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a b s t r a c t

We construct all higher order conserved charges from a general two-dimensional zero curvature
condition using a Gardner transformation. Employing two of those charges in the definition of a
Hamiltonian allows to view the Hirota equations as an integrable PT -symmetric extension of the
nonlinear Schrödinger equation. We construct new degenerate multi-soliton solutions from Hirota’s
direct method as well as Darboux–Crum transformations based on Jordan states. We study the prop-
erties of these solutions, computing their asymptotic time-dependent displacements and also show
that their scattering process has a distinct characteristic behaviour different from the nondegenerate
counterparts allowing only for interactions of absorb–emit type.
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1. Introduction

The Hirota equation [1] is a well known integrable higher
order extension of the nonlinear Schrödinger equation (NLSE) [2].
The physical motivation for such an extension was to allow for
a more precise description for the wave propagation of pulses
in the picosecond regime [3], as the NLSE failed to provide full
explanations of some experiments in the high-intensity and short
pulse subpicosecond regime [4,5]. Mathematically this equation is
of special interest as it constitutes one of the very few examples
for which such type of extensions preserve the integrability.
Other known examples of integrable extensions of the NLSE are
the NLSE of type I [6], the NLSE of type II [7], the Hirota-modified
Korteweg–de Vries equation [8–10] and the Sasa–Satsuma equa-
tion [11].

Here we view the full Hirota equation as PT -symmetrically
extended version of NLSE. This simple symmetry property to-
gether with the integrability of the system allows for an easy
explanation of why the physical quantities associated to the
model are real despite the fact that they are computed from
complex solutions. We extend here our previous argumentation
[12,13] applied only to the energy of the system to all charges.

Our main focus in this manuscript is the continuation of the
study of multi-soliton solutions that have the same speed pa-
rameters [14,15] leading to identical energies of their one-soliton
constituents in their multi-soliton solutions, hence they were
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referred to as degenerate multi-soliton solutions. Such type of
solutions are interesting from a mathematical and as well as
physical point of view. Mathematically they cannot simply be
obtained by identifying some of the speed parameters in the
standard multi-soliton expressions as they diverge in this case.
Hence, as was demonstrated for other types of models [14,15]
each of the solution methods needs to be adjusted appropriately.
From a physical point of view these degenerate multi-soliton
solutions exhibit new types of features that are absent in the
nondegenerate scenario. At small times there is a large regime
where the one-solitons constituents of the multi-soliton solutions
travel simultaneously with the same speed and amplitude, ap-
pearing to be stable. This type of behaviour is reminiscent of the
famous tidal bore phenomenon, see for instance [16], in which
several wave amplitudes of the same height up to several meters
travel jointly stream upward on a river for large distances of up
to several hundred kilometers. In addition, at very large times
the degenerate multi-soliton solutions exhibit a different kind
of behaviour as their nondegenerate counterparts. While in the
latter the one-soliton constituents are displaced by a constant
value, when comparing asymptotic past and future, the former
are separated from each other by a time-dependent displacement.
One of the challenges in this context is to compute analytic
expressions for these displacements. Naturally it would be very
interesting to find this kind of phenomenon in an optical setting.

Degenerate multi-soliton solutions have been found previ-
ously for the NLSE in the context of the inverse scattering method
[17,18], where they were referred to as multiple pole solutions.
This terminology is somewhat misleading as the poles are not
actually in the solutions of the NLSE but in the kernels of the
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Gel’fand–Levitan–Marchenko equations, that is a specific quan-
tity within the context of the inverse scattering method. In our
previous analysis for the Korteweg de–Vries equation [14] and
the sine-Gordon equation [15] we showed how to derive these
type of solutions in a more transparent way by employing Hirota’s
direct method, Darboux–Crum transformations or recursive equa-
tions derived from Bäcklund transformations. Here we follow a
similar approach for the Hirota equation in the construction of
the degenerate multi-soliton solutions.

Our manuscript is organized as follows: In Section 2 we em-
ploy a Gardner transformation [19] to construct all charges re-
lated to a particular two dimensional form of the AKNS-equation.
We use two of these charges to construct a Hamiltonian that
allows to view the Hirota equations as a PT -symmetrically ex-
tended version of NLSE. In Section 3 we construct multi-soliton
solutions by means of Hirota’s direct method and Darboux–Crum
transformation based on Jordan states. In Section 4 we study the
properties of these solutions. In particular, we compute closed
expressions for all higher order charges resulting from concrete
multi-solitons solutions, we compute the time-dependent dis-
placements for the one-soliton constituents in the multi-soliton
solutions. We also show that unlike as in the degenerate case the
scattering process for the degenerate solution only allows for an
absorb–emit process. Our conclusions are stated in Section 5.

2. The Hirota equation as a PT -symmetrically extended NLSE

We consider here the full Hirota equation [1] in the form

iqt =−α
[
qxx + 2 |q|2 q

]
− iβ

[
qxxx + 6 |q|2 qx

]
, (2.1)

with real constants α, β and complex valued field q = q(x, t)
depending on the position x and time t . This equation is known
to unify the complex version of the modified Korteweg–de Vries
(mKdV) equation and the NLSE equation, which are obtained from
it in the limits α → 0 and β → 0, respectively. Eq. (2.1) is
symmetric with respect to the anti-linear map PT : x → −x, t →

−t , i → −i, q → q. The term proportional to β can be viewed as a
PT -symmetric extension of the NLSE. Evidently there exist many
such choices and so we briefly explain the origin of the particular
form of this extension term that guaranteed the integrability of
the model by constructing the Hamiltonian that corresponds to
(2.1) and also all higher order conserved quantities.

We recall that equivalently to the AKNS equation [20], the
Hirota equation results as a compatibility equation for the two
linear first order differential equations

Ψt = VΨ and Ψx = UΨ , (2.2)

with auxiliary function Ψ and operators U , V of the form

Ψ =

(
ϕ

φ

)
, U =

(
−iλ q
r iλ

)
, V =

(
A B
C −A

)
,

(2.3)

with complex valued scalar functions r , q, A, B and C . From
this starting point the conserved quantities for this system are
easily derived from an analogue to the Gardner transform for the
KdV field [13,19,21,22]. Defining two new complex valued fields
T (x, t) and χ (x, t) in terms of the components of the auxiliary
field Ψ one trivially obtains a local conservation law

T :=
ϕx

ϕ
, χ := −

ϕt

ϕ
, ⇒ Tt + χx = 0. (2.4)

From the two first rows in Eqs. (2.2) we then derive

T = q
φ

ϕ
− iλ, χ = −A − B

φ

ϕ
, (2.5)

so that the local conservation law in (2.4) is expressed in terms
of the as yet unknown quantities A, B and T

Tt −

(
A + iλB +

B
q
T
)

x
= 0. (2.6)

The missing function T is then determined by the Riccati equation

Tx = iλ
qx
q

+ rq − λ2 +
qx
q
T − T 2, (2.7)

which in turn is obtained by differentiating T in (2.4) with respect
to x. The Gardner transformation [13,19,21,22] consists now of
expanding T in terms of λ and a new field w as T = −iλ[1 −

w/(2λ2)]. This choice is motivated by balancing the first with the
fourth and the third and the fifth term when λ → ∞. The factor
on the field w is just convenience that renders the following
calculations in a simple form. Substituting this expression for T
into the Riccati equation (2.7) with a further choice λ = i/(2ε),
made once more for convenience, yields

w + ε

(
wx −

qx
q
w

)
+ ε2w2

− rq = 0. (2.8)

Up to this point our discussion is entirely generic and the func-
tions r(x, t) and q(x, t) can in principle be any function. Fixing
their mutual relation now to r(x, t) = −q∗(x, t) and expanding
the new auxiliary density field as

w(x, t) =

∞∑
n=0

εnwn(x, t), (2.9)

we can solve (2.8) for the functions wn in a recursive manner
order by order in ε. Iterating these solutions yields

wn =
qx
q
wn−1 − (wn−1)x −

n−2∑
k=0

wkwn−k−2, for n ≥ 1. (2.10)

We compute the first expressions to

w0 = − |q|2 , (2.11)

w1 =
1
2

|q|2x +
1
2

(
qq∗

x − q∗qx
)
, (2.12)

w2 = |qx|2 − |q|4 −
1
2

(
qq∗

x + q∗qx
)
x +

1
2

(
q∗qxx − qq∗

xx

)
, (2.13)

w3 =

[
5
4

|q|4 +
1
2

(
qq∗

xx + q∗qxx − |qx|2
)]

x

+
1
2

(
qq∗

xx − q∗qxx
)
x (2.14)

+
1
2

(
3q |q|2 q∗

x − 3q∗
|q|2 qx + q∗

xqxx − qxq∗

xx

)
.

When possible we have also extracted terms that can be written
as derivatives, since they become surface terms in the expressions
for the conserved quantities, and also those that give a zero
contribution to the variation. We note that with regard to the
aforementioned PT -symmetry we have PT (wn) = (−1)nwn.
Since T is a density of a local conservation law, also each function
wn can be viewed as a density. We may then define a Hamiltonian
density from the two conserved quantities w2 and w3 as

H(q, qx, qxx) = αw2 + iβw3 (2.15)

= α
(
|qx|2 − |q|4

)
− i
β

2

(
qxq∗

xx − q∗

xqxx
)

− i
3β
4

[(
q∗

)2 (
q2

)
x − q2

(
q∗

)2
x

]
, (2.16)

with some real constants α, β , where we have dropped all surface
terms in (2.16) and terms with zero variation, such as the last one
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in (2.13). We also included an i in front of the w3-term to ensure
the overall PT -symmetry of H, which prompts us to view the
Hirota equation as a PT -symmetric extension of the NLSE. This
form will ensure the reality of the total energy of the system,
defined by E(q) :=

∫
∞

−∞
H(q, qx, qxx)dx for a particular solution.

It is clear from our analysis that the extension term needs to be
of a rather special form as most terms, even when they respect
the PT -symmetry, will destroy the integrability of the model, see
also [23] for other models.

It is now easy to verify that Eq. (2.1) and its conjugate result
from varying the Hamiltonian H =

∫
Hdx

iqt =
δH
δq∗

=

∞∑
n=0

(−1)n
dn

dxn
∂H
∂q∗

nx
,

iq∗

t = −
δH
δq

=

∞∑
n=0

(−1)n
dn

dxn
∂H
∂qnx

,

(2.17)

with Hamiltonian density (2.16). At this point we also determine
the functions

A = iα |q|2 − 2iαλ2 + β
(
qq∗

x − q∗qx − 4iλ3 + 2iλ |q|2
)
, (2.18)

B = iαqx + 2αλq + β
(
2iλqx − 2q |q|2 − qxx + 4λ2q

)
, (2.19)

C = iαq∗

x − 2αλq∗
+ β

(
q∗

xx − 2q∗
|q|2 + 2iλq∗

x − 4λ2q∗
)
, (2.20)

as solutions to the auxiliary equation (2.2) up to the Hirota
equation (2.1). They serve to compute the function χ occurring
in the local conservation law (2.6).

3. Construction of degenerate multi-soliton solutions

An expression for the multi-soliton solution to the Hirota
equation (2.1) was already provided when the equation was orig-
inally proposed in [1]. However, as these expressions are not valid
for equal speed parameters we show here in detail how two of
the standard methods, Hirota’s direct method and Darboux–Crum
transformations, can be adapted to include degeneracies.

3.1. Hirota’s direct method

Hirota’s direct method is one of the most transparent and
straightforward techniques to find solutions to nonlinear dif-
ferential equations. We briefly recall the main principle of this
method and utilize it to solve Hirota’s equation (2.1) with a
particular focus on how to obtain new degenerate solutions in
this context. Factorizing the complex field in (2.1) as q(x, t) =

g(x, t)/f (x, t), with g(x, t) ∈ C, f (x, t) ∈ R, it is well known [1]
that one can express Hirota’s equation (2.1) in bilinear form as

iDtg · f + αD2
xg · f + iβD3

xg · f = 0, (3.1)

D2
x f · f = 2 |g|

2 , (3.2)

with Dn
x , D

n
t denoting Hirota derivatives [24] defined by an ana-

logue to the Leibniz rule, albeit with alternating signs,

Dn
x f · g =

n∑
k=0

(
n
k

)
(−1)k

∂n−k

∂xn−k f (x)
∂k

∂xk
g(x). (3.3)

Exact multi-soliton solutions can be found in a recursive fashion
by terminating the formal power series expansions

f (x, t) =

∞∑
k=0

ε2kf2k(x, t), and g(x, t) =

∞∑
k=1

ε2k−1g2k−1(x, t),

(3.4)

at a particular order in ε. The remarkable and well-known feature
of this seemingly perturbative approach is that the solutions
obtained in this manner are exact for any value of the expansion
parameter ε, when the series are suitably terminated.

3.1.1. One-soliton solution
For ε = 1 a one-soliton is obtained as

qµ1 (x, t) =
gµ1 (x, t)

1 + f µ2 (x, t)
, with gµ1 (x, t) = τµ,c and

f µ2 (x, t) =

⏐⏐τµ,c⏐⏐2
(µ+ µ∗)2

.

(3.5)

The building blocks are the functions

τµ,c(x, t) := cτ̃µ(x, t), τ̃µ(x, t) := eµx+µ
2(iα−βµ)t , (3.6)

involving the complex constants c , µ ∈ C. More explicitly, for
c = 1 we have

qµ1 (x, t) =
4δ2ex(δ+iξ )+it(δ+iξ )2(α+iβδ−βξ )

4δ2 + e2δx−2δt[2αξ+β(δ2−3ξ2)] ,

⏐⏐qµ1 (x, t)⏐⏐ =
4δ2eδ

[
x−t

(
2αξ+β

(
δ2−3ξ2

))]
4δ2 + e2δ[x−t(2αξ+β(δ2−3ξ2))] .

(3.7)

with µ = δ + iξ , δ, ξ ∈ R. Defining the real quantities

A(x, t) : = xξ + t
[
α(δ2 − ξ 2) + βξ (ξ 2 − 3δ2)

]
, (3.8)

xδ,ξ± : = t
[
2αξ + β(δ2 − 3ξ 2)

]
±

1
δ
ln(2δ), (3.9)

we compute the maximum of the modulus for the one-soliton
solution to

qµ1 (x+xδ,ξ+ , t) = δ sech (xδ)eiA(x+xδ,ξ
+
,t)

⏐⏐⏐qµ1 (xδ,ξ+ , t)
⏐⏐⏐ = δ. (3.10)

Thus while the real and imaginary parts of the one-soliton solu-
tion exhibit a breather like behaviour, the modulus is a proper
solitary wave with a stable maximum at δ. The solution qµ1 be-
comes static in the limit to the NLSE β → 0 for real µ, i.e. ξ = 0,
and also in the limit to the mKdV equation α → 0 when δ2 = 3ξ 2.

3.1.2. Nondegenerate and degenerate two-soliton solution
At the next order in ε of the expansions (3.4) we construct a

general nondegenerate two-soliton solution as

qµ,ν2 (x, t) =
gµ,ν1 (x, t) + gµ,ν3 (x, t)

1 + f µ,ν2 (x, t) + f µ,ν4 (x, t)
, (3.11)

with functions

gµ,ν1 = τµ,c + τν,c̃, (3.12)

gµ,ν3 =
(µ− ν)2

(µ+ µ∗)2 (ν + µ∗)2
τν,c̃

⏐⏐τµ,c⏐⏐2
+

(µ− ν)2

(µ+ ν∗)2 (ν + ν∗)2
τµ,c

⏐⏐τν,c̃⏐⏐2 , (3.13)

f µ,ν2 =

⏐⏐τµ,c⏐⏐2
(µ+ µ∗)2

+
τν,δτ

∗
µ,c

(ν + µ∗)2
+

τµ,cτ
∗

ν,c̃

(µ+ ν∗)2
+

⏐⏐τν,c̃⏐⏐2
(ν + ν∗)2

, (3.14)

f µ,ν4 =
(µ− ν)2 (µ∗

− ν∗)2

(µ+ µ∗)2 (ν + µ∗)2 (µ+ ν∗)2 (ν + ν∗)2

×
⏐⏐τµ,c⏐⏐2 ⏐⏐τν,c̃⏐⏐2 . (3.15)

We have set here also ε = 1. As was noted previously in
[13–15] the limit µ → ν to the degenerate case cannot be carried
out trivially for generic values of the constants c , c̃. However, we
find that for the specific choice

c =
(µ+ µ∗) (µ+ ν∗)

(µ− ν)
, c̃ = −

(ν + ν∗) (ν + µ∗)

(µ− ν)
, (3.16)

the limit is nonvanishing for all functions in (3.12)–(3.15). This
choice is not unique, but the form of the denominators is essential
to guarantee the limit to be nontrivial. With c and c̃ as in (3.16)
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the limit µ → ν leads to the new degenerate two-soliton solution

qµ,µ2 (x, t) =

(µ+ µ∗) τ̃µ

[
(2 + τ̂µ) + (2 − τ̂µ)

⏐⏐τ̃µ⏐⏐2]
1 + (2 +

⏐⏐τ̂µ⏐⏐2) ⏐⏐τ̃µ⏐⏐2 +
⏐⏐τ̃µ⏐⏐4 , (3.17)

where we introduced the function

τ̂µ(x, t) := x + µt(2iα − 3βµ)
(
µ+ µ∗

)
. (3.18)

We observe the two different timescales in this solution enter-
ing through the functions τ̂ and τ̃ , in a linear and exponential
manner, respectively, which is a typical feature of degenerate
solutions.

3.2. Darboux–Crum transformations

It is well known that the AKNS equation [20] for many in-
tegrable systems can be converted into an eigenvalue equation
involving a Hamiltonian of Dirac type. In our case we can read
the second equation in (2.2) as Hψ = −λψ with H = −iσ3∂x+V ,
σ3 denoting a standard Pauli matrix, V12 = V ∗

21 = iq and V11 =

V22 = 0. Taking H = H0, Darboux–Crum transformations [25–30]
for Dirac Hamiltonians [31,32] consist of iterating the equations

LnHn−1 = HnLn (3.19)

with the help of some intertwining operators Ln that we do not
specify here any further. The new Hamiltonians Hn satisfy the
equations HnΨn = −µnΨn. Generalizing also the first equation
in (2.2) by setting Ψ → Ψn, the component equations become(
ϕ2j−1

)
x = µjϕ2j−1,

(
φ2j−1

)
x = −µjφ2j−1,(

ϕ2j−1
)
t = 2µ2

j (iα − 2βµj)ϕ2j−1,
(
φ2j−1

)
t = −2µ2

j (iα − 2βµj)φ2j−1,

ϕ2j = −φ∗

2j−1, φ2j = ϕ∗

2j−1,

for j = 1, . . . , n, (3.20)

as explained in more detail in [33]. The solutions to (3.20)

ϕ2j−1 = c2j−1e
µjx+2tµ2

j (iα−2βµj) = φ∗

2j,

φ2j−1 = c̃2j−1e
−µjx−2tµ2

j (iα−2βµj) = −ϕ∗

2j,
(3.21)

are the basic building blocks for the construction of a n-soliton
solution. They can be expressed in a very compact form as

qn = 2
detDn

detWn
, (3.22)

with Wn and Dn denoting 2n × 2n-matrices. The matrix Wn
consists of n columns containing ϕi and its derivatives ϕ(n)

i :=

∂nϕi/∂xn for i = 1, . . . , 2n and n columns containing φi and its
derivatives φ(n)

i := ∂nφi/∂xn

Wn =

⎛⎜⎜⎜⎝
ϕ
(n−1)
1 ϕ

(n−2)
1 . . . ϕ1 φ

(n−1)
1 . . . φ ′

1 φ1

ϕ
(n−1)
2 ϕ

(n−2)
2 . . . ϕ2 φ

(n−1)
2 . . . φ ′

2 φ2
...

...
. . .

...
...

. . .
...

...

ϕ
(n−1)
2n ϕ

(n−2)
2n . . . ϕ2n φ

(n−1)
2n . . . φ ′

2n φ2n

⎞⎟⎟⎟⎠ .

(3.23)

The matrix Dn is made up of n − 1 columns containing ϕi and its
derivatives and n + 1 columns containing φi and its derivatives

Dn =

⎛⎜⎜⎜⎝
φ

(n−2)
1 φ

(n−3)
1 . . . φ1 ϕ

(n)
1 . . . ϕ ′

1 ϕ1

φ
(n−2)
2 φ

(n−3)
2 . . . φ2 ϕ

(n)
2 . . . ϕ ′

2 ϕ2
...

...
. . .

...
...

. . .
...

...

φ
(n−2)
2n φ

(n−3)
2n . . . φ2n ϕ

(n)
2n . . . ϕ ′

2n ϕ2n

⎞⎟⎟⎟⎠ .

(3.24)

For specific choices of the constants ci and c̃i involved, the so-
lutions computed from (3.22) match exactly with the one and
two-soliton solutions derived from Hirota’s direct method. Taking
for the solutions q1 in (3.22) the constants as µ1 = (δ+iξ )/2, c1 =

c̃1 = −(2δ)−1, we obtain (3.7) and taking c1 = c̃1 = (µ1 − µ2)−1,
c2 = c̃2 = 1 in the solution q2 in (3.22), we get (3.11) with (3.16)
and the identification µ1 = µ, µ2 = ν.

The degenerate solutions can be obtained in principle by tak-
ing the limits µ1 → µ2 → . . . → µn → µ, which, however,
only leads to nontrivial solutions for very specific choices of the
constants ci and c̃i. This is to be expected given the discussion
in the previous section. Here we will not specify those constants,
but follow a slightly different approach. As pointed out in [33],
the nontrivial multi-soliton solutions can be obtained in an alter-
native and easier fashion in a closed compact form by replacing
in (3.23) and (3.24) the standard solutions (3.21) of (3.20) with
Jordan states

ϕ2j−1 → ∂ j−1
µ ϕ1, φ2j−1 → ∂ j−1

µ φ1, (3.25)

ϕ2j → ∂ j−1
µ ϕ2, φ2j → ∂ j−1

µ φ2, (3.26)

for j = 1, . . . , n. These states are essentially solutions to the
eigenvalue equation for powers of the Hamiltonian operator, see
e.g. [14] for more details. Explicitly, the first examples for the
matrices D̃n and W̃n related to the degenerate solutions are

D̃1 =

(
ϕ′

1 ϕ1
ϕ′

2 ϕ2

)
, W̃1 =

(
ϕ1 φ1
ϕ2 φ2

)
, (3.27)

D̃2 =

⎛⎜⎝ φ1 ϕ′′

1 ϕ′

1 ϕ1
φ2 ϕ′′

2 ϕ′

2 ϕ2
φ′

1 ϕ′′′

1 ϕ′′

1 ϕ′

1
φ′

2 ϕ′′′

2 ϕ′′

2 ϕ′

2

⎞⎟⎠ ,

W̃2 =

⎛⎜⎝ ϕ′

1 ϕ1 φ′

1 φ1
ϕ′

2 ϕ2 φ′

2 φ2
ϕ′′

1 ϕ′

1 φ′′

1 φ′

1
ϕ′′

2 ϕ′

2 φ′′

2 φ′

2

⎞⎟⎠ ,

(3.28)

D̃3 =

⎛⎜⎜⎜⎜⎜⎝
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W̃3 =
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1 ϕ1 φ′′
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1 φ1
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1
ϕ′′′
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ϕiv
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1 φiv
1 φ′′′

1 φ′′

1
ϕiv
2 ϕ′′′

2 ϕ′′

2 φiv
2 φ′′′

2 φ′′

2

⎞⎟⎟⎟⎟⎟⎠ ,

(3.29)

with ϕ1 = ceµx+2tµ2(iα−2βµ)
= φ∗

2 , φ1 = c̃1e−µx−2tµ2(iα−2βµ)
=

−ϕ∗

2 . The degenerate n-soliton solutions are then computed as

qnµn (x, t) = 2
det D̃n

det W̃n
, (3.30)

with only one spectral parameter µ left.

4. Properties of degenerate multi-soliton solutions

4.1. Real charges from complex solutions

Let us now verify that all the charges resulting from the
densities in (2.10) are real. Defining the charges as the integrals
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of the charge densities

Qn =

∫
∞

−∞

wndx (4.1)

we expect from the PT -symmetry behaviour PT (wn) = (−1)nwn
that Q2n ∈ R and Q2n+1 ∈ iR. Taking now q1 to be in the form
(3.10) and shifting x → x + x+ in (4.1), we find from (2.10) that
the only contribution to the integral comes from the iteration of
the first term, that is

Qn =

∫
∞

−∞

(
qx
q

)n

w0dx. (4.2)

It is clear that the second term in (2.10), (wn−1)x, does not con-
tribute to the integral as it is a surface term. Less obvious is
the cancellation of the remaining terms, which can however be
verified easily. For the one-soliton solution (3.10) the charges
(4.2) become

Qn = −δ2
∫

∞

−∞

[iξ − δ tanh(xδ)]n sech 2(xδ)dx (4.3)

= − |δ|

∫ 1

−1
(iξ − δu)n du (4.4)

= − |δ|

n∑
k=0

n!
(k + 1)!(n − k)!

δk(iξ )n−k [
1 + (−1)k

]
. (4.5)

Since only the terms with even k contribute to the sum in (4.5),
it is evident from this expression that Q2n ∈ R and Q2n+1 ∈ iR.

Of special interest is the energy of the system resulting from
the Hamiltonian (2.15). For the one-soliton solution (3.10) we
obtain

E(qµ1 ) = αQ2 + iβQ3 = 2 |δ|

[
α

(
ξ 2 −

δ2

3

)
+ βξ

(
δ2 − ξ 2

)]
.

(4.6)

As expected, due to the PT -symmetry the energy is real despite
being computed from a complex field.

The energy of the two-soliton solution (3.17) is computed to

E(qµ,µ2 ) = 2E(qµ1 ). (4.7)

The doubling of the energy for the degenerate solution in (3.17)
when compared to the one-soliton solution is of course what
we expect from the fact that the model is integrable and the
computation constitutes therefore an indirect consistency check.
We expect (4.7) to generalize to E(qnµ3 ) = nE(qµ1 ) , which we
verified numerically for n = 3 using the solution (3.30).

4.2. Asymptotic behaviour

Next we compute the asymptotic displacement in the scat-
tering process in a similar fashion as discussed in more detail
in [13–15]. The analysis relies on computing the asymptotic limits
of the multi-soliton solutions and comparing the results with
the tracked one-soliton solution. As a distinct point we track the
maxima of the one-soliton solution (3.5) within the two-soliton
solution. Similarly as the one-soliton, the real and imaginary
parts of the two-soliton solution depend on the function A(x, t),
as defined in (3.8), occurring in the argument of the sin and
cos functions. This makes it impossible to track a distinct point
with constant amplitude. However, as different values for A only
produce an internal oscillation we can fix A to any constant value
without affecting the overall speed.

We start with the calculation for the degenerate two-soliton
solution and illustrate the above behaviour in Fig. 1 for a concrete
choice of A.

The functions with constant values of A can be seen as en-
veloping functions similar to those employed for the computation
of displacements in breather functions, see e.g. [15]. Thus with
A(x, t) = A taken to be constant we calculate the four limits

lim
t→±∞

qµ,µ2 (xδ,ξ+ +∆(t), t) = ±
βδ2 cos A − δ(α − 3βξ ) sin A√

β2δ2 + (α − 3βξ )2

±i
δ(α − 3βξ ) cos A + βδ2 sin A√

β2δ2 + (α − 3βξ )2

lim
t→±∞

qµ,µ2 (xδ,ξ− −∆(t), t) = ∓
βδ2 cos A + δ(α − 3βξ ) sin A√

β2δ2 + (α − 3βξ )2

±i
δ(α − 3βξ ) cos A − βδ2 sin A√

β2δ2 + (α − 3βξ )2

with time-dependent displacement

∆(t) =
1
δ
ln

[
2δ |t|

√
β2δ2 + (α − 3βξ )2

]
. (4.8)

Using the limits from above we obtain the same asymptotic value
in all four cases for the displaced modulus of the two-soliton
solution

lim
t→±∞

⏐⏐⏐qµ,µ2 (xδ,ξ± ±∆(t), t)
⏐⏐⏐ = δ. (4.9)

In the limit to the NLSE, i.e. β → 0, our expression for∆(t) agrees
precisely with the result obtained in [17].

We have here two options to interpret these calculations: As
the compound two-soliton structure is entirely identical in the
two limits t → ±∞ and its individual one-soliton constituents
are indistinguishable we may conclude that there is no overall
displacement for the individual one-soliton constituents. Alterna-
tively we may assume that the two one-soliton constituents have
exchanged their position and thus the overall time-dependent
displacement is 2/δ ln(2δ) + 2∆(t).

For comparison we compute next the displacement for the
nondegenerate two-soliton solution (3.11) with c = c̃ = 1 and
parameterization µ = δ + iξ , ν = ρ + iσ where δ, ξ , ρ, σ ∈ R.
For definiteness we take xδ,ξ+ > xρ,σ+ and calculate the asymptotic
limits

lim
t→+∞

⏐⏐⏐⏐qµ,ν2 (xδ,ξ+ +
1
δ
∆̃, t)

⏐⏐⏐⏐ = lim
t→−∞

⏐⏐⏐qµ,ν2 (xδ,ξ+ , t)
⏐⏐⏐ = δ, (4.10)

lim
t→+∞

⏐⏐qµ,ν2 (xρ,σ+ , t)
⏐⏐ = lim

t→−∞

⏐⏐⏐⏐qµ,ν2 (xδ,ξ+ +
1
ρ
∆̃, t)

⏐⏐⏐⏐ = ρ, (4.11)

with constant

∆̃ = ln
[
(δ + ρ)2 + (ξ − σ )2

(δ − ρ)2 + (ξ − σ )2

]
. (4.12)

Thus, while the faster one-soliton constituent with amplitude δ is
advanced by the amount ∆̃/δ, the slower one-soliton constituent
with amplitude ρ is regressed by the amount ∆̃/ρ. We compare
the two-soliton solution with the two one-soliton solutions in
Fig. 2.

We also observe that while the time-dependent displacement
∆(t) in (4.8) for the degenerate solution depends explicitly on
the parameters α and β , the constant ∆̃ in (4.12) is the same for
all values of α and β . In particular it is the same in the Hirota
equation, the NLSE [2] and the complex mKdV equation [10]. The
values for α and β only enter through xρ,σ+ in the tracking process.

4.3. Scattering behaviour

Besides having a distinct asymptotic behaviour, the degenerate
multi-solitons also display very particular features during the
actual scattering event near x = t = 0 when compared to
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cm cm

Fig. 1. Real part of the degenerate two-soliton solution (3.17) for the Hirota equations (2.1) at small values of times for α = 1, β = 2, δ = 3/2, ξ = 1 with generic
A(x, t) in the left panel and fixed A = π/3 in the right panel.

cm cm

Fig. 2. Nondegenerate two-soliton solution compared to two one-soliton solutions for large values of |t| for α = 1.1, β = 0.9, δ = 0.8, ξ = 0.4, ρ = 0.5, σ = 0.6
in the left panel. Degenerate two-soliton solution compared to two one-soliton solutions for large values of |t| for α = 1.5, β = 2.3, δ = 0.25, ξ = 0.6 in the right
panel.

the nondegenerate solutions. For the nondegenerate two-soliton
solution three distinct types of scattering processes at the origin
have been identified. Using the terminology of [8] they aremerge–
split denoting the process of two solitons merging into one soliton
and subsequently separating while each one-soliton maintains
the direction and momentum of its trajectory, bounce–exchange
referring to two-solitons bouncing off each other while exchang-
ing their momenta and absorb–emitcharacterizing the process of
one soliton absorbing the other at its front tail and emitting it at
its back tail, see Fig. 3.

For the degenerate multi-soliton solutions the merge–split
and bounce–exchange scattering is not possible and only the
absorb–emit scattering process occurs as seen in Fig. 4.

This feature is easy to understand when considering the be-
haviour of the solution at x = t = 0. As was argued in [8]
the different behaviour can be classified by their behaviour as
being either convex downward or concave upward at x = t = 0
together with occurrence of additional local maxima. For the de-
generate two-soliton solution we find ∂

⏐⏐qµ,µ2 (x, t)
⏐⏐ /∂x⏐⏐x=0,t=0 =

0 and ∂2
⏐⏐qµ,µ2 (x, t)

⏐⏐ /∂x2⏐⏐x=0,t=0 = −10 |δ|3, which means this
solution is always concave at x = t = 0. In addition, we find
that Re qµ,µ2 (x, t)

⏐⏐
x=0,t=0 and Im qµ,µ2 (x, t)

⏐⏐
x=0,t=0 are always

concave and convex at x = t = 0, respectively. Hence, we always
have the emergence of additional local maxima, such that the
behaviour must be of the absorb–emit type. In Fig. 4 we dis-
play this scattering behaviour for the degenerate two and three-
soliton solutions in which the distinct features of the absorb–emit
behaviour are clearly identifiable.

We observe that the dependence on the parameters α and β
of the degenerate and nondegenerate solution is now reversed
when compared to the asymptotic analysis. While the type of

scattering in the nondegenerate case is highly sensitive with
regard to α and β , it is entirely independent of these parameters
in the degenerate case.

5. Conclusions

We constructed all charges resulting from the AKNS equation
(2.2) and (2.3) by means of a Gardner transformation. Two of the
charges were used to define a Hamiltonian whose functional vari-
ation led to the Hirota equation. The behaviour of these charges
under PT -symmetry suggests to view the Hirota system as an
integrable extended version of NLSE. This point of view allows
for an easy generalization of previous arguments [12,13] that
guarantee the reality of the energy to all higher order charges. We
computed a closed analytic expression for all charges involving a
particular one-soliton solution.

Explicit multi-soliton solutions from Hirota’s direct method as
well as the Darboux–Crum transformations were derived and we
showed how to construct degenerate solutions in both schemes.
As observed previously, the application of Hirota’s direct method
relies on choosing the arbitrary constants in the solutions in a
very particular way. When using Darboux–Crum transformations
the degenerate solutions are obtained by replacing standard so-
lutions in the underlying auxiliary eigenvalue problem by Jordan
states.

From the asymptotic behaviour of the degenerate two-soliton
solution we computed the new expression for the time-
dependent displacement. As the degenerate one-soliton con-
stituents in the multi-soliton solutions are asymptotically indis-
tinguishable one cannot decide whether the two one-solitons
have actually exchanged their position and therefore the time-
dependent displacement can be interpreted as an advance or
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cm cm

Fig. 3. Different types of nondegenerate two-soliton scattering processes for the solution (3.11). Left panel: merge–split scattering with α = 1.1, β = 0.9, ρ = 2.5,
ξ = 0.4, δ = −0.8, σ = 0.6. Middle panel: bounce–exchange scattering with α = 1.1, β = 0.9, ρ = −0.6, ξ = 0.1, δ = 0.5, σ = 0.2. Right panel: absorb–emit
scattering with α = 1.1, β = 0.9, ρ = −1.5, ξ = 0.4, δ = −0.8, σ = 0.6.

cm cm

Fig. 4. Absorb–emit scattering processes for degenerate two-solitons (3.17) with α = 1.1, β = 0.9, δ = 0.8, ξ = 0.1 (left panel) and three-solitons (3.30) with
α = 1.1, β = 0.9, δ = 0.8, ξ = 0.4 (right panel).

delay or whether the two one-solitons have only approached each
other and then separated again. The analysis of the actual scat-
tering event allows for both views. It would be very interesting
to investigate the statistical behaviour of a degenerate soliton
gas along the lines of, for instance [34–37], which should cer-
tainly exhibit different characteristics as the underlying statistical
distributions would be based on indistinguishable rather than
distinguishable particles.

We showed that degenerate two-solitons may only scatter via
an absorb–emit process, that is by one soliton absorbing the other
at its front tail and subsequently emitting it at the back tail.
Since the model is integrable all multi-particle/soliton scattering
processes may be understood as consecutive two particle/soliton
scattering events, so that the two-soliton scattering behaviour
extends to the multi-soliton scattering as we demonstrated.
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[32] F. Correa, V. Jakubskỳ, Confluent Crum–Darboux transformations in Dirac
Hamiltonians with PT-symmetric Bragg gratings, Phys. Rev. A 95 (3) (2017)
033807.

[33] J. Cen, F. Correa, A. Fring, Integrable nonlocal Hirota equations, 2017,
arXiv:1710.11560.

[34] N. Gupta, B. Sutherland, Investigation of a class of one-dimensional
nonlinear fields, Phys. Rev. A 14 (5) (1976) 1790.

[35] F. Mertens, H. Büttner, The soliton-gas analogy for the Toda lattice, Phys.
Lett. A 84 (6) (1981) 335–337.

[36] K. Sasaki, Soliton-breather approach to classical sine-Gordon thermody-
namics, Phys. Rev. B 33 (4) (1986) 2214.

[37] E.G. Shurgalina, E.N. Pelinovsky, Nonlinear dynamics of a soliton gas:
Modified Korteweg–de Vries equation framework, Phys. Lett. A 380 (24)
(2016) 2049–2053.

http://refhub.elsevier.com/S0167-2789(18)30223-9/sb11
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb11
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb11
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb11
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb11
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb12
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb12
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb12
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb13
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb13
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb13
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb14
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb14
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb14
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb15
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb15
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb15
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb16
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb16
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb16
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb17
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb17
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb17
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb18
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb18
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb18
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb19
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb19
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb19
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb20
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb20
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb20
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb20
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb20
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb21
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb21
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb21
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb21
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb21
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb22
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb22
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb22
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb23
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb23
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb23
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb24
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb24
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb24
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb25
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb25
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb25
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb26
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb26
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb26
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb27
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb27
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb27
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb28
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb28
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb28
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb29
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb29
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb29
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb29
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb29
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb30
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb30
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb30
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb30
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb30
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb31
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb31
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb31
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb31
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb31
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb32
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb32
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb32
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb32
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb32
http://arxiv.org/abs/1710.11560
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb34
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb34
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb34
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb35
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb35
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb35
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb36
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb36
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb36
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb37
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb37
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb37
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb37
http://refhub.elsevier.com/S0167-2789(18)30223-9/sb37

	Asymptotic and scattering behaviour for degenerate multi-solitons in the Hirota equation
	Introduction
	The Hirota equation as a PT-symmetrically extended NLSE
	Construction of degenerate multi-soliton solutions
	Hirota's direct method
	One-soliton solution
	Nondegenerate and degenerate two-soliton solution

	Darboux–Crum transformations

	Properties of degenerate multi-soliton solutions
	Real charges from complex solutions
	Asymptotic behaviour
	Scattering behaviour

	Conclusions
	Acknowledgements
	References


