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• We propose two model equations to describe ultra-short pulses in nonlinear optics.
• We show the integrability by providing the Lax pairs and constructing local and nonlocal conservation laws.
• We construct multi-soliton solutions in pfaffians by Hirota’s bilinear method.
• One- and two-soliton solutions are investigated in details, which show many interesting properties.
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a b s t r a c t

In the present paper, we propose a complex short pulse equation and a coupled complex short equation
to describe ultra-short pulse propagation in optical fibers. They are integrable due to the existence of
Lax pairs and infinite number of conservation laws. Furthermore, we find their multi-soliton solutions in
terms of pfaffians by virtue of Hirota’s bilinearmethod. One- and two-soliton solutions are investigated in
details, showing favorable properties in modeling ultra-short pulses with a few optical cycles. Especially,
same as the coupled nonlinear Schrödinger equation, there is an interesting phenomenon of energy
redistribution in soliton interactions. It is expected that, for the ultra-short pulses, the complex and
coupled complex short pulses equation will play the same roles as the nonlinear Schrödinger equation
and coupled nonlinear Schrödinger equation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger (NLS) equation, as one of the univer-
sal equations that describe the evolution of slowly varying packets
of quasi-monochromatic waves in weakly nonlinear dispersive
media, has been very successful in many applications such as
nonlinear optics and water waves [1–4]. The NLS equation is in-
tegrable, which can be solved by the inverse scattering transform
[5].

However, in the regime of ultra-short pulses where the width
of optical pulse is in the order of femtosecond (10−15 s), the NLS
equation becomes less accurate [6]. Description of ultra-short pro-
cesses requires a modification of standard slow varying envelope
models based on the NLS equation. There are usually two ap-
proaches to meet this requirement in the literature. The first one
is to add several higher-order dispersive terms to get higher-order
NLS equation [2]. The second one is to construct a suitable fit to the
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frequency-dependent dielectric constant ε(ω) in the desired spec-
tral range. Several models have been proposed by this approach
including the short-pulse (SP) equation [7–10].

Recently, Schäfer and Wayne derived a so-called short pulse
(SP) equation [7]

uxt = u +
1
6


u3

xx , (1)

to describe the propagation of ultra-short optical pulses in non-
linear media. Here, u = u(x, t) is a real-valued function, repre-
senting the magnitude of the electric field, the subscripts t and x
denote partial differentiation. Apart from the context of nonlinear
optics, the SP equation has also been derived as an integrable dif-
ferential equation associated with pseudospherical surfaces [11].
The SP equation has been shown to be completely integrable
[11–15]. The periodic and soliton solutions of the SP equationwere
found in [16–18]. The connection between the SP equation and the
sine–Gordon equation through the hodograph transformation was
clarified, and then theN-soliton solutions includingmulti-loop and
multi-breather ones were given in [19,20] by using the Hirota bi-
linearmethod [21]. The integrable discretization of the SP equation
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was studied in [22], the geometric interpretation of the SP equa-
tion, as well as its integrable discretization, was given in [23]. The
higher-order corrections to the SP equation was studied in [24]
most recently.

Similar to the case of the NLS equation [25], it is necessary to
consider its two-component or multi-component generalizations
of the SP equation for describing the effects of polarization or
anisotropy. As a matter of fact, several integrable coupled short
pulse have been proposed in the literature [26–31]. Most recently,
the bi-Hamiltonian structures for the above two-component SP
equations were obtained by Brunelli [32].

In the present paper, we propose and study a complex short
pulse (CSP) equation

qxt + q +
1
2


|q|2qx


x = 0, (2)

and its two-component generalization

q1,xt + q1 +
1
2


(|q1|2 + |q2|2)q1,x


x = 0, (3)

q2,xt + q2 +
1
2


(|q1|2 + |q2|2)q2,x


x = 0. (4)

As will be revealed in the present paper, both the CSP equation
and its two-component generalization are integrable guaranteed
by the existence of Lax pairs and infinite number of conservation
laws. They have N-soliton solutions which can be constructed via
Hirota’s bilinear method.

The outline of the present paper is organized as follows. In Sec-
tion 2, we derive the CSP equation and coupled complex short
pulse (CCSP) equation from the physical context. In Section 3,
by providing the Lax pairs, the integrability of the proposed two
equations are confirmed, and further, the conservation laws, both
local and nonlocal ones, are investigated. Then N-soliton solutions
to both the CSP and CCSP equations are constructed in terms of
pfaffians by Hirota’s bilinear method in Section 4. In Section 5,
soliton-interaction for coupled complex short pulse equation is in-
vestigated in details, which shows rich phenomena similar to the
coupled nonlinear Schrödinger equation. In particular, they may
undergo either elastic or inelastic collision depending on the ini-
tial conditions. For inelastic collisions, there is an energy exchange
between solitons, which can allow the generation or vanishing of
soliton. The dynamics is more richer in compared with the single
component case. Thepaper is concludedby comments and remarks
in Section 6.

2. The derivation of the complex short pulse and coupled
complex short pulse equations

In this section, following the procedure in [2,7], we derive the
complex short pulse equation (2) and its two-component gener-
alization that governs the propagation of ultra short pulse packet
along optical fibers.

2.1. The complex short pulse equation

We start with a wave equation for electric field

∇
2E −

1
c2

Ett = µ0Ptt , (5)

originated from the Maxwell equation. Here E(r, t) and P(r, t)
represent the electric field and the induced polarization, respec-
tively, µ0 is the vacuum permeability, c is the speed of light in
vacuum. If we assume the local medium response and only the
third-order nonlinear effects governed by χ (3), the induced polar-
ization consists of two parts, P(r, t) = PL(r, t) + PNL(r, t), where
the linear part

PL(r, t) = ε0


∞

−∞

χ (1)(t − t ′) · E(r, t ′) dt ′, (6)

and the nonlinear part

PNL(r, t) = ε0


∞

−∞

χ (3)(t − t1, t − t2, t − t3)

× E(r, t1)E(r, t2)E(r, t3) dt1dt2dt3. (7)

Here ε0 is the vacuum permittivity and χ (j) is the jth-order sus-
ceptibility. Since the nonlinear effects are relatively small in sil-
ica fibers, PNL can be treated as a small perturbation. Therefore, we
first consider (5) with PNL = 0. Furthermore, we restrict ourselves
to the case that the optical pulse maintains its polarization along
the optical fiber, and the transverse diffraction term ∆⊥E can be
neglected. In this case, the electric field can be considered to be
one-dimensional and expressed as

E =
1
2
e1 (E(z, t) + c.c.) , (8)

where e1 is a unit vector in the direction of the polarization, E(z, t)
is the complex-valued function, and c.c . stands for the complex
conjugate. Conducting a Fourier transform on (5) leads to the
Helmholtz equation

Ẽzz(z, ω) + ε(ω)
ω2

c2
Ẽ(z, ω) = 0, (9)

where Ẽ(z, ω) is the Fourier transform of E(z, t) defined as

Ẽ(z, ω) =


∞

−∞

E(z, t)eiωt dt, (10)

ε(ω) is called the frequency-dependent dielectric constant defined
as

ε(ω) = 1 + χ̃ (1)(ω), (11)

where χ̃ (1)(ω) is the Fourier transform of χ (1)(t)

χ̃ (1)(ω) =


∞

−∞

χ (1)(t)eiωt dt. (12)

Now we proceed to the consideration of the nonlinear effect. As-
suming the nonlinear response is instantaneous so that PNL is given
by PNL(z, t) = ε0εNLE(z, t) [2] where the nonlinear contribution to
the dielectric constant is defined as

εNL =
3
4
χ (3)
xxxx|E(z, t)|2. (13)

In this case, the Helmholtz equation (9) can be modified as

Ẽzz(z, ω) + ε̃(ω)
ω2

c2
Ẽ(z, ω) = 0, (14)

where

ε̃(ω) = 1 + χ̃ (1)(ω) + εNL. (15)

As pointed out in [3,7,8], the Fourier transform χ̃ (1) can bewell ap-
proximated by the relation χ̃ (1)

= χ̃
(1)
0 − χ̃

(1)
2 λ2 if we consider the

propagation of optical pulse with the wavelength between 1600
and 3000 nm. It then follows that the linear equation (9) written in
Fourier transformed form becomes

Ẽzz +
1 + χ̃

(1)
0

c2
ω2Ẽ − (2π)2χ̃

(1)
2 Ẽ + εNL

ω2

c2
Ẽ = 0. (16)

Applying the inverse Fourier transform to (16) yields a single
nonlinear wave equation

Ezz −
1
c21

Ett =
1
c22

E +
3
4
χ (3)
xxxx


|E|

2E

tt = 0. (17)



64 B.-F. Feng / Physica D 297 (2015) 62–75
Similar to [7], we focus on only a right-movingwave packet and
make a multiple scales ansatz

E(z, t) = εE0(φ, z1, z2, . . .) + ε2E1(φ, z1, z2, . . .) + · · · , (18)

where ε is a small parameter, φ and zn are the scaled variables
defined by

φ =

t −
x
c1

ε
, zn = εnz. (19)

Substituting (18) with (19) into (17), we obtain the following
partial differential equation for E0 at the order O(ε):

−
2
c1

∂2E0
∂φ∂z1

=
1
c22

E0 +
3
4
χ (3)
xxxx

∂

∂φ


|E0|2

∂E0
∂φ


. (20)

Finally, by a scale transformation

x =
c1
2

φ, t = c2z1, q =
c1

6c2χ

(3)
xxxx

4
E0, (21)

we arrive at the normalized form of the complex short pulse
equation (2).

2.2. Coupled complex short pulse equation

In the previous subsection, a major simplification made in the
derivation of the complex short pulse equation is to assume that
the polarization is preserved during its propagating inside an op-
tical fiber. However, this is not really the case in practice. For
birefringent fibers, two orthogonally polarized modes have to be
considered. Therefore, similar to the extension of coupled nonlin-
ear Schrödinger equation from the NLS equation, an extension to
a two-component version of the complex short pulse equation (2)
is needed to describe the propagation of ultra-short pulse in bire-
fringent fibers. In fact, several generalizations have been proposed
for the short pulse equation [26–31]. Particularly, by taking into
account the effects of anisotropy and polarization, Pietrzyk et al.
have derived a general two-component short-pulse equation from
the physical context [26].We follow the approach by Pietrzyk et al.
to derive a two-component complex short pulse equation. How-
ever, as shown in subsequent section, the two-component complex
short pulse equation admits multi-soliton solutions which reveals
richer dynamics in soliton interactions in compared with the real
SP equation.

We first consider the linear birefringent fiber such that the elec-
tric fieldwith an arbitrarily polarized optical fiber can be expressed
as

E =
1
2

(e1E1(z, t) + e2E2(z, t)) + c.c., (22)

where e1, e2 are two unit vectors along positive x- and y-direction
in the transverse plane perpendicular to the optical fiber, respec-
tively, E1 and E2 are the complex amplitudes of the polarization
components correspondingly. Without the presence of nonlinear
polarization (PNL = 0) and the transverse diffraction, the Fourier
transform converts (5) into a pair of Helmholtz equations

Ẽ1,zz(z, ω) + ε(ω)
ω2

c2
Ẽ1(z, ω) = 0, (23)

Ẽ2,zz(z, ω) + ε(ω)
ω2

c2
Ẽ2(z, ω) = 0. (24)

Same as the scalar case, the frequency-dependent dielectric con-
stant ε(ω) = 1 + χ̃ (1)(ω), where χ̃ (1) can be well approximated
by the relation χ̃ (1)

= χ̃
(1)
0 − χ̃

(1)
2 λ2 for the propagation of optical

pulse with the wavelength between 1600 and 3000 nm.
As indicated in [2], the nonlinear part of the induced polariza-
tion PNL can be written as

PNL =
1
2

(e1P1(z, t) + e2P2(z, t)) + c.c., (25)

where

P1 =
3ε0
4

χ (3)
xxxx


|E1|2 +

2
3
|E2|2


E1 +

1
3
(E∗

1E2)E2


, (26)

P2 =
3ε0
4

χ (3)
xxxx


|E2|2 +

2
3
|E1|2


E2 +

1
3
(E∗

2E1)E1


. (27)

The last term in Eqs. (26) and (27) leads to the degenerate four-
wave mixing. In highly birefringent fibers, the four-wave-mixing
term can often be neglected. In this case, we arrive at a coupled
nonlinear wave equation

E1,zz −
1
c21

E1,tt =
1
c22

E1 +
3
4
χ (3)
xxxx


|E1|2 +

2
3
|E2|2


E1


tt

, (28)

E2,zz −
1
c21

E2,tt =
1
c22

E2 +
3
4
χ (3)
xxxx


|E2|2 +

2
3
|E1|2


E2


tt

. (29)

Similar to the scalar case, by a multiple scales expansion and an
appropriate scaling transformation, a couple complex short pulse
equation can be obtained from (28)–(29)

q1,xt + q1 +
1
2


|q1|2 +

2
3
|q2|2


q1,x


x
= 0, (30)

q2,xt + q2 +
1
2


|q2|2 +

2
3
|q1|2


q2,x


x
= 0. (31)

More generally, we can consider the coupled short pulse equa-
tion for elliptically birefringent fibers. In this case, the electric field
can be written as

E =
1
2


exEx(z, t) + eyEy(z, t)


+ c.c., (32)

where ex and ey are orthonormal polarization eigenvectors

ex =
e1 + ire2
√
1 + r2

, ey =
re1 − ie2
√
1 + r2

. (33)

The parameter r represents the ellipticity. It is common to intro-
duce the ellipticity angle θ as r = tan(θ/2). The case θ = 0 and
π/2 correspond to linearly and circularly birefringent fibers, re-
spectively.

Following a procedure similar to the case of linearly birefringent
fibers, one can drive the normalized form for the coupled complex
short pulse equation

q1,xt + q1 +
1
2


(|q1|2 + B|q2|2)q1,x


x = 0, (34)

q2,xt + q2 +
1
2


(|q2|2 + B|q1|2)q2,x


x = 0 (35)

where the parameter B is related to the ellipticity angle θ as

B =
2 + 2 sin2 θ

2 + cos2 θ
. (36)

For a linearly birefringent fiber (θ = 0), B =
2
3 , and Eqs. (34)–(35)

reduces to Eqs. (30)–(31). For a circularly birefringent fiber (θ =

π/2), B = 2. In general, the coupling parameter B depends on the
ellipticity angle θ and can vary from 2

3 to 2 for values of θ in the
range from 0 to π/2. Note that B = 1 when θ ≈ 35°. As discussed
in the subsequent section, this case is of particular interest because
the coupled system is integrable and admits N-soliton solution.
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3. Lax pairs and conservation laws for the complex and coupled
complex short pulse equations

3.1. Lax pairs and integrability

In [26], a matrix generalization for the SP equation is given
based on zero-curvature representation, from which the Lax pairs
for several integrable two-component SP equations are explicitly
provided. In this subsection, we will show the integrability of the
complex short pulse and coupled complex short pulse equations
by finding their Lax pairs constructed from another matrix gener-
alization of the SP equation.

The Lax pair for the complex short pulse equation (2) can be
expressed as

Ψx = UΨ , Ψt = VΨ , (37)

with

U = λ


1 qx
q∗

x −1


,

V =

 −
λ

2
|q|2 −

1
4λ

−
λ

2
|q|2qx +

q
2

−
λ

2
|q|2q∗

x −
q∗

2
λ

2
|q|2 +

1
4λ

 .

(38)

It can be easily shown that the compatibility condition Ut − Vx +

[U, V ] = 0 gives the complex short pulse equation (2).
The Lax pair for the coupled complex short pulse equations

(3)–(4) is found to be of the form:

Ψx = UΨ , Ψt = VΨ , (39)

with

U = λ


I2 Qx
Rx −I2


,

V =

−
λ

2
QR −

1
4λ

I2 −
λ

2
QRQx +

1
2
Q

−
λ

2
RQRx −

1
2
R

λ

2
QR +

1
4λ

I2

 ,

(40)

where I2 is a 2× 2 identity matrix, Q , R are 2× 2 matrices defined
as

Q =


q1 q2

−q∗

2 q∗

1


, R =


q∗

1 −q2
q∗

2 q1


. (41)

Note that R = Q Ď, thus,

QR = RQ = (|q1|2 + |q2|2)I2, (42)
the compatibility condition Ut −Vx +[U, V ] = 0 for (39) gives the
coupled complex short pulse equations (3)–(4).

As a matter of fact, the coupled complex short pulse equation
can be generalized into a multi-component, or a vector complex
short pulse equation

qi,xt + qi +
1
2


|q|

2qi,x

x = 0, i = 1, . . . , n, (43)

where q = (q1, q2, . . . , qn). The integrability of Eq. (43) can be
guaranteed by the Lax pair constructed in a similar way as in [33].

Ψx = UΨ , Ψt = VΨ , (44)

with

U = λ


I2n−1 Q (n)

x

R(n)
x −I2n−1


,

V =

 −
1
2
Q (n)R(n)

−
1
4λ

I2n−1 −
λ

2
Q (n)R(n)Q (n)

x +
1
2
Q (n)

−
λ

2
R(n)Q (n)R(n)

x −
1
2
R(n) 1

2
Q (n)R(n)

+
1
4λ

I2n−1

 ,
where I2n−1 is a 2n−1
× 2n−1 identity matrix, Q (n) and R(n) are

2n−1
× 2n−1 matrices can be constructed recursively as follows

Q (1)
= q1, R(1)

= q∗

1, (45)

Q (n+1)
=


Q (n) qn+1I2n−1

−q∗

n+1I2n−1 R(n)


, (46)

R(n+1)
=


R(n)

−qn+1I2n−1

q∗

n+1I2n−1 Q (n)


. (47)

By the above construction, we have R(n+1)
= (Q (n+1))Ď, and further

Q (n)R(n)
= R(n)Q (n)

=

n
i=1

|qi|2I2n−1 . (48)

Therefore, the zero curvature condition Ut −Vx +[U, V ] = 0 gives
the vector complex coupled short pulse equation (43).

3.2. Local and nonlocal conservation laws

Following a systematic method developed by in [33–36], we
construct conservation laws for the vector complex short pulse
equation, the conservation laws for the complex and coupled short
pulse equations can be treated as special cases for n = 1, 2, respec-
tively. To this end, let us rewrite the Lax pair for the vector complex
short pulse equation as follows:
Ψ1
Ψ2


x
=


λI λQx
λRx −λI


Ψ1
Ψ2


, (49)


Ψ1
Ψ2


t
=

−
λ

2
QR −

1
4λ

I2 −
λ

2
QRQx +

1
2
Q

−
λ

2
RQRx −

1
2
R

λ

2
QR +

1
4λ

I2

Ψ1
Ψ2


. (50)

Here the size of matrices in the entries of Eqs. (49)–(50) is of
2n−1

× 2n−1 and is omitted for brevity. If we define

Γ ≡ Ψ2Ψ
−1
1 (51)

then we have

2λQxΓ = λQxRx − Qx((Qx)
−1

· QxΓ )x − λ(QxΓ )2. (52)

Expanding QxΓ in terms of the spectral parameter λ as follows

QxΓ =

∞
n=0

Fnλ−n, (53)

and substituting into Eq. (52), we obtain the following relation

2λFn = QxRxδn,0 − Qx((Qx)
−1Fn−1)x −

n
l=0

FlFn−l. (54)

The first local conserved density turns out to be

F0 =


−1 +


1 +


|qi,x|2


I, (55)

which is associated with a Hamiltonian of

H0 =

 
1 + |qx|2 dx, (56)

for the complex short pulse equation (2) and

H0 =

 
1 + |q1,x|2 + |q2,x|2 dx, (57)

for the coupled complex short pulse equations (3)–(4).
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Following the procedure in [36], we can find the nonlocal
conservation laws for vector complex short pulse equation. To this
end, we expand QxΓ as follows

QxΓ =

∞
n=1

F−n(2λ)n. (58)

The first two orders in λ yield the following equations

0 = QxRx − Qx

(Qx)

−1F−1

x , (59)

2F−1 = −Qx

(Qx)

−1F−2

x , (60)

from which, the first two nonlocal conserved densities can be
calculated as

F−1 =
1
2
QxR, (61)

F−2 =
1
2
QR −

1
2
∂x (Q∂xR) . (62)

The first one turns out to be a trivial one, the second one accounts
for a Hamiltonian

H−1 =
1
2


|q|2 dx, (63)

for the complex short pulse equation (2) and

H−1 =
1
2


(|q1|2 + |q2|2) dx, (64)

for the coupled complex short pulse equations (3)–(4).

4. Multi-soliton solutions by Hirota’s bilinear method

4.1. Bilinear equations and N-soliton solution to the complex short
pulse equation

Proposition 4.1. The complex short pulse equation is derived from
the following bilinear equations.

DsDyf · g = fg, (65)

D2
s f · f =

1
2
|g|2, (66)

by dependent variable transformation

q =
g
f
, (67)

and hodograph transformation

x = y − 2(ln f )s, t = −s, (68)

where D is called Hirota D-operator defined by

Dn
sD

m
y f · g

=


∂

∂s
−

∂

∂s′

n 
∂

∂y
−

∂

∂y′

m

f (y, s)g(y′, s′)|y=y′,s=s′ .

Proof. Dividing both sides by f 2, the bilinear equations (65)–(66)
can be cast into

g
f


sy

+ 2
g
f

(ln f )sy =
g
f
,

(ln f )ss =
1
4

|g|2

f 2
.

(69)

From the hodograph transformation and dependent variable trans-
formation, we then have
∂x
∂s

= −2(ln f )ss = −
1
2
|u|2,

∂x
∂y

= 1 − 2(ln f )sy,
which implies

∂y = ρ−1∂x, ∂s = −∂t −
1
2
|u|2∂x (70)

by letting 1 − 2(ln f )sy = ρ−1.
Notice that the first equation in (69) can be rewritten as
g
f


sy

=

1 − 2(ln f )sy

 g
f
, (71)

or

ρ


g
f


sy

=
g
f
, (72)

which is converted into

∂x


−∂t −

1
2
|q|2∂x


q = q, (73)

by using (70). Eq. (73) is nothing but the complex short pulse equa-
tion (2). �

N-soliton solution to the bilinear equations (65)–(66) can be
expressed by pfaffians similar to the ones for coupledmodifiedKdV
equation [37]. To this end, we need to define two sets: Bµ (µ =

1, 2) : B1 = {b1, b2, . . . , bN}, B2 = {bN+1, b2, . . . , b2N}, and an
index function of bj by index(bj) = µ if bj ∈ Bµ.

Theorem 4.2. The pfaffians

f = Pf(a1, . . . , a2N , b1, . . . , b2N), (74)
g = Pf(d0, β1, a1, . . . , a2N , b1, . . . , b2N). (75)

satisfy the bilinear equations (65)–(66) provided that the elements of
the pfaffians are defined by

Pf(aj, ak) =
pj − pk
pj + pk

eηj+ηk , Pf(aj, bk) = δj,k, (76)

Pf(bj, bk) =
1
4

αjαk

p−2
j − p−2

k

δµ+1,ν, Pf(dl, ak) = plke
ηk , (77)

Pf(bj, β1) = αjδµ,1,

Pf(d0, bj) = Pf(d0, β1) = Pf(aj, β1) = 0.
(78)

Hereµ = index(bj), ν = index(bk), ηj = pjy+p−1
j s which satisfying

pj+N = p̄j, αj+N = ᾱj, p̄j and ᾱj represent the complex conjugates of
pj and αj, respectively. The same notation will be used hereafter.

The proof of the theorem is given in the Appendix. Combined
with dependent and hodograph transformations (67)–(68), the
above pfaffians (74)–(75) give N-soliton solution to the complex
short pulse equation (2) in parametric form.

4.2. One- and two-soliton solutions for the complex short pulse
equation

In this subsection, we provide one- and two-soliton to the com-
plex short pulse equation (2) and give a detailed analysis for their
properties.

4.2.1. One-soliton solution
Based on (74)–(75), the tau-functions for one-soliton solution

(N = 1) are

f = −1 −
1
4

|α1|
2(p1p̄1)2

(p1 + p̄1)2
eη1+η̄1 , (79)

g = −α1eη1 . (80)
Let p1 = p1R + ip1I , and we assume p1R > 0 without loss of

generality, then the one-soliton solution can be expressed in the
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a b

c

Fig. 1. Envelope soliton for the complex short pulse equation (2), solid line: Re(q), dashed line: |q|; (a) smooth soliton with p1 = 1+1.5i, (b) loop soliton with p1 = 1+0.5i,
(c) cuspon soliton with p1 = 1 + i.
following parametric form

q =
α1

|α1|

2p1R
|p1|2

eiη1I sech (η1R + η10) , (81)

x = y −
2p1R
|p1|2

(tanh (η1R + η10) + 1) , t = −s, (82)

where

η1R = p1Ry +
p1R
|p1|2

s, η1I = p1Iy −
p1I

|p1|2
s,

η10 = ln
|α1||p1|2

4p1R
.

(83)

Eq. (81) represents an envelope soliton of amplitude 2p1R/|p1|2
and phase η1I . To analyze the property for the one-soliton solution,
we calculate out

∂x
∂y

= 1 −
2p21R
|p1|2

sech2(η1R + η10). (84)

Therefore, ∂x/∂y → 1 as y → ±∞. Moreover, it attains a mini-
mum value of (p21I − p21R)/(p

2
1I + p21R) at the peak point of envelope

soliton where η1R + η10 = 0. Since ∂|q|/∂x =
∂|q|/∂y
∂x/∂y , we can clas-

sify this one-soliton solution as follows:

• smooth soliton: when |p1R| < |p1I |, ∂x/∂y is always positive,
which leads to a smooth envelope soliton similar to the enve-
lope soliton for thenonlinear Schrödinger equation. An example
with p1 = 1 + 1.5i is illustrated in Fig. 1(a).

• loop soliton:when |p1R| > |p1I |, the minimum value of ∂x/∂y at
the peak point of the soliton becomes negative. In view of the
fact that ∂x/∂y → 1 as y → ±∞, ∂x/∂y has two zeros at both
sides of the peak of the envelope soliton. Moreover, ∂x/∂y < 0
between these two zeros. This leads to a loop soliton for the en-
velope of q. An example is shown in Fig. 1(b)with p1 = 1+0.5i.

• cuspon soliton:when |p1R| = |p1I |, ∂x/∂y has a minimum value
of zero at η1R + η10 = 0, which makes the derivative of the en-
velope |q| with respect to x going to infinity at the peak point.
Thus, we have a cusponed envelope soliton, which is illustrated
in Fig. 1(c) with p1 = 1 + i.

Remark 4.3. The one-soliton solution to the short pulse equation
(1) is of loop-type, which lacks physical meaning in the context of
nonlinear optics. However, the one-soliton solution to the complex
short pulse equation (2) is of breather-type, which allows physical
meaning for optical pulse.

Remark 4.4. When |p1R| < |p1I |, there is no singularity for one-
soliton solution.Moreover, in viewofη1R associatedwith thewidth
of envelope soliton and η1I associated with the phase, it is obvious
that this nonsingular envelope soliton can only contain a few
optical cycle. This property coincideswith the fact that the complex
short pulse equation is derived for the purpose of describing ultra-
short pulse propagation. When |p1R| = |p1I |, the soliton becomes
cuspon-like one, which agreeswith the results in [10] derived from
a bidirectional model.

4.2.2. Two-soliton solution
Based on the N-soliton solution of the complex short pulse

equation from (74)–(75), the tau-functions for two-soliton solution
can be expanded for N = 2

f = Pf(a1, a2, a3, a4, b1, b2, b3, b4)
= 1 + a11̄e

η1+η̄1 + a12̄e
η1+η̄2 + a21̄e

η2+η̄1 + a22̄e
η2+η̄2

+ |P12|2

a11̄a22̄P12̄P21̄ − a12̄a21̄P11̄P22̄


eη1+η2+η̄1+η̄2 , (85)
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a b

Fig. 2. Two-soliton solution to the complex short pulse equation (a) contour plot; (b) profiles at t = −80, 80.
a b

Fig. 3. Bound state to the complex short pulse equation: (a) 3D plot (b) profiles at t = −100, 40.
g = Pf(d0, β1, a1, a2, a3, a4, b1, b2, b3, b4)
= α1eη1 + α2eη2 + P12


α1P11̄a21̄ − α2P21̄a11̄


eη1+η2+η̄1

+ P12

α1P12̄a22̄ − α2P22̄a12̄


eη1+η2+η̄2 , (86)

where

Pij =
pi − pj
pi + pj

, Pīj =
pi − p̄j
pi + p̄j

, aīj =
αiᾱj(pip̄j)2

4(pi + p̄j)2
, (87)

and ηj = pjy + p−1
j s, η̄j = p̄jy + p̄−1

j s.
To avoid the singularity of the envelope solitons, the conditions

|p1R| < |p1I | and |p2R| < |p2I | need to be satisfied. When two soli-
tons stay apart, the amplitude of each soliton is of 2|piR|/|pi|2, and
the velocity is of −1/|pi|2 in the ys-coordinate system. Therefore,
the soliton of larger velocity will catch upwith and collidewith the
soliton of smaller velocity if it is initially located on the left. Fur-
thermore, the collision is elastic, and there is no change in shape
and amplitude of solitons except a phase shift. In Fig. 2, we illus-
trate the contour plot for the collision of two solitons (a), as well as
the profiles (b) before and after the collision. The parameters are
taken as α1 = α2 = 1.0, p1 = 1 + 1.2i and p2 = 1 + 2i.

Since the velocity of single envelope soliton is −1/|pi|2 in the
ys-coordinate system, a bound state can be formed under the con-
dition of |p1|2 = |p2|2 if two solitons stay close enough and move
with the same velocity. Such a bound state is shown in Fig. 3
for parameters chosen as α1 = α2 = 1.0, p1 = 1.3 + 1.8193i,
p2 = 1 + 2i. It is interesting that the envelope of the bound state
oscillates periodically as it moves along x-axis.

4.3. Bilinear equations andN-soliton solutions to the coupled complex
short pulse equation

Proposition 4.5. The coupled complex short pulse equation is derived
from bilinear equations

DsDyf · gi = fgi, i = 1, 2, (88)

D2
s f · f =

1
2


|g1|2 + |g2|2


, (89)

by dependent variable transformation

q1 =
g1
f

, q2 =
g2
f

, (90)

and hodograph transformation

x = y − 2(ln f )s, t = −s, (91)

Proof. Dividing both sides of Eqs. (88)–(89) by f 2, we have
gi
f


sy

+ 2
gi
f

(ln f )sy =
gi
f

, (92)

(ln f )ss =
1
4


|g1|2

f 2
+

|g2|2

f 2


. (93)
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From dependent variable and hodograph transformations
(90)–(91), we obtain

∂x
∂s

= −2(ln f )ss = −
1
2


|q1|2 + |q2|2


,

∂x
∂y

= 1 − 2(ln f )sy,

which implies

∂y = ρ−1∂x, ∂s = −∂t −
1
2


|q1|2 + |q2|2


∂x (94)

by letting 1 − 2(ln f )sy = ρ−1.
With the use of (94), Eq. (92) can be recast into

ρ


gi
f


sy

=
gi
f

, i = 1, 2, (95)

which can be further converted into

∂x


−∂t −

1
2
(|q1|2 + |q2|2)∂x


qi = qi, i = 1, 2. (96)

Eq. (96) is, obviously, equivalent to the coupled complex short
pulse equations (3)–(4). �

N-soliton solution for the coupled complex short pulse equation
is given in a similarway as the complex short pulse equation by the
following theorem.

Theorem 4.6. The coupled complex short pulse equation admits the
following N-soliton solution

qi =
gi
f

, x = y − 2(ln f )s, t = −s,

where f , gi are pfaffians defined as

f = Pf(a1, . . . , a2N , b1, . . . , b2N), (97)
gi = Pf(d0, βi, a1, . . . , a2N , b1, . . . , b2N), (98)

and the elements of the pfaffians are determined as

Pf(aj, ak) =
pj − pk
pj + pk

eηj+ηk , Pf(aj, bk) = δj,k, (99)

Pf(bj, bk) =
1
4

2
i=1

α
(i)
j α

(i)
k

p−2
j − p−2

k

δµ+1,ν, Pf(dl, ak) = plke
ηk , (100)

Pf(bj, βi) = α
(i)
j δµ,i,

Pf(d0, bj) = Pf(d0, βi) = Pf(aj, βi) = 0.
(101)

Here µ = index(bj), ν = index(bk), ηj = pjy + p−1
j s + ηj,0 which

satisfying pj+N = p̄j, αj+N = ᾱj.

The proof of the theorem is given in the Appendix. In the subse-
quent section, based on the N-soliton solution of coupled complex
short pulse equation, we will investigate the dynamics of one- and
two-solitons in details.

Remark 4.7. Through the transformations

x = y − 2(ln f )s, t = −s, qi =
gi
f

, (102)

the vector complex short pulse equation (43) can be decomposed
into the following bilinear equations

DsDyf · gi = fgi, i = 1, . . . , n, (103)

D2
s f · f =

1
2


n

i=1

|gi|2


. (104)
The parametric form of N-soliton solution in terms of pfaffians to
the vector complex short pulse equation (43) can be given in a very
similar from as to the coupled complex short pulse equation. Here,
we omit the details and will report the results later on.

5. Dynamics of solitons to the coupled complex short pulse
equation

5.1. One-soliton solution

The tau-functions for one-soliton solution to the coupled com-
plex short pulse equation are obtained from (97)–(98) for N = 1

f = −1 −
1
4

2
i=1

|α
(i)
1 |

2(p1p̄1)2

(p1 + p̄1)2
eη1+η̄1 , (105)

g1 = −α
(1)
1 eη1 , g2 = −α

(2)
1 eη1 . (106)

Let p1 = p1R + ip1I , the one-soliton solution can be expressed
in the following parametric form
q1
q2


=


A1
A2


2p1R
|p1|2

eiη1I sech (η1R + η10) , (107)

x = y −
2p1R
|p1|2

(tanh(η1R + η10) + 1) , t = −s, (108)

where

η1R = p1R


y +

1
|p1|2

s


, η1I = p1I


y −

1
|p1|2

s


, (109)

Ai =
α

(i)
1

2
i=1

|α
(i)
1 |2

, η10 = ln


2

i=1
|α

(i)
1 |2|p1|2

4|p1R|
. (110)

The amplitudes of the single soliton in each component are
2|A1|p1R/|p1|2 and 2|A2|p1R/|p1|2, respectively. Note that |A1|

2
+

|A2|
2

= 1. Same as the analysis for one-soliton solution of complex
short pulse equation, if |p1R| < |p1I |, the envelope for one-soliton
in each of the component is smooth, whereas, if |p1R| > |p1I |, it
becomes a loop (multi-valued) soliton, if |p1R| = |p1I |, it is a
cuspon.

5.2. Soliton interactions

Two-soliton solution for coupled complex short pulse equation
is obtained from (97)–(98) for N = 2. By expanding the pfaffians,
the tau-functions for two-soliton solution are expressed by

f = 1 + eη1+η̄1+r11̄ + eη1+η̄2+r12̄ + eη2+η̄1+r21̄ + eη2+η̄2+r22̄

+ |P12|2|P12̄|
2P11̄P22̄


B11̄B22̄ − B21̄B12̄


eη1+η2+η̄1+η̄2 , (111)

g1 = α
(1)
1 eη1 + α

(1)
2 eη2

+ P12P11̄P21̄

α

(1)
2 B11̄ − α

(1)
1 B21̄


eη1+η2+η̄1

+ P12P12̄P22̄

α

(1)
2 B12̄ − α

(1)
1 B22̄


eη1+η2+η̄2 , (112)

g2 = α
(2)
1 eη1 + α

(2)
2 eη2

+ P12P11̄P21̄

α

(2)
2 B11̄ − α

(2)
1 B21̄


eη1+η2+η̄1

+ P12P12̄P22̄

α

(2)
2 B12̄ − α

(2)
1 B22̄


eη1+η2+η̄2 , (113)
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where

Pij =
pi − pj
pi + pj

, Pīj =
pi − p̄j
pi + p̄j

,

Bīj =
α

(1)
i ᾱ

(1)
j + α

(2)
i ᾱ

(2)
j

4(p−2
i − p̄−2

j )
, erīj =

α
(1)
i ᾱ

(1)
j + α

(2)
i ᾱ

(2)
j

4(p−1
i + p̄−1

j )2

and ηj = pjy + p−1
j s, p3 = p̄1, p4 = p̄2, thus, η3 = η̄1, η4 = η̄2.

Next, we investigate the asymptotic behavior of two-soliton
solution. To this end, we assume p1R > p2R > 0, p1R/|p1|2 >
p2R/|p2|2 without loss of generality. For the above choice of param-
eters, we have (i) η1R ≈ 0, η2R → ∓∞ as t → ∓∞ for soliton 1
and (ii) η2R ≈ 0, η2R → ±∞ as t → ∓∞ for soliton 2. This leads
to the following asymptotic forms for two-soliton solution.

(i) Before collision (t → −∞)
Soliton 1 (η1R ≈ 0, η2R → −∞):
q1
q2


→


α

(1)
1

α
(2)
1


eη1

1 + eη1+η̄1+r11̄
,

→


A1−
1

A1−
2


2p1R
|p1|2

eiη1I sech

η1R +

r11̄
2


, (114)

where
A1−
1

A1−
2


=


α

(1)
1

α
(2)
1


1

|α
(1)
1 |2 + |α

(2)
1 |2

. (115)

Soliton 2 (η2R ≈ 0, η1R → ∞):
q1
q2


→


A2−
1

A2−
2


2p2R
|p2|2

eiη2I sech


η2R +
r11̄22̄ − r11̄

2


, (116)

where
A2−
1

A2−
2


=


er

(1)
11̄2

er
(2)
11̄2


e−(r11̄22̄+r11̄−r22̄)/2
|α

(1)
2 |2 + |α

(2)
2 |2

, (117)

with

er
(i)
11̄2 = P12P11̄P21̄


α

(i)
2 B11̄ − α

(i)
1 B21̄


, (i = 1, 2) (118)

er11̄22̄ = |P12|2|P12̄|
2P11̄P22̄


B11̄B22̄ − B21̄B12̄


. (119)

After collision (t → ∞)
Soliton 1 (η1R ≈ 0, η2R → ∞):
q1
q2


→


A1+
1

A1+
2


2p1R
|p1|2

eiη1I sech


η2R +
r11̄22̄ − r22̄

2


, (120)

where
A1+
1

A1+
2


=


er

(1)
121̄

er
(2)
121̄


e−(r11̄22̄−r11̄+r22̄)/2
|α

(1)
1 |2 + |α

(2)
1 |2

, (121)

with

er
(i)
121̄ = P12P12̄P22̄


α

(i)
2 B12̄ − α

(i)
1 B22̄


, (i = 1, 2). (122)

Soliton 2 (η2R ≈ 0, η1R → −∞):
q1
q2


→


A2+
1

A2+
2


2p2R
|p2|2

eiη2I sech

η2R +

r22̄
2


, (123)

where
A2+
1

A2+
2


=


α

(1)
2

α
(2)
2


1

|α
(1)
2 |2 + |α

(2)
2 |2

. (124)

Similar to the analysis for the CNLS equations [38–40], the
change in the amplitude of each of the solitons in each component
can be obtained by introducing the transition matrix T k
j by Ak+

j =

T k
j A

k−
j , j, k = 1, 2. The elements of transition matrix is obtained

from the above asymptotic analysis as

T 1
j =


P12P12̄
P̄12P̄12̄

1/2 1
√
1 − λ1λ2


1 − λ2

α
(j)
2

α
(j)
1


, j = 1, 2, (125)

T 2
j =


P̄12P12̄
P12P̄12̄

1/2
1 − λ1λ2


1 − λ1

α
(j)
1

α
(j)
2

−1

, j = 1, 2, (126)

where λ1 = B21̄/B11̄, λ2 = B12̄/B22̄.
Therefore, in general, there is an exchange of energies between

two components of two solitons after the collision. An example
is shown in Fig. 4 for the parameters taken as follows p1 = 1 +

1.2i, p2 = 1 + 2i, α(1)
1 = α

(2)
1 = 1.0, α(1)

2 = 2.0, α(2)
2 = 1.0.

However, only for the special case

α
(1)
1

α
(1)
2

=
α

(2)
1

α
(2)
2

, (127)

there is no energy exchange between two components of solitons
after the collision. An example is shown in Fig. 5 for the parameters
p1 = 1+ 1.2i, p2 = 1+ 2i, α

(1)
1 = α

(2)
1 = 1.0, α

(1)
2 = α

(2)
2 = 1.0.

It is interesting to note that if we just change the parameters
in previous two examples as α

(1)
2 = 0, α(2)

2 = 1.0, the energy of
one soliton is concentrated in component q2 before the collision.
However, component q1 gains some energy after the collision. Such
an example is shown in Fig. 6.

On the other hand, if we change the parameters as α
(1)
2 = 1.0,

α
(2)
2 = 0, then the energy of one soliton, which are distributed

between two components before the collision is concentrated
into one component q2 after the collision. The example is shown
in Fig. 7.

6. Concluding remarks

In this paper, we proposed a complex short pulse equation
and its two-component generalization. Both of the equations can
be used to model the propagation of ultra-short pulses in optical
fibers. We have shown their integrability by finding the Lax pairs
and infinite numbers of conservation laws. Furthermore, multi-
soliton solutions are constructed via Hirota’s bilinear method. In
particular, one-soliton solution for the CSP equation is an envelope
soliton with a few optical cycles under certain condition, which
perfectly match the requirement for the ultra-short pulses. The
N-solution for complex short pulse equation and its two-
component generalization is a benchmark for the study of soliton
interactions in ultra-short pulses propagation in optical fibers. It
is expected that these analytical solutions can be confirmed from
experiments.

Similar to our previous results for the integrable discretizations
of the short pulse equation [22], how to construct integrable dis-
cretizations of the CSP and coupled CSP equations andhow to apply
them for the numerical simulations is also an interesting topic to
be studied. It is obviously beyond the scope of the present paper,
we are to report the results on this aspect in a forthcoming paper.
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Fig. 4. Inelastic collision and energy exchange in coupled complex short pulse equation. (a)–(b) Contour plot; (c)–(d) Profiles before and after the collision.
a b

c d

Fig. 5. Elastic collision in coupled complex short pulse equation.
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Fig. 6. Inelastic collision in coupled complex short pulse equation for p1 = 1 + 1.2i, p2 = 1 + 2i, α(1)
1 = α

(2)
1 = 1.0, α(1)

2 = 0, α(2)
2 = 1.0. (a)–(b) Contour plot;

(c)–(d) Profiles before and after the collision.
Appendix

Proof of Theorem 4.2. First we define

(bj, β̄1) = ᾱjδµ,1, (bj, β̄2) = ᾱjδµ,2,

where index(bj) = µ, then from the fact

Pf(āj, ak) = Pf(aN+j, aN+k), Pf(b̄j, bk) = Pf(bN+j, bN+k),

we obtain

f̄ = f , ḡ = Pf(d0, β̄1, a1, . . . , a2N , b1, . . . , b2N).

Since
∂

∂y
Pf(aj, ak) = (pj − pk)eηj+ηk = Pf(d0, d1, aj, ak),

∂

∂s
Pf(aj, ak) = (p−1

k − p−1
j )eηj+ηk = Pf(d−1, d0, aj, ak),

∂2

∂s2
Pf(aj, ak) = (p−2

k − p−2
j )eηj+ηk = Pf(d−2, d0, aj, ak),

∂2

∂y∂s
Pf(aj, ak) = (pjp−1

k − pkp−1
j )eηj+ηk

= Pf(d−1, d1, ai, aj),

we then have
∂ f
∂y

= Pf(d0, d1, . . .),

∂ f
∂s

= Pf(d−1, d0, . . .),
∂2f
∂s2

= Pf(d−2, d0, . . .),

∂2f
∂y∂s

= Pf(d−1, d1, . . .).

Here Pf(d0, d1, a1, . . . , a2N , b1, . . . , b2N) is abbreviated by Pf(d0,
d1, . . .), so as other similar pfaffians.

Furthermore, it can be shown

∂g
∂y

=
∂

∂y


2N
j=1

(−1)jPf(d0, aj)Pf(β1, . . . , âj, . . .)



=

2N
j=1

(−1)j


∂yPf(d0, aj)

Pf(β1, . . . , âj, . . .)

+ Pf(d0, aj)∂yPf(β1, . . . , âj, . . .)


=

2N
j=1

(−1)j

Pf(d1, aj)Pf(β1, . . . , âj, . . .)

+ Pf(d0, aj)Pf(β1, d0, d1, . . . , âj, . . .)


= Pf(d1, β1, . . .) + Pf(d0, β1, d0, d1, . . .)

= Pf(d1, β1, . . .).

Here âj means that the index j is omitted. Similarly,we can show

∂g
∂s

= Pf(d−1, β1, . . .),
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a b
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Fig. 7. Inelastic collision in coupled complex short pulse equation for p1 = 1 + 1.2i, p2 = 1 + 2i, α(1)
1 = α

(2)
1 = 1.0, α(1)

2 = 1.0, α(2)
2 = 0. (a)–(b) Contour plot;

(c)–(d) Profiles before and after the collision.
∂2g
∂y∂s

=
∂

∂y


2N
j=1

(−1)jPf(d−1, aj)Pf(β1, . . . , âj, . . .)



=

2N
j=1

(−1)j


∂yPf(d−1, aj)

Pf(β1, . . . , âj, . . .)

+ Pf(d−1, aj)∂yPf(β1, . . . , âj, . . .)


=

2N
j=1

(−1)j

Pf(d0, aj)Pf(β1, . . . , âj, . . .)

+ Pf(d−1, aj)Pf(β1, d0, d1, . . . , âj, . . .)


= Pf(d0, β1, . . .) + Pf(d−1, β1, d0, d1, . . .).

An algebraic identity of pfaffian [21]

Pf(d−1, β1, d0, d1, . . .)Pf(· · ·) = Pf(d−1, d0, . . .)Pf(d1, β1, . . .)

− Pf(d−1, d1, . . .)Pf(d0, β1, . . .)

+ Pf(d−1, β1, . . .)Pf(d0, d1, . . .),

implies

(∂s∂yg − g) × f = ∂sf × ∂yg − ∂s∂yf × g + ∂sg × ∂yf .

Therefore, the first bilinear equation is approved.
The second bilinear equation can be proved in the same way by

Iwao and Hirota [37].

∂2f
∂s2

× 0 −
∂ f
∂s

∂ f
∂s

= Pf(d−2, d0, . . .)Pf(d0, d0, . . .)

− Pf(d−1, d0, . . .)Pf(d−1, d0, . . .)
=

2N
i=1

(−1)iPf(d−2, ai)Pf(d0, . . . , âi, . . .)

×

2N
j=1

(−1)jPf(d0, aj)Pf(d0, . . . , âj, . . .)

−

2N
i=1

(−1)iPf(d−1, ai)Pf(d0, . . . , âi, . . .)

×

2N
j=1

(−1)jPf(d−1, aj)Pf(d0, . . . , âj, . . .)

=

2N
i,j=1

(−1)i+j Pf(d−2, ai)Pf(d0, aj) − Pf(d−1, ai)Pf(d−1, aj)


× Pf(d0, . . . , âi, . . .)Pf(d0, . . . , âj, . . .)

=

2N
i,j=1

(−1)i+j+1 p−2
i + p−1

i p−1
j


× Pf(ai, aj)Pf(d0, . . . , âi, . . .)Pf(d0, . . . , âj, . . .).

The summation over the second term within the bracket van-
ishes due to the fact that

2N
i,j=1

(−1)i+j+1p−1
i p−1

j Pf(ai, aj)

× Pf(d0, . . . , âi, . . .)Pf(d0, . . . , âj, . . .)
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=

2N
j,i=1

(−1)j+i+1p−1
j p−1

i Pf(aj, ai)

× Pf(d0, . . . , âj, . . .)Pf(d0, . . . , âi, . . .)

= −

2N
i,j=1

(−1)i+j+1p−1
i p−1

j Pf(ai, aj)

× Pf(d0, . . . , âi, . . .)Pf(d0, . . . , âj, . . .).

Therefore,

−
∂ f
∂s

∂ f
∂s

=

2N
i,j=1

(−1)i+j+1p−2
i Pf(ai, aj)

× Pf(d0, . . . , âi, . . .)Pf(d0, . . . , âj, . . .)

=

2N
i=1

(−1)i+1p−2
i Pf(d0, . . . , âi, . . .)

×


2N
j=1

(−1)jPf(ai, aj)Pf(d0, . . . , âj, . . .)


.

Further, we note that the following identity can be substituted into
the term within bracket
2N
j=1

(−1)jPf(ai, aj)Pf(d0, . . . , âj, . . .)

= Pf(d0, ai)Pf(· · ·) + (−1)i+1Pf(d0, . . . , b̂i, . . .)

which is obtained from the expansion of the following vanishing
pfaffian Pf(ai, d0, . . .) on ai. Consequently, we have

−
∂ f
∂s

∂ f
∂s

=

2N
i=1

(−1)i+1p−2
i Pf(d0, . . . , âi, . . .)

×


Pf(d0, ai)Pf(· · ·) + (−1)i+1Pf(d0, . . . , b̂i, . . .)


,

= −Pf(· · ·)Pf(d−2, d0, . . .)

+

2N
i=1

p−2
i Pf(d0, . . . , âi, . . .)Pf(d0, . . . , b̂i, . . .), (A.1)

which can be rewritten as

∂2f
∂s2

f −
∂ f
∂s

∂ f
∂s

=

2N
i=1

p−2
i Pf(d0, . . . , âi, . . .)Pf(d0, . . . , b̂i, . . .). (A.2)

Now, we work on the r.h.s of the second bilinear equation.

1
2
|g|2 =

1
2
Pf(d0, β1, . . .)Pf(d0, β̄1, . . .)

=
1
2

2N
i,j

(−1)i+jPf(bi, β1)Pf(d0, . . . , b̂i, . . .)

× Pf(bj, β̄1)Pf(d0, . . . , b̂j, . . .)

=
1
4

2N
i,j

(−1)i+j(αiᾱj)

× Pf(d0, . . . , b̂i, . . .)Pf(d0, . . . , b̂j, . . .)

=

2N
i,j

(−1)i+j p−2
i − p−2

j


Pf(bi, bj)

× Pf(d0, . . . , b̂i, . . .)Pf(d0, . . . , b̂j, . . .). (A.3)
Next, the expansion of the vanishing pfaffian Pf(bi, d0, . . .) on bi
yields

2N
j=1

(−1)i+jPf(bi, bj)Pf(d0, . . . , b̂j, . . .)

= Pf(d0, . . . , âi, . . .), (A.4)

which subsequently leads to

2N
i,j

(−1)i+jp−2
i Pf(bi, bj)Pf(d0, . . . , b̂i, . . .)Pf(d0, . . . , b̂j, . . .)

=

2N
i

p−2
i Pf(d0, . . . , âi, . . .)Pf(d0, . . . , b̂i, . . .). (A.5)

Similarly, we can show that

−

2N
i,j

(−1)i+jp−2
j Pf(bi, bj)Pf(d0, . . . , b̂i, . . .)Pf(d0, . . . , b̂j, . . .)

=

2N
j

p−2
j Pf(d0, . . . , âj, . . .)Pf(d0, . . . , b̂j, . . .). (A.6)

Substituting Eqs. (A.5)–(A.6) into Eq. (A.3), we arrive at

1
2
|g|2 = 2

2N
i

p−2
i Pf(d0, . . . , âi, . . .)Pf(d0, . . . , b̂i, . . .). (A.7)

Consequently we have

2
∂2f
∂s2

f − 2
∂ f
∂s

∂ f
∂s

=
1
2
|g|2, (A.8)

which is nothing but the second bilinear equation. Therefore, the
proof is complete. �

Proof of Theorem 4.6. The proof of the first bilinear equation
can be done exactly in the same way as for the complex short
pulse equation. In what follows, we prove the second equation by
starting from the r.h.s of this equation. Because

ḡ1 = Pf(d0, β̄1, a1, . . . , a2N , b1, . . . , b2N),

ḡ2 = Pf(d0, β̄2, a1, . . . , a2N , b1, . . . , b2N),

the r.h.s of the bilinear equation turns out to be

1
2

(g1ḡ1 + g2ḡ2) =
1
2

2
k=1

2N
i,j

(−1)i+jPf(bi, βk)

× Pf(d0, . . . , b̂i, . . .)Pf(bj, β̄k)Pf(d0, . . . , b̂j, . . .)

=
1
4

2N
i,j

(−1)i+j
2

k=1

(α
(k)
i ᾱ

(k)
j )

× Pf(d0, . . . , b̂i, . . .)Pf(d0, . . . , b̂j, . . .)

=

2N
i,j

(−1)i+j p−2
i − p−2

j


× Pf(bi, bj)Pf(d0, . . . , b̂i, . . .)Pf(d0, . . . , b̂j, . . .). (A.9)

Similar to the complex short pulse equation, we can show

1
2


|g1|2 + |g2|2


= 2

2N
i

p−2
i Pf(d0, . . . , âi, . . .)Pf(d0, . . . , b̂i, . . .). (A.10)
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Regarding the r.h.s of the bilinear equation, exactly the same as the
proof of Theorem 4.2, we have

∂2f
∂s2

f −
∂ f
∂s

∂ f
∂s

=

2N
i

p−2
i Pf(d0, . . . , âi, . . .)Pf(d0, . . . , b̂i, . . .). (A.11)

Therefore the second bilinear equation is proved. �
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