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• Adopting a principle of similarity, a nonlinear vibration absorber is defined.
• The vibration absorber should have the same functional form of the primary system.
• The absorber generalizes Den Hartog’s equal-peak method for nonlinear systems.
• A compact analytical formula for optimal tuning is defined.
• If more nonlinearities are present the formula exploiting a principle of additivity.
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a b s t r a c t

This paper develops a principle of similarity for the design of a nonlinear absorber, the nonlinear tuned
vibration absorber (NLTVA), attached to a nonlinear primary system. Specifically, for effective vibration
mitigation, we show that the NLTVA should feature a nonlinearity possessing the same mathematical
form as that of the primary system. A compact analytical formula for the nonlinear coefficient of the
absorber is then derived. The formula, valid for any polynomial nonlinearity in the primary system, is
found to depend only on the mass ratio and on the nonlinear coefficient of the primary system. When
the primary system comprises several polynomial nonlinearities, we demonstrate that the NLTVA obeys
a principle of additivity, i.e., each nonlinear coefficient can be calculated independently of the other
nonlinear coefficients using the proposed formula.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The use of linear resonators for themitigation of resonant vibra-
tions was first proposed byWatts [1] and Frahm [2,3] to reduce the
rolling motion of ships. The problem was later formalized in more
rigorous terms by Ormondroyd and Den Hartog [4], Den Hartog [5]
and Brock [6], who developed tuning rules that formed the basis of
Den Hartog’s equal-peakmethod. The vibration absorber considered
in [4–6] consists of a mass–spring–dashpot system attached to the
primary system to be controlled. Through the proper tuning of the
spring and damper of the absorber, it is possible to approximately
obtain H∞ optimization of the frequency response in the vicinity
of the target resonant frequency.

Thanks to its simplicity, effectiveness, low cost and small re-
quirements formaintenance [7], the passive vibration absorber (of-
ten referred to as tuned mass damper, tuned vibration absorber
or dynamic vibration absorber) was extensively studied and im-
plemented in real-life structures. Its main applications include
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structures subject to human-induced vibrations, such as specta-
tor stands and pedestrian bridges (the most famous example is
the Millennium bridge in London [8]), steel structures excited
by machines such as centrifuges and fans, aircraft engines [9],
helicopter rotors [10], tall and slender structures subject to
wind-induced vibrations, but also power lines [11] and long-span
suspended bridges [12,13]. For a list of installations of vibration ab-
sorbers in civil structures the interested reader can refer to [14,15].

An overview of existing designs for passive vibration absorbers
is given in [7]. They include classical absorbers with translational
mass movements, pendulum absorbers, centrifugal pendulum
absorbers [16], ball absorbers, sloshing liquid absorbers [17] and
particle vibration absorbers [18], although the sloshing liquid and
particle vibration absorbers have qualitatively different features
than the more typical vibration absorbers with a concentrated
mass. Many different configurations and variations of the original
vibration absorber were studied in the last decades, e.g., a
damped host system [19], different combinations of response and
excitation [20] and the use of multi-vibration absorbers to control
several resonances [21].

A fundamental drawback of the vibration absorber (that
hereafter is referred to as linear tuned vibration absorber, LTVA)
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is that it requires a fine tuning between its natural frequency
and the targeted resonant frequency. The LTVA may therefore
be ineffective when it is attached to nonlinear systems, in
view of the frequency–amplitude dependence of these systems.
This limitation was addressed in the literature through the
development of nonlinear vibration absorbers [22–26]. In [27],
the authors introduced the nonlinear tuned vibration absorber
(NLTVA), whose design is based on a principle of similarity with
the nonlinear primary system, i.e., the NLTVA should be governed
by equations similar to those of the primary system. Thanks to this
principle, a nonlinear generalization of Den Hartog’s equal-peak
method could be developed, and the optimal nonlinear coefficient
of the NLTVA was determined numerically [27]. A more detailed
study about the performance and robustness of the NLTVA was
carried out in [28], whereas itwas experimentally validated in [29].
The NLTVAwas also successfully applied for the mitigation of limit
cycle oscillations [30].

This paper revisits the design procedure of the NLTVA proposed
in [27]. Specifically, by combining a harmonic balance technique
with a perturbation method, it derives a compact analytical
formula for the nonlinear coefficient of the absorber which is valid
for any polynomial nonlinearity in the primary system. The case
where the primary system comprises several nonlinearities is also
carefully investigated in this study.

2. Problem statement

In this study, we seek to minimize the amplitude at resonance
of a harmonically-forced one-degree-of-freedom (1DOF) nonlinear
oscillator which models the targeted mode of the considered
nonlinear system. This is achieved by attaching a nonlinear
vibration absorber to the primary oscillator. Mathematically, the
problem is formulated as follows:

min ∥h(ω)∥∞ → min {max [|h(ωA)|, |h(ωB)|]}
→ |h (ωA)| = |h (ωB)| (1)

where h(ω) is the frequency response function of the coupled
system measured at the primary mass, and ωA, ωB represents the
two resonance frequencies.

2.1. The linear case

For linear absorbers coupled to linear oscillators, Den Har-
tog [5] demonstrated that the frequency response function passes
through two fixed points independent of absorber damping, and
he selected the absorber stiffness that imposes equal amplitude for
these points (Fig. 1). Brock [6] then calculated the absorber damp-
ing by taking the mean of the damping values that realize a maxi-
mum of the receptance at the two fixed points. Even though the
resulting formulas have sufficient accuracy in practice, they are
only an approximation to Problem (1), because |h (ωA) | is not
strictly equal to |h (ωB) |.

Nishihara and Asami [31,32] were the first to derive an
exact solution to Problem (1). Instead of imposing two fixed
points of equal amplitude, the direct minimization of the h∞

norm of the frequency response of the controlled structure was
achieved. Eventually, exact analytical formulas were obtained for
the frequency tuning λ and damping ratios µ2:

λopt =
2

1 + ε


2
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√
4 + 3ε


3(64 + 80ε + 27ε2)

µ2,opt =
1
4


8 + 9ε − 4

√
4 + 3ε

1 + ε
(2)
Fig. 1. Frequency response function of an undamped linear primary system with
an attached linear vibration absorber. Black dashed line: undamped primary system
without absorber; blue dash-dotted and red dotted lines: absorber with damping
smaller or greater than the optimal damping, respectively; black solid line: absorber
with optimal stiffness and damping; black dots: invariant points. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

where ε = m2/m1 is the mass ratio (λ and µ2 are defined later).
The resonance frequencies are

ωA, ωB =
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where r = 8
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We note that expressions (2) and (3) are valid for an undamped
primary system.

2.2. The nonlinear case

We now consider a nonlinear primary system with a polyno-
mial restoring force symmetric with respect to the origin to which
a nonlinear vibration absorber is attached, as illustrated in Fig. 2.
Following the idea of the NLTVA developed in [27,30], the absorber
should possess a restoring force characterized by the same math-
ematical form as that of the primary system, thus obeying a ‘prin-
ciple of similarity’. The equations of motion of the coupled system
are

m1ẍ1 + k11x1 +

n
i=2

k1i
xi1 sign (x1) + c2 (ẋ1 − ẋ2)

+ k21 (x1 − x2) +

n
i=2

k2i |x1 − x2|i sign (x1 − x2)

= f cosωt
m2ẍ2 + c2 (ẋ2 − ẋ1) + k21 (x2 − x1)

+

n
i=2

k2i |x2 − x1|i sign (x2 − x1) = 0

(4)

where x1 and x2 are the displacements of the primary system and
of the NLTVA, respectively; m1, m2, k11 and k21 are the masses
and the linear spring coefficients of the primary system and of the
NLTVA, respectively; c2 is the damping coefficient of the NLTVA; k1i
and k2i, i = 2, . . . , n, are the nonlinear spring coefficients of the
primary system and of the NLTVA, respectively; f and ω are the
forcing amplitude and frequency, respectively, and n is the highest
order of nonlinearity present in the primary system.

Defining the dimensionless time τ = tωn1 = t
√
k11/m1 and

introducing the variables q1 = x1k11/f and q2 = x2k11/f , the
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Fig. 2. Mechanical model.

system is transformed into
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biαi |q2 − q1|i sign (q2 − q1) = 0

(5)

where µ2 = c2/

2
√
m2k21


, λ = ωn2/ωn1 =

√
k21m1/(k11m2),

γ = ω/ωn1, αi = k1if i−1/ki11 and bi = k2i/ (εk1i). The prime
indicates derivation with respect to the dimensionless time τ .

In the dimensionless system (5), the forcing amplitude appears
only in the expression of the nonlinear coefficients, which means
that it is equivalent to consider a strongly nonlinear system or a
systemwith a large forcing amplitude. In addition, the forcing am-
plitude modifies linearly the quadratic coefficients, quadratically
the cubic coefficients, etc. This suggests that, if an optimal set of ab-
sorber parameters is chosen for a specific value of f , variations of f
will detune the NLTVA, unless the nonlinear coefficients of the pri-
mary system and of the absorber undergo a similar variation with
f . This observation justifies the so-called principle of similarity.

Considering that the mass ratio ε is imposed by practical con-
straints, the objective of this paper is to obtain analytical expres-
sions of the NLTVA parameters, i.e., λ, µ2 and b ≡ [b2, . . . , bn],
that realize equal peaks in the nonlinear frequency response of the
primary oscillator for an as large as possible range of forcing am-
plitudes. This study therefore generalizes the formula obtained for
a cubic primary oscillator in [27].

3. Analytical extension of the equal-peak method to nonlinear
systems

To ensure equal peaks at low energy levels for which the
nonlinearities in the primary system are not activated, the linear
parameters λ and µ2 of the NLTVA are calculated as in the linear
case, i.e., using Eqs. (2).

The nonlinear coefficient vector b is determined in this section
by extending the procedure proposed by Asami and Nishihara [32]
to the nonlinear case. To this end, the analytical procedure com-
bines a harmonic balance technique and a perturbation method as
in [33], but themultiple scalesmethod is replacedherein by a series
expansion that considers small values of parametersαi. Eventually,
wewill show that this assumption does not limit the validity of the
developments toweakly nonlinear regimes ofmotion thanks to the
adoption of the principle of similarity.
3.1. Approximate solution of the nonlinear problem

In order to transform the system of nonlinear differential
equations into a system of nonlinear algebraic equations, q1 and
q2 are expanded in Fourier series

q1 ≈ A0 +
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A1i cos(iγ τ) +

m
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A2i sin(iγ τ)

q2 ≈ B0 +
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m
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B2i sin(iγ τ).

(6)

Regardless of the chosen maximal harmonic m, the system can be
expressed in the form

W(γ )y +

n
i=2

αi (di0(y) + bidi1(y)) = c, (7)

where W is related to the linear part of the system, y collects the
amplitude of the different harmonics of the solution, di0 and di1
contain the nonlinear terms and c is related to external forcing. For
example, in the case of a cubic nonlinearity in the primary system
and limiting the analysis to a single harmonic, i.e., cos3 (γ τ) ≈

3/4 cos (γ τ) and sin3 (γ τ) ≈ 3/4 sin (γ τ), we obtain
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Considering that αi are small parameters, we expand y with
respect to αi at the first order

y ≈ y0 +

n
i=2

αiyi, (9)

thus obtaining from Eq. (7)

Wy0 +

n
i=2

αi

Wyi + (di0 + bidi1) |y=y0


= c. (10)

Decomposing Eq. (10) with respect to the different parameters αi,
the vectors yi can be explicitly calculated through the formulas

Wy0 = c → y0 = W−1c
Wyi + (di0 + bidi1) |y=y0 = 0 → yi = −W−1 (di0 + bidi1) |y=y0 .

(11)

The frequency response function h(γ ), which describes the
maximal value of q1 for different forcing frequencies and which
is the key quantity in the equal-peak method, can be identified
from the amplitude of the different harmonics contained in y. For
practical convenience, we consider the square of the frequency
response H = h2 and substitute the parameter γ with its square
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Γ = γ 2. Neglecting the higher-order terms of αi, the square of the
frequency response takes the form

H = H0 +

n
i=2

αi (Hi0 + biHi1) , (12)

where H0, Hi0 and Hi1 are obtained analytically, but they are
complicated functions of Γ .

3.2. Identification of the nonlinear resonant frequencies

Considering the nonlinear system, the square of the resonant
frequencies ΓA and ΓB is given by the zeros of ∂Γ H = 0, where
the ∂Γ indicates derivation with respect to Γ . Since we consider
small values of αi, i = 2, . . . , n, ΓA and ΓB can be considered as
small variations of their linear counterparts in Eq. (3), Γ̂A = ω2

A
and Γ̂B = ω2

B . ΓA and ΓB are thus obtained linearizing ∂Γ H around
Γ̂A and Γ̂B, respectively.

For ΓA we have

∂Γ H ≈ ∂Γ H|Γ =Γ̂A
+ ∂2

Γ H|Γ =Γ̂A


Γ − Γ̂A


, (13)

where ∂Γ H|Γ =Γ̂A
and ∂2

Γ H|Γ =Γ̂A
can be explicitly calculated

through the relations

∂Γ H|Γ =Γ̂A
= ∂Γ H0|Γ =Γ̂A

+

n
i=2

αi (∂Γ Hi0 + bi∂Γ Hi1) |Γ =Γ̂A

∂2
Γ H|Γ =Γ̂A

= ∂2
Γ H0|Γ =Γ̂A

+

n
i=2

αi

∂2

Γ Hi0 + bi∂2
Γ Hi1


|Γ =Γ̂A

,

(14)

where ∂Γ H0|Γ =Γ̂A
= 0. Imposing ∂Γ H = 0 we have

δA = ΓA − Γ̂A ≈ −
∂Γ H
∂2

Γ H


Γ =Γ̂A

. (15)

Linearizing δA with respect to αi = 0, i = 2, . . . , n, we have

δA ≈ −

n
i=2

∂Γ Hi0 + bi∂Γ Hi1

∂2
Γ H0


Γ =Γ̂A

αi (16)

and analogously for ΓB

δB = ΓB − Γ̂B ≈ −

n
i=2

∂Γ Hi0 + bi∂Γ Hi1

∂2
Γ H0


Γ =Γ̂B

αi. (17)

As it will be shown in Eq. (21), the knowledge of δA and δB is not
required for calculating b.

3.3. Definition of the optimal nonlinear coefficients bi

The equal-peak condition is verified if and only if the objective
function

F = H|Γ =ΓA − H|Γ =ΓB = 0. (18)

This condition is satisfied for the underlying linear system if λ and
µ2 are chosen according to Eq. (2).

Expanding H in Taylor series around Γ̂A and Γ̂B, F becomes

F = H|Γ =Γ̂A
+ ∂Γ H|Γ =Γ̂A

δA + O(δ2
A)

−H|Γ =Γ̂B
− ∂Γ H|Γ =Γ̂B

δB + O(δ2
B) ≈

≈

n
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αi


Hi0|Γ =Γ̂A

+ biHi1|Γ =Γ̂A


+


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+

n
i=2

αi


∂Γ Hi0|Γ =Γ̂A

+ bi∂Γ Hi1|Γ =Γ̂A


δA
−

n
i=2

αi


Hi0|Γ =Γ̂B

+ biHi1|Γ =Γ̂B


−


∂Γ H0|Γ =Γ̂B

+

n
i=2

αi


∂Γ Hi0|Γ =Γ̂B

+ bi∂Γ Hi1|Γ =Γ̂B


δB

= 0. (19)

Since δA and δB are, in first approximation, of the order O (αi)
and since ∂Γ H0|Γ =Γ̂A

= ∂Γ H0|Γ =Γ̂B
= 0, and limiting the analysis

to terms of first order, Eq. (19) reduces to

F ≈

n
i=2

αi


Hi0|Γ =Γ̂A

+ biHi1|Γ =Γ̂A
− Hi0|Γ =Γ̂B

− biHi1|Γ =Γ̂B


= 0.

(20)

Decomposing Eq. (20) with respect to αi, i = 2, . . . , n, and solving
with respect to b, we have

bi =
Hi0|Γ =Γ̂A

− Hi0|Γ =Γ̂B

−Hi1|Γ =Γ̂A
+ Hi1|Γ =Γ̂B

. (21)

The coefficients bi, as expressed in Eq. (21), depend only on
the order of nonlinearity under consideration i and on the linear
terms. Since the coefficients of the linear terms are fully identified
by ε, bi are function of ε only. They can be calculated from the
knowledge of the approximated frequency response, as defined in
Eq. (12), for Γ = Γ̂A and Γ = Γ̂B, without requiring any further
information about the system. IfH(Γ ) is kept in its analytical form,
the coefficients b can be defined analytically through computer
algebra using Eq. (21). However, even considering a system with
a single cubic nonlinearity and limiting the analysis to a single
harmonic, the final formula expressing b3 is extremely long.

An important theoretical result of the outlined procedure is
that, in first approximation, there is no interaction between the
polynomial nonlinearities. This means that, if different polynomial
nonlinearities are present in the primary system, the polynomial
nonlinearities in the NLTVA can be designed independently of each
other. Eventually, they can be simply summed up according to
an additivity property. This finding greatly simplifies the design of
the NLTVA and is verified numerically in Section 5. We note that
additivity of nonlinear components was also observed for a multi-
degree-of-freedom nonlinear energy sink in [34].

4. Proposed tuning rule for the NLTVA

4.1. Complete analytical design of the NLTVA

The optimal values of bi, for i = 3, 5 and 7, obtained through
Eq. (21), are depicted in Fig. 3. This figure also shows that the
regression

bi,opt =
(2ε)

i−1
2

1 + 3.5 × 1.5
i−3
2 ε

(22)

provides an excellent approximation to the analytical results for
b3 and b5, and a slight overestimate for b7. Considering the
dimensional parameters, Eq. (22) becomes

k2i =
(2ε)

i−1
2 ε

1 + 3.5 × 1.5
i−3
2 ε

k1i. (23)

Thanks to its simplicity, Eq. (23) can be used to calculate rapidly
the optimal values of the nonlinear springs of the NLTVA. Together
with Eq. (2), they offer a complete design of the NLTVA.
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Fig. 3. Parameters b3 (a), b5 (b) and b7 (c) as a function of ε. Solid lines: analytical results, dashed lines: approximation through Eq. (22).
Fig. 4. Frequency response of a primary system with cubic (a), quintic (b) or seventh-order (c) nonlinearity and an attached LTVA (red) or NLTVA (black). ε = 0.05,
α3 = 0.013 (a), α5 = 1.3 × 10−4 (b), α7 = 1.3 × 10−6 (c), whereas b3 = 0.0851, b5 = 0.0079 and b7 = 7.17 × 10−4 , according to Eq. (22). Dashed lines indicate unstable
solutions; green line indicates quasiperiodic solutions for the system with an attached NLTVA. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 5. Frequency response of a primary system with quadratic (a), quartic (b) or sixth-order (c) nonlinearity and an attached LTVA (red) or NLTVA (black). ε = 0.05,
α2 = 0.13 (a), α4 = 1.3× 10−3 (b), α6 = 1.3× 10−5 (c), whereas b2 = 0.2767, b4 = 0.026 and b6 = 0.0024, according to Eq. (22). Dashed lines indicate unstable solutions;
green lines indicate quasiperiodic solutions for the system with an attached NLTVA. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
4.2. Numerical validation

Three primary systems with cubic, quintic and seventh-order
nonlinearity, respectively, are first considered. The resulting
frequency response curves are depicted in Fig. 4. These responses
were computed using a path-following algorithm combining
shooting and pseudo-arclength continuation similar to that used
in [35]. The red curves, referring to the nonlinear primary system
with an attached LTVA (b = 0), clearly illustrate that the linear
absorber is ineffective in all considered cases. Conversely, the
NLTVA (black lines) is able to mitigate the resonant vibrations of
the primary system very effectively. The amplitudes of the two
resonance peaks are almost equal for all nonlinearities, which
validates our analytical developments. The same conclusion can
be reached for primary systems with even-degree polynomial
nonlinearities, as confirmed in Fig. 5. The formula (23) is therefore
valid for polynomial nonlinearities of any degree.

Fig. 6 illustrates the (dimensional) amplitude of the two
resonant peaks for different values of the forcing amplitude and
for nonlinearities of order 3, 5 and 7. For the LTVA, the two peaks
rapidly diverge from each other, which confirms that this absorber
is not effective for the mitigation of the considered nonlinear
oscillations. In Fig. 6(b) and (c), the amplitude of one of the peaks
undergoes a sudden jumpwhich, as explained in [28], is due to the
merging of a detached frequency curve with the main frequency
response curve.

For theNLTVA, the two peaks have approximately the same am-
plitude, which is the numerical evidence of the effectiveness of
the proposed nonlinear equal-peak method. An important conse-
quence of this result is that the range of validity of formulas (22)



6 G. Habib, G. Kerschen / Physica D 332 (2016) 1–8
Fig. 6. Peak amplitudes of a primary system with cubic (a), quintic (b) or seventh-order (c) nonlinearity and an attached LTVA (red) or NLTVA (black). m1 = 1, k11 = 1,
k13 = k15 = k17 = 1 and ε = 0.05. The other parameters are chosen according to Eqs. (2) and (23). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 7. (a) Loci of fold bifurcations for DRCs detection; green, black and red curves refer to third-, fifth- and seventh-order nonlinearity, respectively, of primary systems
with attached NLTVA; during the evaluation m1 = 1, k11 = 1, k13 = k15 = k17 = 1 and ε = 0.05. (b) Frequency response of a primary system with quintic nonlinearity,
f = 0.11. (c) Basin of attraction (white area) of the DRC for γ = 2.5, x2 = x′

2 = 0. Black stars in (a) correspond to the onset of DRCs; blue dots in (a) and (b) mark the tracked
fold bifurcations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and (23), which were developed under the assumption of small αi
(i.e., weak nonlinearity or, equivalently, weak forcing), extends to
large values of αi as well. This result, essential for the practical use-
fulness of the proposed tuning rule, is due to the adoption of the
principle of similarity. A remarkable feature of these results is also
the seemingly linear relation between the response amplitude and
the forcing amplitude. This observation seems to suggest that the
addition of a properly-designed nonlinear component in a nonlin-
ear system can, to some extent, linearize the dynamics of the cou-
pled system.

In Figs. 4(a) and 5(a), (b) the frequency response of the system
with the NLTVA presents unstable portions between the two
resonant peaks. The instability is due to a pair of Neimark–Sacker
bifurcations which generate a branch of quasiperiodic oscillations
(green lines). We note that the corresponding amplitudes are
not significantly larger than the two peaks, thus it does not
compromise the effectiveness of the NLTVA.

Another source of detrimental dynamics is the appearance
of detached resonant curves (DRCs). The onset of DRCs can be
detected by tracking the fold bifurcations that limit their domain
of existence, as illustrated in Fig. 7(a) for a systemwith third-, fifth-
or seventh-order nonlinearity. Their appearance is marked by the
merging of two branches of fold bifurcations, indicated by black
stars in the figure. The three curves of Fig. 7(a), obtained adopting a
harmonic balance technique [36], show that for greater polynomial
degree DRCs appear at lower forcing amplitudes. This represents a
risk for the effectiveness of the absorber, since the DRCs have large
amplitudes. However, DRCs are not very robust, as proven by the
basin of attraction illustrated in Fig. 7(c) for f = 0.11 and γ = 2.5.
Furthermore, as illustrated in Fig. 7(b), they present large portions
of unstable motion. The interested reader can refer to [27,28] for
further details.
5. Additivity of nonlinearities

Wenowconsider a primary system comprising third-, fifth- and
seventh-order nonlinear terms. The dimensional parameters of the
primary system arem1 = 1, k11 = 1, k13 = 1, k15 = 1 and k17 = 1,
such that α3 = f 2, α5 = f 4 and α7 = f 6. The absorber has a
mass m2 = 0.05, thus ε = 0.05. λ and µ2 are chosen according
to Eq. (2), i.e., λ = 0.9524 and µ2 = 0.1339. Considering that the
peaks of the dimensionless underlying linear system are such that
q1 ∼ 10, for any value of f , the nonlinear forces α3q31, α5q51 and
α7q71 have comparable amplitudes and participate in the dynamics
to a similar extent.

Fig. 8 depicts the frequency response of the primary system
coupled to different absorbers, namely a LTVA, a NLTVA with
a single nonlinearity of either third, fifth or seventh order, and
a NLTVA comprising all three nonlinearities, for f = 0.085.
Comparing the respective performance of the absorbers, it is
immediately recognizable that the LTVA or theNLTVAwith a single
nonlinear component are practically ineffective, whereas the
complete NLTVA successfully mitigates the resonant vibrations, in
a way that resembles the underlying linear system. As in Figs. 4(a)
and 5(a), (b), a branch of quasiperiodicmotion exists and possesses
an amplitude similar to that of the resonance peaks.

Fig. 9 plots the amplitudes of the resonant peaks for increasing
values of the forcing amplitude. Qualitatively similar results as
those observed in Fig. 6 for a primary system with a single
nonlinearity are obtained. Thanks to the property of additivity
highlighted in Eq. (21), the proposed nonlinear equal-peakmethod
therefore extends as well to primary systems possessing multiple
polynomial nonlinearities.
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Fig. 8. Frequency response of a primary system comprising third-, fifth- and seventh-order nonlinearities coupled to different absorbers for f = 0.085. (a) LTVA;
(b) NLTVA with a single nonlinearity of either third (red dashed line), fifth (green dash-dotted line) or seventh (magenta dotted line) order; (c) complete NLTVA including
all three nonlinearities. b3 = 0.0851, b5 = 0.0079 and b7 = 7.17 × 10−4 , according to Eq. (22). (a) and (c) dashed lines indicate unstable solutions; (c) green line indicates
quasiperiodic solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Peak amplitudes for increasing values of the forcing amplitude f . Red: LTVA;
black: complete NLTVA. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6. Conclusions

The fundamental principle of the NLTVA is the principle of
similarity, which states that the absorber should possess the same
nonlinearities as in the primary system. Relying on this principle,
the objective of this paper was to derive analytically a tuning rule
for extending the equal-peakmethod, which is widely used for the
design of linear absorbers, to nonlinear systems. Eventually, we
obtained a compact formula valid for any polynomial nonlinearity
that can be used to rapidly design a NLTVA. Another interesting
theoretical result of this study is the property of additivity of
different nonlinearities, i.e., if different polynomial nonlinearities
are present in the primary system, the polynomial nonlinearities
in the NLTVA can be designed independently of each other.
Throughout the paper, the NLTVA exhibited excellent performance
and always outperformed the LTVA, something which is not often
verified for nonlinear vibration absorbers [37,38].
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