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1. Introduction

The study of the integrability by separation of variables of the Hamilton-Jacobi equations is a classical problem in Mechanics, dating
back to the foundational works of Jacobi, Stdckel, Levi-Civita and others.

In 1904 and in a letter addressed to P. Stdckel and published in the Matematische Annalen [1], Levi-Civita deals with the problem
of the integration by separation of variables. In the introduction of this letter he writtes: Ho notato che si possono facilmente assegnare
(sotto forma esplicita di equazioni a derivate parziali ...) le condizioni necessarie e sufficienti cui deve soddisfare una H affinch’e I'equazione

oW ow
Hlz,...,2yy, —, ..., — :h, (1)
821 BZM
ammetta un integrale completo della forma
W =Wi(z1,01,...,am) + -+ Wnlzm, o, - .., o), (2)
dove aq, ..., ay and h sono le costanti arbitrarie. Da queste condizioni scaturiscono alcune conseguenze di indole generale, che mi sembrano

abbastanza interessanti, per quanto il dedurre da esse la completa risoluzione del problema apparisca ancora laborioso, e non vi sia nemmeno
- oserei affermare - grande speranza di trovare tipi essenzialmente nuovi, oltre a quelli da Lei Stdckel scoperti. Indeed, Levi-Civita shows
that

Theorem 1 (Levi-Civita Theorem). Hamilton-Jacobi equation (1) has a first integral of the form (2), if and only if the Hamiltonian H satisfy
the M(M — 1)/2 second-order partial differential equations
oH 9H 3%H N oH 9H 9%H
an 3Pk 3Zj32k 8zj aZk 3Pj3Pk

OH OH 9*H  9H 0H 9°H

3P; 0z, 0z;0P, 0Py 0z 0Pidz;
forj, k=1,..., M with j # k. Take into account that Ly(z, P) = Lyj(z, P).

Li(z, P) =
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The application of this criterion to the investigation of the integrability of the Hamiltonian systems is a non-trivial problem. Levi-
Civita‘s result provides a criterion for deciding when a given Hamiltonian H independent of the time is separable or not, it does not give
an effective method for finding the separable coordinates for a given Hamiltonian. To find such coordinates it is in general a difficult
problem which has only been solved for particular Hamiltonians.

The integrability by separation of variables of the Hamilton-Jacobi equations has recently received a big attention due to its
applications to the theory of integrable partial differential equations of Korteweg de Vries type and to the theory of quantum integrable
systems (see for instance [2-4]). In the review Separation of Variables. New Trends see [5] Sklyanin argued that separation of variables
could be the most universal tool to solve integrable models of the classical and quantum mechanics.

The question of separation of variables for Hamiltonian systems was studied intensively in the second half of the last century (see
for instance [3,6-13]). For an outline of the theory of separation of variables we refer to the book of Kalnins [14].

There exists an equivalent definition of separability, originally due to Jacobi and recently widely used by Sklyanin and his
collaborators (see for instance [3]).

Consider a Hamiltonian mechanical system defined by the Hamiltonian H = H; with M degrees of freedom and integrable in the
Liouville sense, i.e. there exists a family of M — 1 first integrals H-, ..., Hy such that

(a) they are in involution with respect to the Poisson bracket, that is

M
dH; 3H, OH; oH
HHy =Y (- ) =0,
J 9P, 9z, 9z AP
= J 04 j O]

forj,k=1,..., M,
(b) they are independent, i.e. the rank of the matrix formed by the gradients of Hy, ..., Hy is M except (perhaps) in a set of zero
Lebesgue measure.

An integrable Liouville Hamiltonian system with M degree of freedom and M first integrals H; = H, H,, ..., Hy is separable in the
canonical coordinates (z1, ..., zy, P1, ..., Py) if there exist n non-trivial relations

®i(z, P Hy, ..., Hy)=0, for j=1,...,M, (4)

connecting single pairs (z;, P;) of canonical coordinates with the M first integrals Hy, ..., Hy. Note that the knowledge of the separation
relations (4) allows to reduce the problem of finding a separated solution of the Hamilton-Jacobi equation to quadratures. Indeed, one
can solve the relations (4) with respect to P;, then we get that P; = fi(z;, Hi, ..., Hu) and then we can define the generatrix function

AAAAA Hy=apy duj’

Mg
S(Z], ey ZM, O, e, am) = Z/ f}'(uj', Hy, ..., HM)‘HI:QI
j=1 Y40
of the Hamilton-Jacobi equation (see for instance [5,15]).

The aim of this paper is to study the problem of separation of variables by using the classical approach, i.e. the Levi-Civita approach. In
particular we give new properties of the Levi-Civita conditions (see Section 3), and we establish the relations between the integrability
in Jacobi and Frobenius sense (see Theorem 10). We determine a new equivalent expression for the Levi-Civita conditions (see
Theorem 13). We obtain all the Hamiltonian vector fields admitting a two or three dimensional Lie algebra (see Theorem 18 and
Propositions 24 and 25). Finally we prove the integrability of some new Hamiltonian vector fields (see Propositions 26 and 30).

2. Preliminary results. On the Hamilton-Jacobi equation

Let H = H(zy,...,zu, P1, ..., Py) be a Hamiltonian. We study the Hamiltonian vector field
M M
oH o oH 0
=YL=y (—-—=—). >
=20 Z(apjazj azjapj> (5)
j=1 j=1
associated to the Hamiltonian system
de de
— =1{H, z;}, — ={H,P}, for k=1,...,M. 6
i {H, z} " {H, P} (6)
The transformation of the R?M space
(z1,....zm, P1o .., Pu) — (25, ..., z5. Py, ..., P}) (7)

under the condition

d(zr,....z5, Pr, ... P}
det (1 M> 1 M) £0, 8)
8(2],...,2)\/], P],...,P[\/])

is called canonical transformation if the Hamiltonian system (6) is transformed into the Hamiltonian system

dz} dp?
d—t"z{H*,z,’:}, dtk = {H*, P}, for k=1,...,M. 9)

The Hamilton-Jacobi theory wants to find the canonical transformations which writes system (6) in its simplest form.
The following theorem is well known (see for instance [16,17]).
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Theorem 2. Transformation (7) satisfying (8) is canonical if and only if there exists a function F and a constant c such that
M
> (Pidz; — Pudzi) — (H* — cH)dt = —dF(t,z1, ..., 2w, P1, ..., Pu), (10)
k=1

9%F
where F is such that det #0
8zj8Pk

Among the group of canonical transformations there exists a subgroup which is determined by the condition
0(zx,...,z¢
ot [ 21 E) ) g
d(Pr,...,Py)

Under this condition it is possible to choose (t,z1,...,2u, Zj,...,2;;) as Hamiltonian variables. In these variables the function F is
usually denoted by S, i.e.

S(f,Zl,...,Zl\/l, ZT,...,Z;CI)Z F(tvzlv---’ZM5P15-~-7PM)|P—>2*-

Under these conditions from (10) we get that

N as . S .
— =cP, ——=-P, — =H"—CcH.
0z 0z; at

The most interesting subcase of canonical transformations is when H* = 0. Clearly in this case from (9) it follows that
Zy = o, Py = k.

Hence to construct a canonical transformation it is necessary and sufficient to determine S as a solution of the so called Hamilton—Jacobi
equation

8S—i—cH t,z z 05 05 =0 (11)
ot 541y« e s 4M> 8217.“7821\/[ — Y,

92S
with det ( ) #0
3Zja(¥k

Theorem 3 (Jacobi Theorem). The integration of (6) is equivalent to solve (11).

For more details of Jacobi Theorem see for instance [16,17].
A solution S of the Hamilton-Jacobi equation, contains M + 1 undetermined constants, the first M of them denoted as o1, a, ..., apy,

as as
and the last one coming from the integration of —. If the Hamiltonian does not depend on the time explicitly, then the derivative m
in the Hamilton-Jacobi equation must be constant, usually denoted by —h, consequently

S=W(z,2,...,2u) — ht. (12)
If the function W can be separated completely into M functions of the form Wy (zn, a1, @3...ay) form =1, ..., M, i.e.
S = Wi(z1, ay, ag..op) + - - - + Wy(zu, a1, a...ay) — ht,
then we say that the Hamiltonian system is integrable by separation of variables or integrable in the Jacobi sense.
When the Hamiltonian H does not depend on ¢t from (11) and (12) the Hamilton-Jacobi equation reduces to Eq. (1).
3. Properties of the Hamiltonian systems satisfying Levi-Civita conditions
The aim of this section is to prove some properties of the Hamiltonian systems which admit a separation of variables. Differential
system (3) has the following properties.

(I) Partial differential system (3) can be written in the following equivalent forms

(1)

oH
3%H 0 32H o
9zj0z Pz | | oy
2 -
9H 9H oH 9H\ |o __OH 0 3P
v s o o 30 Il =0,
P, 9P, 9z 0z i a2 oH
0o o0 0 9z
PP, 32"
0 0 0 0 &

0z
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(ii) By considering that (3) can be rewritten as
(aH 3?°H  9H 9°H >8H (BH 9?H  9H 9%H; ) OH

’

0P 92,0P; 0z, OP,0P; ) 0z \ 9P, 0z,dz; 0z, IPcdz ) OP;
. . ) oH 0 oH 9 . ]
and introducing the vector field Iy, = — — — — —— (see formula (5)) we easily deduced that Eqs. (3) can be written
aPk 8Zk 8Zk 3Pk
as
oH\ oH oH\ oH
nnl—)—-Ix\—)—=0. (13)
sz aP] 8P] aZj
(iii) Denote by
oH soH
R=-——/—, (14)
3Zj 3Pj
then differential system (3) can be written as
IWRj=0, where kj=1,....,M, j#k (15)

Indeed, after some computations we can show that

LR _ﬁi(R)_ﬁi(R)
KT pcaze VT 9z 0P V!

aH\ 2 aH\ oH 9H\ oH
=—(=) (05 ) (55 ) 55 ) =0
3Pj 3Zj an an 8Zj

(I) Proposition 4. Let H = H(zy, ...,zy, P1, ..., Py) be a solution of (3). Then H = H(Py, ..., Py, z1, ..., zy) is also a solution of (3).
Proof. It is evident. O
We observe that this property is important because if we have a Hamiltonian which is integrable in the Jacobi sense, then the
same Hamiltonian under the change z; «— P; is integrable in the Jacobi sense.

(III) Proposition 5. Let H be a solution of (3). Then F(H) satisfies (3) for arbitrary C? function F.
Proof. After some computations it is easy to show that

OF(H) _ OF(H)®H  OF(H) _ 9F(H)OoH

aP,  OH dP 3z  OH 0z’
9%F(H) OF(H) 9%H 9%F(H) 9H oH
aPdP;  9H aP@P;, | 9HAH oP; aP’
92F(H)  9F(H) 8*H  0*F(H)dH oH
aPdz;  OH 0Pdz  9HAH dz P,
9%F(H) OF(H) 9*H  9%F(H) dH dH
9z20z;  OH dzdz | OHOH 0z 9z

Hence after some computations we get that

9F(H) 9F(H) 8°F(H)  9F(H) dF(H) 9*F(H)
3Pj dP 8zjazk + 3Zj 0z anaPk
dF(H) 9F(H) 9%H dF(H) 9F(H) 3%F(H)

©0P; 0z, 0z0P, 0P, 0z 0Pz
OF(H)\® / 0H 0H 82H  9H 0H 9°H
("5 Gty i * o e
9H 9H 9°H dH 9H 9°H

~ 35, 52 R~ oy 3y 950 )

Consequently in view of (3) we obtain that

dF(H) dF(H) 8*F(H)  dF(H) dF(H) 3%F(H)

8135 3Pk 8zj82k + 8Zj aZk 3Pj8Pk
OF(H) 0F(H) 9°F(H) ~ 8F(H) 0F(H) 8*F(H) 0
aP; 3z, 0zdPk P, 9z; POz

i.e. since the function H satisfies the Levi-Civita conditions, then the new Hamiltonian F(H) is integrable in the Jacobi sense. O
(IV) Proposition 6. Consider the functions

m m
U= alz.P). V=) BzP).
j=1 j=1
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where aj(z;, P;) and Bj(z;, P;) are C? functions which satisfy the conditions
doj 0B  0aj 9B
o, By = =2 = =L o,
an 3Zj 3Zj an
for j=1,...,m. Let F and G be C? functions.

(i) Then the Hamiltonian vector I'y with H = F(U) 4+ G(V) is integrable in the Jacobi sense if and only if

F(U)= —Alog|U +a|, G(V)= Alog|V + b|, (16)
where a, b and A are arbitrary constants. Consequently
Vbt
H(U,V)=1lo
( ) & U+a

(ii) Then the Hamiltonian vector I'y with H = F(U)G(V) is integrable in the Jacobi sense if and only if
FU)=U+a*, GV)=(V+b* (17)
where a, b and A are arbitrary constants. Consequently
U+a\"
H(U,V)= .
w=(y;)

Proof. For statement (i), we insert H = F(U) 4+ G(V) into the Levi-Civita conditions (3) and after some computations we get that

e e, i ((25) 6 (26) 0 )
% P PN\ 30 ) avav T\av ) auau ) T

forj,k=1,...,M and j # k. Hence, from the previous equation we obtain
092G 32F
avav_ _ auay _ 1

IG\>  [oF\® A
&) (@)
or equivalently
9%G
vav 0 [(dG\ ' 1
_ (87> _1

aG\2 9V
()
d°F
auau 0 (31:)1 _ 1

3

9F\>  aV
(%)

After integration of these partial differential equations we obtain (16). So statement (i) is proved.
For statement (ii), we insert H = F(U)G(V) into the Levi-Civita conditions (3) and after some computations we get that

L OF\* (G 3G\ 0G\* (p O°F F\N _ o
{5 Aot Pl <ﬁ> ( VoV (W) )+ <W) ( auau (@) > =

au A

Thus
e () - 1)
avVoVv 1% A\av /)’
- () - 1)
oUaU ou A \oU
Consequently
3%G aG 8°F oF
W (1) ()
G r) G’ oF r) F
v U

Hence after integration we get (17). Thus the proof of the proposition is done. O
+a. . . . .
is integrable in the Jacobi sense, then from Proposition 5

By considering that the Hamiltonian system with Hamiltonian

U+a
we get that any function F (VIIJ) is integrable in the Jacobi sense, where F is an arbitrary C? function.
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Problem 7. Assume that the Hamiltonian systems with Hamiltonian
F :F(Zl,...,ZM,P],...,PM) and G:G(Zl,...,ZM,P1,...,PM)

are integrable in the Jacobi sense. Establish the conditions on F and G under which F + G and FG are integrable in the Jacobi sense.
(V) The Lie algebra is a vector space g together with a bilinear map g x g — g; (X, Y) — [X, Y] = XY — YX, called the Lie bracket,
satisfying the Jacobi identity

Z, X, Y1+ [X, [Y, ZI1 + [Y, [Z, X]] = 0,

for arbitrary X, Y, Z € g. In particular the set of vector fields on a manifold 9 is a Lie algebra.
Proposition 8. Assume that the Hamiltonian vector field I'y ZJ 1 I, given in (5), is integrable in the Jacobi sense, then

[I5, IhI(H) = 0. In other words if the Hamiltonian vector field I'y is integrable in the Jacobi sense then I}, I't and [I;, I%] are
tangents to the hypersurface H = h. Here j, k and n vary in {1, ..., M}.
Proof. Consider

OH & 8H 8 \(0H 8 9H 9
o= (M2 (mo vy,
an BZ] aZj aPJ BPk aZk aZk aPk
OH & 9H 8 \(0H 0 9H 9
(Tmﬁ_aTm) (ap 9z, 9z ap)m
OH 9*H  oH 9°H \ af (@H 8*H  8H 9°H \ of
(apj Pz 0z aPkaP) 3z (apj 9200z 0z ap,azk) Py
9H 9%H OH 0°H \ of OH 9°H  9H 9°H \ of
a (aTk 9z:0P, 0z aaam) 3z (aTJk 9200z 0z aPkaz,> P’

where f = f(z1, ..., 2Zm, P1, ..., Py) is an arbitrary C? function, or equivalently

H\ of aH\ of of of
0= (5 (3) - () ) - () - () )

Hence taking f = H from (13) we get that

oH '\ oH oH\ oH oH\ oH oH\ oH
[, Til(H) = — Il )\l )Tkl )55 ) =0
8P azk aZk 8Pk an 3Zj BZ]‘ 8Pj

Since clearly I'j(H) = I't(H) = 0, from the definitions of I and I} the proposition is proved. O

4. Integrability in the Jacobi and Frobenius sense

Let © be a differential system in a manifold 9t and V(®) be the set of vector fields X such that X(y) € © for all y € 9 (see for
instance [18]).

Theorem 9 (Frobenius Theorem). Differential system © is completely integrable if and only if V(D) is a Lie algebra, ie. [X,Y] € V(D)
for all vector fields X, Y € V(D), or what is equivalent if X, ..., Xy generate V(D). Then there exist functions CJ’; = —C,fj such that

(X, Xal = Zk—l ]nXk, forjyn=1,...,M.

Let I} be the Hamiltonian vector fields given in (5). We say that the Hamiltonian vector field Iy = ZJAL I; is integrable in the
Frobenius sense if and only the vector fields I} for j,n = 1,..., M are such that [I}, I] = Y, Gyt I, The Hamiltonian vector field

I'y = Zj'\il T} is integrable in the Jacobi sense if and only the vector fields I forj=1,..., M satisfy (15).
The next result show that a Hamiltonian is integrable in the Jacobi sense if and only if is integrable in the Frobenius sense.

Theorem 10. The Hamiltonian vector field I'; = Z 1 I is integrable in the Jacobi sense if and only if it is integrable in the Frobenius
sense.

O0H 8 0H 9
Proof. From the relation I; = — — — — — it follows that
d0P;j 0z; 0z OP;
n+ oH 9
9 ag0p (19)
aZj - oH ’

"
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a
Inserting v into (18) we obtain
Zj

0
U5, Il = (Fk log

H I; I;l H I

AN r—(roe |22

op|) T\ op|)
dH\ oH doH\ 0H\ 0

+ (o ) oo — | T P (20)
aP; ) 0z dzj ) dP; ) oP;

oH '\ 0H oH\ o0H\ 0
~ 535 ) 52— Tz ) 56 ) 35
BPk 3Zk aZk BPk 3Pk

oH
Thus assuming that Iy is integrable in the Frobenius sense, i.e. [I], I}] = Zn 1 C]an, and consequently the coefficients of — and

k
oH oH '\ oH oH\ oH L. ..
—— must be zero, i.e. [| — )| — — Ij{ — ) = = 0. Hence in view of property (I) (see formula (13)) we get that I} is integrable
3Pk 3Pk 82]( aZk 8Pk
in the Jacobi sense.

The reciprocity it is easy to obtain, indeed from (20) it follows that if I'y is integrable in Jacobi sense then (13) holds, consequently

we obtain that
oH
3P, ) I — (log D I = E G Tn- (21)

J
Hence we get that the functions C; are such that Cj
C]

oH _ oH
ik = T | log | — op, C]k = —TI; | log | — 3P,

I3, Il = Ik (log

_Olfn;éjorn;ékand
) (22)

Remark 11. The proof of Theorem 10 also can be done using

In short the proposition is proved. O

L

3 7 ap oz

o= OH
aZj

B
instead of (19). Indeed inserting 3P into (18) we obtain
J

[5G, Ikl= TIkllo |8H| Ii—T;|lo |8H| I
Jjr Lkl = k g BZ]‘ J j g 3z¢ k
oH\ 0H OH\ 0H\ 9
+ (I —= -\l =)= )—
oP; 821 dzj ) dP; ) 0z
oH\ oH oH\ o0H\ 0
(o
aPk 8Zk 3Zk BPk BZk
dH\ oH 0H\ 0H
Thus if I'y is integrable in the Frobenius sense, then [[], I't] = Cj;/5, and consequently I; — —Ti|— ) — =0,ie. Iy is
J oPy ) 0z 0z, ) 9P

integrable in the Jacobi sense. Hence we obtain that

M r_ r (g 22 1y (23)
on o ,
azi|) ! 8loze|) "

il k
Consequently the functions Cj, are such that Cj = 0 if n # j or n # k and

j oH oH
C]k =TIy|log|—1|], C]k log | — 2
Zk
Proposition 12. The system
oH ¢ OH oH « OH
i\ =)= G I; =Gy
8Pk J aPk 82]( ] 82,(

sz
24
oH j OH oH j OH (24)
hil—=)= ¢, nLl—)=¢—.
aPp; 7 oP; 9z 70z

can be written in the matrix form

WE =0, (25)

5, 1l = I (log
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where
3*H 9°H j
- C‘k 0
aPkazj aPkan J
8%H 9%H ;
- 0 c,
W= aZkf)Zj 8Pjalk x
‘ 3*H 3*H
—Cik 0 ) - )
8Pjazk BPkan
‘ 3*H 3*H
0 C

R 9z0z; 0Pz

o0H 0H 0H 0H

T
—, —, —, —, | . Moreover the differential system (25) has non-trivial solutions if and only if
8Pj 3Zj oP, 0z

and§=<

PH 9°H  9°H °H )2 o

det(W) = ( —ckc -
(W) ( jkjk + dP;0P 0z40z; AP0z 3z OP;

Proof. From (25) by considering that the vector & is a non-zero vector, then in view of the relation

+

3?H  92H 3?H 9°H )2

detw = | —ckc) -
J anaPk 8Zk32j 3P,<3Zj azkan

“jk

we obtain the proof of the proposition. O

Theorem 13. Assume that

H \° [ 9°H\’
0. i £k,
(apjapk) +(azkazj> 70, Jor j#k

then the Levi-Civita second order partial differential equations (3) are equivalent to the equations

v~ . 0°H 9*H 3*H 0°H
GG + - =0,
JeT 3PjaPk szazj 3Pk82j 3Z[<8Pj

forj,k=1,...,Mandj # k.

Proof. The following identities hold

9%H 9H\ oH 9H\ oH
- Fk - - Fk - -
AP IP; dz; ) P, aP; ) 9z

_ 0H 9H e~ . 0°H  3*H 9’H 9°H
T o aP \ MK T 8PoP, 8z¢dz;  9Pydz 9P )

9’H 9H\ oH dH\ oH
Nil— )= -l =) —
02,,0z; dzj ) dP; op; ) 9z

aHaH< « i  0*H 0°H 3*H 82H>

—— | —ckd _
dzy 9z \ K * dP;OP, 32,0z,  OPydzj Dz OP;

for j # k. Indeed, from the relations

92H oH\ oH 9H\ oH
s (Tl o ) 55— Tl 5 ) s
dPdP; dz; ) P; apP; ) 9z
_OH OH ( 9°H 9°H 3’H 9*H P ELANEL
9P, OP; \ 8PP, 02,3z OPxdz; 3z OP; \ap, ) "*\ap, )
and in view of (22) we get that
dH OH v OH aH
G\ oo ) \Tieop ) = —CGiCiap a0
3Py aP; kP BP;

where I} are the vector fields given in (5).
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Hence we obtain the proof of the first identity. The proof of the second identity is obtained in analogous way.
From these two identities under condition (26) we get that the Levi-Civita conditions or what is equivalent the conditions (13) are
equivalent to (27). Thus the proof of theorem is done. O

Proposition 14. The following equations hold
TG+ TGy + CryCly + ChChy + GG + GGl = 0 (28)
forj,n=1,..., M with n # j. Moreover ifC;k =constants for j,k,m =1, ..., N, then C]’jcC]Jk =0, forj#k.

Proof. From the Jacobi identity
(D, UG, Tl + U, (e, Dl + [k, [T, 1311 =0,
and after some computations we get that
[T U5 Tl = T (G5 + G5 ) — (CLI3 + i)
= (TnGh) I3+ (TnCE) Tk + Chll T, T3]+ CL T, TR

(CM I + C 1)

= (nG) 11+ (TnCf) 1+ €

+ GG In + Gy 1)
= (TGl +ClChy) I3 + (TGl + ChCh) Tk

+ (e + chem ) T
Consequently

U, U, T3]

(NG + CiGig) T + (denj + Cfﬁ%) I
+ (cach + chct) i
53 1k Tl = (15Ch + ClaCh) Tic+ (ICl + CnGn) T
+ (G + ) 1.
Hence, inserting these expression into the Jacobi identity we get

0= (I, (13, Tl + L1, [ Tl + [ [, 1311
= (TGl + NGy + ClyCly + GGy + ChaCle+ GGl ) T+ -+

Hence we get (28). The proof of the second statement we obtain by putting m = j in (28). In short the proposition is proved. O

Corollary 15. Under the assumptions of Proposition 14 iqu is a constant for j,n, k=1, ..., N then

C}}ﬁ}‘ =0 forall j+#k.

Proof. It follows from (28) by considering that Cf; = constant for all j, n, k and by puttingn=j. O

k

Proposition 16. Relations (24) are equivalent to the equations
9H\* R (OH  (dH\’oR, , 9H
—_— —_— = C _—, —_— — = C _—,
aP; ) 9P, k3P, ap; ) bz, %oz
9H \’ 9Ry jOH  (dH\’oR, ; oH
—_— _——= C _—, —_— —_—= C —,
ap. ) P kap; P ) 8z~ oz
with j # k, where the functions R; for j =1, ..., M, are defined in (14),

Proof. From (24) we have
oH

BHN® 0y (BN 0 [ | (OHY oM
ap) oap 7 \ap) ap | H | Y\ep)  Mop
oP;

Hence after some similar computations we obtain the proof of the proposition. O
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5. Integrability in the Jacobi sense in some particular cases

Assume that the Hamiltonian H satisfies the conditions
3’H
——— #0, forall j#k. 30
oPoP, T j# (30)

If conditions (30) hold then the Levi-Civita conditions (3) can be written as (27). In this section we shall study conditions (27) when
C]’,‘cC]’k =0, for forall j # k.
Therefore the Levi-Civita conditions (27) become
9?H  9°H 9?H  9°H

_ - (31)
anaPk aZk aZj BPkaZj aZkBP]'

Theorem 17. Assume that a Hamiltonian vector field I'y (see formula (5)) is integrable in the Jacobi sense. Then I'y admits a Lie algebra
with the basis I, ..., I'y such that

[I;, I 1=0, for jk=1,...,M, j#k,
(i.e admits an Abelian Lie algebra) if and only if
H = H(Hy(z1, P1), Hy(22, P2), .. ., Hu(zm, Pu)). (32)

Proof. If H is given by the formula (32) then
oH 0H 0H;  0H _ 0H 9H;

9°H  9°H O0H;oH,  9°H _ 9’H 0H; 0H
dPdP;  OH;OHy dP; 8P, Pydz  OH;dH, 9z 9P, (33)
9’H _ 9’H 0H; dHy
dzjdz, ~ OH;0Hy 9z 9z’
3°H  9°H 0H; 9H;
8zjdP, ~ OH;dHy 9z oP’
Consequently
oH j o | 22 ‘
I | log P, =G, =0, Ij|log P, =—C; =0.
Hence by (23) we get that [[], ;] = 0. Thus the Lie algebra is Abelian. The reciprocity can be obtained as follows. By considering that
the vector fields Iy, ..., I'v generate an Abelian Lie algebra, then [T}, I7] = 0, consequently from (23) we get C;k = CJ’,‘< = 0. Therefore
from (29) we obtain that
oR; oR oR; oR
0Tk, ok 0, forall j#k,
aPk an 8Zk 32}
Consequently R; = R(z;, P;) for j = 1, ..., M. Hence from (14) H must be such that
aH+R(z P)aH 0, for j=1 M
— i(zi,P)— =0, for j=1,...,M.
oz A g, !
The function H given by the formula (32) satisfies the previous equations. Indeed
oH o0H 0H; oH;
_ 8Zj _ BHj 8zj _ 3Zj
Riz P) = =35 = ~%m o8, ~ " oH,”
dP; dH; 9P dP;

where H; = Hj(z;, P;). Clearly that in view of (33) the Levi-Civita conditions (31) hold. In short the proposition is proved. O

Theorem 18. Assume that a Hamiltonian vector field I'y is integrable in the Jacobi sense. Then I'y admits a Lie algebra satisfying
[[}. = CIj. for jk=1,...,M, j>k Ck=0,
(1. 0d= k. if ¢j=o0,
forj,k=1,...,M and j # k, if and only if the Hamiltonian H is of the form
H = Hu(zm, Py, Hu-1 (Zm-1, Pu-1, Hu—2 (Zm—-2, Pu—2, Hu—3 (..., H1 (z1, P1) . . )))). (35)
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Proof. We shall study only the first case. The second case is proved in analogous form.
From (23) and (34) we get that Cj"k = 0 for j > k. Consequently from (29) it follows that

ORy ORy ORy ORy  ORy  ORy
P, 9z, OPy  9z3 Py dzy
R, ORy  OR, 0R, 0

dPs 023 Py 0zy

ORy—1 _ 9Rm—1

3PM aZM
Thus

Ri =Ri(z1, P1), Ry =Ry(22,P3,21,P1),...,Ru—1 = Ru-1(zZm-1, Pu-1, ..., 21, Py).

Hence from (14) we obtain

M Rz Py = o

oz, 1z Pgs = 0,

oH + Ry(z2, P2, 21, P )8H = 0

o2, 222, Po. 21 P)a = 0,

oH + Ry-1(z P | z P). oH__ 0

8zm w11, Pt 21, P — = 0,
JoH JH

— +Ru(zm, Pvs Zm—1, Pu-1, ..., 21, P1)—=— = 0,
82}\/] 8PM

The solution of this system is the function (35).
The reciprocity is obtained as follows. Assume that H is given by the formula (35) then the following relations hold

OH _ 9H: 1 oH; 0H _ oHi v 9H;

321 821 =2 81‘1]‘,1 ’ 3P1 8P1 =2 8Hj,1 ’

OH _ oH, 14 0H; OH _ 9H, o OH;

822 o 822 =3 BH]‘,1 ’ 3P2 o 8P2 =3 3[‘11;1 ’

(36)
OH  9Hy_1 0Hy OH  9Hy_1 0Hy
dzy_1  9zm_1 OHu_1 dPy_1  9zp_y dHy 1
JoH _ dHy oH _ dHy
dzw  dzy Pw  0zp,

Thus again from (14) we get that

OH1(z1, P1) qm oH;
_ 321 =2 8Hj—]
0Hi(z1, P1) m  OH;
aP [ dH;_
1 j—1
0H1(zq, P1)
_ 821
0Hy(zq, P1)’
0H3(22, P, Hi(z1, P1)) " oH;
B 0z, 7= BH;_,
0Hy(22, P2, Hi(z1, P1)) l—[M oH;
P, =3 9H;_,
0Hy(z3, P2, Hi(z1, P1))
. 322
0H(23, P2, Hi(z1, P1))’
daP,

Ri(z1,P1) =

Ry(zy, Py, 21, P1) =
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0Hy_1 O0Hy
_ Ozy—1 9Hm_1

0Hy_1 O0Hy

3Pg,1 dHy_1

Hy-1(zZm-1, Pu—1, Hu—2 (..., H1 (21, P1) .. ))

Ruv—1(zm-1, Pu—1, ..., 21, P1) =

0Zy—_1

Hy—1(zm-1, Pu—1, Hu—2 (..., H1 (z1, P1) .. ))
0Py _1

—Hy(zm, Py, Hy—1 (..., Hi (21, P1) .. )))
aZM

5 .
——Hu(zm, Py, Hy—1 (..., H1 (21, P1) .. )
0Py

Ru(zm, Pu, ..., z1,P1) = —

Hence
aR oR
—":—":0, for j> k.
aP; 0z
From (29) we obtain that C!k =0 for j > k. Thus from (24) and (23) we get (34).
In view of (36) the function (35) satisfies the Levi-Civita conditions (31). Indeed, from (36) for k > j it follows that

M M

OH _ 0H I OH,  OH _oH; I
aZj BZ]' n=jt1 aHn,1 ’ aP] BPJ n=it aHn 1
H  OH; 9 IM[ OH, H _ oH; 8 ﬁ OH,
dPdP,  dP; Py 2 OHn ) azoze | 9z 0z¢ imiey 01
OH  oH; ﬁ 0H,  oH aHj ﬁ
sz aZj =it BH,,,l ’ 8P] i aH,, 1
H  9H 9 [ 1y 0H 82H _0H; 9 ﬁ oH,
OPdz, 9P 3z, imjey OHn1 " 9zoP, 9z 9P, Dy OHnoa )

Consequently
0°H  9°H 9°H 0%H
anapk szazj 3P,<3Zj szan

In short the proposition is proved. O

0, for k> j.

Remark 19. The functions (32) and (35) are well-known Hamiltonians (see for instance [17]). The originality of Theorems 17 and 18
consists in providing the relation with the Lie algebra of the Jacobi integrable vector field I'y.

5.1. Example. The stark problem in arbitrary dimensions

The main integrable problem of Celestial Mechanics is the Kepler problem, the Euler problem (two center Newtonian gravitational
motion), and the Stark problem. This small number of integrable problems explains why the Stark problem, corresponding to the
motion in a Newtonian gravitational field subjected to an additional uniform force of constant magnitude and direction, has received
special attention over almost two and one-half centuries (see for instance [19-22]). The integrability in the Jacobi sense of two and
three dimensional Stark problem was first established in [19,23]. Here we extend this problem to arbitrary dimension and show that
it continues being integrable in the Jacobi sense.

The equations of motions of two-dimensional Stark problem are

wx .. ny

i=-22, y=-El4e
.

where 1 and ¢ are constants and r = /x2 + y2, and for the three-dimensional case the equations of motions are

. X . .. V4
x=_%» j=-LY s EE. (37)

where r = /x2 + y2 + z2.
In [19] the integrals of motion are determined, and the resulting quadratures are analytically given. A complete list of exact,

closed-form solutions is deduced in terms of elliptic functions.
Now we shall illustrate the integrability in the Jacobi sense for the Stark problem in dimension N > 3 whose kinetic energy for unit

. _ 1 N
of massisT =5 ) ;X

2 and its potential function is U = kL exn, where r = /> ,N:1 sz. The equations of motion are
r

. HX; . JLXN

f=-"3  Aw=-" e
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forj=1,...,N — 1. Clearly the Hamiltonian vector field Iy with H = T 4 U is not integrable in Jacobi sense in cartesian coordinates.
However the authors of [21,22] and others have found that it becomes separable in parabolic coordinates for N = 2 and N = 3. We
developed these results and proved that Iy is integrable in the Jacobi sense for N > 3.

Proposition 20. The Hamiltonian vector field I't; with

N
1 o M
HZEE Xj—?—EXN,

j=1
in coordinates

£ —n?
2

x=£&n, y= ;
for N = 2 becomes
P24 Py —Ap—e(Et — ")
B 2(82 +n?)

and for N > 2 in coordinates

N-2
X1 = £&ncosaq l_[sina]-,
j=2
N-2
X, = &nsinag 1_[ sin o,
j=2
N—2
X3 = £&ncosay l_[sinozj,
j=3
N-2
X4a = E&nsinoy 1_[ sin o,
j=3
XN_2 = &ncosaqcosay—_3sSinay_y,
Xn—1= &ncosay_,
2 .2
Xy = §°—n ’
2
becomes
P+ Py —4p—eE*—n*)  Cy,
H= 2 2 2,27
2(8% +n?) §%n
where
Cn—2 = Hy_» (Pv—2, an—2, Hy_3(Pn_3,aN_3, ...
2 5, Hi1
Hi= P;, Hy=P+—5—,

sin” o;

Proof. For N > 2 we get that r? = ZJNZ )

1 1 .
T= 5(5‘2 +34) = 5(52 + ) E +

respectively for N = 2 and

] N
T= )%

for j=2,...,N—2.

2 __
o=

),

£+
2
%
IRGR
e,

yHi(Py,01)...)),

2
) . The kinetic energy T and potential energy U become

) 2
L),

+

(24 n?)

2

(€% + i),

(38)



14 J. Llibre and R. Ramirez / Physica D 409 (2020) 132523

for N > 2, respectively. Consequently the Hamiltonian H in coordinates (&, n, o1, ..., ay_3) for N > 2 becomes
1 p? P; 5
H= 1 + 2 4t L +p2
2822 (]_[]"\’zz2 sin® o ]_[]'.";32 sin o sinfay_, N2
2 2
P e T P n 2u

_ _E g2 _ 2
R R

or equivalently

1(P2+ ! (P2s+ ! (
252772 N=2 Sin2 oN—_2 N=3 sin2 aN_3 o

(% (4 i ))-)) (39
P +P; 20 £,
R A

By introducing the Hamiltonians

H,_
Hy=P}, Hj=P'+-L1 for j=2,....N-2,
s o

we get that (39) can be written as

us)
|

(Hy—2 (Py—2, an—2, HNn_3(Pn—3, an_3, ..., Hi(P1, @1)...))

28292
PZ + P} 2u 3
52 nz + ; ; + 2 (52 _ 772)
205 +n )2 52 +n¢ 2
. CN—Z Pf +P’7 2//L E (52 _ )72)

26022 T 2+ ) B4 2
where Cy_ is the level of the function

Hy—2 (Pn—2, an—2, Hv-3(Pn—3, @Nn—3, ..., H1(P1, @1) .. .)) .
In short the proposition is proved. O
Proposition 21. The Hamiltonian vector field I'y with Hamiltonian (38) is integrable in the Jacobi sense. Moreover the N dimensional Stark
problem has N — 1 independent first integrals

Hi_
P2, Hj=P + -1

H, = ——, for j=2,...,N—=2,
sin” g; 4
Hy_; = fndn .y §d§ (40)
+/Rs(1) VSs(&)
where
Rs(n) = —&n®+2hn* + (21 + A)n* + 2Cy -,

Se(§) = e&°+2hE" + (2u — A)E* 4 20y o,

where Cy_, and X\ are arbitrary constants.

Proof. Now we prove the integrability in the Jacobi sense of I'y. Indeed, from (38) it follows that
PZ+P>—4u—e(E* —n*) v
2(82 +n?) &2n?

= W (527]2(13524-1)3 _4M_8($4_n4))+2CN—2(§2+T)2)).

Thus
E2P(P2 + P2 — 4 — e(£* — ")) + 2o + 11°) — 2(E + 1P )*n’h = 0.
Consequently
§° (n'(Py — 2+ en’ = 2hn*) +2Cy-2) +n° (§*(PF — 21 — 8" = 2h%) +2Cy-2) = 0.
which is equivalent to

nz(P,z —2pn+ent —2h?)+2Cv_2 = A,
§2P? — 2 — e — 2MEY) + 20y, = —AE”,
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where A is an arbitrary constant. Hence we get that
(P — 2u+ 1)+ en' = 2h*) + 2Cv2 =0, E(P7 — (2 — 1) — £6* — 2hE?) + 20y, = 0.
Thus the variable is separated. Hence

NPy = £y/—en® +2hn* + 2u + M)n® + 2Cv—2 = /Rs(n),
EP: = £\/eES +2hE4 + (2 — M)E2 + 20y == /Se(E),

or equivalently

(& + 7 = £y/=en® + 2hn* + 2p + Mn? + 2Cy—2 = /Rs(n).
E(E2+n?) = £/eE6 +2hE% + (210 — M)E2 + 2Cn_ = /S6(€).

By introducing the new time t such that dt = (£2 4 n%)dt we get after the integration

ndn §dg
=1+ 1, =141, (41)
~/Re(n) VS6(&)
where 1y and t; are arbitrary constants. From these relations eliminating the new time variable t we get the first integral
ndn §dg

F = — =
+/Rs(1) +/S6(&)

where C = 1y — 7. Hence the Hamiltonian vector field I'y is integrable in the Jacobi sense, it has N — 1 independent first integrals
(40). O

Proposition 22. The parametric expressions of the solutions of the N dimensional Stark problem are the following

2h 2h
£ =-"+Per+n), 0’ ="+ PV e+ 1),

where 3 is the Weierstrass function.

2h 2h
Proof. After the change £2 = X — — and n?> = Y + = we get that the polynomials 4R¢(£)/e and 4Sg(17)/(—&) become
e e

4
Ps(X)= 4X*— 3 ((3h — 6u)e + 4h*) X + (27Cy—26% + (9hx — 18hp)e + 8h%) ,
&

27¢3

4 8

o5(Y)= 4y?-— 2 (31 +6pu)e + 4h*) X — T7a3 (27Cy—26% + (9 + 18hp)e + 8h%)
& &

Consequently (41) can be rewritten as
dX dy
—— = Vet + 10). / —— ==t + ). (42)
/ ~/P3(X) VQs(Y)

The problem is therefore reduced to quadratures, more specifically to elliptic integrals. The key is now to invert those integrals to find
parametric expressions of the variables X and Y in functions of new time t. By inverting integrals (42) we get that

X =PBWelt + 1)), Y=R—el+mn)),

where B is the Weierstrass function. In short the proposition is proved. O

Remark 23. For N = 3 the Stark problem does not conserve the generalized Laplace-Lenz vector F = (f1, f2, f3) defined by
ux

/XZ +y2 +ZZ
o . . . ny
2(yz — zy) — X(xy — yX) — —V————,
/XZ +y2 +ZZ
.. . o . uz
fi= x(zx —xz)—y(yz —zy) - ———.
/X2+y2+22

But since along the solutions of (37) we get that

fi= yxy—yx)—2z(zx — xz) —

fr=

hi= e@z—zv),
fh= e@i-2zp.
fi= —sxx+yy)),
we get the first integral
uz e

7_1_
/x2+y2+22 2

X(zk — xz2) — y(yz — zy) — (K +y*) =C. (43)
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In particular if we put in the previous equations y = y = 0 then we obtain that

fi= e@xi—2zx),
f3 = —&xXX.

Hence we get that the first integral (43) becomes

X(zk — x2) — M L Ee GCo.
VX2 +z2 2

This first integral was given in [19].
5.2. Hamiltonian vector field admitting a finite dimensional Lie algebra

We shall study the Levi-Civita integrable Hamiltonian systems which admit a finite dimensional Lie algebra formed by the vector
fields I, ..., Iy such that

(3. i) = Ch T3 + Ch I, (44)

where ka and C¥ are constants which in view of Corollary 15 satisfy the conditions

jk
CjCh=0, for jk=1,....M, and j#k.

Consequently (44) becomes

(I}, = Cilk when c

=0, or [I}, I\1=C}I; when Ck=0,

or [I}, I1=0 when Cjk =0, Cj’,‘< = 0, which is a particular case of (34).
Proposition 24. A Hamiltonian vector field I'y; integrable in the Jacobi sense, admits a two dimensional Lie algebra with basis Iy and I
satisfying
(1, Tyl =ChIN+Chla,  ChChH =0,
if and only if
(i) H = H(Hi(z1, P1), Ha(2s, P,)) when C}, = C%, = 0,
(ii) H = H(za, P3, Hy(z1, P1)) when C%, = 0,
(iii) H = H(z1, Py, Ha(22, P;)) when C, =0,

Proof. Is a consequence of Theorems 17 and 18. O

Proposition 25. The Jacobi integrable Hamiltonian vector field I'; admits a three dimensional Lie algebra with basis I'y, I3 and I3 satisfying

[, I3] =al3, [I3, I3] =0, [I3, I] = —al3, (45)
if and only if
H = H(zy, P1, Hy(22, P2), H3(z3, P3)). (46)

Proof. For N = 3 we get that (see (21))

(I, IR) = CLIT + ChT%,  with CLCE =0,
[y, 3] = Cp I + C5Is,  with CAGG, =0, “7)
[I3, Il =G5 I+ G I3, with G5, =0,

On the other hand from the Bianchi classification of three dimensional Lie-algebra we get that the Lie algebra with basis e;, e, and e;
has the following representation

[e1, e2] = ae, + bses, [e2, e3] = bseq, [e3, eq] = bye; — aes.

By comparing with (47) we obtain that C;, = C5; = C4 = C}, = 0. Hence in view of (29) we get that

oR; _ oR; _ oR, _ 0R, -0
321 - 8P1 - 823 - 8P3 -
oR3 _ oR3 _ 0R;3 _ 0R3 -0

821 3P1 822 8P2

3 (2 — _
G, = C, = —a.



J. Llibre and R. Ramirez / Physica D 409 (2020) 132523 17

Hence from (29) we obtain

8H+R(z P)aH— 0
822 2\42 28P2_ 5
aH—i—R(Z P)aH— 0
3z 0 ps T

Clearly the function (46) is a solution of these equations. In short the proposition is proved. O

9’H 9’H
=0 and
dP;Py 202

5.3. Integrability in the Jacobi sense for the Hamiltonians such that #0 with j#k

Clearly under these conditions the function H can be written as
M
H=> Hz.2,....2u. P)).
j=1

For these Hamiltonians the partial differential equations (3) become

?H 9H 9 oH dH 9 oH
———(log|—|])———1\log|—| ) =0, (48)
szazk 0z 3Zj Py 3Zj 0z BPJ
for j # k, or equivalently from Theorem 13 we have
i 0?°H 0°H
J ck 0 (49)

Kk T 3Pz 9z¢dP;

where
JoH
(o] 21\ — _0h H
I\ "8 |3p,|) = T H 9Pz’
K _ Py
G = OH
oH ap, 9*H
—TIillog|—| ) = —= ,
’( 8 azk’) 9H 0Pz,
oF,
Let |A| be the determinant of the matrix
ou(z1) ... ewm(z1)
A= : : ,
omzm - omml(zm)

where @j(z;) is a set of M? arbitrary functions. Let ¥i(z;) be a set of M functions. Then the vector field I'y with
1 M
H= oY Atz oz (P = vi(a).
j=1

1 a|A
where A; = — L is called the Stdckel vector field (see for instance [24,25]).
7141 g

Proposition 26. The Hamiltonian vector field I'y; with

M
H=Y A(z1,2, ..., 2u)H(z, P),
j=1

where Hj(z;, P;) is an arbitrary function for j = 1, ..., M, is integrable in the Jacobi sense if and only if the functions Aj forj=1,2,...,M
satisfy the partial differential equations
32A dA; DA dA; 3A
Ay — AT p T (50)
0zj0z 0zj 0z dzy 0z

forj,k,n=1,...,Mandj # k.
Moreover if Hi(zj, P;) = P? — ;(z;) where y;(z)) is an arbitrary function, for j = 1,..., M, then we obtain an Stickel system (see for

instance [24,25]).
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Proof. By considering that

oH dA;
—_—= z;,P;), for n s
o ,; 7.tz ) #J
M
oH j 3“1‘(21, P)
— = Hi(z, ——2 ),
3Zj ; < ] BZj
aH Y. [ 9H(z
T A_) ] ] )
92H Y 924 9A; 9Hi(z, P))
— H; Zi, P: 7]#’ for n "
320z, ; 920z, 4. B+ 3z, 0z #1
92H ,
= 0 for n#j,
dP;dP,

Inserting these relations into (48) and after some computations we get

dHy 0H; 3%A dAy DA dA; DA
A ’ZHn 20, Po) (A — A~ — A ) =0,
0z; 0z 020z aZj 0z 0z, 9z

forj,k,=1,...,M and j # k. Hence we obtain (50).
It is interesting to observe that if we apply (49) then we obtain that
9°H 0°H A 0A; OH, 9H;
dPydz; 9z¢dP; 3z 3z APy P;

On the other hand by considering that
oH A; 9H; 0A
Gi=-13(log| 35| ) =~ 25 37
J oP Ai OP; 0z
we obtain
K i 9’H 9°H _ Aj OH; 0Ax Ay OHy 0A;  9Ay 0A; OH 0H;

K™ BBz o, A OB, 9 & O 0% 02 9 O 0B,
Thus the condition (49) holds identically. On the other hand, since
;,‘c = %g—;{% =—TI; <log g;’(’) for j#k,
therefore after some computations we obtain that the functions A;(zi,...,z,) are a solution of (50). In short the proposition is
proved. O
Finally we observe that the integrability in the Jacobi sense of the Hamiltonian H = Z Alz1, 22, ..., Zm) (sz - 1//j(zj)) was

established by Stédckel (see for instance [24,25]).
Now we state the following problem.

Problem 27.

(i) Let Aj = Aj(z1, ..., zm) and «; = «j(H1(z1, P1), ..., Hu(zum, Pu)) where H; = Hj(z;, P;) for j = 1, ..., M. Determine the conditions
on the functions A; and «; in such a way that the Hamiltonian vector field I'y; with

H= ZAjz1,..., )tj(Hs, . . ., Hu),

is integrable in the Jacobi sense.
(ii) Let Aj = Aj(z1, ..., 2zy) and

aj = aj(zm, Py, Hv-1 (Zm—-1, Pm—1, Hu—2 Zm—2, Pu—2, ..., H1 (21, P1) .. ))).

Determine the conditions on the functions A; and o; in such away that the Hamiltonian vector field Iy with H equal to

ZA Z1, ..., Zm)on(Zm, Pm, Hu-1) Zv—1, Pv—1, Hu—2 Zm—2, Pu—2, ..., H1 (1, P1) .. ),

is integrable in the Jacobi sense.
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The integrability in the Jacobi sense for the Hamiltonian vector field I'y with such that

8°H 9%H
——#0 an
anaPk 3Zj32k

=0 with j#£k (51)

can be obtained by applying Proposition 4 on the integrable Hamiltonian vector fields in the Jacobi sense.
Clearly under the condition (51) the function H can be written as

M
H:ZHj(Zj,P],...,P[\/I). (52)
j=1
For these Hamiltonians the partial differential equations (3) become
3?H  9H 3 oH oH 9 oH
———|log|—|)—=—=—[(log|—|) =0 for j#k,
3Pj3Pk 3Pk 813'1‘ 3Zk 3Pj 3Pk 3Zj

or equivalently from Theorem 13 we have
ki 0°H  0°H B
Kk 9Pz 0z,dP;

where
—Ij <10g o > ,
C-k _ BPk
R (m H )
J & 8Zk ’

Proposition 28. The Hamiltonian vector field I'y with
M
H= ZA]’(P], Py, ..., Pu)Hi(z, P;)
j=1

is integrable in Jacobi sense if and only if the functions A; for j = 1,2, ..., M satisfy the partial differential equations

9%A 0Ay 0A 0A; 0A
7”_/.\1.7"7”_/"(7] "0
oP;0Py oP; 0P 0P, oP;
forj,k,n=1,... ,Mandj # k.

ik

Proof. This proof is analogous to the proof of Proposition 26 after the change P <— z, by using the properties of solutions of the
Levi-Civita conditions (see Proposition 4). In short the proposition is proved. O

In view of Proposition 4 Problem 27 can be stated for the Hamiltonians (52) after the change P; «— z;.

5.4. Integrability in the Jacobi sense and Lax pair

One of the best methods for determining the involution set of first integrals for an integrable Liouville Hamiltonian vector field Iy
associated to a Hamiltonian differential system (6) is the Lax pair method, for more details see the ones given in what follows, see [26]

A Laix pair for a Hamiltonian vector field is a pair of smooth quadratic matrices A = (a;) and B = (bj), satisfying the equation called
the Lax equation

dA
— =[B,A] = BA — AB, (53)
dt
... dA .
where the derivative — is calculated along the solutions of (5).

t
If the Hamiltonian system admits a Lax pair then it has the involution set of first integrals

F; = trace(#), for j=1,...,M.

For the particular case of the Hamiltonian vector field I'; with

M M
1
H= 3 E P} + E ai(zx — zj)au(zj — zk)
=1 kj=1, k<j
]M J K<J (54)

M
1
= 521312+ZW(21_ZJ+1)=T+V7
=1 =1
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we shall study the Lax equation for the case when the matrices A and B are such that

Py app a3 aim
azq P, azs e dam
A= ,
am—11 Py_1 apm—1m
am cen v QM= Py
/ / /
ll/ﬁ a4, Ay .. Uiy
ay, ¥, 0y . Ay
B = s
a "7 a
M/fll ,M—l M—1M
v e e Oyyvzg Yy
. . . , d )
where ¥ = ¥(Py, ..., Py, z1, ..., 2zy) are convenient functions, aj = aj(z; — z¢) for j # k, and @ = - (ajk(?,-‘)) with & = z; — z,

= &
respectively. Clearly in this case F, = 2H = trace(A?).
The relation between the integrability in Jacobi and Liouville sense, as we observed in the introduction, was studied in particular in

[3].

Problem 29. Determine the functions ¥y, ..., ¥y and ay = a(z; — z) for j, k = 1,..., M for which the Hamiltonian vector field Iy
with Hamiltonian (54) with M — 1 independent first integrals F; = trace(l’) for j = 1,..., M — 1 is integrable in the Jacobi sense.

To illustrate the solution of this problem we study the following particular case.

Proposition 30. Let A and B be the matrix such that

(1)
Pq aqn 0 0 aiym
—dad1 P, 0 0 0
A 0 Pe e 0
I 0  —a+1  Prr 0
0 0 0 0 0 0 Py—> ay—3,M-2 0
0 0 0 0 0 0 —apM—-3,M—2 Py_1 0
—ay O 0 0 0 0 0 0 Py
if M is odd, and
P1 a2 0 0 0
aqn P, 0 0 0
0 Py k41 - - - 0
A= 0 0 —Qkk+1 Pk+1 0 ,
0 0 0 P 0 PM,3 apm—3,M—2 0 0
0 0 0 e 0 —aM-3,M-2 Py—2 0 0
0 0 0 R 0 0 0 PM_] apm—1,m
0 0 0 e 0 0 0 apm—-1,m Py
if M is even, and set
o d, 0 o ... .. . 0
d, ¥ 0 0o ... .. . 0
B— 0 . Yo a/Zka 0
=10 0 dyy ¥ . .. 0 ;
0 0 0 0 Pyu-1 Gy oy O
0 0 0 0 a;\/,72 M—1 Yhi_q 0

0 o0 0 .0 0 0 v,
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M-1
if Misoddandk:1,...,T,andset

v d), 0 0 0
a, ¥ 0 0 0
0 . Yoy, a’2k+lk 0
p=1| 0 0 ayiy Y ... 0 ;
0 0 0 0 Yy_2 Ay_3 M2 0 0
0 0 0 0 ay 3y Yy_o 0 0
0 0 0 0 0 ¥, apm—1,m
0 0 0 0 0 0 ay—1.m '2)
. . M -2
if M>215evenandk=l,...,T.
Assuming that the Hamiltonian (54) is
12N N
H= 13 R d u=T 4V, (55)
j=1 k=1
if M = 2N, and
1 2N N
He 2 oY =T, (56)
j=1 k=1
. . . . . A% .
if M = 2N + 1, where azk—1,2x = aak—1,2k(Zok—1 — Zok) are arbitrary functions, then the Lax equation (53) becomes P; = Wz forj=1,...,M.
j

. %
Proof. After some computations it is easy to show that independently on the parity of M the Lax equation (53) becomes P; = 7

. . . .. . J
forj = 1,..., M. We note that the Hamiltonian vector field with Hamiltonian I'y with H given in (55) and (56) is integrable in the
Liouville sense. O

Proposition 31. The Hamiltonian vector field I'; with H given in (55) and (56) is integrable in the Jacobi sense.

Proof. Indeed, after the change of variables

Zok—1 — Zak Zok—1 + Zok
Ugk—1 = - Vgk—1 = -

fork=1,...,N, we get
Pyk—1 = Zpk—1 = Ugk—1 + V21, Py = Zyk = Upk—1 — Vok—1.

Consequently the Hamiltonians (55) and (56) become

2N N
.2 .2 2
H= Z (u2j—l + U2j—1) - Zazj—l,zj(zuszl)
j=2 j=1
and
2N+1 N
-2 .2 2
H= Z (u2j—l + vzjq) - Zaijl,Zj(ZuZJ'—l)
j=2 j=1

respectively. Hence the Hamiltonian system is integrable by variable separation. O
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