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We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally
within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the
reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular
application of this approach, we consider the case of the Amari delay neural field equation which describes
the local activity of a population of neurons taking into consideration the finite propagation speed of the
electric signal. We show that if the kernel appearing in this equation is symmetric around some point
a # 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an
infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also,
in earlier works the focus has been on the most rightward part of the spectrum and the possibility of
an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra
and argue that a detailed knowledge of this structure is important within neurodynamical applications.
Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited
in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and
dampening others. Finally, we discuss how these results can be generalised to the case of systems of

IDDEs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider a class of integro-differential-delay
equations (IDDEs) that arise naturally within spatially distributed,
non-local, pattern formation problems. As an immediate appli-
cation we will show how these occur within the perturbation
analysis of stationary states for a class of problems from neuro-
dynamics. However the analysis presented here is quite general.
In such problems the state of the system is represented by a state
variable u(x, t) dependent upon time t, and location X, ranging
over some domain in R". We will have a dynamical equation re-
lating the rate of change of the state at any particular point to the
present and past values of the state at all other points both lo-
cally and nonlocally. This nonlocal dependence results in an inte-
gral term with kernel combining the weighted influences from all
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other connected locations, as well as in an intrinsic transmission
speed which in turn yields spatially dependent time delays.

Under the most simplifying of assumptions of spatial homo-
geneity and hence translational symmetry we will assume that
a steady-state, time independent, solution, u(X,t) = ug say, is
known and that by linearising around it we may examine the sta-
bility behaviour of local solutions. Typically, for problems defined
on an unbounded domain x € R", we take the Fourier trans-
form of the resulting linearised problem, writing u(x, t) — ug ~
exp(ot+ik.x). This results in an equation to be solved for the “dis-
persion relation”, yielding the continuous spectrum, o = o (k), as
a function of the wave number.

The intrinsic nature of the IDDE is reflected within the structure
of this equation and we will assume it is of the general form

o + constant = #(k, o), (1)

where the o dependence of # includes a factor of the form
exp(—eoa) for some constants g, a. The equation is thus transcen-
dental and the dispersion curve has solution branches of infinite
multiplicity which reflects the infinite degrees of freedom intro-
duced through the delay terms. In comparison, for pattern forming
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processes represented via reaction diffusion systems or integro-
differential equations with no delays [1], the function # is inde-
pendent of o and one obtains a dispersion curve representing o as
an explicit (single branched) function of k.!

The situation that we face here is analogous to that of differ-
ential delay equations (DDEs). There has been a leap in interest
in DDEs over the last decade following progress in making ana-
lytical representations of their solutions by exploiting the Lam-
bert function (originally proposed 250 years ago, in 1758) [2-4].
The Lambert function W is defined as any function such that

W(s)e"® =s. (2)

W (s) is a complex function with an infinite number of branches.
The principal branch satisfies Wy(s) = s —s? + 0(s®) ass — 0 and
can be represented by the following expression:

00 -1
wo =Y T 3)
n=1 :

which converges for s < 1/e. The other branches of the Lambert
function, denoted by W, (s) forb = £1, +2, ... are given in terms
of the branches of the logarithmic function In,(s) = In(s) + 2mib
by

Wy (s) = Iny(s)
where A(s) is

(In(Iny(s)))
A(s) = ZZ i (Inp (S))H—J ’

i=0 j=1

— In(Iny(s)) + A(s), (4)

and Kj; are known constants [5].

In what follows the Lambert function will be utilised in
addressing (1) since it enables us to deal with the exponential term
in o at the cost of introducing an infinity of branches—and thereby
characterising the separate branches of the resulting dispersion
relation. In particular its usage allows a straightforward numerical
investigation of such branches to be made separately. We discuss
this in Section 4.

The fact that the complex solution of (1) (as the wave number
k varies) results in the superposition of infinitely many curves is
important within applications. It increases the pattern forming po-
tentiality of the system, and indeed suggests that the introduction
of delay effects may be critical in increasing the capacity of IDDEs
to generate spatio temporal response to stimuli, transient or oth-
erwise.

In Section 2 we show how (1) arises within a specific applica-
tion: that of the delay dependent Amari equation in neurodynam-
ics [6-8]. To date, the stability and bifurcation analysis for such
equations, given by Coombes and co-workers [9-11], has consid-
ered the extreme rightward part of the resulting spectra within
the complex plane (since this governs any overall loss of stability
and corresponding spontaneous pattern forming process). Such be-
haviour can be rich for these equations with standing waves, bulk
oscillations and travelling wave patterns dependent on the na-
ture of the coupling kernel. Of course other spectral modes though
more stable, may persist especially if these can resonate with ap-
plied stimuli (non-autonomous forcing), so it may well be impor-
tant within an application to characterise the features of the entire
spectrum. This paper represents the first such survey for this class
of IDDEs. Many of the examples included in previous works con-
sider kernels which are symmetric around the origin and assume

1 1t would be possible to obtain an equation analogous to (1) for other types of
steady state solutions. However, the right-hand side of (1) would then include an
unknown term of the form F’(ug(x)).

that local excitation is predominant. Moreover, kernels which are
not peaked at the origin have already been considered in the liter-
ature, see e.g. [12-14]. In particular, there are papers that specif-
ically focus on kernels that peak away from the origin e.g. [15].
However, the kernels considered here have the particular property
that they are symmetric around some point a # 0 or consist of a
sum of such terms. It should be emphasised that it is this property
which accounts for the factor exp(—eoa) in the right-hand side of
(1) and thus give rise to an infinite branched spectrum.

In Section 3 we reformulate (1) with use of the Lambert W
function and consider asymptotic approaches to the problem of
determining the spectral structure; whilst in Section 4 we exploit
this numerically so as obtain plots for the entire spectrum of
the IDDE. In Section 5 we generalise the formalism developed
in earlier sections to the case of systems of IDDEs and consider
the case of two neural populations exciting each other. Finally,
in Section 6 we discuss further extensions of this work and
argue why knowledge of the full spectrum is important within
neurodynamical applications.

2. The Amari time-delay neural field equation

In this section we consider a particular example of the form of
Eq. (1), to which the results of this paper will apply.

The description of the propagation of electrical activity in neural
tissue is, in general, a difficult task. Assuming that the neural tissue
is one-dimensional and that the synaptic input is a function of the
pre-synaptic firing rate function the local activity of a population
of neurons is described by the following Amari equation [6,3]

ur(x, t) +u(x, t) zf d(x —yF (uy, t —elx —y))) dy,

t > 0, (5)

where u(x, t) is the synaptic activity at position x and time t, ¢ =
1/v, with v the velocity of propagation of the electrical activity,
¢(x — y) is a real-valued smooth and bounded function which
expresses the connectivity between points of the neural tissue and
F (u) is a real-valued differentiable and bounded function which is
called the pre-synaptic firing rate function. It should also be noted
that the generalisation of Eq. (5) to n-dimensions is immediate by
replacing x by X wherex € D C R".

The solutions of Eq. (5) include spatially and temporally peri-
odic patterns beyond a Turing type instability, localised regions
of activity such as bumps and travelling waves (see [11,16-30]).
The onset of dynamic Turing instability of the homogeneous steady
state has been calculated and patterns emerging from this instabil-
ity have been discussed in [10]. Also, the Turing instability analysis
in layered 2D systems for neural fields with space-dependent de-
lays is treated in [31]. However, it seems that the part of the spec-
trum corresponding to stable modes has not been studied in any
full detail. In Sections 3 and 4, we will show that the full spectrum
of the neural field equation with delays has a rich structure previ-
ously undetected.

We consider uniform steady state solutions, u = ug, where ug
is a constant satisfying

up = F(uo)¢o, $o = / o (y)dy. (6)

Since the function F (u) is uniformly bounded there will generically
be an odd number of such solutions.

Now we write u(x, t) — ug ~ e”®+# in Eq. (5) so that, up to a
linear approximation, we have

(a, (k) + -l)eo'(k)[-HkX

00
— F’(Uo)/ ¢(X _y)e—o(k)g\x—y|err(k)t-Hkydy. (7)
—00
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Hence we obtain a dispersion relation

o (k) + 1= F (up)H(k, o (k)), (8)

where ﬁ(k, o (k)) is the Fourier transform of the function
h(x, o (k) = p(x)e VK. 9)

By a suitable parameterisation we can choose F'(uy) = 1, there-
fore Eq. (8) yields

o+ 1=Hk o). (10)

This equation is of the form of (1), with # = ﬁ as required.
Of course the exact nature of this last function depends critically
upon the choice of the kernel ¢ (x). An important question is for
which kernels ¢ (x), the o - dependence of the function H(k, o (k))
includes a term of the form e™*?“, thus making Eq. (10) a
transcendental equation with infinitely many solution branches.
It turns out that functions which are symmetric around a point
a # 0, or which consist of a sum of such terms, yield a function
H(k, o (k)) of the form mentioned above. This class of functions is
substantially different from many of the examples given in [9-11]
where ¢(x) is dominated by a peak at the origin, making local
neighbourhood behaviour the most dominant influence. In the
following, in anticipation of the kernel considered in Section 3, we
focus on the case that the kernel ¢ (x) consists of a sum of two
terms, symmetric with respect to a and —a. It is straightforward
to generalise the relevant results for the case of sums consisting of
an arbitrary number of terms. In particular, we consider a kernel of
the form

o) =vx—a)+¢¥Kx+a),

where v/ (x) is an even function. For simplicity, we assume that the
Fourier transform of v/ (x) has no poles (the case that v/ (k) has poles
can be treated similarly). Then, the function H(k, o) is given by

a>0, (11)

Hk, o) = /Oo e M [y (x — a) + ¥ (x + a)] e " dx, (12)

o0

or

/H\(k’ G) _ /oo |:e,zma(kfy) + eZnia(kfy)] a(k _ y)
-0

20¢ d (13)
X ————dy.
0262 + 472y2 Y
Using the residue theorem to evaluate the integral of the right-
hand side, we obtain

ﬁ(k, o) = e 90 I:e—eriak{[; (k _ 10‘78)
2w

+e g (k+i2- )] (14)
27

where the term e ~¢?® appears explicitly.

For functions of the form of Eq. (11), where ¥ (x) is an even
function and a > 0, the dispersion relation, namely Eq. (10) (or
equivalently (1)), is transcendental. We will therefore obtain an
infinite number of solution branches. On the other hand if ¢ is such
that H(k, o) is a rational function of o, then (1) will have only a
finite number of branches; since then we have a polynomial, with
k dependent coefficients, to be solved for o. Hence the inclusion
of time delays (in the case of the neural field equation due to the
speed of propagation) is a necessary but not a sufficient condition
for the spectrum to contain an infinite number of branches. For
example, for any ¢ (x) of the form

o(x) =x"e™™, x>0, (15)

where n € N,r > 0, there are only finitely many branches

whatever the value of ¢ > 0. Indeed, for such a kernel
n!

(g0 + 1 + 2mwik)n+1’

This may seem counterintuitive to some who might expect the
infinite degrees of freedom in any differential delay equation to
correspond to an infinite number of branches for IDDEs regardless
of the choice of kernel. However, it should be emphasised that the
choice of kernel has a key role to play: any kernel of the class
defined by Eq. (15) is strongly dominated by its local behaviour
at the origin, thus it cannot yield an infinite number of spectral
branches. On the other hand, replacing x by x — a, a # 0, in (15),
we find

Hk, o) = (16)

n!
(g0 + 1 + 2wik)r+1’

where the term e™®°? appears naturally. This term is what
renders the dispersion relation (10) transcendental and results
in a spectrum with an infinite number of branches. The above
example helps illustrate in a simple manner that the particular
structure of H determines the spectrum associated with the neural
field equation.? In particular, H can either have a rational form
which results in a spectrum with finite number of branches and
leads to a local PDE using the Haken-Jirsa approach [32]; or it
can also include exponential terms in which case the spectrum of
the system resembles that of differential-delay PDE involving an
infinite number of branches.

In the next section, motivated by the above discussion, we
consider a kernel obtained from Eq. (11) by replacing ¢ (x —a) with
¥ (x—a, r)where ¥ (x, 1) = ﬁ and a = 1. Therefore, we choose
¢(x) to be even with peaks at a fixed unit distance from the origin,
reflecting the case where the major excitory influences are those
that travel from a unit distance away and are thus delayed.

ﬁ(k, o) = e—saae—Znika (17)

3. Spectra involving an infinite multiplicity of branches

Consider the kernel ¢»(x) given by

.
PO = e e

which expresses a dominance of a nonlocal interaction from a unit
distance away in both directions.
Then, for Re(r 4+ e¢0’) > 0, Eq. (10) becomes
o+1
e e "rlece®®Qq(k, o) +re" (Qa(k, o) cos(Rkm) + 4ekmo sin(2krr))]
(4k?7? +12)2 + 262 (4k* 7% — 12)0? + gt0* ’

(18)

(19)

where Qq(k, o) = 4k*7? — 1% 4+ 202, Qy(k, o) = 4k*7? + 1% —
2
go”.

First, we consider k fixed and show that there is an infinity of
values for o corresponding to each value of k:

Multiplying both sides of Eq. (19) by £e*“*D we find an
equation where the dependence of the right hand side on o is only
rational, namely
8(0 + 1)es(o+1)

_e‘e"er[eoeQi(k, o) +re" (Qa(k, o) cos(2km) + dekmo sin(2kn))]
- (4k?7? +12)2 + 262 (4k*7? — 12)0? + g*0* '

(20)

2 1t should be noted that to make the illustration simpler, in the above example
we have restricted our attention to the case where the connectivity kernel is defined
only for x > 0. Considering that x € 9, and repeating the above derivations it
follows that a transcendental term of the same form as above, namely e ~#°* appears
when replacing x by x — a. However, the relevant expressions of the transforms are
rather complicated (see Appendix).
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Using the definition of the Lambert function W (s) given by
Eq. (2), we find the following expression for the spectral values

0:§W(R(k, r,o))—1, (21)

where the function R(k, r, o) is given by the right-hand side of
Eq. (20).

Eq. (21) and the fixed point theorem imply that for each branch
of the Lambert function there is a corresponding value of o. Since
the Lambert function has infinitely many branches, there is an
infinity of spectral values o.

In the following, we consider some important limiting cases:

The limitr — o0

In the limit r — o0, Eq. (21) becomes

o= %W (ee® cos(2km)) — 1. (22)

Comparing Eq. (22) with Eq. (26) we find that these two equations
arethesameif 8 = 1and A = cos(2kxr). Therefore, for the extreme
valuesof A = £1, (k=1,+1,42,... andk = +1, 43, .. ), the
relevant spectrum is given by the green and pink points of Fig. 1
(where wlog ¢ = 1).

This result should come as no surprise since as r — 00,
the kernel (18) becomes a sum of two delta functions at x =
+1 describing an infinite chain of neurons connected to their
nearest neighbours. These coupled neurons can also be described
by following system:

ure(t) + ur(t) = pup(t —¢), (23)
Upe (t) + Ua(t) = puq(t — ). (24)
Then, letting u(t) = (u1(t), uz(t))(1, £1)7, the above system
reduces immediately to the equation
u(t) + pu(t) = ru(t —¢), (25)
where §,A and ¢ > 0 are constants, 4 = =X and spectrum
depicted in Fig. 1.

Inserting u(t) ~ e’ we obtain the characteristic equation for
the spectral values:
o+ =xr"7,
which is analogous to (1). It follows that solutions of Eq. (25) must
satisfy
e(o + B) = W(ere®?),
and there is an infinite number of eigenmodes associated with

Eq. (25). These modes are given in terms of the branches of the
Lambert function by the expression

1
o= gWb(»sxe*fﬂ) - B. (26)

For example, the first few values within the complex o -plane
are shown in Fig. 1 for A both positive and negative.

The limite — 0

Assuming that ¢ — 0, namely that there is no delay, Eq. (19)
becomes
r2(4k*7? + r?) cos(2km)
o+1=
(4k?m2 +12)?
Hence, there exists only a single real mode for a fixed k (and r),
corresponding to the limit of the principal branch for the Lambert

function: the other branches have escaped to minus infinity. Taking
the limit r — oo, in (27), we obtain

o + 1= cos(2km). (28)

(27)

-‘* 100 ¢
. L
-" 75
™ . s0F
-,
- * . 25
. . . e s ‘
ry .
-5 4 B,e e 2 -1
. 25
'
& * 50
..'
y. 75
l
¢ —100 £

Fig. 1. Spectrum when ¢ = B = 1and A = 1 (pink) and —1 (green). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

4. The numerical determination of the spectrum

Here we illustrate how to determine numerically the full
spectrum of Eq. (19) as a particular example of Eq. (1).
We proceed as follows. First, setting k = 0 in (21), we obtain

1 W ee"er [eo (—r? 4 e202)e® +re (12 — £20?)]
o= -
b r4 — 2e?r2g? 4 g4o

-1, (29)

where W, are the branches of the Lambert function given by (3)
forb = 0, and (4) for b = +£1,+2,... with A(s) = 0. We
use this equation to iterate to a single point solution on each
successive branch of the Lambert function, thus ensuring that we
commence each separate branch of the spectrum from a unique
point. Then in summary, to solve Eq. (19), we start out from each
solution branch (parameterised as “branch b”), at k = 0, and we
vary k incrementally, each time using the previous solution as the
starting point for a standard Newton iteration for . This results in
the computation of a single branch. Each branch is even in k and
approaches infinity as |k|] — oo. In Figs. 2 and 3, we show seven
such branches. The principal branch (“branch 0”) corresponds to
the part of the spectrum that is real.

As ¢ — 0 all of branches except the principal branch move off
to infinity parallel with the negative real axis, leaving the principal
branch to become the remaining real spectrumo = —1+ dAb(k). As
r tends to infinity the “loops” in the spectrum become longer, with
each loop approaching two parallel lines at constant imaginary
values from the point at infinity, see Fig. 4. Finally, when & becomes
large the real part of the spectrum is lost, see Fig. 5.

Let us now show one further example. Here the kernel ¢(x)
contains a sum of four terms, similar to the terms appearing in
(18), each symmetric about points x &= 1 and x = 42 respectively,
which we expect to resonate with each other. Moreover, choosing
the amplitude of the terms appropriately it is possible to move
many of the spectral cusps into the right hand side of the complex
plane. As they do so, there will be Turing-Hopf type instabilities at
the corresponding points o (k), which are purely imaginary and can
have non-zero as well as zero values for k (giving birth to periodic
travelling wave patterns and bulk oscillatory patterns (Fig. 6).

5. Systems

So far we have considered (1) and have shown how it might
arise from an equation with a single state variable, u(x, t). Here
we shall generalise the formulation developed in earlier sections
to consider systems.
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Fig.2. Separate spectral branches (b = 0, £1, £2, +3), each starting (when k = 0) at a separate point (shown as bold) generated via the bth branch of the Lambert function,
before looping through successive points. Here ¢ = 1 and r = 20.
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Fig. 3. Superposition of the seven branches of the spectra in Fig. 2. Here ¢ = 1and

r =20.

Fig. 4.

The spectra of the Amari equation for ¢ = 1 and r = 200.
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Fig. 6. Spectra involving cusps in the right-hand side of the complex plane.
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Let u(x,t) = (ui(x,t),...,un(x,t))T be a R™ valued state
variable satisfying

o0

w(x,t) +Aux, t) = / d(x—y).Fuly,t —elx—y|))dy,

—00
t>0. (30)

Here, ‘-’ denotes matrix multiplication and F : R™ — R™isa
nonlinear mapping (Lipschitz continuous to guarantee local exis-
tence); A is a m x m constant matrix, describing the point dynamics
and @ (x) is an m x m matrix-valued smooth, integrable kernel.

We set &y = ffooo @ (x)dx, and assume that u = wup is a
constant steady state, satisfying

Auyy = @0.1:([10).
Linearising about uy, we write
u(x, t) — ug ~ e WiHkey gy,

so that
(o ()] + A).v(k) = / @ (x — y).dF.e "7 WekekG=x) gy y(k).

Here dF = dF(uy) is the Jacobian of F at ug.

Define the integral operator H(k, o (k)) to be the (matrix-
valued) Fourier transform of @ (x).dF.e~°®¢’ Then we have

(o (k)] + A).v(k) = H(k, o (k)).v(k).
Thus the spectrum is given by
det(o (k) + A — H(k, o (k))) = 0. (31)

Let us consider a more specific example with m = 2. Take
a 0 $»x) 0
A = @ =
(0 az) ’ ( 0 ¢2(X)> ’
0 p
dF = .
(uo) (,32 0 )
Let
o~ o .
Hi(k,0) = / e 2k (x)e~* ¥ dx. (32)
—00

Assuming that ﬁj(k, o) = e “?Rj(k, o), where R;(k) is a poly-
nomial in o, Eq. (31) can be written as

—Bre "Ry (k, 0)) _o.

O'+(12

o+ a
det (—ﬂze_sz(k, o)

So the spectrum is determined by solving the characteristic
equation

(0 +a1)(0 + a3) = B1fre Ry (k, 0)Ry (k, 0). (33)

Now if a; = a; = 1, say, Eq. (33) reduces to

o +1=puy/Bife™ (RiR)V? (k,0), ==l (34)
The last equation yields
1
0 = —W(uy/BiBace™ (RiR) 2 (k, 0)) — 1. (35)
&

For example, if ¢; and ¢, are both given by the kernel (18), we
obtain the Fig. 7, showing the multi-branched spectrum in the case
where © = =1, corresponding to the purple and green curves
respectively. Again, the bold points represent the positions where
the wave number k is zero; and there are many crossing points
where the same value for o corresponds to distinct values of k.
These values of k are on distinct branches, which we have tracked
by starting out on separate branches of the Lambert function.

6. Resonance and input-output response

In this section we illustrate why a detailed knowledge of the
spectrum, arising from the linearisation of an IDD system about a
stable restpoint, is so functionally important within applications
such as neurodynamics.

Systems such as the neurodynamical Amari model are capable
of showing spontaneous, instability driven pattern formation. An
example of such a situation is epilepsy which is dominated by
internally driven patterning without any stimuli. However, this
is an aberrant state of affairs for neurodynamical systems in
vivo; a much more normal situation involves the responses of a
stable neurodynamical system to a range of localised incoming
signals from sensory mechanisms or other parts of the processing
apparatus upstream. Furthermore, spontaneous patterns of just
a few types simply do not provide a large enough lexicon for a
necessary plethora of cognitive functions.

Therefore we suggest that: (i) the Amari system should be
conceived as an input-response unit, with the addition of a forcing
(input term)? and (ii) for neurodynamics it is real time pattern
response, at zero computational cost, that is highly desirable, nay
necessary: yet to date it has not been previously discussed or
illustrated.

Consequently we must ask for which stimuli can the Amari
system produce a coherent response, synchronising in time with
the input, and displaying a suitable pattern over space?

The knowledge of the spectrum gained in previous sections is
precisely what we need to address this question. Indeed, the input-
response is multifaceted, in analogy with the resonant harmonics
of a mechanical system. The successive forays of the spectrum
towards the imaginary axis provide a capacity for distinctive types
of responses to correspondingly distinct types of stimuli. This
capacity would be absent without them.

Typically we expect that we will be in a situation where a
neurodynamical system will be stable one, close to a resting
point, with spectrum characterised by Re(¢) < 0. Then, any
solution decays to zero (the equilibrium) for large time regardless
of its initial history; and could in principal be written as a linear
combination of all the decaying modes.

Suppose next that such a system is stimulated by applying
an external excitory term, proportional to el@** for some
w > 0 and real k. All such excitations could be written as a
suitable integral over k of terms involving exponentials. Therefore
the solution of the resulting inhomogeneous system can be also
written as a linear combination of e/ terms as well as
decaying modes. This is fine except when one of the parts of the
spectrum o (k) gets near to the imaginary axis, say at iw. Then a
familiar resonance phenomenon kicks in.

The long term solution of the IDDE contains a term that is of the
form

ei(wH—kx)
iw+1—Hk o)

The denominator which is equal to the inverse of the response
amplitude becomes closest to zero and the relative response to the
stimulus is maximised precisely where the pairs (k, w) are closest
to some part of the spectrum (k, o (k)) within the left-hand side of
the plane.

In this sense, the Amari system acts like a filter: it has the ability
to recognise and respond whenever it is excited in such a way as to
almost resonate with one or more of its rightward modes (where
the real part of o (k) has a local maximum): it relatively amplifies

3 Similarly to the analysis of [33].
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Fig. 7. The parts of the branched spectrum for . = 1, top right; © = —1, bottom right; and together on the left.

such inputs, and dampens others (see Fig. 8). This is “resonance”
in action; the system recognises certain inputs and ignores others
at no computational cost, in real time. We contend that it is these
“hot spot” resonant modes that are the currency of input-output
response: the latter being a dynamic and spatial distribution of
neural activity. It should be emphasised that it is the delays in the
Amari IDDE that produce this multiple resonance, or “harmonic”
behaviour. This behaviour in turn, increases the capacity of the
system to show a multiplicity of responses.

Therefore, the answer to the question raised above could be
briefly stated as follows: modes of increased responsiveness of the
neurodynamical system correspond to the forays of the real part of
the spectrum of the Amari system.

In summary, the structure of the spectrum for the IDDE is
(i) intimately connected with the choice of the kernel and (ii) a
crucial component in filtering input information and producing
a discrete range of resonant responses, as opposed to a passive
continuum response. Of course, the nonlinearities become impor-
tant away from equilibrium in the longer term. Nevertheless, for
natural neurodynamical systems to perform rapid coherent signal
“recognition and response” behaviour it is the complex nature of
the spectra derived in this paper, even for simple systems, that is
exactly what is required.

In practice, observations of neurodynamical patterns and waves
via scans will allow us constrain and locate kernel behavioural
properties at the meso level within the brain. Anisotropy, spatial
variability, behaviour at boundaries, and piecewise continuity will
make the future inverse and forward problems much harder.
However, we suggest that such a programme cannot commence
without a solid understanding of the rich spectral structure that is
available, even for the ideal (spatially uniform, isotropic) situation
considered here.

7. Discussion

The possibility of having an infinity of branches within the
spectrum for IDDEs seems not to have been discussed previously.
Indeed for each wavenumber it is the delay effects that give rise
to such a behaviour. In the case where the right-hand side of (1)
has a factor of the form e™*?¢, for a # 0, the Lambert function
is useful both conceptually and numerically within investigations.
When (1) has no such term we are left with a rational equation
for o and thus a finite number of branches. Therefore, the choice
of spatial kernel when combined with space-dependent delays can
have a strong effect on the type of spectra generated by the neural
field equation. For example with a simple exponential kernel and
any kernel for which H is rational, one can use the Haken-Jirsa
approach [32] to obtain an equivalent PDE—where one would not
see any delays and would thus not expect an infinite number of
spectral branches. Such examples appear in many neuroscientific
applications, see [11] for an excellent review.

Fig. 8. Enhanced responsiveness to certain input signals. Here ¢ = r = 10.

Here, we have mostly considered a special class of IDDEs where
the left-hand side of (1) is linear in ¢. In future work, we will survey
the complete spectra for more general systems of IDDEs where the
left-hand side of (1) is a polynomial of order greater than one. Such
equations arise from a determinant of a matrix, itself linear in o, as
in (31). Numerically, we will identify many more branches of the
spectrum arising from both the polynomial terms and the Lambert-
like transcendental terms. Also, we will investigate further how the
branches of the Lambert function may best help us to do so.

The Amari equation is a particular example of an IDDE which
occurs in neurodynamics. In essence, this is just a model for a
complex system—a massive coupling of microscopic processors. In
this simple case there is homogeneity and translation invariance.
The importance of characterising the spectrum of such a system
(albeit close to equilibrium) is in understanding the input-output
response behaviour when this system is stimulated. In practice,
this may be far more important than studying the spontaneous
pattern formation. Resonance (as represented by the peaks in a
response surface) is a hugely efficient mechanism for tunable,
responsive, learning: namely a process of producing functional
quantised responses in real time relating to the form of a noisy
stimulation.

The currency (or state) of such a system exists within the space
of spatio-temporal patterns. This is very important in applications.
If we take a single snap shot or scan—how can we judge the state
of the system?

The set of possible spatio-temporal resonances is dependent on
the rightward cusps of the entire spectrum, and it is large. If this is
the currency of information processing within such systems (like
our brains) then in this single concept, we attain both capacity
and efficiency (since neural resonance requires no computation
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and responds in real time). This idea suggests that in seeking to
understand reasoning processes from patterns and connectivities
within single fMRI scans [34] we are looking in the wrong place: we
must see the evolution of such activity over time as the response
to the upstream stimuli.
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Appendix

For the case that ¢(x) given by ¢(|x|) = |x|"e~"¥, is defined
over the whole real line, i.e. x € 9N, Egs. (16) and (17) should be
replaced by

4k%7?

1/2(—=1-n)
r+ 80)2)
2
x Cos |:(1 + n)ArcTan <7
r+¢

km
)] ra+n,
o

—~ a1
Hk, o) = e’”“e’z”‘k‘li(—aH”Ei[—n, a(—2ikmr +r1 — g0)]

—a'"t"eM T E [ _n, aQikr 4+ 1 — £0)]

+[(=2ikr +1 —e0) "+ QQikn +1r + o) 1"
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+ (=2ikw + 1 4+ e0)" "I (1 + n)),

where Ei denotes the exponential integral function.

Hk,0) = (r + e0)~ " (1 +

and
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