Thus, we can solve the initial-value problem (1.3) by
IST; Appendix contains an outline of the process. Indeed, it could
be argued that the integrability of (1.3a) is the only feature that
makes the task of obtaining (postbreak) asymptotics even appear
tractable. The equivalent problem for nonintegrable variants of
(1.3a) appears to be widely open [20].

The first step, then, in solving (1.3) is an analysis of the
nonselfadjoint Zakharov–Shabat eigenvalue problem (one half of
the Lax pair for (1.3a)):

ϵ
d
dx


w1(x; λ)
w2(x; λ)


=


−iλ A0(x)

−A0(x) iλ

 
w1(x; λ)
w2(x; λ)


. (1.5)

In (1.5), w1 and w2 are auxiliary functions and λ ∈ C is a spectral
parameter. For each ϵ > 0 and for A0 as described above, it is
known (see [21]) that the discrete spectrum of (1.5) is confined
to the imaginary axis. Beyond this, a formal WKB method applied
to (1.5) suggests that the reflection coefficient is small beyond all
orders and the imaginary eigenvalues are given by a quantization
condition of Bohr–Sommerfeld type. Since precise information
about the true scattering data (discrete eigenvalues of (1.5) and
the reflection coefficient) is not known, a natural way forward –
following Lax & Levermore – is to use the (formal) WKB scattering
data in its place. For each small ϵ > 0 this procedure, neglecting the
reflection coefficient and using the WKB eigenvalues, amounts to
replacing the true initial data A0 with some other initial condition
u(ϵ)0 which depends on ϵ and for which the WKB spectral data is
the true spectral data. Because we neglect reflection, each solution
of (1.3a) with initial data u(ϵ)0 is an N-soliton with N ∼ ϵ−1.
The collection of all these exact N-soliton solutions of (1.3a) (with
N → ∞ and ϵ ↓ 0) is called the semiclassical soliton ensemble (SSE)
associated with A0.

The analysis of Kamvissis et al. [16] is almost wholly focused
on the inverse scattering step for SSEs. Now, there are at least
two special cases for the which the spectral data is known
exactly. For A0(x) = A sech(x), Satsuma & Yajima [22], after a
clever transformation, have shown how to write down explicit
formulae for the eigenvalues, proportionality constants, and
reflection coefficient coming from (1.5). More recently, Tovbis &
Venakides [23] introduced a special family of initial data (with a
complex phase) for which the forward scattering problem can also
be treated exactly. This family of data forms the foundation of the
related work on the semiclassical limit by Tovbis et al. [24]. It is
clearly of interest to obtain results for a much wider class of initial
data, and a natural first step is to look at the bell-shaped data that
generate SSEs.

Strictly speaking, the analysis of Kamvissis et al. [16] describes
the asymptotic behavior of such SSEs for t ≠ 0. At t = 0 there is
the complementary result of Miller:

Theorem 1 (Miller [25]). In the situation described above, there is a
sequence (ϵN)∞N=1 such that

lim
N→∞

ϵN = 0, (1.6)

and such that for each x ≠ 0 there exists a Kx such that

|u(ϵN )0 (x)− A0(x)| ≤ Kxϵ
1/7−ν
N , N = 1, 2, 3, . . . (1.7)

for all ν > 0.
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As noted above, a fundamental issue that remains unresolved is
to connect the asymptotics of the SSE to those of the true solution
of the initial-value problem (1.3). That is, Theorem 1 shows that
that SSE and A0 are asymptotically pointwise close at t = 0.
However, (1.3a) has modulational instabilities whose exponential
growth rates become arbitrarily large in the semiclassical limit—
the Whitham equations are elliptic. Thus, it is not possible to
conclude from Theorem 1 that any member of the SSE and the
corresponding true solution are close for any t > 0. To attack
this difficulty, one could try to rigorously estimate the deviation of
the WKB spectral data corresponding to A0 from A0’s true spectral
data. With such eigenvalue-by-eigenvalue control in hand, one
could then try to incorporate this information into the asymptotic
analysis. This is the ongoing work of [26]. Our complementary goal
in this paper is to better understand, by numerical experiment,
the relationship between the SSE and A0 at t = 0 and between
the SSE and the true solution u(x, t) for t > 0. In particular, our
experiments support the following conjecture.

Conjecture. For small times, despite the presence of modulational
instability, the particular asymptotically small modification of the
initial data used by Kamvissis et al. to generate a semiclassical soliton
ensemble for bell-shaped data does not affect the limiting behavior.

In the remainder of this paper, we describe the process
we used to generate numerical evidence that supports this
conjecture. Remarkably, our experiments show that the O(ϵ) rate
of convergence of the modified data to the true data is propagated
to positive times, including times after wave breaking.

1.4. Plan

To aid the reader, we now outline the contents of the remainder
of this paper. In Section 2 we describe the machinery from the
theory of integrable systems necessary to obtain an N-soliton
solution of (1.3a) with initial data of the form (1.4). That is,
assuming that reflectionless scattering data for Zakharov–Shabat
problem (1.5) is known, we recall that the solution of Eq. (1.3a) can
be obtained by solving an appropriate Riemann–Hilbert problem.
In this section, for initial data A0(x) = exp(−x2), we also describe
the computation of the WKB eigenvalues for (1.5). With high-
precision approximations of these eigenvalues in hand, we are
able to use known techniques [27,28] to generate members
of the corresponding SSE. Sections 3 and 4 are devoted the
development and testing of the numerical methods we use for our
eventual comparison between members of the Gaussian SSE and
the (numerically computed) true evolution of (1.3). We use the
members of the Satsuma–Yajima ensemble, knownexactN-soliton
solutions, to validate our numerical methods in the range of ϵ and
t that we consider here. Using the methods of Section 3, we report
on the principal experiment of the paper in Section 5; this is the
aforementioned comparison of true evolution for various values
of ϵ with that of the corresponding members of the Gaussian SSE.
Finally, Section 6 contains a discussion of our results. For example,
we contrast our resultswith some examples in the literaturewhich
suggest that when ϵ is small, Eq. (1.3a) is extremely sensitive to
(rough) perturbations of the initial data. Appendix contains an
outline of the features of the inverse scattering transform for (1.3a)
that are used in this paper.

2. Riemann–Hilbert and WKB

2.1. Riemann–Hilbert formulation

We take as our starting point the fact that every N-soliton
solution of the focusing NLS equation can be characterized as the
solution of a meromorphic Riemann–Hilbert Problem (RHP) with
no jumps. The solution of the RHP is a matrix-valued rational
function of λ ∈ C; the solution depends on a set of discrete data—a
collection of N complex numbers in the upper-half plane

{λN,0, λN,1, . . . , λN,N−1}, (2.1)

N nonzero constants

{γN,0, γN,1, . . . , γN,N−1}, (2.2)

and a choice of J = ±1. One seeks to solve the following problem.

Riemann-Hilbert Problem 1. Find a 2×2matrix-valued function
m(λ; x, t)with the following properties.

1. m(λ; x, t) → I as λ → ∞.
2. m(λ; x, t) is a rational function of λ with poles confined to the

values λN,k and λ∗

N,k. At the singularities,

resλ=λN,km(λ) = lim
λ→λN,k

m(λ)σ
1−J
2

1


0 0

cN,k(x, t) 0


σ

1−J
2

1 , (2.3)

resλ=λ∗
N,k

m(λ) = lim
λ→λ∗

N,k

m(λ)σ
1−J
2

1


0 −cN,k(x, t)∗

0 0


σ

1−J
2

1 .

(2.4)

Here,

cN,k(x, t) :=


1
γk

J

N−1
n=0
(λN,k − λ∗

N,n)

N−1
n=0
n≠k

(λN,k − λN,n)

× exp

2iJ(λN,kx + λN,kt2)

ϵ


, (2.5)

and σ1 is the Pauli matrix

σ1 =


0 1
1 0


.

Finally, once the solution of RHP 1 is found, one recovers an
N-soliton solution via the formula

u(x, t) = 2i lim
λ→∞

λm12(λ; x, t).

As pointed out by Kamvissis et al. [16], the RHP above can be
recognized as a classical Padé multipoint interpolation problem.
They usedRHP1 as the starting point of their analysis; as a first step
they exchanged the meromorphic problem above for a sectionally
holomorphic one. Then, as the result of a substantial amount of
work, theywere able to transform the sectionally holomorphic RHP
to one which is amenable to the steepest-descent techniques of
Deift & Zhou [29]. The results of this elaborate analysis are detailed
asymptotic formulae for the small-ϵ behavior.

We proceed in a different fashion. After making a partial
fractions ansatz, it is possible to reduce the solution of RHP 1 to the
solution of an N × N linear system; see [27,28] or Appendix. Then,
given eigenvalues {λN,j}, constants {γN,j}, and a pair (x, t) (these
appear in the linear system as parameters), we may recover the
N-soliton solution of (1.3a) at (x, t). Thus, to construct members of
a SSE associated to initial data A0, we need to compute the WKB
eigenvalues of the Zakharov–Shabat problem with A0 appearing
as potential. With these in hand, we may then turn to solving the
poorly conditioned linear system that is born of RHP 1.Wedescribe
the calculation of the WKB eigenvalues in the next section.
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Fig. 1. The turning points x±(η).

2.2. The WKB formulae

2.2.1. General case: bell-shaped data
We begin by recalling the formulae for the WKB eigenvalues of

(1.5); for more details see [30]. The basic object of interest is the
density function

ρ0(η) :=
η

π

 x+(η)

x−(η)

dx
A0(x)2 + η2

=
1
π

d
dη

 x+(η)

x−(η)


A0(x)2 + η2 dx, (2.6)

defined for η ∈ (0, iA)where x±(η) are the two real turning points;
see Fig. 1. From ρ0 we obtain the function

θ0(λ) := −π

 iA

λ

ρ0(η) dη (2.7)

whichmeasures the number ofWKB eigenvalues on the imaginary
axis between λ and iA. We then define for N = 1, 2, 3, . . .

ϵN := −
1
N

 iA

0
ρ0(η) dη =

1
πN


∞

−∞

A0(x) dx.

Finally, the WKB eigenvalues λ̃N,k are defined (there are N of them
for ϵN ) by the formula

−

 iA

λ̃N,k

ρ0(η) dη = ϵN


k +

1
2


(2.8)

=
θ0(λ̃N,k)

π
, k = 0, . . . ,N − 1. (2.9)

Using the above formulae we may ‘‘simplify’’ the left-hand side:

−

 iA

λ̃N,k

ρ0(η) dη
(2.6)
= −

 iA

λ̃N,k

1
π

d
dη

 x+(η)

x−(η)


A0(x)2 + η2 dx


dη

=
2
π

 x+(λ̃N,k)

0


A0(x)2 + λ̃2N,k dx.

Therefore, writing λ̃N,k = itN,k for tN,k ∈ (0, A) ⊂ R, we desire to
solve the equation x+(itN,k)

0


A0(x)2 − t2N,k dx =

πϵN

2


k +

1
2


,

k = 0, 1, 2, . . . ,N − 1. (2.10)

In this case, the auxiliary scattering data (proportionality con-
stants) are given by

γ̃N,k = (−1)k+1. (2.11)
2.2.2. The Gaussian SSE
For our numerical experiments, we restrict ourselves to the

Gaussian SSE. That is, from now on, we consider the problem (1.3)
with fixed initial data given by

u0(x) = A0(x) = e−x2 . (2.12)

Then, from (2.8)

ϵN =
1
πN


∞

−∞

e−x2 dx =
1

√
πN

, (2.13)

and formula (2.10) becomes x+(itN,k)

0


e−2x2 − t2N,k dx =

√
π

2N


k +

1
2


,

k = 0, 1, 2, . . . ,N − 1, (2.14)

where x± are given by

x±(it) = ±
√

− ln t. (2.15)

Eq. (2.10) thus reduces in this case to √
− ln tN,k

0


e−2x2 − t2N,k dx =

√
π

2N


k +

1
2


,

k = 0, 1, 2, . . . ,N − 1. (2.16)

It is the solutions tN,k, k = 0, . . . ,N −1 of (2.16) together with the
γN,k’s which will generate the exact N-soliton solution of (1.3a).
The collection of these solutions for N ∈ N is the Gaussian SSE.

Our first task is to solve (2.16) to very high precision. With
the numerically computed WKB spectral data in hand, we then
use the numerical linear algebra routines of [27,28] to reconstruct
via inverse scattering various members of the SSE at t = 0 (and
later times too). High precision knowledge of the spectral data is
necessary due to fact that the solution is obtained by solving a
poorly conditioned linear system [27]. We will then compare the
numerical reconstructions ofmembers of theGaussian SSE at t = 0
to the true initial data A0 = e−x2 and with approximations to the
evolution at later times.

We nowmake a few comments about the solution of (2.16). We
performed these calculations with 250-digit precision in Maple.
However, our initial attempts to solve Eq. (2.16) directly were
unsuccessful, and we found it necessary to transform the problem
to avoid difficulties with the root finder. In particular, if we define

F(t) :=

 √
− ln t

0


e−2x2 − t2  

K(x,t)

dx, (2.17)

then Eq. (2.16) can be viewed as solving the single equation

F(t) = constant.

Twoviewsof the graphof the functionK appearing in thedefinition
of F in (2.17) are shown in Fig. 2, andwe attributed the failure of the
Newton solver to the square-root vanishing of K and its influence
on F ′(t) along the curve (x+(it), t). To overcome the problem and
eliminate the difficulty, we define

e−2x2
= t2 cosh2w, (2.18)

and we write F(t) as

F(t) =

 1
2
√

− ln t

0


e2x2 − t2 dx +

 √
− ln t

1
2
√

− ln t


e2x2 − t2 dx

=: FI(t)+ FII(t). (2.19)
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Fig. 2. Two pictures of the graph of K . Note that K vanishes along the curve defined by (x+(it), t) = (
√

− ln t, t).
Then, changing the integral in FII via (2.18) to an integral with
respect tow, we obtain

FII(t) =

 √
− ln t

1
2
√

− ln t


e2x2 − t2 dx

=
1
2

 cosh−1(t−3/4)

0

t sinhw tanhw
−

1
2 ln(t2 cosh2w)

dw. (2.20)

It follows that (2.16) may be rewritten as 1
2
√

− ln tN,k

0


e−2x2 − t2N,k dx

+
1
2

 cosh−1(t−3/4
N,k )

0

tN,k sinhw tanhw
−

1
2 ln(t2N,k cosh

2w)

dw

=

√
π

2N


k +

1
2


. (2.21)

This is the equationwe solve to high precision.Weverified the 250-
digit accuracy of the solutions of (2.21) using both Mathematica
andMaple routines.

3. Numerical methods

We introduce an implicit finite difference scheme to solve
the initial value problem (1.3) in this section. In Section 4 we
use an exact solution to illustrate the order of accuracy of the
proposed method. We show that the temporal grid sizes used
for the proposed method scale linearly with the spatial mesh
refinement. We then use particular N-soliton solutions, members
of the Satsuma–Yakima ensemble [22], which we obtain by the
IST calculation, to validate the proposed method for small-ϵ
calculation. At the same time, we compare the proposed method
with the well-known spectral split-step method and show that
the proposed method is a suitable method for solving the focusing
NLS in the semiclassical regime. We also investigate a filtering
process that removes Fouriermodeswhose amplitudes are smaller
than a given threshold for our calculations with small ϵ. Finally, in
Section 5,we compare numerical solutions of the proposedmethod
with that of the Gaussian SSE for the focusing NLS.

The focusing NLS equation (1.3a) we consider here can be easily
rescaled into the standard cubic NLS

i∂t∗ψ + ∂2x∗ψ + 2|ψ |
2ψ = 0, (3.1)
with u(t, x) =
√
ϵψ(2t∗,

√
ϵx∗). Eq. (3.1) is completely integrable

in the sense of IST and has a canonical Hamiltonian form. A
spatial finite-difference semi-discretization of Eq. (3.1) proposed
by Ablowitz and Ladik [31],

i
dψm

dt
+

1
h2 (ψm+1 − 2ψm + ψm−1)

+ |ψm|
2 (ψm+1 + ψm−1) = 0, (3.2)

is also completely integrable and possesses a Hamiltonian
structure; here, h is the spatial grid size. We refer to the above
discretization as the AL-lattice. Fornberg [32] has shown that with
accurate (exact) time integration, the AL-lattice is very suitable
for numerical work, since it produces few numerical artifacts for
unstable analytical solutions in a periodic domain.More discussion
on numerical homoclinic instability for the standard NLS can be
seen, for example, in the papers by Ablowitz and Herbst [33] and
Ablowitz et al. [34]. Nevertheless, choosing a proper numerical
time integrator for the AL-lattice is by no means a trivial task.

Schober [35] and Islas et al. [36] indicate that the Hamiltonian
system of the AL-lattice carries on its phase space a noncanonical
symplectic structure for which standard symplectic integrators,
such as symplectic implicit Runge–Kutta methods, are not
immediately applicable. Several approaches are provided by
Schober [35] and Islas et al. [36] to remedy the situation. While
symplectic algorithms have the advantage of preservation of the
global and local conservation laws for a long period of time, our aim
is in the direction of developing an efficient and stable algorithm
that is suitable for fine-grid calculations in order to accurately
capture the behavior of (1.3a) in the small-ϵ regime.

Taking advantage of the simple and clean form of the AL-
lattice, we propose to apply the implicit midpoint time integrator
to the AL-lattice directly. The implicit midpoint method is the
lowest order member of the Gauss–Legendre family of implicit
Runge–Kuttamethodswhich are symplectic schemes for canonical
Hamiltonian systems [36]. Our numerical experiments show that
the combination of the midpoint time integrator and the AL-
lattice is advantageous for solving the semiclassical focusing NLS
equation. The advantages include (1) the ratio of temporal grid
size and the spatial grid size used for the method can be kept
constant when refining the mesh; (2) with a good initial guess, the
simple fixed-point iteration process converges relatively fast (<10
iterations for the convergence tolerance γ ≤ 10−12); (3) unlike
the standard spectral split-step method, the proposed method is
less sensitive to what spatial and temporal grid sizes to use in
the simulations to avoid numerical artifacts caused by numerical
roundoff error for small ϵ.
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Finally, we remark that many numerical methods for the
focusing NLS in the semiclassical regime have been discussed in
the literature [37–40], but none directly compared with the IST
calculation.

3.1. Implicit finite difference algorithm

The proposed finite difference scheme for the initial value
problem (1.3) is as follows.
Step 1. Based on the AL-lattice, the spatial discretization of
Eq. (1.3a) is

iϵ
dum

dt
+

ϵ2

21x2
(um+1 − 2um + um−1)

+
1
2
|um|

2 (um+1 + um−1) = 0, (3.3)

where1x is the spatial grid size, and um approximates the solution
at the mth grid point.
Step 2. Applying themidpoint time integrator to the above ordinary
differential equations (ODE) yields

un+1
m = un

m +
iϵ1t
21x2


un+1/2
m+1 − 2un+1/2

m + un+1/2
m−1


+

i1t
2ϵ

un+1/2
m

2 un+1/2
m+1 + un+1/2

m−1


, (3.4)

where1t is the time step size, and un+1/2
m is defined as

un+1/2
m =

1
2


un
m + un+1

m


. (3.5)

Step 3. For n = 1, . . . ,N , we solve the nonlinear equations (3.4)
by using the simple fixed-point-iteration (FPI) procedure, in which
the (k + 1)th iteration is written as

un+1,(k+1)
m = un

m +
iϵ1t
21x2


un+1/2,(k)
m+1 − 2un+1/2,(k)

m + un+1/2,(k)
m−1


+

i1t
2ϵ

|un+1/2,(k)
m |

2

un+1/2,(k)
m+1 + un+1/2,(k)

m−1


, (3.6)

where un+1/2,(k)
m is defined as

un+1/2,(k)
m =

1
2


un
m + un+1,(k)

m


. (3.7)

The initial guess un+1,(0)
m for the FPI procedure within each time

step is the solution of the Crank–Nicolson-type scheme for the AL-
lattice:

un+1
m = un

m +
iϵ1t
21x2


un+1/2
m+1 − 2un+1/2

m + un+1/2
m−1


+

i1t
2ϵ

|un
m|

2 un
m+1 + un

m−1


, (3.8)

where un+1/2
m is defined in (3.7). Eq. (3.8) results in a tridiagonal

system for un+1
m , which is solved by the Thomas Algorithm [41]. The

convergence tolerance for the FPI procedure is

∥un+1,(k+1)
− un+1,(k)

∥∞ ≤ γ , (3.9)

where γ ≤ 10−12 for the numerical experiments throughout this
paper. Here ∥ · ∥∞ is the infinity-norm defined by

∥u∥∞ = max
m=1,...,M

|um|. (3.10)

When the convergence tolerance is achieved, we set un+1
=

un+1,(k+1), and move onto the next time step.
3.2. Spectral split-step method

Splitting schemes are very appealing for solving the focusing
NLS equation in periodic domains. Within one 1t , a splitting
method advances the NLS equation (1.3a) by solving the following
two equations alternately.
(A) Nonlinear part (solve exactly in physical space)

ut =
2i
ϵ

|u|2u. (3.11)

(B) Linear part (solve exactly in Fourier space):
ut = iϵuxx. (3.12)
Yoshida [42] introduced a systematic method to construct
arbitrary even-order time accurate splitting schemes. For example,
to obtain second-order accuracy in time, we solve the two
equations sequentially, like (A) −→ (B) −→ (A), by using the time
increments {

1t
4 ,

1t
2 ,

1t
4 } in each step, respectively. Alternatively,

one can also solve the sequence (B) −→ (A) −→ (B) to obtain
the same order of accuracy, although this sequence is more time
consuming, since one has to compute the (inverse) Fast Fourier
Transform twice. We remark that the second-order accurate
method constructed by using Yoshida’s scheme is essentially the
Strang splitting method [39]. The sequences and time increments
for fourth and sixth-order methods are listed, for example, in the
paper by Fornberg & Driscoll [43].

In Step (A), we solve the ODE (3.11) exactly. Bao et al. [39] did a
simple calculation to show that |u|2 in Eq. (3.11) is invariant within
each time increment,

∂t |u|2 = 2Re(ut ū) =
4
ϵ
Re(i|u|2uū) =

4
ϵ
Re(i|u|4) = 0. (3.13)

Eq. (3.13) implies that the ODE (3.11) is linear and separable.
We use the second-order scheme to illustrate the split step
algorithm as follows. Suppose that in a periodic domain, Eq. (1.3a)
is solved on a mesh for um, wherem = 1 · · ·M + 1 and uM+1 = u1,
within a time step1t = tn+1

− tn.
Step 1: We solve (A) in the physical space with the initial time tn
and the final time tn +

1
41t . The solution at themth grid point is

um


tn +

1
4
1t


= um(tn)e
i1t
2ϵ |um(tn)|2 . (3.14)

Step 2: We solve (B) in the Fourier space. The Fourier transform of
Eq. (3.12) is

ût = −ik2ϵû, (3.15)
where k is the wavenumber, and û is the Fourier transform of u.
The Fourier transform pair for u are defined as

ûk =

M
m=1

umω
(m−1)(k−1)
M ,

um =
1
M

M
k=1

ûkω
−(m−1)(k−1)
M ,

(3.16)

where

ωM = e(−2π i)/M . (3.17)
Solving the ODE (3.15) with the initial time tn +

1
41t and the final

time tn +
3
41t yields the kth Fourier mode of u,

ûk


tn +

3
4
1t


= ûk


tn +

1
4
1t

e−

1
2 ik

2ϵ1t . (3.18)

Step 3: After taking the inverse Fourier transform of û in (3.18), we
solve (A) again in the physical space with the initial time tn +

3
41t

and the final time tn+1. The solution at themth grid point is

um(tn+1) = um


tn +

3
4
1t

e

i1t
2ϵ

umtn+ 3
41t

2
. (3.19)
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Table 1
Mesh refinement study.

1x
1/32 1/64 1/128 1/256 1/512 1/1024

∥ρFD − ρexact∥2 5.0836e−04 1.2709e−04 3.1772e−05 7.9429e−6 1.9857e−6 4.9643e−07
1t/1x 1/80 1/80 1/80 1/80 1/80 1/80
Order 2 2 2 2 2

∥ρSS − ρexact∥2 1.1046e−06 2.7624e−07 6.8953e−08 1.7372e−8 4.4907e−9 1.1117e−09
1t/1x 1/10 1/10 1/10 1/10 1/10 1/13
Order 2 2 1.99 1.95 2.01
4. Numerical experiments

4.1. Exact solution

It is easy to check that an exact solution associated with the
focusing NLS equation (1.3a) is

u(x, t) = sech

x + 2t
ϵ


e

−2i
ϵ


x+ 3

4 t

. (4.1)

The structure of the solution (4.1) is simple; it features a bell-
shaped envelope propagating at a constant rate. We use this exact
solution to validate our numerical implementation and to test the
order of accuracy of the numerical methods. Table 1 is the mesh
refinement study of the proposed implicit finite differencemethod
and the split-step method. In the calculations, the length of the
periodic domain is [−16, 16], the small parameter is ϵ = 0.5,
and the final time is t = 0.5. The temporal grid size for the
finite difference method is 1t/1x = 1/80, and the convergence
tolerance is γ = 10−13. If we define the physical quantity

ρ(x, t) = |u(x, t)|2, (4.2)
the error of ρ between the numerical calculation and the exact
solution measured by the 2-norm

∥ρ∥2 =

 1
M

M
m=1

ρ2
m, (4.3)

is shown in Table 1. The table indicates that both methods are
second-order accurate.We also note that for bothmethods,1t/1x
can be kept roughly constant throughout the mesh refinement
study to maintain the desired accuracy.

4.2. N-soliton

Lyng & Miller [28] introduced accurate numerical reconstruc-
tions of the N-soliton by the IST; these refined earlier calculations
of Miller & Kamvissis [27]. In this case, the N-soliton is the solution
of the initial-value problem

iψt +
1
2
ψxx + |ψ |

2ψ = 0,

ψ(x, 0) = N sech(x).
(4.4)

If the amplitude and the time variable of ψ are scaled by a
parameter ϵ for a new variable, u(x, t) = ϵψ(x, t/ϵ), the initial
value problem (4.4) is equivalent to the focusing NLS equation
for u:

iϵut +
1
2
ϵ2uxx + |u|2u = 0,

u(x, 0) = A sech(x),
(4.5)

where ϵ = A/N . It is well-known that the N-soliton breaks its
focusing state into the oscillatory state at the critical time tc =

(2A)−1 [16]. We consider the case of initial amplitude A = 2
(thus tc = 0.25) and compute the initial value problem (4.5) for
various N by using the IST. We choose the time slice at t = 0.3
(>tc) with 4096 points in the interval 0 ≤ x ≤ 1 on the (t, x) plane.
All calculations are done using Mathematica with 250-digit
precision. The solutions obtained by the IST calculation are, up to
the numerical precision of the implementation of the IST, exact
solutions of the N-soliton problem (4.5). We use these solutions
to assess the performance of the finite difference and the spectral
split-step algorithms for small ϵ.

We now test these two numerical algorithms for the N-soliton
problemwith the initial datau(x, 0) = 2sech(x). The periodic com-
putational domain is−16 ≤ x ≤ 16.We note that results obtained
by using the initial data u(x, 0) = 2sech(x) (ϵ = 2/N) at the final
time t = tf are equivalent to those that computed with initial data
u(x, 0) = sech(x) (ϵ = 1/N) at the final time t = 2tf , modulo a
factor two in amplitude.

Example 1. u(x, 0) = 2 sech(x),N = 40, ϵ = 0.05, final time
t = 0.3.
Fig. 3 shows simulations for N = 40 at the final time t = 0.3.
Fig. 3(a) plots the conserved quantity ρ computed by using the
finite difference method. Fig. 3(b) is the counterpart of Fig. 3(a),
using the spectral split-step method. Both (a) and (b) are plotted
against the IST solution. We observe that numerical solutions of
both methods are visually indistinguishable from the quasi-exact
solution. For the finite differencemethod, the 2-norm error against
the IST solution is 9×10−3, and for the spectral split-step method,
the error is 7.5 × 10−3. All 2-norm errors in this section are
measured for −1 ≤ x ≤ 1, unless specified otherwise. The finite
difference method uses the spatial grid size1x = 1/4096 and the
temporal grid size 1t/1x = 1/300. The convergence tolerance is
γ = 10−12. The spectral split-step method uses1x = 1/4096 and
1t/1x = 1/10. Similar to the example with the exact solution
(4.1), this experiment indicates that the spectral split-stepmethod
is able to capture the right solution, and is more efficient than the
finite difference method for ϵ = 0.05. We note that a similar
output to Fig. 3 can be obtained by using ϵ = 0.025 with the initial
data u(0, x) = sech(x) at the final time t = 0.6. We choose A = 2
for a shorter breaking time.

Example 2. u(x, 0) = 2 sech(x),N = 50, ϵ = 0.04, final time
t = 0.3.

Fig. 4 shows a refinement study of the finite difference method
for the 2 sech(x) initial data with N = 50. The figure plots the
computed quantity ρ against the IST results. Fig. 4(a) uses 1x =

1/2048 and1t/1x = 1/300, and Fig. 4(b) uses1x = 1/4096 and
1t/1x = 1/300.We observe that the 2-norm errors for (a) and (b)
are 0.1519 and 0.1300, respectively. The convergence tolerances
are γ = 10−15 for1x = 1/2048 and γ = 10−12 for1x = 1/4096.
The study suggests that for the finite difference method, combined
spatial and temporal refinementwill reduce the error for ϵ = 0.04.
We now compare Fig. 4(b) with the previous example, Fig. 3(a).
We observe that while these two calculations use the same spatial
and temporal discretization, the error in Fig. 4(b) is one order
larger than that in Fig. 3(a). The only difference between these two
simulations is the small parameter ϵ, for which one is 0.05 and the
other is 0.04. This seems to indicate that when the focusing NLS
equation becomes just a little bit more singular (i.e. ϵ decreases
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Fig. 3. N = 40 at t = 0.3. (a) A comparison of the finite difference method and the IST. The 2-norm error is 9 × 10−3 . (b) A comparison of the spectral split-step method
and the IST. The 2-norm error is 7.5 × 10−3 .
Fig. 4. N = 50 at t = 0.3. Refinement study of the finite difference method. (a) 1x = 1/2048, 1t/1x = 1/300, and the 2-norm error is 0.1519. (b) 1x = 1/4096,
1t/1x = 1/300, and the 2-norm error is 0.1300.
from 0.05 to 0.04), the roundoff error sets in rather swiftly. The
phenomenon of roundoff error becomesmuchmore prominent for
the spectral split-step method.

Similar to Figs. 4 and 5 is a refinement study of the spectral
split-step method. In this study, we explore how temporal and
spatial grid sizes used for the spectral split-step method affect
the simulations. We also investigate a filtering process introduced
by Krasny [44] for ill-posed initial value problems, such as the
vortex sheet roll-up problem. Krasny’s experience with vortex
sheet simulations suggests that if the problem is ill-posed, fewer
grid points should be used for the simulation. The reason for this
is that more grid points introduce shorter wavelengths into the
numerical solution, and once the short wavelengths are spuriously
perturbed by roundoff error, the computation collapses quickly.
Krasny proposed a filtering process, now known as the Krasny
filter, that eliminated Fourier modes whose amplitudes were
smaller than a threshold to restore smoothness of the roll-up.
For the focusing NLS equation (1.3), it is known that the problem
becomes ill-posed when ϵ approaches to zero [40]. Hence, the
Krasny filter is sometimes applied to simulations of the equation
in the semiclassical regime [39,40]. In particular, Bao et al. [39]
showed that the Krasny filter successfully restored symmetry for
simulations that showed breaking of symmetry.

In the recent papers of Bao et al. [39] and Jin et al. [45], the
authors suggested that typically the temporal and spatial grids
used for the focusing NLS equation should satisfy
1x = O(ϵ), 1t = o(ϵ). (4.6)
Taking this suggestion and the hint fromour numerical experiment
for N = 40 in Fig. 3(b), we first use the same spatial and temporal
grid sizes, 1x = 1/4096 and 1t = (1/10)1x = 1/40960, as
that used in Fig. 3(b) for N = 50. On the left-hand-side of Fig. 5(c),
we show that using this set of mesh sizes does not produce a
satisfactory result, comparedwith the IST calculation.Weapply the
Krasny filter to the same calculation so that if |ûk| < η, where |ûk|

is the amplitude of ûk and ûk is defined in Eq. (3.16), we manually
set ûk zero. Here η is the threshold level. On the right-hand-side
of Fig. 5(c), we show that when the Krasny filter (η = 10−13) is
applied at the end of each time step to the simulation, the filtered
result has a better match with the IST calculation. The 2-norm
error is reduced to 1.1177 from 2.6949, and symmetry has mostly
been restored. Our numerical experiments show that if we use
finer temporal grid sizes, with or without the filtering process,
the results only get worse. If we, on the other hand, decrease the
temporal grid size, by trial-and-error, we find that when1t = 2×

10−4, without the filtering process, we obtain a reasonable match
with the IST result, as shown on the left-hand-side of Fig. 5(b). If
we keep this temporal grid size and coarsen the spatial grid size
to 1x = 1/2048, without the filtering process, we obtain an even
better match with the IST calculation, as shown on the left-hand-
side of Fig. 5(a). On the right-hand side of Fig. 5(a) and (b), we show
that the Krasny filter does not improve the results. On the contrary,
a more significant phase-shift is observed for calculations with the
Krasny filter. We note that we obtain almost identical results for
the threshold levels from 10−15 to 10−10. In the next numerical
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Fig. 5. N = 50 at t = 0.3. Refinement study of the spectral split-step method. Left column: without the Krasny filter. Right column: with the Krasny filter and the threshold
is η = 10−13 . (a)1x = 1/2048,1t = 2×10−4 . The 2-norm error is 0.4397 without the filter and 0.7561 with the filter. (b)1x = 1/4096,1t = 2×10−4 . The 2-norm error
is 0.5527 without the filter and 0.7857 with the filter. (c) 1x = 1/4096, 1t = (1/10)1x = 2.44140625 × 10−5 . The 2-norm error is 2.6949 without the filter and 1.177
with the filter.
experiment, we further show that the Krasny filters not only do not
improve the results, they produce results that do not match with
the IST calculations for small ϵ.

Example 3. u(x, 0) = 2 sech(x),N = 54, ϵ = 1/27 ≈ 0.037,
final time t = 0.3.

In this example, we show that for N = 54 (ϵ ≈ 0.037), the
proposed finite difference method captures the proper waveform
of the solution, while the solution obtained by using the spectral
split-step method is heavily influenced by numerical artifacts.
We further show that the Krasny filter not only fails to reduce
the numerical artifacts in both methods, but produces solutions
that are drastically different from the IST calculation. Fig. 6(a)
shows that without the Krasny filter, the finite difference method
produces a solution that match the IST result closely. We note that
the spatial grid size is 1x = 1/2028 in this simulation. Using
either a finer grid such as 1x = 1/4096 or a coarser grid such
as 1x = 1/1024 will degenerate the result, regardless the choice
of temporal grid size, based on our numerical experiments. The
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Fig. 6. N = 54, 1x = 1/2048, 1t/1x = 1/200, t = 0.3. Computation by using the finite difference method. (a) Without the Krasny filter. (b) With the Krasny filter. The
thresholds are η = 10−15 and 10−13 , respectively.
Fig. 7. N = 54, 1x = 1/1024, 1t = 1200, t = 0.3. Computation by using the spectral split-step method. (a) Without the Krasny filter. (b) With the Krasny filter. The
thresholds are η = 10−15 and 10−13 , respectively.
convergence tolerance is γ = 10−15 for the simulation. Fig. 6(b)
shows the same computation, except Krasny’s filter (η = 10−13

and 10−15) is applied at the end of each time step. The numerical
results are identical for these two different thresholds, and they fail
to match the IST calculation.

Fig. 7(a) shows that the result by using the spectral split-step
method does not match the IST calculation for N = 54. The spatial
grid size is 1x = 1/1024 in this simulation. Similar to the finite
difference method, using either a finer grid such as 1x = 1/2048
or a coarser grid such as 1x = 1/512 will not improve the result.
When the Krasny filter is applied to this simulation, the result
becomes even worse, as shown in Fig. 7(b). Similar to the finite
difference method, two thresholds, η = 10−13 and 10−15, are
applied to the computation, and the outcomes are identical.

The results of this numerical experiment are hardly surprising.
As pointed out by Jin et al. [45], the Krasny filtering process actually
violates the conservation of mass, which means that the cut small-
amplitude Fourier modes could very much be part of the solution.

5. Evolution: A0 versus u(ϵ)
0

In this section, we compare numerical solutions obtained by
the evolutionary numerical methods discussed in Section 3 and by
the IST for the Gaussian SSE described in Section 2.2. First, for the
initial data given in Eq. (2.12), we compare the numerical solutions
obtained by the finite differencemethod and the split-stepmethod
to benchmark the solutions for this initial data. Table 2 shows
Table 2
2-norm difference of ρ between the finite difference and the split-stepmethods for
the Gaussian initial data.

N t
0.1 0.2 0.3 0.4 0.5

5 3.8360E−8 1.8054E−7 5.8820E−7 2.3012E−6 1.9354E−5
10 1.6094E−7 7.7978E−7 2.7336E−6 2.0142E−5 1.1714E−4
15 3.6547E−7 1.7772E−6 6.3417E−6 7.5820E−5 5.6675E−4
20 6.5206E−7 3.1748E−6 1.1401E−5 2.1776E−4 1.7275E−3

the 2-norm difference of ρ between these two methods at final
times t = 0.1, 0.2, 0.3, 0.4, and 0.5, with number of solitons,
N = 5, 10, 15, and 20. We recall that the relation between the
small parameter ϵ and the number of solitons N for this Gaussian
initial data is given in Eq. (2.13). The table shows that at this range
of ϵ and final times, numerical solutions obtained by these two
methods follow each other closely. The computational domain is
−10 ≤ x ≤ 10 and periodic. The grid resolution is 1x = 1/4096
for both methods, and the difference is measured for −1 ≤ x ≤ 1.
Fig. 8 shows the case that has the largest difference in Table 2, for
which N = 20 and the final time t = 0.5. The two results are
visually indistinguishable under the scale as shown in (a), and there
is a moderate visual discrepancy after we magnify the graph, as
shown in (b), for the centered peak. We remark that our numerical
investigation for the Gaussian initial data below is limited to these
ranges of N and t .
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Fig. 8. Gaussian data for N = 20 (ϵ ≈ 0.0282) at final time t = 0.5. The grid resolution is 1x = 1/4096. (a) Comparison between the finite difference method and the
split-step method. (b) Magnification of the centered peak in (a).
Fig. 9. Reconstruction of the Gaussian initial data by the Gaussian SSE. (a) N = 5, (b) N = 20.
Fig. 10. Comparison of a member of the Gaussian SSE (computed via IST) with the corresponding finite-difference solution with Gaussian initial data at t = 0.5. (a) N = 5,
(b) N = 20.
Fig. 9 shows the reconstruction of the initial data associated
with the Gaussian SSE, and its comparison with the true Gaussian
initial data for N = 5 and 20, respectively. These reconstructed
initial data can be seen as perturbation of the true Gaussian
data. Our main interest is to understand how these perturbed
data evolve with time in comparison to the evolution of the true
data. For large N (small ϵ), while the initial perturbation is small,
how the perturbed data will evolve with time in comparison
with the true evolution is not clear. In principle, the evolution
of the perturbed data could depart from the true evolution in
a short time, if ϵ is small enough. Fig. 10 shows that at time
t = 0.5, the perturbed data become visually indistinguishable
from the finite-differenced solution for both N = 5 and N =

20. The computational domain is −10 ≤ x ≤ 10 and periodic,
with the grid resolution 1x = 1/4096 for the finite difference
method.
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Table 3
2-norm difference of ρ between the finite-difference solution (for t > 0) with
Gaussian initial data and the corresponding member of the Gaussian SSE.

N t
0 0.1 0.2 0.3 0.4 0.5

5 3.4786E−2 3.2965E−2 2.7883E−2 2.0672E−2 1.3330E−2 8.8712E−3
6 2.9209E−2 2.7575E−2 2.3040E−2 1.6697E−2 1.0454E−2 8.7774E−3
7 2.5037E−2 2.3543E−2 1.9420E−2 1.3727E−2 8.3449E−3 5.9334E−3
8 2.1881E−2 2.0498E−2 1.6701E−2 1.1517E−2 6.7653E−3 5.3467E−3
9 1.9490E−2 1.8200E−2 1.4677E−2 9.9244E−3 5.7163E−3 4.4058E−3

10 1.7628E−2 1.6419E−2 1.3136E−2 8.7682E−3 5.0452E−3 3.7535E−3
11 1.6095E−2 1.4959E−2 1.1889E−2 7.8615E−3 4.5615E−3 4.0257E−3
12 1.4772E−2 1.3698E−2 1.0812E−2 7.0770E−3 4.1389E−3 3.6043E−3
13 1.3611E−2 1.2591E−2 9.8614E−3 6.3696E−3 3.7160E−3 3.5731E−3
14 1.2605E−2 1.1631E−2 9.0362E−3 5.7488E−3 3.3310E−3 2.6767E−3
15 1.1751E−2 1.0818E−2 8.3428E−3 5.2359E−3 3.0135E−3 2.8144E−3
16 1.1025E−2 1.0131E−2 7.7671E−3 4.8292E−3 2.7846E−3 2.4003E−3
17 1.0389E−2 9.5319E−3 7.2736E−3 4.4972E−3 2.6298E−3 2.3538E−3
18 9.8091E−3 8.9850E−3 6.8248E−3 4.1976E−3 2.4770E−3 2.2044E−3
19 9.2696E−3 8.4754E−3 6.4019E−3 3.9052E−3 2.3439E−3 1.9980E−3
20 8.7755E−3 8.0077E−3 6.0095E−3 3.6229E−3 2.1483E−3 2.7102E−3

Fig. 11. The 2-norm differences versus N for t = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5.
The data points are the computed values of the 2-norm error E = ∥ρFD − ρSSE∥2
from Table 3. The plotted curves are of the form E = C · Nα where the constants C ,
α are determined by a least squares fit to the data points; see Table 4. The values
for α in the legend show a O(1/N) = O(ϵ) rate of convergence even for the times
t = 0.4 and t = 0.5 which are after the breaking time.

We now systematically compute the 2-norm difference of
ρ between the SSE solutions and those of the finite difference
method (representing the true evolution of the initial data u0 =

exp(−x2)) for the ranges of N = 5 to N = 20 and t = 0.0 to t =

0.5. Table 3 shows that the differences between the two solutions
diminish with time for all N (except the last point, when N = 20,
t = 0.5). Fig. 11 represents the same data; the markers show the
2-norm differences versus N for times t = 0.0, 0.1, 0.2, 0.3, 0.4,
and 0.5, respectively. The figure shows a remarkable consistency
in the decay of the error as N increases; we discuss this further in
the next section. We also note that the 2-norm difference between
the finite difference and the split-step method is of the order 10−3

for N = 20 and t = 0.5, and this is also the difference between
the finite difference method and the IST. Therefore, at this point
it is difficult to determine whether the difference between the
finite differencemethod and the IST truly represents the difference
between the true solution and the IST-generated member of the
SSE. Also, it means little to do more comparison for larger t or N
beyond this point.

6. Discussion and concluding remarks

We have compared a spectral split-stepmethod and an implicit
finite difference method for solving the focusing NLS equation in
the semiclassical regime. In the special case that the initial data
is A0(x) = A sech(x), the IST solution serves as an exact solution
for the comparison. We find that the spectral split-step method
is more efficient compared with the proposed implicit finite
differencemethod. However, for small ϵ, we find that the proposed
implicit finite difference method is less sensitive to the choice of
spatial and temporal grid sizes than the split-step method; poor
choices lead to numerical artifacts caused by numerical roundoff
error. We observe that to obtain simulations with the fewest
numerical artifacts for theN-solitonproblemwith largeN (e.g.N ≥

54 and A = 2), the use of spatial and temporal grid sizes for
the numerical methods (both split-step method and the proposed
finite difference method) should follow Krasny’s suggestions [44],
i.e., use fewer grid points and larger time-step sizes, rather than
the meshing strategy in Eq. (4.6).

We also investigated a filtering process, known as the Krasny
filter.We find that the processmay help to restore symmetry of the
solution, but the restored solution may not represent the solution
of the problem. Furthermore, when ϵ is small, the filtering process
could even destroy good numerical simulations of the problem.
This is because for small ϵ, the highly oscillatory analytical solution
could be a superposition of those small-amplitude Fourier modes,
it is not possible for the filter to distinguish the small-amplitude
Fourier modes of the solution from those due to roundoff error.

Finally, we used the two studied numerical methods to
investigate the Gaussian SSE for the focusing NLS equation. Within
the range of ϵ and t forwhichwe are confident about our numerical
solutions, we find that for larger ϵ, the perturbation of the initial
data is quickly dissipated and the SSE solution becomes close to
the finite differenced solution, a good approximation to the true
solution. We see this as a reflection of the particularly special
nature of the perturbations we consider here; after all, they are
connected to the data through the WKB analysis of (1.5). By way
of comparison, we recall one of the experiments of Bronski and
Kutz [37]which featured anon-analytic perturbation of initial data.
In particular, they considered a perturbation, see Fig. 12, of the
initial data u0(x) = sech(x) by a small multiple of the tent function

f (x) =

1 −

13x
 , if |x| < 3,

0, if |x| ≥ 3.
(6.1)

In this case, Bronski and Kutz found that the evolution in their
simulations was extremely sensitive to even small amounts of
non-analyticity. Similarly, Clarke and Miller [46] also found that
the problem is quite sensitive to non-analytic perturbations; they
found wild behavior even for small perturbations of class C2(R).

To reveal further structure in the data assembled in Table 3, we
postulate a relationship for the 2-norm error E as function of N of
the form

E = ∥ρFD − ρSSE∥2 = C · Nα,

and we use the data compute values for C and α by least squares.
The resulting values are shown in Table 4, and the corresponding
curves are plotted in Fig. 11. The values for α in Table 4 show that
the modified initial data arising from the WKB analysis of (1.5)
converges to the true data at a O(1/N) rate. (Recalling, (2.13), we
see equivalently, that this rate of convergence isO(ϵ).) Remarkably,
our experiments show this rate of convergence is preserved at
later times suggesting the possibility of a limited kind of well-
posedness in the semiclassical limit. Also, we recall that Clarke and
Miller [46] showed how to extract an upper bound for the breaking
time – roughly, the first time that |u(·, t)|2 begins to exhibit ϵ-scale
oscillations – by an analysis of the formula

|t| =
2

π
√
ρ◦


−iA−1

0 (
√
ρ◦)

0
E

1 −

A0(iy)2

ρ◦


dy, (6.2)
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Fig. 12. The non-analytic perturbation of Bronski and Kutz [37].

Table 4
The values of C and α for each t .

t 0.0 0.1 0.2 0.3 0.4 0.5

α −0.9922 −1.0196 −1.1063 −1.2548 −1.3016 −1.0580
C 0.1727 0.1713 0.1671 0.1574 0.1044 0.0489

where E(m) is a complete elliptic integral of the second kind, and
A0 is the initial data. Using their technique, we compute the first
critical point of t(ρ0) and find an upper bound on the breaking time
for A0 = exp(−x2) to be

tub = 0.377417.

Thus, our experiments show that the O(1/N) rate of convergence
that we see for small times persists even past wave breaking. This
we see as especially noteworthy. Taken together, these results
are consistent with the conclusion that, despite modulational
instability, the asymptotically small modification of the initial data
used by Kamvissis et al. [16] does not affect the semiclassical limit.
Still, it is difficult, based on our experiments, to draw definitive
conclusions about the true limiting behavior. For our approach
to yield more definitive results, better numerical schemes are
required to further investigate the problem for smaller values of
ϵ and larger times. This is currently under our investigation.
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Appendix. Background: inverse-scattering transform

In this appendix, for the benefit of readers who may not
be familiar with the inverse-scattering transform, we outline its
relevant aspects here. Notably, we also outline the origin of the
linear system that we solve to generate members of the Gaussian
SSE; further details on these calculations can be found in [27,28].
The procedure for solving the nonlinear initial-value problem
(1.3) via IST is analogous to the procedure of solving initial-
value problems for linear partial differential equations by Fourier
transform. Briefly, the initial data is mapped to the scattering
data; the scattering data have a simple evolution in time; and
the solution at later times is reconstructed from the time-evolved
scattering data. This discussion is modeled after [47]. For more
details, see, e.g., [12,18,48].

The Lax pair for the focusing NLS equation (1.3a) consists of the
following two linear equations

ϵ
∂w
∂x

=


−iλ u
−u∗ iλ


w =: Uw (A.1)

and

ϵ
∂w
∂t

=

 −iλ2 +
i
2
|u|2 λu +

i
2
∂xu

−λu∗
+

i
2
∂xu∗ iλ2 −

i
2
|u|2

w =: Vw. (A.2)

Evidently, the zero-curvature condition

∂U

∂t
−
∂V

∂x
+ [U,V] = 0 (A.3)

is equivalent to the NLS equation. Note that the left-hand side
of (A.3) is independent of λ and vanishes exactly when u solves
(1.3a). It is precisely the existence of the Lax pair that allows the
construction of a large family of exact solutions. Effectively, we are
able to replace the nonlinear problem (1.3a) with the pair of linear
problems (A.1), (A.2).

A.1. Scattering

The first step is a careful study of the problem (A.1) for λ ∈ R
with u = u0(x). The analysis is facilitated by the fact that |u0(x)|
decays rapidly as |x| → ∞, whenceU tends to the constant matrix
−iλσ3 in the limit. It is precisely this observation that allows
one to construct particular solutions, the Jost solutions, of the
linear system (A.1) normalized at ±∞. The Jost solution matrices
J±(x; λ) (the 2 × 2 matrices whose columns are the normalized
Jost solutions) are both nonsingular fundamental matrices for the
differential equation. That is,
∂J±

∂x
= UJ±.

Of course, the 2×2 system can only have two linearly independent
column solutions, and therefore there is a 2 × 2 matrix S, called
the scattering matrix, such that J+(x; λ) = S(λ)J−(x; λ). Further
analysis reveals that the scattering matrix can be written in the
form

S(λ) =


a(λ)∗ b(λ)∗

−b(λ) a(λ)


, λ ∈ R. (A.4)

Here, a and b are complex-valued functions, and they form the ba-
sis of the transmission coefficient T (λ) = 1/a(λ) and the reflection
coefficient R(λ) = b(λ)/a(λ).

Now, it turns out that the function a has an analytic
continuation to the upper-half of the complex plane. Indeed, a
careful look at the definition of a – it is a determinant whose
columns are formed from Jost solutions one decaying at each of the
spatial infinities – shows that zeros of a in the upper half plane are
L2(R) eigenvalues of (A.1). Associated with each such eigenvalue
λk, there is a complex number γk which is the ratio of the two
analytic solutions of (A.1) which make up the Wronskian a. The
reflection coefficient R does not generally extend off of the real line.

A.2. Time evolution

Now, if u(x, t) solves (1.3a) with initial data u0(x), then for each
t > 0 the entries in the coefficient matrix U will change. This
means that the eigenvalues {λk}, the associated proportionality
constants {γk} and the reflection coefficient could be computed
independently for each positive time.However, Eq. (A.2) constrains
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the temporal evolution, and it is possible to write down explicit
formulae which describe the time evolution. In particular, the
Jost matrices, which we now write as J±(x, t; λ), must satisfy the
differential equation
∂J±

∂t
= iλ2J±σ3 + VJ±.

This, in turn, is enough to derive a differential equation in t for the
scattering matrix S(λ; t):

∂S

∂t
= iλ2[S, σ3]. (A.5)

Writing (A.5) in components, we immediately discover that when
u(x, t) satisfies (1.3a), the function a(λ; t) = a(λ) is independent
of t , and

b(λ; t) = b(λ; 0)e2iλ
2t .

It is immediate that the eigenvalues {λk} are independent of t and
that the reflection evolves simply asR(λ; t) = R(λ; 0)e2iλ

2t . Finally,
a brief calculation shows that γk(t) = γk(0)e2iλ

2t .

A.3. Inverse scattering

The solution u(x, t) can be recovered from the scattering data
(eigenvalues, proportionality constants, reflection). One way to
visualize this process is to combine the columns of the Jostmatrices
to obtain matrices which extend into the half planes ℑλ ≷ 0.
These matrices are meromorphic functions of λ on the disjoint
half planes with (generically) simple poles at the λn’s and their
complex conjugates. The residues at these poles can be computed.
Moreover, the boundary values of these matrices do not generally
match on the real line; their mismatch can be quantified in terms
of the reflection coefficient. Finally, the large-λ asymptotics of
these matrices are prescribed. Moreover, the solution u of the NLS
equation is encoded in the large-λ behavior of the second column
of this matrix. The inverse scattering process amounts to turning
this process on its head; the properties of the matrix enumerated
above (meromorphicity on ℑλ ≷ 0, prescribed poles and residues,
prescribed jump across R, prescribed large-λ behavior) are inmost
cases sufficient to determine the matrix itself. A convenient way
to organize this information is in a Riemann–Hilbert problem as
follows.

Riemann-Hilbert Problem 2. Find a 2×2matrix-valued function
m(λ; x, t)with the following properties.
1. m(λ; x, t) is an analytic function on

C \ (R ∪ {λ0, λ1, . . . , λN−1, λ
∗

0, . . . , λ
∗

N1
}).

2. m(λ; x, t) → I as λ → ∞.
3. m has simple poles at the points λk and λ∗

k ; the residues satisfy:

resλ=λkm(λ) = lim
λ→λk

m(λ)


0 0

ek(x, t) 0


, (A.6)

resλ=λ∗
k
m(λ) = lim

λ→λ∗
k

m(λ)


0 −ek(x, t)∗

0 0


. (A.7)

Here, ek(x, t) is given explicitly in terms of the γk’s.
4. The matrix m(λ; x, t) takes continuous boundary values on R.

For λ ∈ R we write

m±(λ; x, t) := lim
δ↓0

m(λ± iδ; x, t),

and

m+(λ; x, t) = m+(λ; x, t)v(λ; x, t) (A.8)

with the jump matrix v given explicitly in terms of the
reflection R.
Finally, once the solution of RHP 2 is found, one recovers the
solution via the formula

u(x, t) = 2i lim
λ→∞

λm12(λ; x, t).

A.4. N-soliton solutions, linear system

A solution for which R(λ) ≡ 0 is completely characterized by
theN eigenvalues in the upper half plane (and their proportionality
coefficients). In this case the jump matrix satisfies v = I so there
is no mismatch between m± on R. This is the case we consider in
this paper.

If we make the partial-fractions ansatz

m(λ; x, t) = I +
N−1
k=0

Ak(x, t)
λ− λk

+

N−1
k=0

Bk(x, t)
λ− λ∗

k
, (A.9)

it’s clear from RHP 1 that

resλ=λkm(λ; x, t) = Ak(x, t) (A.10)

and

resλ=λ∗
k
m(λ; x, t) = Bk(x, t). (A.11)

Moreover, we see that the matrices Ak must have zeros in the
second column,

Ak(x, t) =


ak(x, t) 0
bk(x, t) 0


, (A.12)

while the matrices Bk have zeros in the first column

Bk(x, t) =


0 ck(x, t)
0 dk(x, t)


. (A.13)

Then
ak
bk


= ek


0
1


+

N−1
j=0

1
(λk − λ∗

j )


cj
dj


. (A.14)

Similarly,
ck
dk


= e∗

k


1
0


+

N−1
j=0

1
(λ∗

k − λj)


aj
bj


. (A.15)

Evidently, (A.14), (A.15) form a linear system for the coefficients in
Ak and Bk.
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