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a b s t r a c t

Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a conse-
quence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the
adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus
nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate
corrugation on the mechanical response to indentation has not been studied. This is somewhat surpris-
ing considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular
interactions while relatively strong adhesion forces are required for virus immobilization for nanoinden-
tation. This article presents numerical simulations via finite elements discretization investigating the de-
formation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion
interactions with the substrate. We study the influence of the adhesion forces in the deformation of the
virus model under axial compression on a flat substrate by comparing the force–displacement curves
for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived
from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-
dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders
with that on a flat surface.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recent past has witnessed significant improvements in tech-
niques for the measurement of forces at nanoscale [1] and an
increased interest in the physical phenomena underlying the be-
havior of viruses as many-body molecular systems [2,3]. As a con-
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sequence there is an increased demand on theoretical models for
problems relating to the interaction of a virus with its environ-
ment.

For example, viruses have to bind and cross the plasma mem-
brane. It is well established that instances of multivalent virus
binding to the host plasma membrane trigger signaling pathways
in the cell which lead to virus endocytosis [4]. Similarly, binding
to the endosomal membrane triggers in certain viruses profound
conformational changes [5]. How is virus mechanics involved in
translating the binding events into a chemical transformation cas-
cade? This type of problem is important because virus deformation
could be an integral part of various stages of the virus life cycle.
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Numerous experimental studies of virus deformation using the
mechanical probe of an atomic force microscope have already
provided a wealth of information on the strength of a virus shell
and on the dynamics of deformation under directional load; see
e.g. [6–13]. Theoretical treatments followed, from simple thin
elastic shell approximations, through finite-element numerical
simulations of continuum models, to coarse-grained molecular
dynamics [14–16]. In all these models, the interaction between
the substrate and the virus during compression by a mechanical
probe is reduced to a rough contact and a hard-wall potential,
i.e. the particle cannot slip and only very short-range repulsive
interactions occur between the surface and the elements of the
virus model.

However, in reality, viruses have to bind to the substrate surface
to be immobilized for atomic force microscope (AFM) imaging.
Attractive forces must exist between substrate and the virus shell.
As the shell is pressed against the substrate by the AFM probe,
adhesion increases. The question we address here is how might
these attractive forces influence the force–displacement curve and
the measurement of an elastic constant for the virus particle?
Contributions from encapsulated nucleic acid are not explicitly
considered as our modeling work approaches the question of the
role of the substrate–particle interface on mechanical readout,
qualitatively. Many viruses have multipartite genomes, but same
capsid structure, which means that the surface properties of
the virus are, at least in a first approximation and in this case,
independent of cargo. As a common approximation in AFM
nanoindentation data interpretation, the contribution of the
nucleic acid to the elastic properties of the virion is bundled
together with contributions from the protein shell in the form of
effective medium parameters [14].

The mathematical model that we will use is based on linear
elasticity theory with unilateral contact, first developed from a
mathematical point of view by G. Fichera [17], J.-L. Lions and
G. Stampacchia [18], and G. Duvaut and J.-L. Lions [19] and by
N. Kikuchi and J. T. Oden from a numerical point of view [20].
We consider in the sequel an elastic shell representing the virus
with initial shape Ω0 and subjected to forces F , combination of
an imposed force F and substrate adhesion forces fadh derived
from the Lennard-Jones potential [21]. The shell is subjected to
unilateral contact with a rigid support. For the shell thickness,
diameter, and elastic moduli we have generic values applicable
to small RNA icosahedral viruses. We assume that the force F is
progressively applied by small increments F

N , where N ∈ N∗, like
in a slow evolution and that the body is subjected to a succession of
equilibrium states and that it remains elastic all along. In particular
we assume that the passage from the equilibrium under the force
nF
N , where 0 ≤ n < N , to the equilibrium under the force (n+1)F

N
pertains to linear elasticity. Note that the ‘‘linear elasticity’’
behavior applies to the constitutive law only since the problem
is nonlinear in any case due to the unilateral forces as described
below.

There is a substantial literature of computational and mathe-
matical modeling of viruses. Closest to our work are the articles
[10,2]. In [10] the authors model the virus as a thin shell which
may be questionable in our case where the ratio of the thickness
of the shell to the radius of the virus is 1:3. Also the utilization of
codes for computing shells is sometimes restrictive andwe thought
that the utilization of a ‘‘thick’’ model of virus shell would leave
more flexibility. The article [2] is more experimentally oriented.
The mathematical and mechanical modeling is only briefly men-
tioned and comparisons are difficult to make; nonlinear elasticity
and thin shell simulations arementioned. Of course, in future stud-
ies, it will be eventually necessary to discuss many possible rheol-
ogy models of linear and nonlinear mechanics. The articles [22–
26], among others, contain a wealth of physical and mathematical
problems which could (or should) be addressed at some point in
the future. Let us mention also a very recent special issue of Phys-
ica D on ‘‘Nonlinear models in molecular and cell biology’’ which
just appeared [27]. Finally see [28] for the comparison of our sim-
ulations with experimental measurements.

This paper is organized as follows: in Section 2, we start by
writing the set of inequations of linear elasticity modeling the
deformation of a virus subject to an exterior force and in contact
with a solid support. In a first approximation this rigid surface
could represent the cell surface. Then we give some classical
theoretical results regarding the existence and uniqueness of the
solution for such a model. To avoid remeshing the domain at
each increment of force, we choose to do all the calculations
in the initial domain Ω0 representing the initial shape of the
virus, thus implementing in fact an Euler–Lagrange representation.
We proceed in Section 2.3 to a change of variables in order to
express the variational formulation in terms of the variables in
Ω0. In Section 3 we introduce the incremental algorithm and the
discretization of the variational formulation using a finite elements
method. Finally, Section 4 is dedicated to numerical simulations.
We discuss some test cases representing the deformation of a
virus in contact with a flat support and in contact with two circles
with andwithout the adhesion force. The force–deformation figure
(Fig. 8), shows the highly non-linear behavior of the virus, even if
we used a linear elasticity constitutive law. See [8] for discussions
on the utilization of several different non-linear constitutive laws.
We ourselves intend in future works to study the effect of using
some nonlinear constitutive laws (nonlinear elasticity, plasticity
possibly) and to compare the results to the current study.

2. Mathematical modeling

To model the virus deformation, the procedure is as follows:
we start from a state Ωn (which could be Ω0) corresponding to a
force nF

N . Thenweapply a force (n+1)F
N . For practical (computational)

reasons, we choose to make the numerical calculations in the
undeformed state Ω0. We call ϕn the application mapping Ω0

onto Ωn
= ϕn(Ω0). The incremental force treated in the realm of

linear elasticity produces a ‘‘small’’ displacement un. ThenΩn+1
=

{x+un(x), x ∈ Ωn
} and we call ϕn+1 the application mapping Ω0

onto Ωn+1.
In summarywe start withΩ0,ϕ0

= Id (Identity).WhenΩn and
ϕn are knownwe compute un (the displacement starting fromΩn),
and ϕn+1 by setting

ϕn(x0) = xn, x0 ∈ Ω0, xn ∈ Ωn,

ϕn+1(x0) = xn + un(xn). (1)

At the end we obtain ΩN
= Ωϕ and ϕN

= ϕ the final state
and the final mapping Ωϕ

= ϕ(Ω0) with displacement u(x0) =

ϕ(x0) − x0.

2.1. Equations

In order to write the model describing the deformation of the
virus, wewill first give some definitions of the physical parameters
and quantities involved.
The initial domain is

Ω0
= {r1 ≤


x2 + y2 ≤ r2}

where r1 = 10 nm and r2 = 15 nm, although, obviously,
other geometrical domains can be considered. The inner and outer
boundaries of Ω are denoted by Γ1 and Γ2.

In the case of small deformations and displacements, the
equation of the equilibrium of a deformable body subjected to a
force f is given by:

div(σ(u)) + f = 0
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where u =


u1(x, y)
u2(x, y)


, is the displacement and σ = 2µε+λ Tr(ε)Id

is the Cauchy stress tensor defined using the linear strain tensor

εi,j =
1
2
(ui,j + uj,i),

where ui,j =
∂ui
∂xj

.
The physical parameters µ and λ are the Lamé coefficients and

are defined by:

µ =
E

2(1 + ν)
nN/nm

and

λ =
Eν

(1 − 2ν)(1 + ν)
nN/nm

where

• E = 0.5
• ν = 0.35 (Poisson’s ratio).

As described below, at each iteration n, when Ωn and ϕn are
known we suppose that we apply to the virus the force Fn+1. We
divide the outer boundary Γ n

2 of Ωn in four non intersecting parts,
Γ n
D , Γ

n
F , Γ

n
P and Γ n

C such that Γ n
2 = Γ n

D ∪ Γ n
F ∪ Γ n

P ∪ Γ n
C ; Γ n

D is
the part of Γ n

2 where the displacement is imposed, Γ n
F is the part

of Γ n
2 where no force nor displacement are prescribed, Γ n

P is the
part of Γ n

2 in contact with the punch and Γ n
C is the part of Γ n

2
in contact with the support. We suppose also that no force nor
displacement are prescribed for the inner boundary Γ n

1 . Finally,
we suppose also the contact to be rigid; therefore the virus cannot
penetrate the support, andwe suppose that there is no frictionwith
the contact. One can then propose the following set of equations
and inequations, see e.g. [19,20,29]:

σn
ij,j + fnadh,i = 0, in Ωn, (a)

un
= u0, on Γ n

D , (b)
σnn = 0, on Γ n

1 ∪ Γ n
F , (c)

σnn = Fn+1, on Γ n
P , (d)

un
N − gn

= un
i ni − gn

≤ 0, on Γ n
C , (e)

σ n
N = σ n

ij ninj ≤ 0, on Γ n
C , (f)

(σn
T )i = σ n

ij nj − σ n
Nni = 0, on Γ n

C , (g)
σ n
N(uN − gn) = 0, on Γ n

C . (h)

(2)

Here the vector σnn is decomposed into the sum of its tangential
and normal components:

σnn = σn
T + σ n

Nn,

with n the outward unit normal to the virus and σ n
N = σnn · n. We

impose a Dirichlet boundary condition on Γ n
D and without lack of

generality we will suppose u0 = 0. The force Fn+1
= −

(n+1)F
N n,

where F is a constant, is applied on Γ n
P and gn is the distance

between the zone of contact Γ n
C and the rigid support. In our study

we will suppose that gn
= 0. When gn > 0, the virus is not in

reality in geometrical contactwith the support alongΓ n
C , and this is

consistent with the biological context (see below the definition of
fnadh).We denote by fnadh the adhesion force from the contact thatwe
define later in Section 2.3.3. We will now study briefly the system
(2).

2.2. Variational formulation

In order to write the variational formulation of the system (2)
we introduce the following function space and set:

K n
= {vn ∈ Vn

: vn = u0 on Γ n
D and vnN = vn · n ≤ 0 on Γ n

C }

where

Vn
= {vn ∈ H1(Ωn)2 : vn = 0 on Γ n

D }.
Now by multiplying the first equation of the system (2) by
vn − un where vn ∈ K n and by integrating in Ωn and in view of
the Green formula and of the boundary conditions, we obtain:

−


Ωn

2µ εn
ij(u

n) εn
ij(v

n
− un) dxn

−


Ωn

λ εn
kk(u

n) εn
ii(v

n
− un) dxn

+


∂Ωn

σ n
ij nj (v

n
− un)i dσdΓ ndn

+


Ωn

f nadh, i (v
n
− un)i dxn = 0, (3)

where the Einstein convention of summation of repeated indices
has been used.

Using the boundary condition (2)(d), we see that
∂Ωn

σ n
ij nj (v

n
i − un

i ) dΓ
n

=


Γ n
P

Fn+1
· (vn − un) dΓ n

+


Γ n
C

(σ n
· n)(vη

− un)dΓ n.

We observe that the integral onΓ n
C is positive due to (2)(h) and the

definition of K n and (vn − un
∈ K n). Hence by setting:

an(un, vn) =


Ωn

2µ εn
ij (u

n) εn
ij(v

n) dxn

+


Ωn

λ εn
kk(u

n) εn
ii(v

n) dxn,

ln(vn) =


Γ n
P

Fn+1
· vndσdΓ n

+


Ωn

fnadh · vndxn,

(4)

Eq. (3) now yields:

an(un, vn − un) ≥ ln(vn − un), ∀ vn ∈ K n. (5)

Then we have the following result:

Theorem 2.1. If fnadh ∈

L2(Ωn)

2 and Fn+1
∈


L2(Γ n

p )
2 are given

and if meas(Γ n
D ) ≠ 0 then the system (2) is well-posed and has

a unique solution un
∈ K n satisfying the variational inequality (5).

Moreover un is solution of the following minimization problem:

min
v∈Kn

J(v),

where

J(v) =
1
2
an(vn, vn) − ln(vn).

If meas(Γ n
D ) = 0, then un is unique up to a rotation.

Sketch of the proof. Wewill give here the outlines of the proof for
the convenience of the reader.More details can be found in [20,19].

First we will prove the formal equivalence of the weak
formulation (i.e. (5)) and the strong solution (i.e. (2)(a)–(2)(h)).
More precisely we will prove that a regular solution of the
variational inequality (5) is also a solution of the system (2).
Suppose that the inequality (5) holds for a function un

∈ K n and let
us prove that un is then a solution of the system (2). Let us define:

D(Ωn) =

8 ∈ C∞(Ωn),8 has a compact support in Ωn .

Then vn = un
±8, where8 ∈ D(Ωn), belongs to K n and for such

a vn, the inequality (5) reads:

±


Ωn

2µ εn
ij(u

n) εij(8)dxn ±


Ωn

λ εn
kk(u

n) εn
ii(8)dxn

±


Ωn

fnadh ·8dxn ≥ 0
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which implies:

σ n
ij,j + f nadh, i = 0 in Ωn. (6)

Using (6) and the Green formula, the inequality (5) becomes: For
all vn ∈ K n:

Γ n
P ∪Γ n

C ∪Γ n
1

σn
ij nj(v

n
i − un

i )dσ
n

≥


Γ n
P

Fn+1
· (vn − un)dσ n. (7)

By choosing8 ∈ V n such that8 = 0 on Γ n
C ∪Γ n

1 and vn = un
±8

we can deduce that:

σn = Fn+1 on Γ n
P ,

and by using a similar argument we can show that:

σn = 0 on Γ n
1 .

The inequality (7) can be now simplified using these two last
equations and we obtain:

Γ n
C

σ n
ij nj(v

n
i − un

i )dσ
n

≥ 0.

Using the decomposition of the vector σnn as the sum of its
tangential and normal components: σnn = σ n

Nn + σn
T and by

choosing vn = un
+ 8 where 8 ∈ {8 ∈ V n

: ΦN = 8 · n = 0},
we obtain:

Γ n
C

σ n
ij nj(v

n
i − un

i )dσ
n

=


Γ n
C

(σ n
N)(n · Φ)dσ n

+


Γ n
C

σn
T ·8dσ n.

So we can deduce that


Γ n
C
σn
T · 8dσ n

≥ 0 for all 8 such that
8·n = 0 and by doing the same calculationswith−8we conclude
that:

σT = 0 on Γ n
C .

Finally, let 8 ∈ V n be such that ΦN = 8 · n ≤ 0 on Γ n
C ; then we

have vn = un
+ Φ ∈ K n and we obtain:

Γ n
C

(σ n
N)(n · Φ)dσ n

≥ 0.

This implies that:

σ n
N ≤ 0 on Γ n

C ,

which finishes the proof of the formal equivalence between the
strong solution and the weak solution.

Now to prove the existence and uniqueness of a solution of
the variational inequality (5), we will use the following theorem
(Lions–Stampacchia [18]) and corollary (Stampacchia [30]).

Theorem 2.2 (Lions–Stampacchia [18]). Let V be a Hilbert space and
K ∈ V a nonempty, closed, convex subset of V .

Let A : V → V ′, where V ′ denotes the dual of the space V , be a
continuous and coercive linear operator, that is there exist k, α > 0
such that:

∥Au − Av∥ ≤ k∥u − v∥, for all u, v ∈ K ,

⟨Au − Av, u − v⟩ ≥ α∥u − v∥
2, for all u, v ∈ K .

Then for each L ∈ V ′, there exists a unique solution u ∈ K of the
variational inequality

⟨Au − L, v − u⟩ ≥ 0, for all v ∈ K .

As a consequence we have the following corollary (Stampac-
chia [30]):
Corollary 2.1. Let V denote a real Hilbert space and K ⊂ V a
nonempty, closed, convex subset of V . Assume a( , ) is a continuous,
coercive bilinear form on V and L ∈ V ′. Then there exists a unique
solution u ∈ K of the variational inequality

a(u, v − u) ≥ ⟨L, v − u⟩ , ∀ v ∈ K .

As a next step we need to prove that K n is a nonempty closed and
convex set of V n. In fact K n is nonempty because it contains the null
displacement. Let us consider un and vn ∈ K n and 0 < α < 1. We
see that αun

N ≤ 0 on Γ n
C and (1 − α)vnN ≤ 0 on Γ n

C and we can
deduce that αun

N + (1−α)vnN ≤ 0 on Γ n
C and thus K n is convex. To

finish we prove that K n is closed. Let (un
k)k∈N ∈ K n and (un

k) → un

in V n which implies un
k ·n → un

·n in L2(∂Ωn) by continuity of the
trace. To finish this step one can use that if a sequence converges
in L2(∂Ωn) then one can extract a subsequence converging almost
everywhere. As un

k · n ≤ 0 on Γ n
C one can conclude that un

· n ≤ 0
on Γ n

C and therefore the limit is in K n.
Now to conclude, we need to prove that an( , ) is continuous

and coercive. The continuity is straightforward and to prove the
coercivity we need to assume that the tensor of elasticity E defined
by Eijkl = µ(δikδjl + δilδjk) + λδijδkl, where δik is the Kronecker
symbol, is symmetric (it means Eijkl = Ejikl = Eijlk = Eklij,1≤i,j,k,l≤2)
and elliptic. This last assumptionmeans that there exists a constant
m > 0 such that for all symmetric tensor ϵ the following inequality
holds:

Eijkl ϵij ϵkl ≥ m ϵij ϵkl.

Finally by using the Korn inequality we can deduce the coercivity
of an( , ) which finishes the proof of Theorem 2.1.

Remark 2.1. For the numerical simulations we will transform the
variational inequality (5) into a variational equation using the
following observation (see [19]):

If wn
∈ K n

0 = {v ∈ K , vn = 0 on Γ n
C } we can replace vn by

un
± wn

∈ K n and we find

−


Ωn

2µ εn
ij(u

n) εij(wn)dxn −


Ωn

λ εn
kk(u

n) εn
ii(w

n)dxn

+


∂Ωn

σ n
ij njw

n
i dx

n
+


Ωn

f nadh, iw
n
i dx

n
= 0, ∀wn

∈ K n
0 . (8)

Changing notations we obtain:

−


Ωn

2µ εn
ij(u

n) εij(vn)dxn −


Ωn

λ εn
kk(u

n) εn
ii(v

n)dxn

+


∂Ωn

σ n
ij njv

n
i dx

n
+


Ωn

f nadh, iv
n
i dx

n
= 0, ∀ vn ∈ K n

0 . (9)

Eq. (9) says that un
∈ K n and

an(un, vn) = ln(vn), ∀ vn ∈ K n
0 . (10)

2.3. Change of variables from (xn, yn) ∈ Ωn to (x0, y0) ∈ Ω0

As we proceed by a slow, small increment of the force, the
virus is deformed and occupies a new configuration at each step.
In order to avoid remeshing the domain, we choose here to make
all the calculations in the initial domainΩ0. We need then tomake
a change of variables in the variational formulation (10). In the
sequel we denote by ũn the displacement from Ω0 to Ωn. The
variable will now be as follows:

ϕn(x0) = xn, x0 ∈ Ω0, xn ∈ Ωn,

ϕn+1(x0) = xn + un(xn) = x0 + ũn(x0),
(11)
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and we write:

an(un, vn) = a(ϕn
; ũn, ṽn) = ⟨A(ϕn)ũn, ṽn⟩Ω0 ,

ln(vn) = l(ϕn
; ṽn) = ⟨Fn+1(ϕn), ṽn⟩ΓP + ⟨fadh(ϕn), ṽn⟩Ω0 .

(12)

The problem (10) becomes

ũn
∈ K and

a(ϕn
; ũn, ṽn) = l(ϕn

; ṽn), ∀ ṽn ∈ K0,
(13)

and we will now make explicit each term in (13).

2.3.1. Computation of an(un, vn) = a(ϕn
; ũn, ṽn)

We want to compute:
Ωn
εn(un) : εn(vn)dxn =


Ωn

2µ εn
ij(u

n) εn
ij(v

n)dxn

+


Ωn

λ εn
kk(u

n) εn
ii(v

n)dxn. (14)

We have
Ωn

2µ εn
ij(u

n)εn
ij(v

n)dxn

= µ


Ωn

(un
1,yn + un

2,xn)(v
n
1,yn + vn

2,xn)dx
n

+
µ

2


Ωn

(un
1,xnv

n
1,xn + un

2,ynv
n
2,yn)dx

n,
Ωn

λεn
kk(u

n)εn
ii(v

n)dxn

= λ


Ωn

(un
1,xn + un

2,yn)(v
n
1,xn + vn

2,yn)dx
n.

(15)

We compute each term

µ


Ωn

(un
1,yn + un

2,xn)(v
n
1,yn + vn

2,xn)dx
n

= µ


Ω0

(un
1,yn + un

2,xn)(v
n
1,yn + vn

2,xn)|∇ϕ
n(x)|dx (16)

µ

2


Ωn

(un
1,xnv

n
1,xn + un

2,ynv
n
2,yn)dx

n

=
µ

2


Ω0

(un
1,xnv

n
1,xn + un

2,ynv
n
2,yn)|∇ϕ

n(x)|dx, (17)

λ


Ωn

(un
1,xn + un

2,yn)(v
n
1,xn + vn

2,yn)dx
n

= λ


Ω0

(un
1,xn + un

2,yn)(v
n
1,xn + vn

2,yn)|∇ϕ
n(x)|dx. (18)

We compute each derivative as follows (with ũ = ũn):

un
1,xn = ũ1,x

∂x
∂xn

+ ũ1,y
∂y
∂xn

, un
1,yn = ũ1,y

∂y
∂yn

+ ũ1,x
∂x
∂yn

un
2,xn = ũ2,x

∂x
∂xn

+ ũ2,y
∂y
∂xn

, un
2,yn = ũ2,y

∂y
∂yn

+ ũ2,x
∂x
∂yn

.

(19)

Since ∂(xn,yn)
∂(x,y) = ∇ϕn we need to compute (∇ϕn)−1:

(∇ϕn)−1
=

1
|∇ϕn|


ϕn
2,y −ϕn

1,y
−ϕn

2,x ϕn
1,x


, (20)

and therefore

∂x
∂xn

=
ϕn
2,y

|∇ϕn|
,

∂x
∂yn

= −
ϕn
1,y

|∇ϕn|
∂y
∂xn

= −
ϕn
2,x

|∇ϕn|
,

∂y
∂yn

=
ϕn
1,x

|∇ϕn|
.

(21)
Then (14) becomes:

⟨Anun, vn⟩Ωn = an(un, vn) = a(ϕn
;un, vn) = ⟨A(ϕn)ũn, ṽn⟩Ω0

=


Ω0

µ

|∇ϕn|
(−ũ1,xϕ

n
1,y + ũ1,yϕ

n
1,x + ũ2,xϕ

n
2,y − ũ2,yϕ

n
2,x)

× (−ṽ1,xϕ
n
1,y + ṽ1,yϕ

n
1,x + ṽ2,xϕ

n
2,y − ṽ2,yϕ

n
2,x)dx

+


Ω0

µ

2|∇ϕn|


(ũ1,xϕ

n
2,y − ũ1,yϕ

n
2,x)(ṽ1,xϕ

n
2,y − ṽ1,yϕ

n
2,x)

+ (−ũ2,xϕ
n
1,y + ũ2,yϕ

n
1,x)(−ṽ2,xϕ

n
1,y + ṽ2,yϕ

n
1,x)


dx

+


Ω0

λ

|∇ϕn|
(ũ1,xϕ

n
2,y − ũ1,yϕ

n
2,x − ũ2,xϕ

n
1,y + ũ2,yϕ

n
1,x)

× (ṽ1,xϕ
n
2,y − ṽ1,yϕ

n
2,x − ṽ2,xϕ

n
1,y + ṽ2,yϕ

n
1,x)dx. (22)

2.3.2. Computation of the virtual power of the punch force
The virtual power of the punch force for a virtual displacement

vn is:

⟨Fn+1, vn⟩Γ n
P

= ⟨Fn+1(ϕn), ṽn⟩ΓP . (23)

In our case Fn+1
= −

n+1
N Fn, where F = constant and n is the

outward normal vector to Γ n
p . Therefore, the equation yields

⟨Fn+1, vn⟩Γ n
P

= −
n + 1
N


Γ n
P

Fn · vndxn

= −
n + 1
N

F


ΓP

(n ◦ ϕn) · ṽn|∇ϕn
|dx. (24)

Thus we define

Fn+1(ϕn) = −
(n + 1)F

N
(n ◦ ϕn)|∇ϕn

|. (25)

2.3.3. Computation of the virtual power of the adhesion forces
We give now the definition of the adhesion force resulting

from the interaction between the molecules of the virus and the
molecules of the contact surface. In this study we choose the
adhesion force derived from the Lennard-Jones potential defined
(see [21]) by:

Un
adh :=


−r2−r0

−∞


+∞

−∞

w(r)dxldyl, (26)

where,

r = (xl − xϕ, yl − xϕ)
r0 = 0.5 nm.

(27)

The definition of r comes from the fact that we want ∥r∥ ≥ r0 =

0.5 nm, because the virus cannot rest directly on the surface and it
stays at theminimal distance r0 from the surface. We set the origin
at the center of the virus and define the support at y = −r2 − r0.
Fig. 1 shows the different coordinates.

The function w is given by

w(r) =
A

|r|12
−

B
|r|6

. (28)

Remark 2.2. To find A and B we have to solve

|r| = 0.5 H⇒
dw
d|r|

= 0 and w = −5.0 · kT ,

|r| < 0.25 H⇒ w ≫ kT ,

where k is the Boltzmann constant and T is the temperature.
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Fig. 1. Adhesion forces.

Therefore with k = 1.3806488 · 10−23 m2 kg s−2 K−1
=

1.3806488 · 10−5 nm2 kg s−2 K−1, and T = 310.1 K (= 37 C) we
want to solve

−
12A
r120

+
6B
r60

= 0,

A
r120

−
B
r60

= −5kT .

(29)

We obtain:

A = 5r120 kT , B = 10r60kT , (30)

and w becomes

w(r) =
5r120 kT
|r|12

−
10r60kT

|r|6
. (31)

Now to find the adhesion force we write the potential as

Un
adh =


∞

−∞


A

(xl − xn)2 + (yl − yn)2
6

−
B

(xl − xn)2 + (yl − yn)2
3


dxl. (32)

So the adhesion force is

fnadh := −∇Un
adh = −


∂Un

adh

∂xn
,
∂Un

adh

∂yn

t

, (33)

which reads as Eq. (34) given in Box I. So we have:

⟨fnadh, v
n
⟩Ωn =


Ωn

fnadh · vndxn. (35)

By changing the variables we obtain:

⟨fnadh(ϕ
n), ṽn⟩Ω0 =


Ω0

(fnadh ◦ ϕn) · ṽn|∇ϕn
|dx, (36)

where ṽn is a virtual displacement from Ω0 to Ωn.

Remark 2.3. We assumed that the minimum distance between
the virus and the substrate is r0 = 5 nm corresponding to the
minimum of the potential w. We cannot let r goes to zero as
the potential becomes infinite at r = 0. On the other hand in
Eqs. (2)(d)–(2)(h), we consider a region of full contact Γ n

C . For
mechanical purposes the distance of 5 nm is considered to be zero.
Fig. 2. Example of triangulation of Ω .

Alternatively we could reconsider the theory of unilateral contact
developed in [19,17,20] in the context of adhesion forces. This is a
task totally different from our object in this article which we could
consider in the future if a motivation appears.

3. Numerical approximation

Let us recall the equation we are solving at each step n, for
0 ≤ n < N:

⟨A(ϕn)ũn, ṽ⟩Ω0 = ⟨Fn+1(ϕn), ṽ⟩ΓP + ⟨fadh(ϕn), ṽ⟩Ω0 ,

∀ṽ ∈ K0. (37)

In the following section wewill present the discrete version of this
equation.

3.1. Finite elements

In this section we will drop the index n to construct the finite
element basis andwewillwrite the discrete version of the operator
A. Let Th be a triangulation of Ω0, containing NT triangles and Nv

vertices, as in the example shown in Fig. 2. Let

Vh =

ψh ∈ H1(Ω)

 ψh|τ ∈ P1 ∀τ ∈ Th

; (38)

thenwedefine the basis ofVh {ψi}1≤i≤Nv . Foruh ∈ Vh, we canwrite
the discretized version of a(ϕ) and l(ϕ) on Ω0, that is for ϕh ∈ Vh
and uh ∈ Vh

(A(ϕh)uh,uh) = a(ϕh;uh,uh),

therefore Aij(ϕh) = a(ϕh;ψi,ψj), and we also define

b(ϕh) = l(ϕh;uh).

Remark 3.1. The construction of the basis is done as follows. Let
{Ti}1≤i≤BT be the triangles of Ω0 and we suppose that we have Nv

vertices. We write xi = (xi, yi). Then we have:

ψ1
i = (0,ψi), for 1 ≤ i ≤ Nv,

ψ2
i = (ψi, 0), for 1 ≤ i ≤ Nv.

Therefore

u = (u1, u2) :=

Nv
i=1

u1
i ψ

1
i +

Nv
j=1

u2
j ψ

2
j .



34 A. Bousquet et al. / Physica D 336 (2016) 28–38

4)
fnadh :=




−∞

−r2−r0


∞

−∞


−

12A(xl − xn)
(xl − xn)2 + (yl − yn)2

7 +
6B(xl − xn)

(xl − xn)2 + (yl − yn)2
4


dxldyl


−∞

−r2−r0


∞

−∞


−

12A(yl − yn)
(xl − xn)2 + (yl − yn)2

7 +
6B(yl − yn)

(xl − xn)2 + (yl − yn)2
4


dxldyl

 . (3

Box I.
Fig. 3. Domain Ω0 with puncher and flat stand.
Now to define ψ on a triangle Tk, we define the three vertices of
this triangle by the indices 1, 2, 3 and from [31] we have

H1 =
1

2|Tk|
[(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y] ,

H2 =
1

2|Tk|
[(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y] ,

H3 =
1

2|Tk|
[(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y] ,

where

|Tk| =
1
2
det

1 x1 y1
1 x2 y2
1 x3 y3


.

With these definitions we have

u1

Tk

= u1
1H1(x, y) + u1

2H2(x, y) + u1
3H3(x, y);

same for u1
2, u

1
3, u

2
1, u

2
2, and u2

3.

For our numerical simulations wewill use two different stands:
one flat stand, see Fig. 3, and a stand made of two circles of 60 nm
radius, see Fig. 4.

On the flat stand we have to impose the displacement and the
rotation at one point in order to have a unique solution; on the
two circles stand we fix the displacement at two points which will
also fix the rotation. In the following we explain which points we
choose.

In the case of the flat support, we fix the vertex that is in contact
with the support at iteration 0 andwe fix the horizontal translation
of the point in contact with the puncher at iteration 0. Let us
assume that (xi, yi), for 1 ≤ i ≤ Nv are the vertices of our mesh
on Ω0. We define

itop = argmax(yi), ibottom = argmin(yi). (39)

We then fix the point at ibottom and fix the horizontal translation in
x at itop.

In the case of circles support, we fix the two vertices in contact
with each circle at iteration 0. Let (xl, yl) = (− 75

√
2
, − 75

√
2
) be the

center of the left circle and let (xr , yr) = ( 75
√
2
, − 75

√
2
) be the center

of the right circle. We then fix the displacement at

ileft = argmin(


(xi − xl)2 + (yi − yl)2),

iright = argmin(


(xi − xr)2 + (yi − yr)2).
(40)

3.2. Algorithm

As explained before in order to solve the equationswith a linear
model we are proceeding by increments of the constant F (and
therefore the vector F). Let N be the total number of increments;
we recall that the force exerted by the puncher on Γ n

P is

Fn+1
= −

n + 1
N

Fn, for 1 ≤ n ≤ N, (41)

where n is the outer normal vector and Ωn is the domain at
iteration n, ϕn

h is the deformation from Ω0 to Ωn, and ũn
h is the

displacement from Ω0 to Ωn. Recall that we have ϕn+1
h = x0 + ũn

h,
where x0 is the identity function on Ω0. With these notation in
mind we have at each step n = 0, . . . ,N − 1:

⟨A(ϕn)ũn
h, ṽh⟩Ω0 = ⟨Fn+1(ϕn

h), ṽh⟩ΓP + ⟨fadh(ϕn
h), ṽh⟩Ω0 ,

∀ ṽh ∈ Vh. (42)
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Fig. 4. Domain Ω0 with puncher and circle stands.
Fig. 5. Shape of the shell at iteration 7, 14, 21, and 28 on a flat support. This corresponds to F = 0.00514, 0.01027, 0.0154, 0.02054 nN.
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Fig. 6. Shape of the shell at iteration 7, 14, 21, and 28 on a flat support with adhesion forces. This corresponds to F = 0.00514, 0.01027, 0.0154, 0.02054 nN.
For the sake of notational simplicity, we set
F n+1(ϕn) = F n+1(ϕn

h) on ΓP ,

F n+1(ϕn) = 0 on Ω0
\ ΓP .

(43)

Now our algorithm proceeds as follows: ϕ0
h = Id is known. Then

for n = 0, . . . ,N − 1, we assume that ϕn
h is known and compute

ũn
h:

1. Fix ϕn and compute ũn using a Restart GMRES method on

A(ϕn
h)u

n+1
h = F n(ϕn) + fadh(ϕn

h). (44)

2. Then we compute ϕn+1
= x0 + ũn.

We are then ready to compute the next step starting from ϕn+1.

4. Numerical simulations

In this section, we present the results of 3 simulations. Simula-
tions 1 and 2 are done on the flat stands, but for Simulation 1 the
adhesion forces are 0 so that the virus deforms only because of F
and for Simulation 2 the adhesion forces are present. Simulation 3
is done on the two circles without any adhesion forces. Adhesion
was not included at this point to allow the separate analysis of the
influence of substrate geometry.
4.1. Simulation 1: on the flat support without adhesion forces

Our first simulation, on a flat support, is done with F =

0.022 nN and fadh = 0. Fig. 5 shows the results of the shape of
the virus for the intermediate values of F = 0.00514, 0.01027,
0.0154, 0.02054 nN.

4.2. Simulation 2: on the flat support with adhesion forces

The following simulation is done on a flat support where F is
close to 0.02 nN and fadh is defined as in (34). Fig. 6 shows the
results of the shape of the virus shell for the intermediate values
of F = 0.00514, 0.01027, 0.0154, 0.02054 nN.

4.3. Simulation 3: on the two cylinders support without adhesion
forces

This simulation is done on two circles as support where F is
close to 0.03 nN and fadh = 0. Fig. 7 shows the results of the
shape of the virus that correspond to the intermediate values for
F = 0.07, 0.014, 0.021, 0.028 nN.

Remark 4.1. Alternativelywemay see the transformationΩ0
−→

Ω = ΩN as a whole, where the unknowns are both the final state
(given by ϕ = ϕN , ϕ(Ω0) = Ω with displacements u(x0) =

ϕ(x0) − x0), and the distribution of stresses σ in Ω (expressed
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Fig. 7. Shape of the virus at iteration 7, 14, 21, and 28 on circles support. This corresponds to F = 0.07, 0.014, 0.021, 0.028 nN.
in either Ω0 or Ω). Here the mechanical equations are meant to
be written in the deformed space Ω = ΩN which is unknown.
We leave this problem for future studies as it pertains to nonlinear
elasticity with large deformation [32], or possibly to some other
model of nonlinear mechanics.

For example, we can also deal directly with a nonlinear model
for which

εi,j =
1
2
(ui,j + uj,i + uk,iuk,j), (45)

and in our algorithm we would consider

εi,j =
1
2
(un

i,j + un
j,i + un

k,iu
n
k,j). (46)

Fig. 8 shows how much the virus has been displaced with
respect to the force F for the three simulations considered.
For reasonable adhesion magnitude and the flat stand, the
displacement–force curves are very similar overall between the
case with and without adhesion. Only the initial deformation and
the area of contact with the flat support are somewhat different
because of the adhesion forces. However, the force–displacement
curve from simulation of indentation on a substrate modeled
by two adjacent cylinders is significantly different from that of
the flat stand. Recent AFM nanoindentation experiments on such
corrugated substrates have also found significant differences in the
elastic response compared with flat substrate measurements [28].
5. Conclusion

In conclusion, we have performed finite-element simulations of
the deformation of an elastic shell on a substrate with emphasis
on the role on the substrate–shell interaction. For the first time,
adhesion interactions between the substrate and the shell being
indented by a normal distributed force were considered. Our find-
ings, although qualitative due to the two-dimensional nature of the
model, inform recent experiments of AFM indentation of virus par-
ticles. We have found that for shells of thickness and elastic prop-
erties similar to those of typical small icosahedral RNA viruses, the
effect of adhesion forces on the effective elastic constant isminimal
although the shell flattens at the contact point due to adhesion. For
typical nanoparticle–substrate adhesion forces, with the exception
of small differences at initial indentations, the force–displacement
curves are similar with and without adhesion. Therefore, adhesion
on a flat surface is not expected to affectmeasurements of the elas-
tic constant for viruses in any appreciable way. We have also in-
terrogated the extent by which substrate morphology may affect
mechanical readout in nanoindentation experiments for the same
model system. When the substrate was not flat, like in the case
of the spherical shell being lodged in a circular cusp, the apparent
stiffness measured by indentation was significantly different from
that of a flat surface.



38 A. Bousquet et al. / Physica D 336 (2016) 28–38
Fig. 8. The height displacement of the virus in our three simulations.
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