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THE INVISCID LIMIT OF THE INCOMPRESSIBLE 3D
NAVIER-STOKES EQUATIONS WITH HELICAL SYMMETRY

QUANSEN JIU, MILTON C. LOPES FILHO, DONGJUAN NIU,
AND HELENA J. NUSSENZVEIG LOPES

ABSTRACT. In this paper, we are concerned with the vanishing viscosity
problem for the three-dimensional Navier-Stokes equations with helical
symmetry, in the whole space. We choose viscosity-dependent initial uν0
with helical swirl, an analogue of the swirl component of axisymmetric
flow, of magnitude O(ν) in the L2 norm; we assume uν0 → u0 in H1.
The new ingredient in our analysis is a decomposition of helical vector
fields, through which we obtain the required estimates.

KEY WORDS: Navier-Stokes equations; Euler equations; Helical sym-
metry; Vanishing viscosity limit.
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1. INTRODUCTION

The initial-value problem for the three-dimensional incompressible Navier-
Stokes equations with viscosity ν > 0 is given by





∂tu
ν + uν · ∇uν +∇pν = ν∆uν (x, t) ∈ R3 × (0,∞),

div uν = 0 (x, t) ∈ R3 × (0,∞),

uν(t = 0,x) = u0
ν x ∈ R3,

(1.1)

where x = (x, y, z), uν = (uν1, u
ν
2, u

ν
3) is the velocity and pν is the pressure.

Formally, when ν = 0, (1.1) becomes the classical incompressible Euler
equations





∂tu
0 + u0 · ∇u0 +∇p0 = 0 (x, t) ∈ R3 × (0,∞),

div u0 = 0 (x, t) ∈ R3 × (0,∞),

u0(t = 0,x) = u0 x ∈ R3.

(1.2)

Global existence of weak solutions and local in time well-posedness of
strong solutions for problem (1.1) is due to J. Leray, see [12]. There is a
vast literature on existence, uniqueness and regularity of solutions of (1.1),
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see [17, 23] and references therein. Global existence of strong solutions and
uniqueness of weak solutions remain open.

One direction of investigation has been to study the special case of ax-
isymmetric flows, i.e. viscous flows which are invariant under rotation
around a fixed symmetry axis. In particular, among axisymmetric flows,
one distinguishes the no-swirl case. The axisymmetric velocity has three
components, a component in the direction of the axis of symmetry, a radial
component, which is orthogonal to the axis of symmetry, in any plane that
contains it, and the azimuthal component, which points in the direction of
the rotation around the axis. No-swirl means that the azimuthal compo-
nent of velocity vanishes. Global well-posedness of strong, axisymmetric,
solutions of the Navier-Stokes equations (1.1) in the no-swirl case, and in
the swirl case when the domain avoids the symmetry axis, is due to La-
dyzhenskaya, see [11]. If the domain contains the symmetry axis, global
well-posedness is open, and singularities may occur, but only on the sym-
metry axis [3]. For blow-up criteria in this case, see [4].

Helical flows are another class of three-dimensional flows with an axis of
symmetry. Flows with helical symmetry are an idealized model for the flow
induced by rotating blades, such as propellers, helicopter rotors and wind
turbines, see [20] and references therein.

Helical flows are invariant under a simultaneous rotation around a sym-
metry axis and translation along the same axis. The displacement along the
axis after one full turn around the axis is an important parameter of helical
symmetry, which, in this article, is assumed to be of unit length. This class
of flows is preserved under both Navier-Stokes and Euler evolution. The
mathematical literature on helical flows is much less extensive than that of
axisymmetric flows, but there is growing recent interest. Well-posedness of
strong solutions to three-dimensional Navier-Stokes with helical symmetry
in bounded domain, was proved by Mahalov, Titi and Leibovich [16] with
the initial helical velocity uν0 ∈ H1. The key observation in [16] is that the
helical flows inherit properties of the two-dimensional flow in the plane, to
a greater extent than axisymmetric flows. Specifically, it is proved in [16]
that, for a helical vector field v, the following inequality holds true:

‖v‖L4(Ω) ≤ C‖v‖
1
2

L2(Ω)‖v‖
1
2

H1(Ω), (1.3)

where C > 0 is a constant and Ω = {(x, y, z) ∈ R3|x2 + y2 < 1, 0 <
z < 2π} is a cylindrical domain. Recently, the results in [16] were gener-
alized to the helical three-dimensional Navier-Stokes equations with partial
viscosity, see [14]. Furthermore, it has been shown that Leray-Hopf weak
solutions of viscous, helically symmetric flows, in a bounded domain, are
stable in L2, see Theorem 3.2 in [1].
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In analogy with the notion of swirl in axisymmetric flows, we define the
helical swirl of a helical vector field v as

η := v · ξ (1.4)

with ξ ≡ (y,−x, 1)T . Helical swirl plays an important role in global well-
posedness of three-dimensional Euler equations with helical symmetry. In
particular, the helical swirl component satisfies a transport equation and it is
conserved along particle trajectories for Euler flow with helical symmetry.
Assuming that the initial velocity field has vanishing helical swirl, Dutri-
foy [6] proved the global existence and uniqueness of classical solutions
of three-dimensional Euler equations with helical symmetry. Ettinger and
Titi [7] obtained the global well-posedness of weak solutions with the initial
vorticity belonging to L∞, which is similar to Yudovich’s well-known result
for two-dimensional Euler. Recently, Bronzi, Lopes Filho and Nussenzveig
Lopes [2] verified global existence of weak solutions when the initial vor-
ticity belongs to Lp, p > 4

3
with compact support. Subsequently, Jiu, Li and

Niu [8] generalized this result to include initial vorticities in L1∩Lp, p > 1.
All of the aforementioned results assume the initial data has vanishing he-
lical swirl; the problem of global existence for helical Euler with initial
nonzero helical swirl remains open.

In this paper, we intend to focus on the inviscid limit of three-dimensional
Navier-Stokes equations with helical symmetry in the whole space, and we
allow initial data for the Navier-Stokes equations with nonzero helical swirl,
but with controlled magnitude O(ν), measured in L2.

The vanishing viscosity problem has a long history. Among the early re-
sults, for flows in the full space, are the work of Swann [22] and of Kato
[9, 10], where the inviscid limit was established under assumptions of high
regularity of initial data (at least H3(R3)) and for short time (see also Con-
stantin [5] for a discussion of time-of-existence and vanishing viscosity).
Masmoudi [19, 18] studied the inviscid limit in Hs, s > 1 +N/2, where N
is the dimension of physical space; in our work one would need s > 5/2.

In this work we study the inviscid limit for flows with helical symme-
try, with H1 regularity, and our results are global in time, because we will
assume that the Euler initial data has zero helical swirl. We will see how-
ever, that, for viscous flows, the helical swirl is not conserved along particle
trajectories, and the vanishing of the helical swirl is not preserved under
Navier-Stokes evolution. It is hence important to understand the behavior
of the helical swirl with respect to both time and viscosity. In particular,
controlling the magnitude of the swirl component of velocity is the key as-
pect of obtaining the vorticity estimates needed to carry out our analysis.
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More precisely, for helical velocity fields uν the vorticity has the form of

ων = curl uν = ων3ξ +

(
∂ην

∂y
,−∂η

ν

∂x
, 0

)
, (1.5)

where ων3 = ∂xu
ν
2 − ∂yuν1 is the third component of the vorticity and ην =

uν · ξ is the helical swirl. The equation for ων3 can be written as

∂tω
ν
3 + (uν · ∇)ων3 + ∂xη

ν∂yu
ν
3 − ∂yην∂xuν3 = ν∆ων3 . (1.6)

Clearly, vortex stretching terms appear in the above equations (see the third
and forth terms on the left hand side) and we cannot control them uniformly
with respect to the viscosity ν. To overcome this difficulty, we introduce a
decomposition of helical vector fields to obtain the desired a priori esti-
mates (see (2.14), Lemma 2.5, and Section 4 for more details). Before
we investigate the convergence of the Navier-Stokes equations to the Euler
equations, we prove global existence of weak, and of strong, helical solu-
tions to the Navier-Stokes equations (1.1) provided that the initial velocity
is helical and belongs to L2 andH1, respectively. This result is not included
in the existence result of [16] because our fluid domain is the whole space.

A quantity of keen interest in turbulence theory, which is conserved for
incompressible inviscid flows, is helicity, H ≡

∫
u · ωdx. In view of (1.5)

it is clear that, for helical flows with vanishing helical swirl, the helicity
vanishes.

This paper is organized as follows. In Section 2 we recall some useful
facts about helical flows and state our main result. In Section 3 we present
global existence of weak, and strong, solutions to the three-dimensional he-
lical Navier-Stokes equations in full space, with L2, and H1 initial velocity,
respectively. The key a priori estimates and the proof of our main result
will be given in Section 4.

2. PRELIMINARIES AND MAIN RESULT

We begin this section by recalling basic definitions, taken from [7], re-
garding helical symmetry. Denote by Rθ the rotation by an angle θ around
the z-axis:

Rθ =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 . (2.1)

The helical symmetry group Gκ is a one-parameter group of isometries
of R3 given by

Gκ = {Sθ : R3 −→ R3 | θ ∈ R}, (2.2)
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where

Sθ(x) = Rθ(x) +




0
0
κθ


 ≡




x cos θ + y sin θ
−x sin θ + y cos θ

z + κθ


 , (2.3)

for x = (x, y, z). Above, κ is a fixed nonzero constant length scale. The
transformation Sθ corresponds to the superposition of a simultaneous rota-
tion around the z-axis and a translation along the same z-axis. A scalar
function f : R3 −→ R is said to be helical if

f(Sθ(x)) = f(x), ∀θ ∈ R. (2.4)

A vector field v : R3 −→ R3 is said to be helical, if

v(Sθ(x)) = Rθv(x), ∀θ ∈ R. (2.5)

Clearly, helical functions and helical vector fields are periodic in the z di-
rection, with period 2πκ.

For simplicity, we will henceforth assume that κ = 1. By virtue of the
periodicity of helical functions with respect to the third variable z, it is
enough to work in the fundamental domain D := R2 × [−π, π]. Let L2(D)
denote the square-integrable functions on D and let H1

per(D) be the usual
L2-based Sobolev space H1, periodic with respect to z, with period 2π; we
use the notationH2

per(D) in an analogous manner. We also use the subscript
loc to denote Sobolev spaces which are local with respect to the horizontal
variables x and y.

Hereafter we use the notation c and C for generic constants which are
independent of ν.

Below, we state equivalent definitions of helical functions and helical
vector fields; we refer the reader to Claim 2.3 and Claim 2.5 of [7] for the
corresponding proofs.

Set

ξ ≡ (y,−x, 1)T . (2.6)

Lemma 2.1. A C1 scalar function f : R3 −→ R is helical if and only if

y∂xf − x∂yf + ∂zf ≡ ξ · ∇f = ∂ξf = 0. (2.7)

Lemma 2.2. A C1 vector field v = (v1, v2, v3)T : R3 −→ R3 is helical if
and only if it the following relations hold true:

∂ξv1 = v2, (2.8)
∂ξv2 = −v1, (2.9)
∂ξv3 = 0. (2.10)
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Next we recall the relation between three-dimensional helical vector fields
and their two-dimensional traces on “slices” z = constant, as discussed in
[15]. Recall that we are assuming κ = 1 so, in the notation of [15], σ = 2π.

Lemma 2.3. Set x = (x1, x2, x3). Let v = v(x), be a smooth helical vector
field and let p = p(x) be a smooth helical function. Then there exist unique
w = (w1, w2, w3) = (w1, w2, w3)(y1, y2) and q = q(y1, y2) such that

v(x) = Rx3w(y(x)), p = p(x) = q(y(x)), (2.11)

with Rθ given in (2.1), and

y(x) =



y1

y2


 =




cosx3 − sinx3

sinx3 cosx3





x1

x2


 . (2.12)

Conversely, if v and p are defined through (2.11) for some w = w(y1, y2),
q = q(y1, y2), then v is a helical vector field and p is a helical scalar func-
tion.

This is precisely Proposition 2.1 in [15], in the case σ = 2π, to which we
refer the reader for the proof.

Next we will formally introduce the helical swirl, a quantity which plays
an important role in helical flows.

Definition 2.1. Let v be a helical vector field. The helical swirl is defined
to be

η ≡ v · ξ.
Vorticity, the curl of the velocity field, is a key object in the study of

incompressible fluid flow. For helical vector fields, vorticity has a special
form.

Lemma 2.4. Let v be a helical vector field. Then its curl, ω = curl v =
(ω1, ω2, ω3), is given by

ω = ω3ξ + (∂yη,−∂xη, 0). (2.13)

Proof. The result follows by a straightforward calculation. �
Remark 2.1. We note that, in view of Lemma 2.4, if v is a helical vector
field for which the helical swirl vanishes then

curl v = ( curl v)3ξ ≡ (∂xv2 − ∂yv1)ξ.

Let v be a helical vector field. We introduce a decomposition of v into
two other helical vector fields, one of which is orthogonal to the symme-
try lines of the helical symmetry group G1. Let V be defined through the
equation

v ≡ V + η
ξ

|ξ|2 , (2.14)
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where η is the helical swirl introduced in Definition 2.1.

Lemma 2.5. Let v be a helical vector field and consider the decomposition
(2.14). Then V is also a helical vector field. In addition, V satisfies

V · ξ = 0.

Moreover, if v is divergence free, V is also divergence free.

Proof. As v is helical, we have, thanks to Lemma 2.2, ∂ξv = (v2,−v1, 0)T .
Now, a direct calculation using Lemma 2.2, together with the expression for
ξ, yields

∂ξη = ∂ξ(v · ξ) = (∂ξv) · ξ + v · ∂ξξ = 0.

Hence, by Lemma 2.1, η is also helical.
Furthermore, we have

∂ξ

(
η
ξ

|ξ|2
)

=
η

|ξ|2∂ξξ + ξ∂ξ

(
η

|ξ|2
)

=
η

|ξ|2∂ξξ =

(
(ηξ)2

|ξ|2 ,−(ηξ)1

|ξ|2 , 0

)
.

Therefore, by Lemma 2.2, it follows that ηξ/|ξ|2 is a helical vector field.
Consequently, V is a helical vector field.

In addition, a simple calculation yields

V · ξ = (v − η ξ|ξ|2 ) · ξ = 0.

Finally, suppose that v is divergence free. We have that

div
(
η
ξ

|ξ|2
)

= ∂ξ

(
η

|ξ|2
)

+
η

|ξ|2 div ξ = 0.

Thus we obtain that V is divergence free as well.
�

Remark 2.2. Suppose that v is a helical vector field and let V be as in (2.14).
Then, since V is helical and has vanishing helical swirl, it follows that its
vorticity, curl V = Ω is given by

Ω = curl V = (∂xV2 − ∂yV1)ξ.

See Remark 2.1 for details. Therefore it follows from (2.14) that the third
component of the vorticity curl v = ω is given by

ω3 = Ω3 +

(
curl

(
η

|ξ|2ξ
))

3
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= Ω3 + ∂x

(−ηx
|ξ|2

)
− ∂y

(
ηy

|ξ|2
)
,

i.e.

ω3 = (∂xV2 − ∂yV1)− ∂x
(
ηx

|ξ|2
)
− ∂y

(
ηy

|ξ|2
)
. (2.15)

We will make use of the following Ladyzhenskaya inequality, valid for
helical vector fields, see also [14], [11] and [16]. We give a sketch of the
proof for the sake of completeness.

Lemma 2.6. There exists a constant C > 0 such that, for every helical
vector field v ∈ H1

per(D), it holds that

‖v‖L4(D) ≤ C‖v‖
1
2

L2(D)‖∇v‖
1
2

L2(D). (2.16)

Proof of Lemma 2.6. Let v ∈ H1
per(D) and consider the vector field w

given in Lemma 2.3, satisfying (2.11). Since Rx3 is an orthogonal matrix,
we find

|v(x1, x2, x3)|2 = |w(y1, y2)|2,
and, hence,

‖w‖Lp(R2) =
1

p
√

2π
‖v‖Lp(R2×[−π,π]). (2.17)

Therefore, using the two-dimensional Ladyzhenskaya inequality (see [11],
[21]), we obtain

‖v‖L4(R2×[−π,π]) =
4
√

2π‖w‖L4(R2) ≤ c[‖w‖
1
2

L2(R2)‖∇yw‖
1
2

L2(R2)]. (2.18)

Thus, to prove (2.16), it suffices to note that, for each x3 ∈ (−π, π),
relation (2.11) and (2.12) can be inverted, so that

w(y) = R−1
x3

v(x(y)), (2.19)

with

R−1
x3

=




cosx3 − sinx3 0
sinx3 cosx3 0

0 0 1


 (2.20)

and

x(y) =



x1

x2


 =




cosx3 sinx3

− sinx3 cosx3





y1

y2


 . (2.21)

Hence, in view of (2.19)-(2.21), it follows that, for some C > 0,

‖∇yw‖L2(R2) ≤ C‖∇v‖L2(R2×[−π,π]). (2.22)

We conclude by substituting (2.17) and (2.22) into (2.18).
�
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Throughout this paper we will make use of the following estimate.

Lemma 2.7. Let v ∈ H1
per(D) be a helical vector field. Then

‖∇v‖L2(D) ≤ ‖ div v‖L2(D) + ‖ curl v‖L2(D). (2.23)

Proof. Without loss of generality we may assume that v is a smooth vector
field, compactly supported with respect to x and y , periodic with respect to
z. The following is a well-known calculus identity:

∆v = ∇(div v)−∇× (curl v). (2.24)

Take the inner product of (2.24) with −v and integrate in D to obtain
∫

D
|∇v|2 dx =

∫

D
(div v)2 dx+

∫

D
| curl v|2 dx.

This clearly yields the desired estimate.
�

Our objective, in this work, is to show that, under certain assumptions, the
vanishing viscosity limit of viscous, helical flows is a helical weak solution
of the Euler equations (1.2); below we give a precise definition of such a
weak solution.

Definition 2.2. Fix T > 0. Let u0 ∈ H1
per,loc(D). We say u ∈ C0(0, T ;L2(D))∩

L∞(0, T ;H1
per,loc(D)) is a helical weak solution of the incompressible Euler

equations (1.2) with initial velocity u0 if the following hold true:

(1) At each time 0 ≤ t < T , u(·, t) is a helical vector field;
(2) For every test vector field Φ ∈ C∞c ([0, T ) × D), periodic in z with

period 2π, divergence free, the following identity is valid:
∫ T

0

∫

D
∂tΦ · u + [(u · ∇)Φ] · u dxdt+

∫

D
Φ0 · u0 dx = 0;

(3) At each time 0 ≤ t < T , div u(·, t) = 0 in the sense of distributions.

As is usual, it is possible to recover the scalar pressure by means of the
Hodge decomposition.

Remark 2.3. The requirement in Definition 2.2 that u ∈ L∞(0, T ;H1
per,loc(D))

is not needed to make sense of the terms in the weak formulation. We note,
however, that a weak solution as in Definition 2.2 satisfies, additionally, a
weak form of the inviscid vorticity equation. Definition 2.2 excludes, hence,
all known examples of wild solutions.

We will conclude this section with the statement of our main result.
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Theorem 2.8. Let {uν0}ν>0 ⊂ H1
per(D) be divergence free, helical vector

fields and let ην0 = uν0 · ξ denote their respective helical swirls.
Let u0 ∈ H1

per(D) be a divergence free, helical vector field, such that u0

has vanishing helical swirl, i.e., u0 · ξ = 0.
Assume that:

(1)
‖uν0 − u0‖H1(D) → 0 as ν → 0;

(2) there exists a constant C > 0 such that

‖ην0‖L2(D) ≤ Cν.

Fix T > 0. Let uν ∈ L∞(0, T ;H1
per(D)) denote the strong solution of

the incompressible Navier-Stokes equations (1.1) with initial velocity uν0 .
Then, there exists u0 ∈ C0(0, T ;L2(D)) ∩ L∞(0, T ;H1

per,loc(D)) such that,
passing to subsequences as needed, we have

uν → u0 strongly in L2(0, T ;L2
loc(D)), (2.25)

and u0 is a helical weak solution of the incompressible Euler equations,
with initial velocity u0, and with vanishing helical swirl at any time 0 ≤
t < T .

3. GLOBAL EXISTENCE OF NAVIER-STOKES EQUATION WITH HELICAL
SYMMETRY

In this section we discuss well-posedness results for (1.1). In particular,
we prove the global existence of weak helical solutions provided the initial
velocity belongs to L2(D) and is helically symmetric, and we prove global
existence and uniqueness of strong solutions when the initial data, addition-
ally, belongs to H1

per. These results are not included in [16] because our
fluid domain is unbounded.

First we introduce a basic mollifier, adapted to the helical symmetry. Let
ρ1 = ρ1(|x′|) ∈ C∞c (R2) be a radially symmetric function satisfying that
ρ1 ≥ 0 and

∫
R2 ρ1(x′)dx′ = 1, where x′ = (x, y); let also ρ2 = ρ2(z) in

[−π, π] be a nonnegative, periodic, smooth function with
∫ π
−π ρ2(z)dz = 1.

Set Jεu to be the mollification of a helical vector field u ∈ Lp(D), 1 ≤ p ≤
∞, given by

Jεu = Jεu(x) ≡
∫

D
ρε(x− y)u(y)dy, ε > 0, (3.1)

where ρε(x) = ε−3ρ(x
ε
) and ρ = ρ(x) = ρ1(x′)ρ2(z).

The following lemma provides some basic properties of these mollifiers.
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Lemma 3.1. Let Jε be the mollifier defined in (3.1). Then, for each u ∈
Lp(D), 1 ≤ p ≤ ∞, Jεu is a C∞ function and

(1) Jε[u(y + h)](x) = Jε[u(y)](x + h), ∀h ∈ D, (3.2)

(2) Jε[u(Rθy)](x) = Jε[u(y)](Rθx), where Rθ is defined in (2.1),
(3.3)

(3) Jε[u(Sθy)](x) = Jε[u(y)](Sθx), where Sθ is defined in (2.3),
(3.4)

(4) Dα
x (Jε[u(y)])(x) = Jε[D

α
yu(y)](x), |α| ≤ m, u ∈ Hm. (3.5)

Proof of Lemma 3.1. The proof of (3.2) is easily obtained from the defini-
tion of Jε, (3.1). Item (3.4) follows directly from (3.2) and (3.3), while
(3.5) can be found in [17]. Item (3.3) follows by a straightforward calcula-
tion. �

Let us briefly recall that a weak solution of the Navier-Stokes equations
has the regularity L∞(0, T ;L2(D)) ∩ L2(0, T ;H1

per(D)), whereas a strong
solution belongs to L∞(0, T ;H1

per(D)) ∩ L2(0, T ;H2
per(D)).

We can now state and prove a basic result on existence of weak and strong
helical solutions to the Navier-Stokes equations (1.1).

Theorem 3.2. Fix ν > 0. Let uν0 ∈ L2(D) be a divergence free and helical
vector field. Fix, also, T > 0.

(1) There exists uν ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H1
per(D)) which is a

helical weak solution to the three-dimensional Navier-Stokes equa-
tions (1.1). In addition, uν satisfies the following inequality

‖uν(t)‖2
L∞(0,T ;L2(D)) + ν‖∇uν‖2

L2(0,T ;L2(D)) ≤ ‖uν0‖2
L2(D). (3.6)

(2) If, in addition, uν0 ∈ H1
per(D), then the three-dimensional Navier-

Stokes equations (1.1) has a unique and global strong solution uν ∈
L∞(0, T ;H1

per(D)) ∩ L2(0, T ;H2
per(D)) which is helically symmet-

ric.

Proof of Theorem 3.2. We will begin by establishing (1); the proof will be
divided into four steps. As much of this proof is standard, we will be brief.

Step I As in [17], we construct approximate solutions uν,ε to the Navier-
Stokes equations by solving




uν,εt + Jε[(Jεu
ν,ε · ∇)(Jεu

ν,ε)] +∇pν,ε = νJε(Jε∆uν,ε),
div uν,ε = 0,
uν,ε(t = 0,x) = uν,ε0 ,

(3.7)

where uν,ε0 (x) := Jεu
ν
0(x), with Jε defined in (3.1). By the Picard theorem

(see e.g. [17]), there exists a unique, global, smooth solution uν,ε for the
regularized Navier-Stokes equations (3.7).
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Step II Next, we show that the approximate solutions uν,ε preserve heli-
cal symmetry.

First we note that uν,ε0 is helical. More precisely, using (3.4) in Lemma
3.1 together with the fact that uν0 is a helical vector field, we easily verify
that

R−1
θ uν,ε0 (Sθx) := R−1

θ Jεu
ν
0(Sθx) = R−1

θ Jε[u
ν
0(Sθy)](x)

:= R−1
θ Jε[Rθu

ν
0(y)](x) = Jεu

ν
0(x) := uν,ε0 (x). (3.8)

Consider ū(x, t) = R−1
θ uν,ε(Sθx, t) and p̄ν,ε(x, t) = pν,ε(Sθx, t). Direct

calculations give that the pair (ū, p̄ν,ε) is a solution of (3.7) with initial
data ū(x, 0) = R−1

θ uν,ε0 (Sθx) = uν,ε0 (x). Hence, by uniqueness of smooth
solutions uν,ε of (3.7), we obtain that

uν,ε(x, t) ≡ R−1
θ uν,ε(Sθx, t), (3.9)

i.e., uν,ε is a helical vector field.
Step III In this step we discuss uniform, in ε, estimates. Take the L2-

inner product of the regularized momentum equations (3.7) with uν,ε to
obtain

1

2

d

dt
‖uν,ε‖2

L2(D) + ν‖∇Jεuν,ε‖2
L2(0,T ;L2(D)) ≤ 0. (3.10)

Integrate (3.10) in time, from 0 to T , to find

‖uν,ε‖2
L∞(0,T ;L2(D)) + ν‖∇Jεuν,ε‖2

L2(0,T ;L2(D)) ≤ ‖uν,ε0 ‖2
L2(D). (3.11)

In view of (3.11) it is standard that {Jεuν,ε}ε>0 is a compact subset of
L2(0, T ;L2(D)) and hence, passing to subsequences as needed and us-
ing properties of mollifiers, we find that uν,ε is a convergent sequence in
L2(0, T ;L2(D)), as ε→ 0. We easily obtain that the limit uν satisfies (1.1)
in the sense of distributions. From the uniform bound in L∞(0, T ;L2(D)),
(3.11), we obtain that uν ∈ L∞(0, T ;L2(D)); similarly, we find that uν ∈
L2(0, T ;H1

per(D)). Since, from Step II, we deduced that uν,ε is a helical
vector field, it follows easily that the limit uν is also helically symmet-
ric. Therefore, there exists a helical weak solution uν ∈ L∞(0, T ;L2) ∩
L2(0, T ;H1) of (1.1). The energy inequality (3.6) follows by weak conver-
gence in L2(0, T ;H1

per(D)).
Step IV Finally, we establish item (2), the existence and uniqueness of a

strong solution if the initial data is smoother. From above, we have a weak
helical solution in L∞(0, T ;L2) ∩ L2(0, T ;H1) to the system (1.1). We
will show, by energy estimates, that the regularity of uν can be improved
to L∞(0, T ;H1) ∩ L2(0, T ;H2). Although the estimates below are formal,
they can be made rigorous using the regularized equation (3.7) in a similar
way to what was done in Step III.
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Taking the L2-inner product of (1.1) with ∆uν we find
1

2

d

dt
‖∇uν‖2

L2(D) + ν‖∆uν‖2
L2(0,T ;L2(D))

≤ |
∫

D
(uν · ∇)uν ·∆uνdx|

≤ ‖uν‖L4(D)‖∇uν‖L4(D)‖∆uν‖L2(D). (3.12)

Now, since uν is a helical vector field, it follows from Lemma 2.6 that

‖uν‖L4(D) ≤ ‖uν‖
1
2

L2(D)‖∇uν‖
1
2

L2(D). (3.13)

Let us examine ∇uν . Recall that, from Lemma 2.6, there exists a unique
vector field w = w(y1, y2) such that the relation in (2.11) holds true, with
y = y(x) as in (2.12). We write ∇uν = (∇Huν , ∂x3u

ν), where ∇H refers
to the horizontal derivatives, i.e. derivatives with respect to x1, x2. In view
of (2.11), (2.12) an easy calculation yields, for each 1 ≤ p ≤ ∞, m ∈ N,
the existence of constants Cp,m, cp,m > 0 such that

cp,m‖∇m
y w‖Lp(R2) ≤ ‖∇m

Huν‖Lp(D) ≤ Cp,m‖∇m
y w‖Lp(R2). (3.14)

Since ∇w is a function of two independent variables we may use the two
dimensional Ladyzhenskaya inequality for∇w to find

‖∇yw‖L4(R2) ≤ C‖∇yw‖
1
2

L2(R2)‖∇2
yw‖

1
2

L2(R2),

from which, together with (3.14), it follows that

‖∇Huν‖L4(D) ≤ C‖∇Huν‖
1
2

L2(D)‖∇2
Huν‖

1
2

L2(D). (3.15)

Next, we consider ∂x3u
ν . Recall the criteria in Lemma 2.2 for a vector field

to be helical: ∂ξv1 = v2, ∂ξv2 = −v1, ∂ξv3 = 0. Note that ∂x3∂ξ = ∂ξ∂x3 .
Therefore, since uν is a helical vector field, we deduce that

∂ξ∂x3u
ν
1 = ∂x3u

ν
2; ∂ξ∂x3u

ν
2 = −∂x3uν1; ∂ξ∂x3u

ν
3 = 0.

Hence, ∂x3u
ν is a helical vector field and, therefore, in view of Lemma 2.6,

‖∂x3uν‖L4(D) ≤ C‖∂x3uν‖
1
2

L2(D)‖∇∂x3uν‖
1
2

L2(D). (3.16)

Notice that both the right-hand-side of (3.15) and of (3.16) are bounded
byC‖∇uν‖1/2

L2(D)‖∆uν‖1/2

L2(D), since, from elliptic regularity theory, we know
that all second derivatives are bounded, in L2, by the Laplacian.

We obtain, from (3.15) and (3.16),

‖∇uν‖L4(D) ≤ C‖∇uν‖
1
2

L2(D)‖∆uν‖
1
2

L2(D). (3.17)

Substituting (3.13) and (3.17) into (3.12) yields
1

2

d

dt
‖∇uν‖2

L2(D) + ν‖∆uν‖2
L2(0,T ;L2(D))
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≤ ‖uν‖
1
2

L2(D)‖∇uν‖L2(D)‖∆uν‖
3
2

L2(D)

≤ ν

4
||∆uν‖2

L2(D) + Cν−3‖uν‖2
L2(D)‖∇uν‖4

L2(D), (3.18)

where we used Young’s inequality to obtain the last inequality. From (3.6)
we have

ν

∫ T

0

‖∇uν‖2
L2(D)dt ≤ ‖uν0‖2

L2(D),

so that, by Gronwall’s lemma, we obtain

‖∇uν‖2
L∞(0,T ;L2(D)) ≤ ‖∇uν0‖2

L2(D) exp

{
C‖uν0‖4

L2(D)

ν4

}
. (3.19)

Thus uν ∈ L∞(0, T ;H1
per(D)). That uν ∈ L2(0, T ;H2

per(D)) follows im-
mediately upon revisiting (3.18) and integrating in time.

Uniqueness is easily obtained under the regularity of uν . We omit the
details. �

4. PROOF OF MAIN RESULT

We will begin this section by obtaining an evolution equation for the
helical swirl. Hereafter we assume that uν0 ∈ H1

per(D) is a divergence free,
helical vector field and uν ∈ L∞(0, T ;H1

per(D))∩L2(0, T ;H2
per(D)) is the

strong, helically symmetric, solution of (1.1) with initial velocity uν0 , given
in Theorem 3.2. Let ην ≡ uν · ξ. Multiply the momentum equation in (1.1)
by ξ to obtain, after direct calculations,{

∂tη
ν + (uν · ∇)ην = ν∆ην + 2ν(∂x1u

ν
2 − ∂x2uν1),

ην(t = 0,x) = ην0 .
(4.1)

Clearly, in the case of the Euler equations (ν = 0), the helical swirl η0 :=
u0 · ξ satisfies a transport equation and is conserved along particle paths.
This is not the case if ν > 0.

Nevertheless, we may still obtain a uniform bound, with respect to ν, for
the helical swirl ην .

Lemma 4.1. Fix T > 0. Let uν0 ∈ H1
per(D) and ην0 = uν0 · ξ. Then there

exists a constant c = c(T ) > 0, independent of ν, such that

‖ην‖L∞(0,T ;L2(D)) +
√
ν‖∇ην‖L2(0,T ;L2(D)) ≤ c(‖ην0‖L2(D) +

√
ν‖uν0‖L2(D)).

(4.2)

Proof of Lemma 4.1. Multiply both sides of (4.1) by ην , integrate the result-
ing equation in D and use that div uν = 0 to obtain that

1

2

d

dt
‖ην‖2

L2(D) + ν‖∇ην‖2
L2(D) ≤ 2ν‖uν‖L2(D)‖∇ην‖L2(D)
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≤ ν

2
‖∇ην‖2

L2(D) + Cν‖uν‖2
L2(D). (4.3)

It follows from integration over the time from 0 to T , together with inequal-
ity (3.6), that

‖ην‖2
L∞(0,T ;L2(D)) + ν‖∇ην‖2

L2(0,T ;L2(D)) ≤ C(‖ην0‖2
L2(D) + Tν‖uν0‖2

L2(D)).

Clearly, this concludes the proof.
�

Using the decomposition (2.14), we introduce

Uν ≡ uν − ην ξ|ξ|2 , and Ων ≡ curl Uν . (4.4)

Then Uν · ξ = 0 and Uν is helical due to Lemma 2.5. As noted in Remark
2.2, we have

∂xu
ν
2 − ∂yuν1 = Ων

3 + ∂x

(−xην
|ξ|2

)
− ∂y

(
yην

|ξ|2
)
. (4.5)

Moreover, direct calculations give





∂tU
ν + Uν · ∇Uν +∇pν − ν∆Uν

= − ην

|ξ|2∂ξU
ν −Uν · ∇

(
ξ

|ξ|2
)
ην − (ην)2

|ξ|2 ∂ξ
(
ξ

|ξ|2
)

+2ν∇ην · ∇
(
ξ

|ξ|2
)

+ νην∆

(
ξ

|ξ|2
)
− 2νΩν

3

ξ

|ξ|2

−2ν

[
curl

(
ηνξ

|ξ|2
)]

3

ξ

|ξ|2 ,

div Uν = 0.

(4.6)
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By Lemma 2.4, Ων ≡ Ων
3ξ, where Ων

3 = ∂xU
ν
2 −∂yUν

1 . Direct calculation
leads to the following equation for Ων

3:




∂tΩ
ν
3 + Uν · ∇Ων

3 − ν∆Ων
3 =

−2

[
∂x

(
ην(x2Uν

1 + xyUν
2 )

|ξ|4
)

+ ∂y

(
ην(xyUν

1 + y2Uν
2 )

|ξ|4
)]

+2

[
∂x

(
ηνUν

1

|ξ|4
)

+ ∂y

(
ηνUν

2

|ξ|4
)]
− ∂z

(
(ην)2

|ξ|4
)

−2ν

[
∂x

(
∂xη

ν

|ξ|2
)

+ ∂y

(
∂yη

ν

|ξ|2
)]

+2ν

[
∂x

(
x2∂xη

ν + xy∂yη
ν

|ξ|4
)

+ ∂y

(
xy∂xη

ν + y2∂yη
ν

|ξ|4
)]

+4ν

[
∂x

(
xην

|ξ|6
)

+ ∂y

(
yην

|ξ|6
)]

+ 2ν

[
∂x

(
Ων

3

x

|ξ|2
)

+ ∂y

(
Ων

3

y

|ξ|2
)]

,

Ων
3(t = 0,x) = Ων

3,0.
(4.7)

The following is a key estimate which will be used to obtain the compact-
ness of the family of solutions to the Navier-Stokes equations (1.1), ν > 0.

Lemma 4.2. Fix T > 0. Let ν ≤ 1. Assume that uν0 ∈ H1
per(D), and ην0 ∈

L2(D) with ‖ην0‖L2(D) ≤ cν. Then, there exists c = c(T, ‖uν0‖H1
per(D)) > 0

such that

‖Ων
3‖L∞(0,T ;L2(D)) ≤ c. (4.8)

Furthermore,

‖ην‖L∞(0,T ;L2(D)) +
√
ν‖∇ην‖L2(0,T ;L2(D)) ≤ Cν, (4.9)

for some constant C = C(T, ‖uν0‖H1
per(D)) > 0 which is independent of ν

Proof of Lemma 4.2. Let t ∈ [0, T ) and set

Y = Y (t) :=

∫ t

0

‖Ων
3‖2

L2(D). (4.10)

Then

Y ′(t) = ‖Ων
3‖2

L2(D), Y
′′(t) =

d

dt
‖Ων

3‖2
L2(D).
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We claim that

‖ην‖L∞(0,t;L2(D)) +
√
ν‖∇ην‖L2(0,t;L2(D)) ≤ Cν(1 + Y (t))

1
2 , (4.11)

where C depends on T but is independent of ν.
Indeed, as in the proof of Lemma 4.1, we multiply the both sides of (4.1)

by ην , integrate the resulting equation in D, and use the divergence free
condition, to obtain

1

2

d

dt
‖ην‖2

L2(D) + ν‖∇ην‖2
L2(D)

≤ 2ν‖∂xuν2 − ∂yuν1‖L2(D)‖ην‖L2(D)

≤ 2ν(‖Ων
3‖L2(D) + ‖∇ην‖L2(D) + ‖ην‖L2(D))‖ην‖L2(D)

≤ Cν2‖Ων
3‖2

L2(D) +
ν

2
‖∇ην‖2

L2(D) + C‖ην‖2
L2(D). (4.12)

where we have used identity (4.5) and Young’s inequality. This gives the
estimate

1

2

d

dt
‖ην‖2

L2(D) +
ν

2
‖∇ην‖2

L2(D) ≤ Cν2‖Ων
3‖2

L2(D) + C‖ην‖2
L2(D). (4.13)

It follows from Gronwall’s lemma, upon performing parabolic regularity
estimates, that

‖ην‖2
L∞(0,t;L2(D)) + ν‖∇ην‖2

L2(0,t;L2(D)) ≤ C(‖ην0‖2
L2(D) + ν2Y (t)),

for some constant C = C(T ) > 0. Finally, condition (2) in Theorem 2.8
yields that

‖ην‖2
L∞(0,t;L2(D)) + ν‖∇ην‖2

L2(0,t;L2(D)) ≤ Cν2(1 + Y (t)) (4.14)

i.e.,

‖ην‖L∞(0,t;L2(D)) +
√
ν‖∇ην‖L2(0,t;L2(D)) ≤ Cν(1 + Y (t))

1
2 , (4.15)

where C = C(T ) > 0 is a constant which is independent of ν. We have
established (4.11).

Next, we use (4.11) to derive estimate (4.8) for Ων
3. Multiplying both

sides of (4.7) by Ων
3 and integrating in D, gives

1

2

d

dt
‖Ων

3‖2
L2(D) + ν‖∇Ων

3‖2
L2(D)

≤ 4

∫

D

∣∣∣∣∇Ων
3

ηνUν

|ξ|4
∣∣∣∣ dx + 2

∫

D

∣∣∣∣∇Ων
3

ηνUν

|ξ|2
∣∣∣∣ dx +

∫

D

∣∣∣∣∇Ων
3

|ην |2
|ξ|4

∣∣∣∣ dx

+ 6ν

∫

D

∣∣∣∣∇Ων
3

∇ην
|ξ|2

∣∣∣∣ dx + 8ν

∫

D

∣∣∣∣∇Ων
3

ην

|ξ|4
∣∣∣∣ dx + 4ν

∫

D
|Ων

3|2dx.
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Then, using Cauchy’s inequality together with Young’s inequality leads to
d

dt
‖Ων

3‖2
L2(D) +

ν

2
‖∇Ων

3‖2
L2(D)

≤ c

ν

∥∥∥∥
ηνUν

|ξ|4
∥∥∥∥

2

L2(D)

+
c

ν

∥∥∥∥
ηνUν

|ξ|2
∥∥∥∥

2

L2(D)

+
c

ν

∥∥∥∥
(ην)2

|ξ|4
∥∥∥∥

2

L2(D)

+ cν

∥∥∥∥
∇ην
|ξ|2

∥∥∥∥
2

L2(D)

+ cν

∥∥∥∥
ην

|ξ|4
∥∥∥∥

2

L2(D)

+ cν‖Ων
3‖2

L2(D). (4.16)

From Lemma 2.6, together with Hölder’s inequality and (4.11), it follows
that, for any α > 1,
∥∥∥∥
ηνUν

|ξ|α
∥∥∥∥

2

L2(D)

≤ ‖ην‖2
L4

∥∥∥∥
Uν

|ξ|α
∥∥∥∥

2

L4(D)

≤ ‖ην‖L2(D)‖∇ην‖L2(D)

∥∥∥∥
Uν

|ξ|α
∥∥∥∥
L2(D)

∥∥∥∥∇(
Uν

|ξ|α )

∥∥∥∥
L2(D)

(4.17)

≤ Cν(1 + Y (t))
1
2‖∇ην‖L2(D)‖Uν‖L2(D)

∥∥∥∥∇(
Uν

|ξ|α )

∥∥∥∥
L2(D)

.

Using the result in Lemma 2.7, we find
∥∥∥∥∇
(

Uν

|ξ|α
)∥∥∥∥

L2(D)

≤
(∥∥∥∥curl

(
Uν

|ξ|α
)∥∥∥∥

L2(D)

+

∥∥∥∥div

(
Uν

|ξ|α
)∥∥∥∥

L2(D)

)

≤
∥∥∥∥

Ων
3

|ξ|α−1

∥∥∥∥
L2(D)

+ α

∥∥∥∥
ξ ×Uν

|ξ|α+2

∥∥∥∥
L2(D)

+ α

∥∥∥∥
Uν · ξ
|ξ|α+2

∥∥∥∥
L2(D)

≤ ‖Ων
3‖L2(D) + (1 + α)‖Uν‖L2(D). (4.18)

Substituting (4.18) into (4.17) together with the fact that

‖U ν‖L∞(0,T ;L2(D)) ≤ ‖uν‖L∞(0,T ;L2(D))+‖ην‖L∞(0,T ;L2(D)) ≤ ‖uν0‖L2(D)+c

from (3.6), (4.4), and (4.2), we have

∥∥∥∥
ηνUν

ξα

∥∥∥∥
2

L2(D)

≤ cν‖∇ην‖L2(D)(1 + Y (t))
1
2 (1 + ‖Ων

3‖L2(D)), (4.19)

where c depends on ‖uν0‖L2(D), ‖ην0‖L2(D) and T , independent of ν.
Moreover, noting that∥∥∥∥

(ην)2

|ξ|4
∥∥∥∥
L2(D)

≤ ‖ην‖2
L4(D) ≤ c‖ην‖L2(D)‖∇ην‖L2(D), (4.20)
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we find, by substituting (4.19) and (4.20) into (4.16) and using (4.2) and
Young’s inequality, that
d

dt
‖Ων

3‖2
L2(D) +

ν

2
‖∇Ων

3‖2
L2(D)

≤ C‖∇ην‖L2(D)(1 + Y (t))
1
2 (1 + ‖Ων

3‖L2(D)) + C‖∇ην‖2
L2(D) (4.21)

+ Cν‖∇ην‖2
L2(D) + Cν2 + Cν‖Ων

3‖2
L2(D)

≤ C‖∇ην‖2
L2(D)(1 + Y (t)) + C(1 + ‖Ων

3‖2
L2(D))

+ C‖Ων
3‖2

L2(D) + C‖∇ην‖2
L2(D),

since ν ≤ 1.
Recall that

Y (t) =

∫ t

0

‖Ων
3‖2

L2(D), Y
′(t) = ‖Ων

3‖2
L2(D), Y

′′(t) =
d

dt
‖Ων

3‖2
L2(D), (4.22)

so that (4.21) implies that

Y ′′(t) ≤ C(1 + ‖∇ην‖2
L2(D)Y (t)) + CY ′(t) + C‖∇ην‖2

L2(D). (4.23)

Integrating (4.23) from 0 to t and using Y (0) = 0 and Y ′(0) = ‖Ων
3,0‖L2(D),

we obtain

Y ′(t)− Y ′(0)

≤ C

(
t+ Y (t)

∫ t

0

‖∇ην(s)‖2
L2(D) ds

)
+ C

(
Y (t) +

∫ t

0

‖∇ην‖2
L2(D) ds

)
.

(4.24)

By virtue of (4.2), it follows that ‖∇ην‖L2(0,t;L2(D)) ≤ c, for a constant
c = c(T, ‖ην0‖L2(D), ‖uν0‖L2(D)) > 0. Then (4.24) becomes

Y ′(t)− CY (t) ≤ Y ′(0) + Ct+ C. (4.25)

Consequently,

Y (t) ≤ C(1 + Y ′(0))e−Ct,

i.e.,

‖Ων
3‖L2(0,T ;L2(D)) ≤ C(1 + ‖Ων

3,0‖L2(D)), (4.26)

where C > 0 depends on T .
Combining (4.26) with (4.25), we get

‖Ων
3‖L∞(0,T ;L2(D)) ≤ c, (4.27)

where the constant c only depends on T, ‖Ων
3,0‖L2(D) and ‖uν0‖H1

per(D), but
not on ν. �

We are now ready to prove our main result.
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Proof of Theorem 2.8. The proof will proceed in three broad steps. First we
will show that {uν}ν>0 is a compact subset of L2(0, T ;L2(D)). Then we
will pass to subsequences as needed and show that there is a limit, u0, which
is in C(0, T ;L2)∩L2(0, T ;H1

per,loc), which is helical, has vanishing helical
swirl, and satisfies the weak formulation of the Euler equations. Finally, we
will show that u0 ∈ L∞(0, T ;H1

per,loc).
Recall (2.13) and (2.15). Then,

div uν = 0 (4.28)

curl uν =

[
Ων

3 − ∂x
(
ην x

|ξ|2
)
− ∂y

(
ην y

|ξ|2
)]
ξ + (∂yη

ν ,−∂xην , 0).

(4.29)

Condition (1) of Theorem 2.8 implies that ‖uν0‖H1
per(D) ≤ C and, hence,

from the energy inequality in Theorem 3.2, (3.6), it follows that {uν}ν>0 is
a bounded subset of L∞(0, T ;L2(D)).

From condition (2) of Theorem 2.8 together with Lemma 4.2, (4.9), we
find

ην → 0 strongly in L∞(0, T ;L2(D)), (4.30)

and
∇ην → 0 strongly in L2(0, T ;L2(D)). (4.31)

In addition, from Lemma 4.2 we obtained a uniform estimate, with re-
spect to ν, for Ων

3 in L∞(0, T ;L2(D)). Putting these estimates together
yields curl uν uniformly bounded in L2(0, T ;L2

loc(D)). (The subscript ‘loc’
is due to the growth of ξ at infinity.) Hence, from Lemma 2.7 it follows that
{uν}ν>0 is a bounded subset of L2(0, T ;H1

per,loc(D)).
Therefore, for any bounded sub-domain U ⊂ D, we have that {uν}ν>0

is a bounded subset of L2(0, T ;H1(U)). In addition, we may use equation
(1.1) to deduce that {∂tuν}ν>0 is a bounded subset of L2(0, T ;H−1(U)). It
follows from the Aubin-Lions compactness theorem, see [13], that {uν}ν>0

is a compact subset of L2(0, T ;L2(U)). We may now use a diagonal argu-
ment to pass to a subsequence, which we will not relabel, which converges
strongly in L2([0, T ];L2

loc(D)). Passing to a further subsequence if needed,
we may assume the convergence is also weak in L2(0, T ;H1

per,loc(D)).
It is standard that strong convergence in L2([0, T ];L2

loc(D)) is sufficient
to show that the limit vector field, denoted u0, satisfies the weak formulation
of the Euler equations in Definition 2.2.

The bounds in L2(0, T ;H1
per,loc(D)), for uν , and in L2(0, T ;H−1

loc (D), for
∂tu

ν , imply that {uν}ν>0 is a bounded subset of C0(0, T ;L2(D)). (There
is no need to localize this estimate, due to the previous uniform estimate in
L∞(0, T ;L2(D)).) It follows that u0 ∈ C0(0, T ;L2(D)).
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It is easy to see that u0(·, t) is a helical vector field, for each 0 ≤ t < T
and, also, that η0 ≡ u0 · ξ = 0.

We have established all conditions of Definition 2.2 but one. It remains
only to verify that u0 ∈ L∞(0, T ;H1

per,loc(D)).
To see this we first note that, in view of (4.29),

Ων
3 = curl uν · ξ|ξ|2 + ∂x

(
ην x

|ξ|2
)

+ ∂y

(
ην y

|ξ|2
)
− (∂yη

ν ,−∂xην , 0) · ξ|ξ|2 .

Each of the terms on the right-hand-side converges, as ν → 0, weakly
in L2(0, T ;L2(D)) and, in view of (4.30) and (4.31), the weak limit, in
L2(0, T ;L2(D), of the right-hand-side is curl u0 · ξ

|ξ|2 .
In addition, since Ων

3 is bounded in L∞(0, T ;L2(D)), we may assume,
passing to further subsequences as needed, that the convergence of the right-
hand-side is also weak-∗ in L∞(0, T ;L2(D)), so that

curl u0 · ξ|ξ|2 ∈ L
∞(0, T ;L2(D)).

By virtue of η0 = 0 and u0 being a helical vector field, we find curl u0 ≡
ω0 = ω0

3ξ, see Lemma 2.4 and Remark 2.1. Therefore we deduce

curl u0 ∈ L∞(0, T ;L2
loc(D)),

which, together with div u0 = 0, imply

u0 ∈ L∞(0, T ;H1
per,loc(D)),

as desired.
This completes the proof.

�

In this article we have focused on the vanishing viscosity limit for he-
lically symmetric flows. As we have discussed, helically symmetric solu-
tions of the Navier-Stokes equations do not form singularities in finite time,
whereas helical Euler is only known to have global solutions if the helical
swirl vanishes. Furthermore, vanishing helical swirl is preserved by the Eu-
ler evolution, but not by Navier-Stokes. Given these distinctions, it seemed
natural to explore the vanishing viscosity problem under helical symmetry.
The key issue was to be able to control the helical swirl and to ensure that
it vanishes as ν → 0.

The relevant problem which still remains open, in this direction, is global
existence for helical Euler with nonzero helical swirl.
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68530, 21941-909 RIO DE JANEIRO, RJ – BRASIL.

E-mail address: hlopes@im.ufrj.br



Highlights

• Vanishing viscosity for flows with helical symmetry
• The effect of viscosity on the helical swirl
• Decomposition of helical vector fields parallel and orthogonal to the helix direction
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