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a b s t r a c t

We show existence and uniqueness of traveling front solutions to a class of neural field equations set on
a lattice with infinite range interactions in the regime where the kinetics of each individual neuron is of
bistable type. The existence proof relies on a regularization of the traveling wave problem allowing us to
use well-known existence results for traveling front solutions of continuous neural field equations. We
then show that the traveling front solutionswhich have nonzerowave speed are unique (up to translation)
by constructing appropriate sub and super solutions. The spectral properties of the traveling fronts are
also investigated via a careful study of the linear operator around a traveling front in co-moving frame
where we crucially use Fredholm properties of nonlocal differential operators previously obtained by the
author in an earlier work. For the spectral analysis, we need to impose an extra exponential localization
condition on the interactions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For n ∈ Z, we consider the following lattice differential equa-
tion

u̇n(t) = −un(t) +

∑
j∈Z

KjS(un−j(t)), t > 0, (1.1)

where u̇n stands for dun
dt and un(t) represents themembrane poten-

tial of neuron labeled n at time t . Here Kj represents the strength of
interactions associated to the neural network at position j on the
lattice and the firing rate of neurons S(u) is a nonlinear function.
Such an equation can be seen as a Hopfield neural network model
with infinite range interactions [1] or more simply as a discrete
neural field equation [2] where each neuron is set on the lattice Z
with all to all couplings. In that later respect, we will call equation
such as (1.1) LatticeNeural Field Equations (LNFEs). The continuous
counter-part of (1.1) is (see [3,4])

∂tu(t, x) = −u(t, x) +

∫
R
K (x − y)S(u(t, y))dy, t > 0, x ∈ R.

(1.2)

E-mail address: gregory.faye@math.univ-toulouse.fr.

Such a class of equations has received much attention in the past
decades and has been very successful at reproducing a number
of biological phenomena, including in particular visual halluci-
nations, binocular rivalry or working memory. We refer to the
recent surveys [5–7] formore developments onneural fieldmodels
and applications in neuroscience. Equations such as (1.2) can also
support a rich repertoire of phenomena, such as traveling waves,
spatially periodic patterns, oscillatory dynamics and localized ac-
tivity [5].

Our aim is to initiate a series of work on neural field dynamics
set on various types of networks and Eq. (1.1) is one of the very
first model to study as it consists of a network composed of infinite
neurons indexed on Z with all to all couplings represented by the
interaction communication rates Kj for j ∈ Z. There is a second
natural motivation for studying LNFEs which stems from the nu-
merical study of the continuous neural field equation (1.2). Indeed,
if one is looking for a numerical approximation of the solutions of
(1.2), one may discretize space and recover an equation similar to
(1.1) depending on the quadrature rule used to approximate the
integral in (1.2).

In the present paper, wewould like to study special entire solu-
tions of (1.1). Let first suppose that there exist two homogeneous
stationary states (un(t))n∈Z = (u)n∈Z with u = 0 and u = 1 for the

https://doi.org/10.1016/j.physd.2018.04.004
0167-2789/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2018.04.004
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2018.04.004&domain=pdf
mailto:gregory.faye@math.univ-toulouse.fr
https://doi.org/10.1016/j.physd.2018.04.004


G. Faye / Physica D 378–379 (2018) 20–32 21

dynamics of (1.1). Hence, we are interested in particular solutions
of (1.1) of the form un(t) = u(n − ct) for some c ∈ R where the
profile u : R → R satisfies

− cu′(x) = −u(x) +

∑
j∈Z

KjS(u(x − j)), x ∈ R, (1.3a)

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0, (1.3b)

where we set x := n − ct and u′ stands for du
dx . It is understood

that when c = 0, a stationary wave solution of (1.1) is a sequence
(un(t))n∈Z = (ũn)n∈Z, independent of time, which verifies

ũn =

∑
j∈Z

KjS(ũn−j), n ∈ Z, (1.4a)

lim
n→−∞

ũn = 1 and lim
n→+∞

ũn = 0. (1.4b)

The understanding of propagation phenomena in neural networks
is crucial from a modeling point of view. Indeed, in the past few
years, electrode recordings and imaging studies have revealed that
the visual cortex can support a variety of cortical waves including
standing waves, traveling pulses and spiral waves which are not
only elicited by localized visual stimuli across the visual cortex but
they are also present during spontaneous activity.We refer to [8,9]
for recent reviews on the subject. It is thus important to under-
stand the underlying mechanisms which allow the propagation of
coherent structures such as traveling waves in neural network of
the form of (1.1).

The mathematical study of traveling waves in neural networks
goes back to the pioneering work of Ermentrout and McLeod [10]
for the continuous neural field equation (1.2) when the kinetics of
the system is of bistable type. In [10], existence and uniqueness
(up to translation) of monotone traveling front solutions were
established. More recent works of the author deal with the exis-
tence of traveling fronts for monostable type of kinetics [11] and
traveling pulses, i.e. non-monotone travelingwaves connecting the
same homogeneous stationary state, for continuous neural field
models with a recovery variable, such as linear adaptation [12]
or synaptic depression [13]. To the best of our knowledge, there
are no available results regarding the existence, uniqueness and
spectral stability of traveling front solutions for the LNFE (1.1)
with infinite range interactions. If the support of the interactions
were to be finite, then one could rely on the theory developed
by Mallet-Paret [14] for the study of traveling front solutions in
general lattice differential equations. Let us also mention the work
of Bates and coauthors [15,16] who studied traveling waves in
infinite range lattice differential equationswith bistable dynamics.
The main difference between these works and our setting is that
the nonlinearity appears within the infinite sum in (1.1) making
the results of [15,16] not readily available. Nevertheless, we will
see that some of the ideas developed in [15] can be adapted to our
setting.

Outline. The remainder of the paper is organized as follows. We
give a precise statement of our assumptions and state our main
results in Section 2. In Section 3, we prove the existence and
uniqueness (up to translation) of monotone traveling front solu-
tions of (1.1) (see Theorems 1 and 2). Section 4 is dedicated to the
spectral properties of traveling front solutions with non zero wave
speed (see Theorem 3).We concludewith a discussion in Section 5.

2. Main results

Throughout the paper, we will suppose that the following con-
dition on the weights Kn is satisfied∑
n∈Z

Kn = 1. (2.1)

Then, steady homogeneous states of the form (un(t))n∈Z = (u)n∈Z
for some u ∈ R satisfy the equation

0 = −u + S(u) := f (u). (2.2)

We will assume the following hypotheses for the nonlinear func-
tion S.

Hypothesis (H1) (Bistable Nonlinearity). We suppose that:

(i) S ∈ C r
b (R) for r ≥ 2 with S(0) = 0 and S(1) = 1 together

with S ′(0) < 1 and S ′(1) < 1;
(ii) there exists a unique θ ∈ (0, 1) such that S(θ ) = θ with

S ′(θ ) > 1;
(iii) u ↦→ S(u) is strictly nondecreasing on [0, 1] and there exists

sm > 1 > s0 > 0 such that s0 < S ′(u) ≤ sm for all u ∈ [0, 1].

The assumptions (i)–(ii) ensure that (un(t))n∈Z = (u)n∈Z with
u ∈ {0, θ, 1} are stationary homogeneous solutions of the LNFE
(1.1) and that the function f in (2.2) is of bistable type. The third
condition ensures that S is an increasing function, which is natural
for a firing rate function. We also ask for some regularity for S, at
leastC 2

b (R). Thiswill be necessary in order to prove our uniqueness
result. Regarding the interaction weights (Kn)n∈Z, we will work
with the following conditions.

Hypothesis (H2) (Weights). We suppose that:

(i) the normalization condition (2.1) is satisfied;
(ii) for all n ∈ Z, we have Kn = K−n ≥ 0 and K±1 > 0;
(iii)

∑
n∈Z|n|Kn < ∞.

The second condition is a natural biological assumption and
expresses the symmetric and excitatory nature of the considered
neural network. The third condition is a technical assumption that
is necessary in the process of proving the existence and uniqueness
of traveling front solutions. Let us remark that our results cover
both the case finite and infinite range interactions, althoughwe are
primarily interested in the later onewhere onemay further assume
that Kn > 0 for all n ∈ Z.

We are now in position to state the main results of the paper.
The first result is about the existence of monotone traveling front
solutions of (1.1).

Theorem 1 (Existence of Monotone Traveling Waves). Suppose that
the Hypotheses (H1)–(H2) are satisfied then there exists a traveling
wave solution un(t) = u∗(n − c∗t) of (1.1) such that the profile u∗

satisfies (1.3b) when c∗ ̸= 0 or (1.4b) if c∗ = 0. In the later case, we
denote (ũ∗

n)n∈Z the stationary wave solution. Moreover,

(i) sgn(c∗) = sgn
∫ 1
0 f (u)du if c∗ ̸= 0;

(ii) if
∫ 1
0 f (u)du = 0 then c∗ = 0;

(iii) if c∗ ̸= 0 then u∗ ∈ C r+1(R) and u′
∗

< 0 on R;
(iv) if c∗ = 0 then (ũ∗

n)n∈Z is a strictly decreasing sequence.

The proof of Theorem 1 relies on a strategy developed by Bates
and Chmaj [15] for a discrete convolution model for phase transi-
tions where the idea is to regularize the traveling wave problem
(1.3b). This amounts to considering a sequence of traveling waves
problems for continuous neural field equations of the form of (1.2)
and applying the results of Ermentrout & McLeod [10]. The final
step is to pass to the limit and verify that the limiting front profiles
satisfy all the properties stated in Theorem 1. One of the main
differences between Theorem 1 and its continuous counterpart
from Ermentrout & McLeod [10] comes from the fact that c∗ = 0
does not necessarily imply that

∫ 1
0 f (u)du = 0. Actually, depending

on the specific form of the firing rate function S, it is possible that
c∗ = 0 and at the same time

∫ 1
0 f (u)du ̸= 0, which is often referred

to as propagation failure or pinning [14,17,18]. Roughly speaking,
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propagation failure means that there exist fronts with nonzero
wave speed for the continuous system while for the discrete one
fronts have zero wave speed (c∗ = 0). We do not pursue in that
direction, and we will consider in the next two results only fronts
having nonzero wave speed.

The second result is about the uniqueness of traveling front
solutions having nonzero wave speed.

Theorem 2 (Uniqueness of Traveling Waves With Nonzero Speed).
Let (u∗, c∗) be a solution to (1.3b) as given in Theorem 1, such that
c∗ ̸= 0. Let (û, ĉ) be another solution to (1.3b). Then c = ĉ and, up to
a translation, u∗ = û.

The strategy of proof of Theorem 2 is to use a ‘squeezing ’’
technique developed by Chen in [19] by constructing appropriate
sub and super solutions for (1.1). Theprincipal difficulty here is that
the nonlinearity enters in a non trivial way in the infinite sum, and
thus we need to adapt all the arguments in our specific context.
We rely on some comparison principles whose proofs are given in
Appendix.

Regarding the spectral stability of the traveling waves, we first
require an extra assumption on the sequence of weights (Kj)j∈Z.

Hypothesis (H2η) (Exponential Localization). We suppose that:

• (Kj)j∈Z satisfies (H2);
• there exists η > 0, such that

∑
j∈ZKjeη|j| < ∞.

Our spectral result will be obtained for the continuous version
of (1.1). That is we interpret solutions of (1.1) as un(t) = u(t, n −

c∗t) for some function u ∈ C 1([0, ∞) × R,R), intuitively filling
the gap between each lattice site, which satisfies a nonlocal partial
differential equation of the form

∂tu(t, x) = c∗∂xu(t, x) − u(t, x)

+

∫
R
KjS(u(t, x − j)), (t, x) ∈ (0, ∞) × R.

By definition, u∗ from Theorems 1 and 2 is a stationary solution
of the above equation and we will be interested in the spectral
properties of its associated linear operator

Lv := c∗v′
− v + Kδ ∗ [S ′(u∗)v], (2.3)

where Kδ ∗ v :=
∑

j∈ZKjv(· − j). From its definition, the operator
L is a closed unbounded operator on L2(R) with dense domain
H1(R) in L2(R). Furthermore, it is not difficult to check that L is
the infinitesimal generator of a strongly continuous semigroup
on L2(R) (see Lemma 4.1). Our main result regarding L reads as
follows.

Theorem 3 (Spectral Properties of L). Suppose that the Hypotheses
(H1)–(H2η) are satisfied and let (u∗, c∗), with c∗ ̸= 0, be the unique
(up to translation) strictly monotone traveling wave solution to (1.1)
as given in Theorem 1. Let L : H1(R) → L2(R) be the operator defined
in (2.3). We have:

(i) 0 is an algebraically simple eigenvalue of L with a negative
eigenfunction u′

∗
;

(ii) the adjoint operator L∗ has a negative eigenfunction, denoted
q ∈ C 1(R), corresponding to the simple eigenvalue 0;

(iii) for all 0 < κ < min
{
1 − S ′(0), 1 − S ′(1)

}
the operator

L − λ is invertible as an operator from H1(R) to L2(R) for all
λ ∈ C \ 2π ic∗Z such that ℜ(λ) ≥ −κ;

(iv) there exist η∗, η∗∗ ∈ (0, η) and some constants C∗ > 0, C∗∗ > 0
such that

|u′

∗
(x)| ≤ C∗e−η∗|x|

∥u∥L∞(R), and |q(x)| ≤ C∗e−η∗|x|
∥q∥L∞(R),

for all x ∈ R.

The main ingredient of the proof is to show that the operator
L − λ is Fredholm on the some region in the complex plane. This
analysis relies on some recent work [20] on Fredholm properties
of nonlocal differential operators with infinite range interactions.
Theorem 3 can be seen as preliminary result towards the nonlinear
stability of traveling fronts of Eq. (1.1) (see the Discussion 5).

3. Existence and uniqueness of monotone traveling waves

In this section, we present the proofs of Theorems 1 and 2.

3.1. Existence of monotone traveling waves — Proof of Theorem 1

We follow the strategy developed by Bates & Chmaj in [15] and
define

Kδ(x) :=

∑
j∈Z

Kjδ(x − j) (3.1)

where δ(x − j) stands for the delta Dirac mass at x = j. Using this
notation, we can write∑
j∈Z

KjS(u(x − j)) = Kδ ∗ S(u)[x],

where∗denotes the convolution on the real line. As a consequence,
the traveling wave problem (1.3b) can be written as

− cu′
= −u + Kδ ∗ S(u), on R, (3.2a)

lim
x→−∞

u(x) = 1 and lim
x→+∞

u(x) = 0. (3.2b)

Now, in order to use the known results on the existence of mono-
tone traveling waves of Ermentrout & McLeod [10], we need to
regularize the kernel Kδ in the following way. Let Ψ ∈ C ∞(R),
Ψ ≥ 0,

∫
R Ψ (x)dx = 1, even and with compact support. Finally,

define ρm(x) := mΨ (mx) for all x ∈ R and

Km(x) :=

m∑
j=−m

1
ωm

Kjρm(x − j), (3.3)

where ωm :=
∑m

j=−mKj. It then is easy to check (see [15]) that for
all φ ∈ C ∞

c (R) we have

Km ∗ φ →
m→∞

Kδ ∗ φ

uniformly on compact sets. As a consequence, we can consider the
sequence of traveling waves problems

− cmu′

m = −um + Km ∗ S(um), on R, (3.4a)
lim

x→−∞
um(x) = 1 and lim

x→+∞
um(x) = 0. (3.4b)

With the definition of Km in (3.3) we can also easily check that all
the conditions listed in [10] are satisfied:

• Km is absolutely continuous, with K′
m ∈ L1(R);

• Km is even, of mass one and positive;

for all m ≥ 0. Then, there exists a unique solution (modulo
translation) (um, cm) of (3.4b) which further satisfies u′

m < 0 on
R. Moreover, we have that cm = 0 if and only if

∫ 1
0 f (u)du = 0 and

otherwise sgn(cm) = sgn
∫ 1
0 f (u)du. The solutions (um, cm) are of

course weak solutions of (3.4b), i.e. for any φ ∈ C ∞
c (R) they satisfy

− cm

∫
R
umφ′dx +

∫
R

(−um + Km ∗ S(um)) φdx = 0. (3.5)

Let suppose that cm ≥ 0 and take α ∈ (0, θ ) and translate each um
so that um(0) = α. As (um)m≥0 is a sequence of strictly monotone
functions, by Helly’s theorem, we can extract a subsequence of um,
which we still denote by um, converging pointwise to a monotone
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function u∗ as m → ∞. Note that by construction, we have 0 ≤

um ≤ 1 and thus 0 ≤ u∗ ≤ 1. Let us show that the sequence
(cm)m≥0 is also uniformly bounded. Assume the contrary, that there
is a sequence cm → +∞ as m → ∞. From (3.4b) we have

|−cmu′

m(x)| = |−um(x) + Km ∗ S(um)(x)|
≤ 2, for all x ∈ R and m ≥ 0,

and thus ∥u′
m∥∞ → 0 as m → ∞. This implies that u∗ is constant

and thus u∗ = α. This is a contradiction. Indeed, as α ∈ (0, θ ), we
have f (α) = −α + S(α) < 0 but

− cmu′

m = −um + Km ∗ S(um)
= −um + Km ∗ um + Km ∗ f (um) ≥ 0 on R,

and we deduce

− Km ∗ f (um) ≤ −um + Km ∗ um,

that is

0 < −f (α) = lim
m→∞

(−Km ∗ f (um))

≤ lim
m→∞

(−um + Km ∗ um) = 0.

Finally, by passing to another subsequence,we also have that cm →

c∗, for some c∗ ≥ 0, as m → ∞. We can now pass to the limit in
(3.5), andweobtain thatu∗ is aweak solution of (3.2b) as it satisfies

− c∗

∫
R
u∗φ

′dx +

∫
R

(−u∗ + Kδ ∗ S(u∗)) φdx = 0, (3.6)

for all φ ∈ C ∞
c (R). This follows from Lebesgue’s dominated

convergence theorem, the continuity of S and the limit∫
R
(Km ∗ S(um))φdx =

∫
R
(Km ∗ φ)S(um)dx

−→
m→∞

∫
R
(Kδ ∗ φ)S(u∗)dx =

∫
R
(Kδ ∗ S(u∗))φdx.

As a consequence,when c∗ ̸= 0, the equality (3.6) implies thatu∗ ∈

W 1,∞(R). A bootstrap argument then shows thatu∗ ∈ C r+1(R) and
thus a traveling wave solution of (1.1). If c∗ = 0, then∫

R
(−u∗ + Kδ ∗ S(u∗)) φdx = 0, for all φ ∈ C ∞

c (R),

so that

u∗ = Kδ ∗ S(u∗) a.e. on R.

Note that Kδ is not a regularization kernel and thus u∗ need not
be continuous. However, u∗ is monotone with 0 ≤ u∗ ≤ 1,
therefore it has only jump discontinuities and the set of these jump
discontinuities is at most countable. Thus we can find a sequence
(ιk)k≥0 with ιk → 0 as k → ∞ such that u∗(n+ ιk) is continuous at
n + ιk for all n ∈ Z and k > 0. We get that

u∗(n + ιk) = Kδ ∗ S(u∗)(n + ιk) =

∑
j∈Z

KjS(u∗(n + ιk − j))

for all n ∈ Z and k > 0. It follows that the sequence

ũ∗

n := lim
k→∞

u∗(n + ιk), n ∈ Z,

satisfies

ũ∗

n =

∑
j∈Z

KjS
(
ũ∗

n−j

)
,

so is a stationary solution of (1.1).
So far, we have shown the existence of a monotone traveling

wave solution u∗(n − c∗t) of (1.1), and it remains to show that

lim
x→−∞

u∗(x) = 1 & lim
x→+∞

u∗(x) = 0,

u′

∗
< 0 on R

when c∗ ̸= 0 and

lim
n→−∞

ũ∗

n = 1 & lim
n→+∞

ũ∗

n = 0,

(ũ∗

n)n∈Z is strictly decreasing ,

when c∗ = 0.

Case c∗ ̸= 0. Without loss of generality, let assume that c∗ > 0,
the argument for c∗ < 0 being the same. First, let us suppose that
there exists x0 ∈ R such that u′

∗
(x0) = 0, with u′

∗
(x) ≤ 0, we must

have u′′
∗
(x0) = 0. Differentiating

− c∗u′

∗
= −u∗ + Kδ ∗ S(u∗),

and evaluating at x = x0 we get

0 = −c∗u′′

∗
(x0) = −u′

∗
(x0) + Kδ ∗ (u′

∗
S ′(u∗))[x0]

=

∑
j∈Z

Kju′

∗
(x0 − j)S ′(u∗(x0 − j)).

From the strict monotonicity of S, we get S ′(u∗(x0 − j)) > 0 for all
j ∈ Z and thus u′

∗
(x0 − j) = 0 for all j such that Kj > 0. Since,

we assumed that K±1 > 0 we deduce that u′
∗
(x0 + n) = 0 for all

n ∈ Z by induction. We can now obtain a contradiction as in [15],
by considering the following initial value problem:

ẇn(t) = −wn(t) +

∑
j∈Z

KjS(wn−j(t)), t > 0 and n ∈ Z,

(3.7a)
wn(−x0/c∗) = u∗(n + x0). (3.7b)

We readily check that u∗(x − c∗t) is solution of (3.7b) and since
u′

∗
(x0 + n) = 0 for all n ∈ Z, the constant wn(t) = u∗(n + x0) also

solves (3.7b), contradicting the uniqueness of the solutions of the
initial boundary value problem (3.7b). As a consequence, we have
u′

∗
(x) < 0 for all x ∈ R.
On the other hand, from the monotonicity of u∗, we readily

obtain that

f (u∗(±∞)) = 0,

and as u∗(0) = α ∈ (0, θ ) we necessarily have that u∗(+∞) = 0
and u∗(−∞) ∈ {θ, 1}. Let us suppose that u∗(−∞) = θ , then for
all x ∈ Rwe have, by strict monotonicity of u∗,

0 < u∗ < θ,

and thus f (u∗(x)) < 0 for all x ∈ R. Finally, from the equality

− c∗u′

∗
= −u∗ + Kδ ∗ u∗ + Kδ ∗ f (u∗)

we get for all N ≥ 0

c∗

∫ N

−N
u′

∗
(x)dx +

∫ N

−N
(−u∗ + Kδ ∗ u∗)(x)dx

= −

∫ N

−N
Kδ ∗ f (u∗)(x)dx > 0.

As∫ N

−N
(−u∗ + Kδ ∗ u∗)(x)dx −→ 0, (3.8)
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as N → +∞, we get that −c∗θ ≥ 0 which is a contradiction. To
obtain the limit (3.8), it is enough to remark that∫ N

−N
(−u∗ + Kδ ∗ u∗)(x)dx

=

∫ N

−N

∑
j∈Z

Kj (u∗(x − j) − u∗(x)) dx

= −

∑
j∈Z

jKj

∫ N

−N

(∫ 1

0
u′

∗
(x − jτ )dτ

)
dx

= −

∑
j∈Z

jKj

∫ 1

0
(u∗(N − jτ ) − u∗(−N − jτ )) dτ

−→
N→∞

θ
∑
j∈Z

jKj = 0.

where we have used Lebesgue’s dominated convergence theorem,
Fubini’s theorem, and [15, Lemma 2.1], together with the facts that∑

j∈Z|j|Kj < ∞ and Kj = K−j for all j ∈ Z.

Case c∗ = 0. Let us first suppose that there exists n0 ∈ Z such that
ũ∗

n0+1 = ũ∗
n0 , where the sequence ũ∗

n is solution of

ũ∗

n =

∑
j∈Z

KjS(ũ∗

n−j),

for all n ∈ Z. Thus, we have∑
j∈Z

Kj
(
S(ũ∗

n0+1−j) − S(ũn0−j)∗
)

= 0,

and then

S(ũ∗

n0+1−j) = S(ũ∗

n0−j)

for any j ∈ Z where Kj > 0. As S is strictly monotone and as we
supposed that K±1 > 0, by induction, it then follows that ũ∗

n is
constant, a contradiction.

As in the case c∗ ̸= 0, we have that

f
(

lim
n→±∞

ũ∗

n

)
= 0,

and thus lim
n→+∞

ũ∗
n = 0 and lim

n→−∞
ũ∗
n ∈ {θ, 1}. Let us suppose

that lim
n→−∞

ũ∗
n = θ , then by strict monotonicity of ũ∗

n we have

0 < ũ∗
n < θ for all n ∈ Z and

− ũ∗

n +

∑
j∈Z

Kjũ∗

n−j = −

∑
j∈Z

Kjf (ũ∗

n−j) > 0.

But as for any j ∈ Z and all N ≥ 1 we have that, by monotonicity
of the sequence ũ∗

n,⏐⏐⏐⏐⏐
N∑

n=−N

(ũ∗

n−j − ũ∗

n)

⏐⏐⏐⏐⏐ ≤ 2θ |j| and lim
N→∞

N∑
n=−N

(ũ∗

n−j − ũ∗

n) = jθ,

we have that

N∑
n=−N

⎛⎝−ũ∗

n +

∑
j∈Z

Kjũ∗

n−j

⎞⎠ =

∑
j

Kj

(
N∑

n=−N

(ũ∗

n−j − ũ∗

n)

)
,

−→
N→∞

θ
∑
j∈Z

jKj = 0,

we readily obtain a contradiction.

Proof of statements (i)–(ii) of Theorem 1. Suppose that c∗ ̸= 0. Then
multiply (3.2a) by S ′(u∗)u′

∗
as in [10] to obtain

− c∗(u′

∗
)2S ′(u∗) = (−u∗ + S(u∗))S ′(u∗)u′

∗  
:=I1

+ (Kδ ∗ S(u∗))S ′(u∗)u′

∗
− S(u∗)S ′(u∗)u′

∗  
:=I2

.

Note that the last two terms of the previous equation can be
written

I2(x) =

∫
R
Kδ(x − y) (S(u∗(y)) − S(u∗(x))) S ′(u∗(x))u′

∗
(x)dy

and thus if we integrate over Rwe find∫
R
I2(x)dx =

1
2

∫
R

∫
R
Kδ(x − y) (S(u∗(y)) − S(u∗(x)))

×
(
S ′(u∗(x))u′

∗
(x) − S ′(u∗(y))u′

∗
(y)
)
dydx = 0.

As a consequence, we have that

− c∗

∫
R
(u′

∗
(x))2S ′(u∗(x))dx =

∫
R
I1(x)dx

= −

∫ 1

0
(−u + S(u))S ′(u)du.

Finally, using the fact that
∫ 1
0 (−u + S(u))(S ′(u) − 1)du = 0, we

obtain that

c∗

∫
R
(u′

∗
(x))2S ′(u∗(x))dx =

∫ 1

0
f (u)du.

It then follows that sgn(c∗) = sgn
∫ 1
0 f (u)du whenever c∗ ̸= 0 and

that
∫ 1
0 f (u)du = 0 implies c∗ = 0. This concludes the proof of

Theorem 1.

3.2. Uniqueness of traveling waves with nonzero speed — proof of
Theorem 2

Throughout this sequel, we suppose that (u∗, c∗) is the strictly
monotone traveling wave solution given by Theorem 1 and with-
out loss of generality we may assume c∗ > 0. Let (û, ĉ) be another
solution of (1.3b). Before starting the proof of Theorem 2, wemake
the following remark. By construction, we know that u∗ ∈ (0, 1)
and it is also true that

0 ≤ û ≤ 1, on R. (3.9)

Suppose first that ĉ ̸= 0, the case ĉ = 0 can be handled in a similar
way. By contradiction, if (3.9) were not satisfied, there would exist
x0 ∈ R such that max

x∈R
û(x) = û(x0) > 1. We obviously have

û′(x0) = 0 and f (û(x0)) < 0, and so

0 ≥ Kδ ∗ S(û)(x0) − S(û(x0)) = −f (û(x0)) > 0,

gives a contradiction. Here we have used the monotonicity of S.
Thus, we have û ≤ 1 and a similar argument for the case where
min
x∈R

û(x) = û(x0) < 0 completes the proof of (3.9).

3.2.1. Uniqueness of the wave speed
Here, we are going to follow the strategy developed by Chen

in [19], see also [15,21]. The idea is to construct appropriate sub
and super solutions for (1.1) based on the traveling wave solution
u∗ which will ‘‘squeeze’’ the other solution û. We also recall that a
sub solution of (1.1) is a sequence (un(t))n∈Z which satisfies for all
n ∈ Z and all t > 0

u̇n(t) ≤ −un(t) +

∑
j∈Z

KjS(un−j(t)). (3.10)

A super solution is defined by reversing the inequality in (3.10).
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We introduce two sequences

w±

n (t) := u∗

(
n − c∗t + ξ0 ∓ σγ (1 − e−βt )

)
± γ e−βt ,

∀n ∈ Z (3.11)

for some well chosen parameters ξ0, σ , γ and β . More precisely,
we are going to prove the following key result.

Lemma 3.1. Assume that Hypotheses (H1)–(H2) hold and let (u∗, c∗)
with c∗ ̸= 0 be as in Theorem 1. Then, there exist a small positive
constant γ0 and a large positive constant σ such that for any γ ∈

(0, γ0] and every ξ0 ∈ R, the sequences w±
n (t) defined by (3.11) are

a respectively sub (w−
n (t)) and super (w+

n (t)) solutions with β :=
1
2 min

{
1 − S ′(0); 1 − S ′(1)

}
> 0.

Proof. One only considers w+
n (t) as the proof for w−

n (t) is analo-
gous. By assumption on the sequence

(
Kj
)
j∈Z, there exists M0 > 0

such that∑
|j|≥[M0]

Kj ≤
β

8s2
,

where [M0] stands for nearest integer close toM0.Wedefineγ0 > 0
by

γ0 := min
{
1,

β

8s2

}
,

where s2 = sup
u∈[−1,2]

|S ′′(u)|. LetM1 > 0 be a constant such that

u∗(x) > 1 − γ0 for all x ≤ −M1, u∗(x) < γ0 for all x ≥ M1.

We define

σ :=
β + s1 − 1

min
|x|≤M0+M1

(−βu′
∗
(x))

> 0, (3.12)

where s1 = sup
u∈[−1,2]

|S ′(u)| > sm > 1 by Hypothesis (H1) on the

nonlinearity. If we denote ξ := n − c∗t + ξ0 − σγ (1 − e−βt ), then
we have

Pn(t) := ẇ+

n (t) + w+

n (t) −

∑
j∈Z

KjS(w+

n−j(t))

=
(
−c∗ − σγβe−βt)u′

∗
(ξ ) − γ βe−βt

+ u∗(ξ ) + γ e−βt

−

∑
j∈Z

KjS
(
u∗(ξ − j) + γ e−βt)

= − σγβe−βtu′

∗
(ξ ) − γ βe−βt

+ u∗(ξ ) + γ e−βt

+

∑
j∈Z

Kj
[
S(u∗(ξ − j)) − S

(
u∗(ξ − j) + γ e−βt)] .

Let us then remark that∑
j∈Z

Kj
[
S(u∗(ξ − j)) − S

(
u∗(ξ − j) + γ e−βt)]

= −γ e−βt
∑
j∈Z

Kj

∫ 1

0
S ′
(
u∗(ξ − j) + τγ e−βt) dτ

with⏐⏐⏐⏐⏐⏐
∑
j∈Z

Kj

∫ 1

0
S ′
(
u∗(ξ − j) + τγ e−βt) dτ

⏐⏐⏐⏐⏐⏐ ≤ s1. (3.13)

We can then write using the Lebesgue’s dominated convergence
theorem that

Pn(t) = γ e−βt

[
− βσu′

∗
(ξ ) − β + 1

−

∫ 1

0

∑
j∈Z

KjS ′
(
u∗(ξ − j) + τγ e−βt) dτ

⎤⎦ .

We are going to consider three separate regions:

(i) |ξ | ≤ M0 + M1, (ii) ξ > M0 + M1, and
(iii) ξ < −M0 − M1.

Region (i). For |ξ | ≤ M0 + M1, we use the bound (3.13) to obtain

Pn(t) ≥ γ e−βt [
−βσu′

∗
(ξ ) − β + 1 − s1

]
≥ 0

by definition of σ .

Region (ii). For ξ > M0 + M1, we have 0 < u∗(ξ ) < γ0.
Furthermore, for all τ ∈ [0, 1] we have that⏐⏐⏐⏐⏐⏐
∑
j∈Z

Kj
[
S ′
(
u∗(ξ − j) + τγ e−βt)

− S ′(0)
]⏐⏐⏐⏐⏐⏐

≤ s2
∑
j∈Z

Kj
⏐⏐u∗(ξ − j) + τγ e−βt

⏐⏐
≤ 2s2

∑
|j|≥[M0]

Kj + 2s2γ0

∑
|j|≤[M0]−1

Kj

≤
β

2
.

As a consequence, we have that

Pn(t) = γ e−βt

[
− βσu′

∗
(ξ ) − β + 1 − S ′(0)

−

∫ 1

0

∑
j∈Z

Kj
{
S ′
(
u∗(ξ − j) + τγ e−βt)

− S ′(0)
}
dτ

⎤⎦
≥ γ e−βt

[
−βσu′

∗
(ξ ) − β + 1 − S ′(0) −

β

2

]
.

Then, by definition of β we have −β + 1 − S ′(0) > β and thus
Pn(t) ≥ 0 as −βσu′

∗
(ξ ) ≥ 0.

Similarly, we can show that Pn(t) ≥ 0 in the region (iii). This
completes the proof of the lemma. ■

We can now conclude the proof of Theorem 2 regarding the
uniqueness of the wave speed.

Proof of Theorem 2 (Uniqueness of Wave Speed). Let us first
suppose that ĉ ̸= 0. We can then use Lemma 3.1 and a comparison
principle (see Lemma A.1 in Appendix) to squeeze û between two
translates of u∗. First, since u∗ and û have the same limit at ±∞,
there exists h ≫ 1 such that

u∗(n) − γ0 < û(n) < u∗(n − h) + γ0, ∀n ∈ Z.

We thus obtain for all n ∈ Z and all t > 0 that

u∗

(
n − c∗t + σγ (1 − e−βt )

)
− γ e−βt

≤ û(n − ĉt)

≤ u∗

(
n − c∗t − h − σγ (1 − e−βt )

)
+ γ e−βt .

Then, we have in particular that

u∗

(
n − ĉt + (ĉ − c∗)t + σγ (1 − e−βt )

)
− γ e−βt

≤ û(n − ĉt)

and by letting t → +∞ while keeping x = n− ĉt fixed, we obtain
that ĉ ≥ c∗. Indeed assume otherwise, then one gets 1 ≤ û(x) for
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all x ∈ R which is a contradiction. From the other inequality, we
deduce that ĉ ≤ c∗. As a conclusion, we have shown that ĉ = c∗. In
addition, we also have that

u∗(x + σγ0) ≤ û(x) ≤ u∗(x − h − σγ0), x ∈ R. (3.14)

When ĉ = 0, we use a similar argument by first noting that there
also exists h ≫ 1 such that

u∗(n) − γ0 < ũ∗

n < u∗(n − h) + γ0, ∀n ∈ Z,

and using Lemma 3.1 and a comparison principle, we get

u∗

(
n − c∗t + σγ (1 − e−βt )

)
− γ e−βt

≤ ũ∗

n

≤ u∗

(
n − c∗t − h − σγ (1 − e−βt )

)
+ γ e−βt .

Letting t → +∞ gives that 1 ≤ ũ∗
n for all n ∈ Z, which is a

contradiction, and thus ĉ ̸= 0 which in turn implies c∗ = ĉ from
the previous step. ■

3.2.2. Uniqueness of the profile up to translation
To conclude the proof of Theorem 2, we need to show that

u∗ = û, up to a translation. From (3.14), there exists a minimal
z̄ such that

u∗(x + z) ≤ û(x) for all z > z̄ and x ∈ R.

Let us suppose that u∗(· + z̄) ̸= û and show that it leads to a
contradiction. We proceed in two steps.

Step 1. If u∗(· + z̄) ̸= û then necessarily u∗(x + z̄) < û(x)
for all x ∈ R. Otherwise, there exists some x0 ∈ R such that
u∗(x0 + z̄) = û(x0). Let w(x) := u∗(x + z̄) − û(x). Then, at x = x0,
we have w(x0) = w′(x0) = 0 and as both profiles û and u∗ satisfy
the traveling wave equation (3.2a) for c∗ = ĉ , we deduce that

0 = Kδ ∗ S(u∗)(x0 + z̄) − Kδ ∗ S(û)(x0)

=

∑
j∈Z

Kj
(
S(u∗(x0 − j + z̄)) − S(û(x0 − j))

)
≤ 0,

and by positivity of Kj and monotonicity of S we have

S(u∗(x0 − j + z̄)) − S(û(x0 − j)) = 0,

for all j ∈ Z where Kj > 0. As by assumption K±1 > 0, we have
that S(u∗(x0 + n + z̄)) = S(û(x0 + n)) for all n ∈ Z and the strict
monotonicity of S implies that

w(x0 + n) = u∗(x0 + n + z̄) − û(x0 + n) = 0, n ∈ Z.

But, for all n ∈ Z, the sequence of functionswn(t) = w(x0+n−c∗t)
satisfies the following initial value problem

ẇn(t) = −wn(t) +

∑
j∈Z

KjS ′(ζn−j(t))wn−j(t), t > 0 and n ∈ Z,

wn(0) = 0,

for some ζn−j(t) ∈
(
u∗(x0 + n − j − c∗t + z̄), û(x0 + n − j − c∗t)

)
which has a unique solution wn(t) = 0 and hence w ≡ 0, a
contradiction. As a consequence, we have u∗(x + z̄) < û(x) for all
x ∈ R.

Step 2. Now, since u′
∗
(±∞) = 0, there exists a large positive

constantM2 > 0 such that

− 2σu′

∗
(ξ ) ≤ 1, if |ξ | ≥ M2,

with σ > 0 given in (3.12). Then by continuity of both u∗ and û,
and the fact that u∗(x + z̄) < û(x), there exists a small constant
ĥ ∈ (0, 1

2σ ] such that

u∗(x + z̄ − 2σ ĥ) < û(x), x ∈ [−M2 − 1 − z̄,M2 + 1 − z̄].

As a consequence, when |x + z̄| ≥ M2 + 1,

u∗(x + z̄ − 2σ ĥ) − û(x) < u∗(x + z̄ − 2σ ĥ) − u∗(x + z̄)

= −2σ ĥu′

∗
(x + z̄ − 2σ ĥϵ) ≤ ĥ,

for some ϵ ∈ (0, 1). As a consequence, we have

u∗(x + z̄ − 2σ ĥ) − ĥ ≤ û(x) for all x ∈ R,

so that, using Lemma 3.1 and the comparison principle,

u∗(x − c∗t + z̄ − 2σ ĥ + σ ĥ(1 − e−βt )) − ĥe−βt

≤ û(x − c∗t) for all x ∈ R and t > 0.

Then, keeping ξ = x − c∗t fixed and sending t → +∞, we get

u∗(ξ + z̄ − σ ĥ) ≤ û(ξ ), ∀ξ ∈ R.

This contradicts the minimality of z̄ and thus u∗(x + z̄) = û(x) for
all x ∈ R, which concludes the proof of Theorem 2.

4. Spectral analysis — proof of Theorem 3

Throughout this section, we will assume that both Hypothe-
ses (H1)–(H2η) are satisfied and that there exists a unique (up
to translation) traveling wave solution of (1.1) denoted u∗(t) =

(u∗(n − c∗t))n∈Z with c∗ ̸= 0. Without loss of generality, we shall
assume that c∗ > 0. Let us recall that the profile u∗ ∈ C r+1(R)
satisfies the limits

lim
x→−∞

u∗(x) = 1 and lim
x→+∞

u∗(x) = 0,

together with the property u′
∗

< 0. We are interested in the
spectral properties of the following linear operator L given by

Lv = c∗v′
− v + Kδ ∗ [S ′(u∗)v].

We will consider L as an operator from H1(R) to L2(R). An easy
preliminary result is the following.

Lemma 4.1. The operator L defined by (2.3) is the infinitesimal
generator of a strongly continuous semigroup on L2(R).

Proof. This a consequence of theHille–Yosida theorem and sinceL
is closedwith dense domain, it is enough to prove that its resolvent
set contains of ray {λ ∈ (M, +∞)} with resolvent estimate

∥(λ − L)−1
∥ ≤

1
λ − M

, for λ > M.

So assume that (λ − L)v = w. Taking the inner product with v, we
find

(λ + 1)∥v∥2
L2(R) −

∫
R

⎛⎝∑
j∈Z

KjS ′(u∗(x − j))v(x − j)

⎞⎠ v(x)dx

= ⟨v,w⟩L2(R).

Using Cauchy–Schwartz inequality and the invariance of the L2
norm under translation we get

(λ + 1 − sm) ∥v∥L2(R) ≤ ∥w∥L2(R),

where sm > 1 is defined in (H1). ■

It is important to note that a direct consequence of the shift
symmetry of the profile u ∗ (t)

u∗

n(t) = u∗

n−1

(
t −

1
c∗

)
, n ∈ Z,

is that the spectrum of L is invariant under the operation λ ↦→ λ+

2π ic∗. This is reminiscent of the discrete invariance by translation
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of (1.1). Indeed, fix p ∈ Z and define ω = 2π ip together with the
exponential shift operator eω

eωv(x) = eωxv(x), ∀x ∈ R.

Then, we have that

e−ωLeωv(x) = e−ωx

(
c∗ωv(x) + c∗v′(x) − v(x)

+

∑
j∈Z

KjS ′(u∗(x − j))eωxe−ωjv(x − j)

⎞⎠
= (L + c∗ω)v(x),

as e−ωj
= e−2π ipj

= 1 for all (j, p) ∈ Z2. Now, since e±ω

are invertible operators on H1(R) and L2(R), we know that the
spectrum σ (L) of L equals that of e−ωLeω and thus that of L+ c∗ω.
As Lu′

∗
= 0, we automatically have that 2π ic∗Z ⊂ σ (L).

With this shift symmetry in hand, we can return to the proof
of Theorem 3. This will be accomplished by a series of lemma
essentially proving each assertion of the theorem.

Lemma 4.2. 0 is an eigenvalue of L with corresponding eigenvector
u′

∗
and it is geometrically and algebraically simple.

Proof. By translation invariance, we have that Lu′
∗

= 0 with
u′

∗
∈ H1(R). Actually, we have that u′

∗
∈ C r

b (R) for r ≥ 2 given
in Hypothesis (H1).

Let us first show that 0 is geometrically simple. Let suppose that
Lv = 0 for some v ∈ H1(R) such that v(x0) < 0 for some x0.
For α > 0 we let wα = v − αu′

∗
and recall that u′

∗
< 0. Let fix

M > 0 such that x0 ∈ [−M,M]. Then for all α large enough we
havewα > 0 on [−M,M]withLwα = 0. As a consequence, we can
use the comparison principle A.2 to the operator ∂t −L and obtain
that wα > 0 on R. We denote ᾱ = inf {α | wα > 0 on R}. We then
have wᾱ ≥ 0 on R with some x̄ ∈ R where w′

ᾱ(x̄) = wᾱ(x̄) = 0.
Thus,

0 = Lwᾱ(x̄) =

∑
j∈Z

KjS ′(u∗(x̄ − j))wᾱ(x̄ − j),

which implies that wᾱ(x̄ − j) = 0 where Kj > 0 and by induction
wᾱ(x̄ + n) = 0 for all n ∈ Z. But now, the sequence wn(t) =

wᾱ(x̄ + n − c∗t) satisfies the initial value problem

ẇn(t) = −wn(t) +

∑
j∈Z

KjS ′(u∗(x̄ + n − j − c∗t))wn−j(t),

t > 0 and n ∈ Z,

wn(0) = 0,

which admits the unique solution wn(t) = 0 and thus wᾱ(x̄ + n −

c∗t) = 0 for all t > 0which implies thatwᾱ ≡ 0 and thus v = ᾱu′
∗
.

Let us finally show that 0 is algebraically simple. Suppose that
there exists v ∈ H1(R) such that Lv = u′

∗
such that v(x0) < 0

for some x0. As above let us define wα = v − αu′
∗
and let α

be large enough such that we have wα > 0 on [−M,M] with
(∂t −L)wα = −u′

∗
> 0 for all x ∈ R. Thus, applying the comparison

principle to wα with the operator ∂t − L we get thatwα > 0 on R.
Let ᾱ be the infimum of all such α. Thenwe havewᾱ ≥ 0 onRwith
some x̄ ∈ Rwhere w′

ᾱ(x̄) = wᾱ(x̄) = 0. As a consequence,

0 ≤

∑
j∈Z

KjS ′(u∗(x̄ − j))wᾱ(x̄ − j) = Lwᾱ(x̄) = u′

∗
(x̄) < 0.

This gives a contradiction and thus v ≡ 0 on R. ■

Lemma 4.3. L : H1(R) → L2(R) is a Fredholm operator of index 0.

Proof. We are going to apply [20, Theorems 2 & 3]. To do so, we
shall verify that all hypotheses of [20, Theorems 2 & 3] are satisfied
for the operator T : H1(R) → L2(R) defined as

T v(x) =
d
dx

v(x) −

∑
j∈Z

Aj(x)v(x − j),

where A0(x) = (1−K0S ′(u∗(x)))/c∗ and Aj(x) = −KjS ′(u∗(x− j))/c∗
for all j ̸= 0 and x ∈ R. Let us note that x ↦→ Aj(x) ∈ C 1

b (R) for all
j ∈ Z and that, because of Hypothesis (H2η), we have that∑
j∈Z

∥Aj∥C1
b (R)

eη|j|
≤ C

∑
j∈Z

Kjeη|j| < ∞,

for some constant C > 0. Furthermore, there exists A±

j =

lim
x→±∞

Aj(x) where A−

0 = (1 − K0S ′(1))/c∗, A+

0 = (1 − K0S ′(0))/c∗,

A−

j = −KjS ′(1)/c∗ and A+

j = −KjS ′(1)/c∗ for j ̸= 0. And we also
have that∑
j∈Z

|A±

j |eη|j| < ∞, and lim
x→±∞

∑
j∈Z

|Aj(x) − A±

j |eη|j|
= 0.

Note that in order to obtain the last equality, we have used the fact
that

Aj(x) − A−

j = −
Kj

c∗
S ′′(ζj(x))(u∗(x − j) − 1) for some ζj(x)

∈ (u∗(x − j), 1)

and remarked that |Aj(x) − A−

j | ≤ s2Kj for all j ∈ Z to be able to
pass to the limit inside the infinite sum. It is also straightforward
to check that

ν ↦→

∑
j

A±

j e
νj,

is a bounded analytic function in the stripe Sη = {|ℜ(ν)| < η}

because of (H2η). Finally, we need to show that for all ℓ ∈ R

d±(iℓ) := iℓ −

∑
j∈Z

A±

j e
−iℓj

̸= 0.

We only show that d+(iℓ) ̸= 0, the other case being handled
similarly. Suppose it is not the case, then there exists ℓ0 ∈ R such
that

0 = c∗iℓ0 − 1 + S ′(0)
∑
j∈Z

Kje−iℓ0j,

and taking the real part we get that

0 = −1 + S ′(0) + S ′(0)
∑
j∈Z

Kj (cos(ℓ0j) − 1) .

But we have 0 < S ′(0) < 1 and Kj (cos(ℓ0j) − 1) ≥ 0 for all j ∈ Z, a
contradiction.

As a conclusion, we can apply [20, Theorem 2] which shows
T : H1(R) → L2(R) is Fredholm and thus L : H1(R) → L2(R)
is also Fredholm as c∗ ̸= 0. To compute the Fredholm index of
L, we rely on [20, Theorem 3] which states that the Fredholm
index of T only depends on the limiting operators T ± defined by
T ±v = v′

−
∑

j∈ZA
±

j v(· − j). Moreover, the spectral flow formula
(see [20, Theorem 2]) states that the Fredholm index of T is given
by the formula

indT = −cross(T ρ)

where T ρ , defined by T ρv := v′
−
∑

j∈ZA
ρ

j v(· − j), is a generic
homotopy of constant operators joining T − at ρ = −1 and T +

at ρ = +1 and cross(T ρ) counts the number of roots of the
characteristic equation dρ(z) := z −

∑
j∈ZA

ρ

j e
−zj

= 0 which
cross the imaginary axis along this homotopy. Here, we consider
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T ρ
= ((1 − ρ)T −

+ (1 + ρ)T +)/2 for ρ ∈ [−1, 1]. It is clear
that there exists no root of dρ(z) = 0 on the imaginary axis for all
ρ ∈ [−1, 1]. Indeed, if there exists ℓ0 ∈ R such that dρ(iℓ0) = 0
then

0 = −2 +
(
(1 − ρ)S ′(1) + (1 + ρ)S ′(0)

)∑
j∈Z

Kj cos(ℓ0j)

= (1 − ρ)

⎛⎝−1 + S ′(1) + S ′(1)
∑
j∈Z

Kj (cos(ℓ0j) − 1)

⎞⎠
+ (1 + ρ)

⎛⎝−1 + S ′(0) + S ′(0)
∑
j∈Z

Kj (cos(ℓ0j) − 1)

⎞⎠
< 0,

a contradiction. As a conclusion, we have indL = indT = 0. ■

We define L∗
: H1(R) → L2(R) as the formal adjoint of L by

L∗v = −c∗v − v + S ′(u∗)Kδ ∗ v.

Corollary 4.4. The adjoint operator L∗
: H1(R) → L2(R) has

a negative eigenvector q ∈ H1(R) corresponding to the simple
eigenvalue 0, i.e. dim kerL∗

= 1.

Proof. Since 0 is a simple eigenvalue of L and L is Fredholm of
index 0, we readily have that dim kerL∗

= 1 and thus L∗v = 0
as a nonzero solution in H1(R). We only need to show that v has a
sign. Suppose that v changes sign. Then one can find f ∈ L2(R) such
that ⟨f , v⟩ = 0 with f < 0 onR. Then, by the Fredholm alternative,
the equation Lu = f has a solution u. As before, we can choose α

such that wα = u − αu′
∗

≥ 0 on R and w′
α(x0) = wα(x0) = 0 for

some x0. Then we have

0 ≤

∑
j∈Z

KjS ′(u∗(x0 − j))wα(x0 − j) = Lwα(x0) = f (x0) < 0.

As a conclusion v has a sign which we choose to be negative. ■

Corollary 4.5. We have that σess(L) ⊂ {λ | ℜ(λ) ≤ −2β} where
β =

1
2 min

{
1 − S ′(0), 1 − S ′(1)

}
> 0.

Proof. Using similar argument, one can actually show that L− λ :

H1(R) → L2(R) is Fredholm, with Fredholm index 0, as long as
ℜ(λ) > −2β , which gives the conclusion. Indeed, the essential
spectrum of L is the set of all λ ∈ C such that either L − λ is not
Fredholm or L − λ is Fredholm, but ind(L − λ) ̸= 0. ■

Lemma 4.6. There exist η∗, η∗∗ ∈ (0, η) and some constants C∗ > 0,
C∗∗ > 0 such that

|u′

∗
(x)| ≤ C∗e−η∗|x|

∥u′

∗
∥L∞(R), and |q(x)| ≤ C∗∗e−η∗∗|x|

∥q∥L∞(R),

(4.1)

for all x ∈ R.

Proof. We have proved in the previous lemma that d±(iℓ) ̸= 0 for
all ℓ ∈ R and L is then asymptotically hyperbolic in the sense of
Mallet-Paret [22,23]. Hence, we obtain from [23, Lemma 4.3] that
there exist constants η∗ ∈ (0, η) and C∗ > 0 for which

|v(x)| ≤ C∗e−η∗|x|
∥u∥L∞(R) + C∗

∫
R
e−η∗|x−y|

|w(y)|dy, x ∈ R,

holds for each v ∈ H1(R), where w = Lv. Since Lu′
∗

= 0 we
conclude that

|u′

∗
(x)| ≤ C∗e−η∗|x|

∥u′

∗
∥L∞(R), x ∈ R.

As L∗ is also asymptotically hyperbolic and since L∗q = 0, we get

|q(x)| ≤ C∗∗e−η∗∗|x|
∥q∥L∞(R),

for all x ∈ R. ■

Lemma 4.7. We have {λ | ℜ(λ) ≥ 0, λ ̸= 2π ic∗p, p ∈ Z} ⊂ ρ(L)
where ρ(L) is the resolvent set of L.

Proof. Suppose that λ = λ1 + iλ2 with λ1 ≥ 0 and λ2 ̸= 2π ic∗p
for p ∈ Z is an eigenvalue with a corresponding eigenfunction
u = u1 + iu2 ̸= 0. Without loss of generality, we may assume
that 0 < λ2 < 2π ic∗, as the spectrum L is invariant under the
translation λ ↦→ λ + 2π ic∗. We consider the Cauchy problem

∂tv = Lv − λ1v, (4.2a)
v(0) = u1 (4.2b)

which has a solution v(x, t) = u1(x) cos(λ2t)− u2(x) sin(λ2t). Note
that v(x, t) ≤ |u(x)| for all x ∈ R and t ≥ 0. We claim that there
α > 0 such that v(x, t) ≤ −αu′

∗
(x) holds for all x ∈ R and t ≥ 0.

To prove the claim, we follow the strategy in [24] and let θ0 be a
constant such that 0 < θ0 < min

{
1 − S ′(0), 1 − S ′(1)

}
. Then we

can chooseM > 0 large enough such that

θ0 − 1 +

∑
j∈Z

KjS ′(u∗(x − j)) ≤ 0, for all |x| ≥ M

and such that |u(x0)| > 0 for some x0 ∈ [−M,M]. Since, u∗ < 0we
can always find α > 0 such that |u(x)| ≤ −αu′

∗
(x) for |x| ≤ M . We

prove that the claimholdswith this choice ofα. Since |u(x)| → 0 as
x → ±∞, there exists ϵ > 0 such that v(x, t) ≤ −αu′

∗
(x)+ϵ for all

x ∈ R and t ≥ 0 and let ϵ0 ≥ 0 be the infimum of such ϵ. We prove
that ϵ0 = 0. Consider the function w(x, t) = −αu′

∗
(x) + ϵ0e−θ0t .

We have

∂tw − Lw + λ1w = −ϵ0e−θ0t

⎛⎝θ0 − 1 +

∑
j∈Z

KjS ′(u∗(x − j))

⎞⎠
+ λ1w ≥ 0, for all |x| ≥ M and t > 0.

Therefore, v is a super solution of (4.2b) on |x| > M and notice
that v(x, t) ≤ |u(x)| ≤ −αu′

∗
(x) ≤ w(x, t) on |x| ≤ M and that

v(x, 0) = u1(x) ≤ |u(x)| ≤ −αu′
∗
(x) + ϵ0 = w(x, 0) for all x ∈ R.

Then, the comparison principle gives v(x, t) ≤ w(x, t) for all x ∈ R
and all t > 0. Therefore, for all positive integer p > 0, we have

v(x, t) = v(x, t + 2pπ/λ2)

≤ −αu′

∗
(x) + ϵ0e−θ0(t+2pπ/λ2) −→

p→+∞
−αu′

∗
(x),

and thus ϵ0 = 0 and the claim is proved.
Now, we pick ᾱ > 0 such that |u(x)| ≤ −ᾱu′

∗
(x) for all |x| ≤ M

with some x̄ such that |u(x̄)| = −ᾱu′
∗
(x̄) > 0 and using the

comparison principle we deduce that v(x, t) < −ᾱu′
∗
(x) for all

x ∈ R and t > 0. If we choose t̄ such that u(x̄)/|u(x̄)| = e−iλ2 t̄ , then
v(x̄, t̄) = |u(x̄)| = −ᾱu′

∗
(x̄) > v(x̄, t̄), which is a contradiction.

Therefore u ≡ 0 and λ is not an eigenvalue.
Finally, assume that λ > 0 is an eigenvalue with a real eigen-

functionu that possesses a pointwhere it is positive. Then v(x, t) =

u(x) is a solution of (4.2b) with λ1 = λ > 0 and initial condition
v(x, 0) = u(x). A similar argument as we did before can be used to
prove that u ≡ 0 and so λ > 0 is not an eigenvalue. ■

We are now ready to conclude the proof of Theorem 3.

Proof of Theorem 3. Only assertion (iii) of the theorem
remains to be proved. From the previous lemma, we have
{λ | ℜ(λ) ≥ 0, λ ̸= 2π ic∗p, p ∈ Z} ⊂ ρ(L) and we would like to
extend the resolvent set to the stripe Sκ := {λ | −κ ≤ ℜ(λ) < 0}
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for κ < 2β . As L − λ : H1(R) → L2(R) is Fredholm index 0 for
ℜ(λ) > −2β it will be enough to show that L − λ is injective in
the stripe Sκ . We claim that there exists λi > 0 such that for all
|ℑ(λ)| > λi with −κ ≤ ℜ(λ) < 0, L − λ is injective. If the claim
holds true, then suppose by contradiction that L has an eigenvalue
λ0 within the rectangle {λ | −κ ≤ ℜ(λ) < 0} ∩ {λ | ℑ(λ) ≤ c∗π}.
Then, by the shift symmetry, there exists p0 > 0 large enough such
that ℑ(λ0) + 2πc∗p0 > λi. As consequence, L − λ0 − 2πc∗p0i is
not injective, as it has a kernel, and we reached a contradiction.
To conclude the proof, it only remains to prove the claim. We thus
suppose that there exists u ∈ H1(R) such that (L − λ)u = 0. First,
we rescale this eigenvalue problem by introducing a new variable
z = ℑ(λ)x and a new unknown ũ, such that we obtain

c∗
dũ(z)
dz

+ iũ(z) +
sm

ℑ(λ)

⎛⎝−ũ(z) +

∑
j∈Z

Kjũ(z − ℑ(λ)j)

⎞⎠
=

1
ℑ(λ)

R(z, ℜ(λ), ũ), (4.3)

whenever ℑ(λ) ̸= 0 and R(z, ℜ(λ), ũ) collects all the remainder
terms and satisfies the estimates:

∥R(z, ℜ(λ), ũ)∥L2(R) ≤ (|ℜ(λ)| + C)∥ũ∥L2(R), (4.4)

for some constant C > 0 independent of λ. Let us define the
operator Hλ : H1(R) → L2(R) by

Hλv(x) := c∗v′(x) + iv(x) +
sm

ℑ(λ)

⎛⎝−v(x) +

∑
j∈Z

Kjv(x − ℑ(λ)j)

⎞⎠ ,

which has Fourier symbol

Ĥλ(iℓ) = c∗iℓ + i +
sm

ℑ(λ)

⎛⎝∑
j∈Z

Kj (cos(ℓℑ(λ)j) − 1)

⎞⎠ , ℓ ∈ R.

Let λ∗ > 0 be fixed. We would like to show that there exists a
constant C̃ > 0, such that

⏐⏐Ĥλ(iℓ)
⏐⏐ ≥ C̃ for all ℓ ∈ R and all λ ∈ C

with |ℑ(λ)| > λ∗. Let us first remark that⏐⏐Ĥλ(iℓ)
⏐⏐ = |c∗ℓ + 1| +

sm
|ℑ(λ)|

A(ℓℑ(λ)),

where we set A(y) :=
∑

j∈ZKj (1 − cos(yj)). We see that A(y) > 0
for any y ∈ (0, 2π ). Because of the symmetry Kj = K−j, we have
A′(0) = 0 and A′′(0) =

∑
jKjj2 > 0. As a consequence, there exists

some constant d0 > 0 such that A(y) > d0y2 for all y ∈ (0, 2π ).
To conclude that

⏐⏐Ĥλ(iℓ)
⏐⏐ is bounded away from 0 we argue as

follows. Suppose that
⏐⏐ℑ (Ĥλ(iℓ)

)⏐⏐ = |c∗ℓ + 1| < 1/2, then we
have 1/2 = 1 − 1/2 ≤ |c∗ℓ| and thus |ℓ| ≥ 1/2c∗. Now in that
case, we observe that⏐⏐ℜ (Ĥλ(iℓ)

)⏐⏐ =
sm

|ℑ(λ)|
A(ℓℑ(λ)) =

sm(ℓℑ(λ))2

|ℑ(λ)|(ℓℑ(λ))2
A(ℓℑ(λ))

≥
d0smλ∗

4c2
∗

.

Coming back to (4.3), we have

Hλũ =
1

ℑ(λ)
R(z, ℜ(λ), ũ),

and as a consequence, using the bound in (4.4) and the fact that⏐⏐Ĥλ(iℓ)
⏐⏐ is bounded away from 0 for all ℓ ∈ R and all λ ∈ C with

|ℑ(λ)| > λ∗, we have

∥ũ∥L2(R) ≤
(|ℜ(λ)| + C)

C̃ |ℑ(λ)|
∥ũ∥L2(R). (4.5)

Recall that |ℜ(λ)| ≤ κ , then for all λ ∈ C such that |ℑ(λ)| > λi :=

max
{
2
(

κ+C
C̃

)
, λ∗

}
, the only solution of (4.3) has to be ũ = 0. As

a consequence, we have shown that L − λ : H1(R) → L2(R) is
injective for all |ℑ(λ)| > λi with −κ ≤ ℜ(λ) < 0. This concludes
the proof of the claim and thus of the theorem. ■

5. Discussion

Summary of main results. In this paper, we have shown the exis-
tence of monotone traveling front solutions for lattice neural field
equations of the form

u̇n(t) = −un(t) +

∑
j∈Z

KjS(un−j(t))

with infinite range couplings andwhen the associated dynamics of
each individual neuron is of bistable type, under mild assumptions
on

(
Kj
)
j∈Z and S. We also proved that traveling front solutions

having nonzero wave speed are unique up to translation. Further-
more, we have explored the spectral properties of such nonzero
wave speed fronts, provided an extra exponential localization of
the connectivity weights Kj. More precisely, we have interpreted
solutions of the LNFEs as solutions to the following nonlocal partial
differential equation

∂tu(t, x) = c∗∂xu(t, x) − u(t, x) +

∫
R
KjS(u(t, x − j)),

and we have studied spectral properties of the linearized operator
L given by

Lv = c∗∂xv − v + Kδ ∗ [S ′(u∗)v],

round a non zero wave speed traveling front (u∗, c∗). Because of
the invariance by translation, λ = 0 is an algebraically simple
eigenvalue of L associated to the eigenvector u′

∗
and the spectrum

of L is invariant under the operation λ ↦→ λ + 2π ic∗ such that
2π ic∗Z ⊂ σ (L). The main result regarding the operator L is that
L − λ : H1(R) → L2(R) is invertible for all λ ∈ C \ 2π ic∗Z such
that ℜ(λ) ≥ −κ > min

{
−1 + S ′(0), −1 + S ′(1)

}
.

Towards nonlinear stability. Our spectral analysis is a preliminary
step towards a nonlinear stability analysis of (1.1) around a trav-
eling front solution. Let us explain how such a spectral analysis
could be used to get insight on the asymptotic behavior of solutions
of (1.1) starting from an initial condition close to a traveling front
solution. Let us introduce the nonlinear operator

F : ℓ∞(R) −→ ℓ∞(R)
u ↦−→ F(u) = −u + K∗dS(u),

(5.1)

where for all n ∈ Zwe have set

(K∗dS(u))n :=

∑
j∈Z

KjS(un−j),

and

ℓ∞(R) :=

{
u = (un)n∈Z ∈ RZ

| ∥u∥ℓ∞(R) := sup
n∈Z

|un| < ∞

}
.

Using this notation, we can then write (1.1) as

u̇(t) = F(u(t)), t > 0 (5.2)

for which u∗(t) = (u∗(n− c∗t))n∈Z with c∗ ̸= 0 is a solution, where
the existence of the profile u∗ is given by Theorems 1 and 2. To
study the stability of u∗(t), we look for solutions of (5.2) that can
be written as u(t) = u∗(t)+ v(t) where v(t) is a perturbation of the
traveling wave solution u∗(t). We then find that v(t) must satisfy
the time-dependent lattice neural field equation

v̇(t) = DF(u∗(t))v(t) + N (t, v(t)), (5.3)
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in which

N (t, v(t)) = F(u∗(t) + v(t)) − F(u∗(t)) − DF(u∗(t))v(t). (5.4)

Then the strategy would be to obtain spectral properties for v̇(t) =

DF(u∗(t))v(t) from those of the operator L in order to be able to
close a nonlinear stability argument. This method was introduced
and successfully implemented by Benzoni-Gavage and coauthors
in [25] by analyzing associated Green’s functions for the nonlinear
stability analysis of semidiscrete shock waves and more recently
reused in the context of nonlinear stability analysis of traveling
pulses in the discrete FitzHugh–Nagumo equations with finite and
infinite range interactions [26,27]. We conjecture the following
result with perturbations measured in the Banach spaces ℓp(R),
which are defined by

ℓp(R) :=

⎧⎨⎩u = (un)n∈Z ∈ RZ
| ∥u∥ℓp(R) :=

(∑
n∈Z

|un|
p

) 1
p

< ∞

⎫⎬⎭
for 1 ≤ p < ∞.

Conjecture 1 (Nonlinear Stability). Suppose that the Hypotheses
(H1)–(H2η) are satisfied and let (u∗, c∗), with c∗ ̸= 0, be the unique
(up to translation) strictly monotone traveling wave solution to (1.1)
as given in Theorem 1. We denote by u∗(t) := (u∗(n − c∗t))n∈Z.
Then for all 1 ≤ p ≤ ∞, there exist constants δ > 0, C > 0,
ω > 0 such that for all sequences u0 = (u0

n)n∈Z which satisfy
∥u0 − u∗(0)∥ℓp(R) ≤ δ, there exists an asymptotic phase shift ξ0 ∈ R
such that the unique solution t → u(t) = (un(t))n∈Z of (1.1), with
initial condition u(0) = u0, verifies

∥u(t) − u∗(t + ξ0)∥ℓp(R) ≤ Ce−ωt
∥u0 − ū(0)∥ℓp(R),

for all t ≥ 0.

Monostable nonlinearities. An interesting extension of the present
work would be to look at another class of nonlinearity. Here, we
assumed that the associated dynamics of each individual neuron is
of bistable type, but one could studymonostable type of dynamics.
Roughly speaking, in themonostable case, one would suppose that
for f defined in (2.2) we have f (0) = f (1) = 0 and f (u) > 0 for all
u ∈ (0, 1) with f ′(0) > 0 and f ′(1) < 0. Such a case was recently
considered in [11] for continuous neural field equations and we
expect to find similar results in the discrete setting. In particular,
when the connectivityweightsKj are not exponentially localized in
the sense of Hypothesis (H2η), we conjecture that there does not
exist anymonotone traveling front solutions and that the level sets
of solutions of the LNFE associated to a compactly supported initial
condition propagatewith an infinite asymptotic speed. This will be
the subject of future works.

Linear adaptation & traveling pulses. To study the propagation
of pulses, i.e. non-monotone traveling waves connecting the ho-
mogeneous stationary states, one introduces a linear adaptation
mechanism so that the LNFE becomes a system of the form

u̇n(t) = −un(t) +

∑
j∈Z

KjS(un−j(t)) − vn(t), (5.5a)

v̇n(t) = ϵ(un(t) − avn(t)), (5.5b)

where 0 < ϵ ≪ 1 is a small temporal parameter reflecting the slow
nature of the adaptationmechanism and a > 0 is a fixed parameter
chosen such that (u, v) = (0, 0) is the only stationary homoge-
neous steady state of (5.5b). Proving the existence of nonzerowave
speed traveling pulse solutions of (5.5b) amounts at findingprofiles
u ∈ C 1(R) and v ∈ C 1(R) together with a real c ̸= 0 solution of

− cu′
= −u + K∗δS(u) − v, (5.6a)

− cv′
= ϵ(u − av), (5.6b)

verifying the limits

lim
x→±∞

(u(x), v(x)) = (0, 0).

Suppose that Hypotheses (H1) and (H2η) are satisfied and that
there exists a unique (up to translation) traveling wave front so-
lution uf

∗ with nonzero wave speed c∗ > 0 of (5.6a) for v = 0
connecting u = 0 and u = 1 at ∓∞, then the spectral properties
of the linear operator L(uf

∗) associated to this front (as defined in
(2.3)) are given by Theorem 3. If we further suppose that there
exists some v∗ ∈ R for which there is a traveling back solution
ub

∗
of (5.6a) for v = v∗ with precisely nonzero wave speed c∗,

connecting two states v± at ±∞, we shall expect that the same
spectral properties hold true for the linear operator L(ub

∗
) associ-

ated to this back solution. Under this setting, we can then rely on
[12, Theorem 1] which tells us that for each sufficiently small ϵ >
0, there exist profiles uϵ , vϵ ∈ C 1(R) and a wave speed cϵ > 0 such
that (uϵ(n − cϵt), vϵ(n − cϵt)) is solution of (5.6b) for all n ∈ Z and
t > 0 and further satisfy the limits

lim
x→±∞

(uϵ(x), vϵ(x)) = (0, 0).

As a consequence, upon assuming that S (and thus f in (2.2))
has the good properties to support the existence of a traveling
back solution ub

∗
whose associated spectral properties are given by

Theorem 3, then one gets the existence of traveling pulse solutions
for the LNFE with linear adaptation (5.5b).

Approximation of continuous neural field equations. As explained in
the introduction, LNFEs can be obtained by discretizing continuous
neural field equations of the form

∂tu(t, x) = −u(t, x) +

∫
R
K (x − y)S(u(t, y))dy, x ∈ R.

Assume a regular discretization of the real line with xj = jh for
j ∈ Z and 0 < h ≪ 1. Evaluating the above equation at x = xn and
slightly rewriting the integral, we get

∂tu(t, xn) = −u(t, xn) +

∑
j∈Z

∫ jh+h

jh
K (y)S(u(t, xn − y))dy,

from which we can use for example a rectangle quadrature rule to
approximate∫ jh+h

jh
K (y)S(u(t, xn − y))dy ≈ hK (xj)S(u(t, xn−j)).

Eventually, we arrive at the following LNFE for uh
n(t), an approxi-

mation of u(t, nh),

u̇h
n(t) = −uh

n(t) +

∑
j∈Z

K h
j S(u

h
n−j(t)), (5.7)

where we set K h
j := hK (jh). One can then use the techniques

in [16,27] together with the results developed in this paper to
study traveling front solutions of (5.7) and analyze under which
assumptions the corresponding front solution converges as h → 0
to an actual travelingwave solution of the initial continuous neural
field equation.

Other types of networks. In a more exploratory direction, it would
also be interesting to studyneuronal dynamics set on other types of
networks, such as for example homogeneous trees or Erdös–Réyni
graphs. Let us mention the works of [28,29] and references therein
on the study of traveling fronts for reaction–diffusion on networks.
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Appendix. Comparison principles

In this section, we present comparison principles for the lattice
neural field equation (1.1). For any sequence u = (un)n∈Z ∈ ℓ∞(R),
we recall the definition of the nonlinear operator F:

F : ℓ∞(R) −→ ℓ∞(R)
u ↦−→ F(u) = −u + K∗dS(u),

where for all n ∈ Zwe have set

(K∗dS(u))n :=

∑
j∈Z

KjS(un−j).

Lemma A.1. Assume that K and S satisfy Hypotheses (H1)–(H2).
Suppose that there exist two sequences t ↦→ u(t) ∈ C 1 (R, ℓ∞(R))
and t ↦→ v(t) ∈ C 1 (R, ℓ∞(R)) that satisfy

u̇(t) ≤ F(u(t)), v̇(t) ≥ F(v(t)) ∀t > 0, with u(0) ≤ v(0),

then for all t > 0 we have u(t) ≤ v(t).

Proof. First, we easily see that for all t > 0 we have
d
dt

(
etu(t)

)
≤ etF(u(t)), and

d
dt

(
etv(t)

)
≥ etF(v(t))

such that

u(t) − v(t) ≤ e−t (u(0) − v(0)) +

∫ t

0
e−(t−τ )K∗d (S(u(τ ))

− S(v(τ ))) dτ ,

≤ sm

∫ t

0
e−(t−τ )K∗d[u(τ ) − v(τ )]+dτ

where [u(t) − v(t)]+ =
(
[un(t) − vn(t)]+

)
n∈Z and [ · ]+ stands for

the positive part. We can then define

ρλ(t) := sup
n∈Z

[un(t) − vn(t)]+e
−λt ,

and ρ̄λ := sup
t∈[0,T ]

ρλ(t) for some arbitrary T > 0 and λ that will be

fixed later. We readily obtain that

ρλ(t) ≤ smρ̄λ

∫ T

0
e−(1+λ)τdτ ,

and thus

ρ̄λ

(
1 −

sm
1 + λ

)
≤ 0.

Then, there exists λ∗ > 0 large enough such that for all λ ≥ λ∗ we
have ρ̄λ ≤ 0. As a conclusion, we have shown that for any T > 0,
u(t) ≤ v(t) for all t ∈ [0, T ], which concludes the proof. ■

Now, we are going to extend a result from [24] to our discrete
setting. Here we assume that τ0 > τ , c ̸= 0, R1 ⊂ R is an open set
andR2 = R\R1, (x, t) ↦→ g(x, t) ∈ L∞(R×[τ , τ0]) and the sequence
of functions

(
(x, t) ↦→ Kj(x, t)

)
j∈Z is such that there exists k0 > 0,

k1 so that for any (x, t) ∈ R × [τ , τ0] the sequence
(
Kj(x, t)

)
j∈Z

satisfies

k0Kj ≤ Kj(x, t) ≤ k1Kj for all j ∈ Z, (A.1)

where (Kj)j∈Z a sequence satisfying Hypothesis (H2). We will de-
note K · u(x, t) :=

∑
j∈ZKj(x, t)u(x− j, t) for all (x, t) ∈ R× [τ , τ0].

Lemma A.2. Assume that u ∈ C 1([τ , τ0], L∞(R)) ∩ C ([τ , τ0],

W 1,∞(R)) and suppose that u(x, t) ≥ 0 for all t ∈ [τ , τ0] and x ∈ R2
and u satisfies

∂tu − c∂xu − g(x, t)u − K · u(x, t) ≥ 0 (A.2)

t ∈ [τ , τ0] and x ∈ R1. If u(x, τ ) ≥ 0 for all x ∈ R, then u(x, t) ≥ 0
for all t ∈ [τ , τ0] and x ∈ R. Moreover, if u(·, τ ) ̸= 0 on R then
u(x, t) > 0 for all t ∈ [τ , τ0] and x ∈ R1.

Proof. Without loss of generality we may assume that τ = 0.
Up to slight modification of the subset R1 and R2, as outlined
in [24], we can also consider the case where c = 0 in (A.2). By
our assumption on the regularity of u, if the first conclusion of
the lemma is not true, then there exist ϵ > 0 and T ∈ (0, τ0]
such that u(x, t) > −ϵe2κt for all 0 < t < T and x ∈ R with
inf
x∈R

u(x, t) = −ϵe2κT where κ = sup
(x,t)∈R×[τ ,τ0]

|g(x, t)|+k1. Therefore,

there exists an interval [a, b] such that u(x, T ) ≤ −
15
16ϵe

2κT for
x ∈ [a, b]. Following the strategy of [24], we introduce a smooth
function ζ (x) such that ζ (x) = min

x∈R
ζ (x) = 1 for x ∈ [a, b],

sup
x∈R

ζ (x) = ζ (±∞) = 3 and |ζ ′(x)| ≤ 1. We define wσ (x, t) =

−ϵ
( 3
4 + σζ (x)

)
e2κt for σ ∈ [0, 1]. As by construction we have

w1/4(x, t) ≤ u(x, t) for all t ∈ [0, T ] and x ∈ R and w1/8(x, T ) >

u(x, T ) for x ∈ [a, b] there exists a minimum σ∗ ∈ (1/8, 1/4] such
thatwσ∗

(x, t) ≤ u(x, t) for t ∈ [0, T ] and x ∈ R.We claim that there
exist a sequence (xn, tn) ∈ R1 and (x0, t0) such that inequality (A.2)
respectively holds for (i) (xn, tn); (ii) lim

n→∞
(xn, tn) = (x0, t0); (iii)

lim
n→∞

(
u(xn, tn) − wσ∗

(xn, tn)
)

= 0 the infimumofu(x, t)−wσ∗
(x, t)

on R × [0, T ]. The proof of the claim can be found in [24] and is
omitted. As a consequence, we have

0 ≥ lim
n→∞

∂t (u − wσ∗
)(xn, tn)

≥ lim inf
n→∞

(K · u)(xn, tn) − 2κwσ∗
(x0, t0)

+ sup
(x,t)∈R×[τ ,τ0]

|g(x, t)|wσ∗
(x0, t0)

≥

(
k1 + sup

(x,t)∈R×[τ ,τ0]

|g(x, t)| − 2κ

)
wσ∗

(x0, t0) > 0,

which is a contradiction, therefore u(x, t) ≥ 0 for all x ∈ R and
t ∈ [τ , τ0].

For the last part of the conclusion, we define v(x, t) = eκtu(x, t)
then we have ∂tv(x, t) ≥ k0Kδ ∗ v(x, t) = k0

∑
j∈ZKjv(x − j, t)

for x ∈ R1 and t ∈ [τ , τ0] since u(x, t) ≥ 0. Then we have
v(x, t) ≥ tk0Kδ ∗ v(x, 0) for 0 ≤ t and after N iterations we get

v(x, t) ≥ k0
tN

N!
Kδ ∗ · · · ∗ Kδ ∗ v(x, 0), x ∈ R1.

Aswe have K±1 > 0 and thatu(·, τ ) ̸= 0 onR there always existsN
large enough such thatKδ∗· · ·∗Kδ∗v(x, 0) > 0 and thusu(x, t) > 0
on R1. ■
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