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Abstract.

The density operator for a quantum system in thermal equilibrium with its

environment depends on Planck’s constant, as well as the temperature. At high

temperatures, the Weyl representation, that is, the thermal Wigner function, becomes

indistinguishable from the corresponding classical distribution in phase space, whereas

the low temperature limit singles out the quantum ground state of the system’s

Hamiltonian. In all regimes, thermal averages of arbitrary observables are evaluated

by integrals, as if the thermal Wigner function were a classical distribution.

The extension of the semiclassical approximation for quantum propagators to an

imaginary thermal time, bridges the complex intervening region between the high and

the low temperature limit. This leads to a simple quantum correction to the classical

high temperature regime, irrespective of whether the motion is regular or chaotic. A

variant of the full semiclassical approximation with a real thermal time, though in a

doubled phase space, avoids any search for particular trajectories in the evaluation

of thermal averages. The double Hamiltonian substitutes the stable minimum of the

original system’s Hamiltonian by a saddle, which eliminates local periodic orbits from

the stationary phase evaluation of the integrals for the partition function and thermal

averages.
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ntroduction

ly a century has passed since Eugene Wigner constructed a representation of the

ity operator as a real function, which allows for the evaluation of the expectation

e of observables as if they were classical phase space averages [1]. The full quantum

re of the Wigner function is given away by the negative values that it assumes for

ly all pure density operators, but the quantum essence of mixed states may not be

aled so explicitly. Indeed, the thermal Wigner function that represents the Gibbs

mble, or the canonical ensemble, of quantum states in thermal equilibrium with the

ronment is typically positive, though it leads to strong deviations from a classical

age for observables at low temperatures. In the limit of high temperatures, the

ner function is indistinguishable from its classical conterpart, so the first aim of

paper is to show how quantum corrections creep in as the temperature is lowered.

nnection with the underlying classical system is still tenable at temperatures that

down to the ground state energy, but the semiclassical theory for this, which we

develop, requires either the complexification of the classical Hamiltonian, or the

ication of the real phase space.

The classical canonical ensemble is characterised by the thermal probability density:

n the Hamiltonian, H(x), for a physical system with N degrees of freedom, defined

e 2N -dimensional phase space with coordinates x = (p,q) = (p1, ..., pN , q1, ..., qN),

robability density is

Pβ(x) ≡ exp{−βH(x)}
∫

dx exp{−βH(x)} . (1.1)

all, the classical motion is assumed to be bounded, with an absolute minimum for

amiltonian. The only free parameter is β = 1/κBT , where T is the temperature

κB is Boltzmann’s constant. (Physically, the thermal distribution results through

librium with an external environment, which need not be further invoked here.)

e 1/β is the half-width of the energy distribution, it is evident that Pβ(x) becomes

irrelevant for the description of the true physical system, if κBT is lower than the

nd state energy of the corresponding quantum system.

The thermal density operator

ρ̂β ≡
1

Zβ
e−βĤ , (1.2)

ces the thermal probability density in the quantum description of the canonical

mble of states in thermal equilibrium; the partition function being defined as

Zβ ≡ tr e−βĤ. (1.3)

is a mixed state of the eigenstates |j〉 of the Hamiltonian Ĥ, which is constrained

only by its energy spectrum, assumed to be discrete, countable and bounded from

w. Choosing the sequence of eigenenergies Ej to be non-decreasing with the index

e spectral decomposition,
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e−βĤ =
∑

j

e−βEj |j〉〈j|, Zβ =
∑

j

e−βEj , (1.4)
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als that at low temperatures ρ̂β has no relation to the classical distribution Pβ(x).

ad it is dominated by the ground state |0〉 and the lowest excited states.

This paper deals exclusively with the equilibrium of quantum systems for which the

spondence principle ascribes an unique classical Hamiltonian as described above.

typical picture corresponds to a few particles or a few degrees of freedom, coupled

a heat bath, and whose Hamiltonian can be developped in the vincinity of one of

ritical points.

It is important to note that, even though Planck’s constant h̄ does not appear

icitly in (1.2), it fundamentally affects both the eigenstates and the density of states.

ed, it can be an advantage to consider the non-normalized thermal operator as a

inuation of the unitary evolution operator

Ût = e−itĤ/h̄ (1.5)

he imaginary thermal time t = −iθ with θ = h̄β. Thus, by formally relaxing β to

ositive or negative, these operators also form a group in one-to-one correspondence

the group of unitary evolution operators. There may be no physical relevance for

group properties of the entire set of thermal operators, but Feynman [2] employs

Abelian subgroups, which share the same constant Hamiltonian, to construct path

rals for the thermal operators with finite β.

Of course, Planck’s constant is fixed, but the ratio of h̄ to an appropriate action

e system is the standard parameter for semiclassical (SC) approximations to the

tion operator and so it is considered here. There are several methods for the

truction of SC approximations, including the stationary phase evaluation of path

rals (see e.g. [3]). It is curious that Feynman never explored these possibilities,

er for the evolution operator, nor as an approximation to the thermal operator,

as presented in [4]. This extension, our present concern, requires attention to the

ate interaction of both parameters, β and h̄. Indeed, it is somewhat paradoxical

one should consider the thermal time within the classical Hamiltonian flow itself,

though θ = h̄β, that is, the time which parametrizes the underlying classical motion

nds on the fundamental quantum constant.

The standard choice for the investigation of the properties of the density operator is

osition representation, that is, the density matrix, as in [2]. Even so, it is the Weyl

esentation, which best spans the deep gulf between the classical and the quantum

es. Observables Ô are represented by real functions O(x), which usually equal (or

ly approximate) the corresponding classical variable, whereas the density operator

rtrayed by the Wigner functions W (x), so as to evaluate the quantum expectation

e as

〈Ô〉 = tr ρ̂ Ô =
∫

dx W (x) O(x). (1.6)

a pure state |ψ〉 the density operator is the projector, ρ̂ = |ψ〉〈ψ|, whereas a mixed

is a superposition of projectors onto orthogonal states, weighed by their probability.
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n that the identity operator, Î, has the Weyl representation I(x) = 1, so that

〈Î〉 = tr ρ̂ Î =
∫

dx W (x) = 1, (1.7)

sual convention for the normalization of the Wigner function differs from the Weyl

esentation of ρ̂: ρ(x) = (2πh̄)NW (x).

Often, observables correspond closely to classical phase space functions §, so

the integral in (1.6) may well wash away detailed oscillatory structures of the

ner function. But Ô may also stand in for another projector, |φ〉〈φ|, so that here

= Pr(φ), the probability of finding the system in the state |φ〉. In particular, for

|X〉, the coherent state centred on the phase space point X, for which

WX(x) =
1

(πh̄)N
exp

[
−(x−X)2

h̄

]
, (1.8)

at one can choose O(x) = (2πh̄)NWX(x), the integral for the probability Pr(X)

pinpoint a classically minute (possibly negative) region of the Wigner function.

Last but not least, the Hermitian reflection operator, around the point X, is given

rms of the vector operator x̂ = (p̂, q̂) as

R̂X =
∫ dx

(4πh̄)N
exp

[
i

h̄
x ∧ (x̂−X)

]
, (1.9)

ducing the wedge product ξ ∧ x = (Jξ) · x, where the standard symplectic matrix

amilton’s equations is

J =

(
0 −1

1 0

)
(1.10)

rms of (p,q) blocks. Also known as the parity operator around X, it is a bona

observable, experimentally measured in quantum optics [5], and it is the defining

ator for the Weyl representation and the Wigner function [6, 7, 8]: ‖

W (X) ≡ 1

(πh̄)N
tr ρ̂ R̂X. (1.11)

fact that the Wigner function itself may be considered as the average of the

metrized observable R̂x exemplifies the quantum richness of this seemingly classical

e space representation.

The subject of our study is the thermal Wigner function, Wβ(x), the appropriately

alized Weyl representation of the thermal density operator (1.2). In its spectral

mposition, we then have

Wβ(x) =
1

Zβ

∑

j

e−βEj Wj(x), (1.12)

e Wj(x) is the pure state Wigner function which represents the eigenstate |j〉 in

e space. In the following section a schematic overview of the thermal Wigner

the Hamiltonians that follow, we will not distinguish the classical from the Weyl functions.
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n SC approximations that is here adapted to the thermal context.
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tion discusses the extreme regimes: At very low temperatures energy scales are

ssed where it depends only on h̄, whereas one reaches a purely classical dependence

at very high temperatures. The objective is to present a full SC theory that bridges

e regimes. It will be shown that the first simple correction to the high temperature

depends on a dimensionless parameter, which combines the product of both basic

ical parameters, forming the thermal time, together with a further local frequency,

by a local minimum of the classical Hamiltonian.

In section 3, we exploit the direct course of extending analytically the evolution

ator within the Weyl representation, i. e. the Weyl propagator [18, 8], in terms

e imaginary thermal time. This is achieved for quadratic Hamiltonians for which

SC approximation is closed and exact. Not only does this procedure provide the

temperature limit of the thermal Wigner function for a generic Hamiltonian with

adratic minimum, but a local expansion sheds light on the high temperature limit

e SC approximation. A further employment of analytical continuation in section 4

allows for explicit formulae for the SC approximation for a Hamiltonian in its

al form, including the Kerr Hamiltonian [28] as a special case. It should be

d that the exposition up to this section already supplies valuable corrections to

lassical high energy approximation, which do not depend on the intricacies of the

C approximations, which then follow.

The direct course is then to push through the SC approximation of the Wigner

tion, relying on the trajectories within a complexified phase space, previously

loped in the context of the evolution of Markovian quantum systems [11]. This

ntained in the recent paper dealing with the SC approximation for the quantum

ynski equality [9] and it is not reproduced here. It should be noted that the need of

ng classical trajectories, which are only implicitly defined by boundary conditions,

here the increased difficulty of a search in the complex phase space.

The new development is the expression of the SC Weyl propagator in a doubled

phase space, which proceeds by splitting each classical trajectory into a pair of

trajectories moving backwards and forwards in time. Again, this is also based on

evious SC treatment for the quantum Markovian evolution of the Wigner function

but we shall point out important differences involved in this change of context.

ented in section 5, the ordinary phase space variables, x = (p,q), take on the role

ouble positions. To this one adds a (2N)-dimensional space of double momenta,

that the relevant classical motion is generated by a double Hamiltonian IH(x,y)

tructed from H(x). In section 6 the complexification of time is incorporated within

aginary double momentum, following which we retrieve a real double phase space.

the relevant classical motion is generated by a new real double Hamiltonian.

In section 7 the partition function and the thermal average of an arbitrary

rvable Ô in (1.6) are then obtained in terms of initial values for the pair of

ard and backward trajectories. This eliminates the search for trajectories satisfying
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icit boundary conditions, which plagues the practical application of standard SC

ods. Saddle point approximations for the partition function and expectations
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then considered, pointing to the absence of periodic orbit contributions in the

hbourhood of the minima of the Hamiltonian. Thus, the SC partition function

s the elaborate resonant structure of the trace of the SC propagator in real time.

The SC scenario in which the thermal Wigner function effects a pseudo-evolution

ermal time is then discussed in section 8. The Appendix B presents the SC version

me standard thermodynamic relations.

verview of the thermal Wigner function and its parameters

though we will not work with the spectral decomposition of the thermal Wigner

tion directly, it does provide a rough guide to the various regimes. Let us place the

lute minimum of the classical Hamiltonian H(x) at the origin of phase space with

) = 0. This stable equilibrium has generically the lowest Taylor approximation

H(x|H) ≡ 1

2
x ·H x , (2.1)

al positive quadratic form defined by the Hessian matrix of the Hamiltonian,

tever the number of degrees of freedom. It will be important here to consider

ogeneous) quadratic Hamiltonians as a class on their own, parametrized by

matrix H. This generates the class of all linear canonical, i.e. symplectic

sformations.

If h̄ is small enough, the lowest eigenenergies lie in the quadratic region and, in the

of extremely low temperature, the spectral decomposition (1.12) is dominated by

ground state of the quantized version of (2.1). The explicit form of this Wigner

tion is reduced in the following section to that for a N dimensional harmonic

lator, that is, WX=0(x) in (1.8). Increasing β beyond this point does not affect

hermal Wigner function, which is only parametrized by h̄. On the other hand, if a

t increase of temperature brings in just a few significant states within the spectral

mposition (1.12), while still lying within the quadratic region of the Hamiltonian,

e will be Fock states, with Wigner functions given by their Grönewold expression

Wj(x) =
(−1)j

πh̄
e−x

2/h̄Lj

(
2x2

h̄

)
, (2.2)

e Lj is the j’th Laguerre polynomial, so that there are concentric positive and

tive rings within the quantized energy level. Further decrease of β allows states

igher energy, for which the quadratic approximation of H(x) no longer holds, to

icipate in the expansion (1.12) for the thermal Wigner function, but an integrable

oximation via normal forms can still be quite accurate [13, 14]. This is the regime

e the SC approximation [15] (see also [16]) constructs each Wj(x), the Wigner

tion for a (nearly) integrable eigenstate, in terms of the Airy function, enveloping

Bohr-quantized torus. For even smaller β, energies corresponding to a saddle point
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(x) may be accessed, or in any case, chaotic motion may well become prevalent, so



The

that

any

semi

over

eigen

deta

featu

shell

[8]).

delta

smoo

hard

indic

an e

temp

expa

expa

be s

class

3. A

The

term

class

SC-a

in th

the s

satis

this,

shor

cond

ther

over

a mu

Journal Pre-proof
quantum canonical ensemble in phase space 7

the point is reached where no SC approximation for an individual state is available

longer.

Notwithstanding this basic difficulty, one may still have recourse to Berry’s

classical approximation for a microcanonical ensemble of states, coarse grained

an energy window that is classically very narrow, but which still contains many

states, due to their high semiclassical density [17]. Then one is freed from the

ils of the classical motion, whether integrable, chaotic or mixed, and the basic

re is a single Airy function that reaches a maximum very near the classical energy

, decays outside of it and oscillates inside (reaching into a rich structure of caustics

Crudely, this microcanonical Wigner function can be approximated as a Dirac

-function over the energy shell, which, even so, gives reasonable averages (1.6) for

th classical observables.

In any case, a general feature is that each contribution to the spectral sum (1.12)

ly affects the thermal Wigner function outside its corresponding energy shell. This

ates that the classical approximation, Wβ(x) ≈ Pβ(x) given by (1.1), is at least

nvelope for the thermal Wigner function at the high energies accessed by a high

erature. But the same result follows from keeping just the first term in the power

nsion of the exponential operator exp{−βĤ} in the Weyl representation. Such an

nsion requires a high temperature, but the full validity of this approximation will

een to depend on the smallness of the thermal time θ = h̄β, together with a local

ical frequency, which will be introduced shortly.

nalytic continuation of the Weyl propagator

quantum flow Ût generated by a Hamiltonian Ĥ may be SC-approximated in

s of the classical canonical flow x− 7→ x+(t) generated by the corresponding

ical Hamiltonian H(x). The Weyl propagator, its Weyl representation, has the

pproximation [18, 8]

Ut(x) ≈ 2N

| det(I + Mt)|1/2
exp

[
i

h̄
(St(x))

]
, (3.1)

e simplest instance. The geometric part of the centre (or Weyl) action St(x) is just

ymplectic area between a trajectory arc centred on x, that is, with endpoints x±
fying 2x = x+ + x−, and its geometric chord ξ = x+−x−, as shown in Fig.1. From

one subtracts Et, where E = H(x−) = H(x+) (and generally E 6= H(x)). For

t times, it is guaranteed that there exists a single trajectory satisfying the boundary

ition. Eventually, the amplitude may become singular (at a caustic); beyond this,

e is more than one chord for each centre, so that the propagator becomes a sum

terms like (3.1). Each term then has an extra Maslov phase in the exponent, just

ltiple of π in the present context [21].

The trajectory x̃(t′,x−), such that for the full interval x+ = x̃(t,x−), is generated
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amilton’s equations

ẋ = J
∂H

∂x
, or ṗ = −∂H

∂q
and q̇ =

∂H

∂p
. (3.2)

the explicit expression for the centre action is

St(x) =
∫ t

0
p̃(t′,x−) · ˙̃q(t′,x−) dt′ − p · (q+ − q−)− tH(x−). (3.3)

classical role of the centre action is that of a generating function of the canonical

sformation x− 7→ x+, indirectly through [8]

ξ = −J
∂St
∂x

and x+ = x +
ξ

2
, x− = x− ξ

2
. (3.4)

The linear approximation of this transformation near the x-centred trajectory is

ed by the symplectic monodromy matrix Mt. This has the Cayley parametrization

Mt = [I + JBt]
−1[I− JBt], (3.5)

rms of the symmetric Hessian matrix

Bt(x) ≡ 1

2

∂2St(x)

∂x2
(3.6)

the identity matrix I. This allows for the alternative form of the SC propagator

as [8]

Ut(x) ≈ | det(I± JBt(x))|1/2 exp
[
i

h̄
(St(x))

]
. (3.7)

A fundamental property of the centre action is that it is an odd function of time,

is, S−t(x) = −St(x), since S0 = 0 and the exchange x+ ↔ x− merely reverses the

of ξ in (3.4). ¶ It follows from the first of these equations that the local plane wave

oximation of the action is

St(x
′) ≈ St(x) + ξ ∧ (x′ − x), (3.8)

at Jξ(x)/h̄ is the local wave vector in phase space of the Weyl propagator. The full

nsion of the centre action as a power series in time has only odd terms and hence

omplexification Sit(x) is a purely imaginary function for all real centres, x.

The difficulty is that the centre action is not generally expressed as a power series,

at one cannot immediately continue analytically the SC expression e−βH(x) ≈
β(x), in terms of the complex thermal time t 7→ −ih̄β = −iθ, except in simple

s. In the short time limit, one can neglect the curvature of the trajectory, thus

cing the trajectory arc by the chord itself, whatever the Hamiltonian. In other

s, one has ξ ≈ tẋ, so that St(x) ≈ −tH(x) and Mt ≈ I. For the imaginary thermal

t = −ih̄β, one then retrieves the classical high temperature limit of the thermal

ner function: Wβ(x) ≈ Pβ(x).

e reversal of ξ and of S(t) with time follows straight from the definition of the chord of a trajectory
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ase space. Hence, there is no restriction to the more familiar notion of time invariance, which

rns trajectories in configuration space.
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Figure 1. The action, St(x), is just the symplectic area between the trajectory from

x− to x+ and its chord ξ, from which one subtracts Et, where E is the energy of the

trajectory.

The Weyl propagator for the harmonic oscillator (N = 1)

Hh(x) =
ω

2
(p2 + q2) (3.9)

ides an illuminating example. After a time t the Cayley matrix for this archetypical

tic propagator will be Bt = − tan(ωt/2)I [8, 21], so that St(x) = −x · tan(ωt/2)x

the full Weyl propagator is

Ut(x) =
1

cos(ωt/2)
exp

[
− i
h̄

tan(ωt/2) (p2 + q2)
]
. (3.10)

, the monodromy matrix, Mt, does not depend on x, leading to the simple form

n by the square root in the amplitude of (3.1). In general, the SC expressions

ropagators generated by quadratic Hamiltonians are exact and here it is easy to

eed to the analytic continuation for the imaginary thermal time, t = −iθ. Thus,

xact expression for the Weyl exponential of the Hamiltonian is

e−βHh(x) =
1

cosh(ωθ/2)
exp

[
−1

h̄
tanh(ωθ/2) (p2 + q2)

]
. (3.11)

equality of this analytic continuation of the Weyl propagator with the spectral sum

he thermal Wigner function, summing over the eigenstates given by (2.2), follows

ly from the identity:
∞∑

j=0

tj Lj(x) =
1

1− t exp
[
− tx

1− t
]
, (3.12)

the choice t = − exp(−βh̄ω).

One should observe that the Weyl propagator for the inverted harmonic oscillator,
ω 2 2
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Ut(x) =
1

cosh(ωt/2)
exp

[
− i
h̄

tanh(ωt/2) (p2 − q2)
]
, (3.14)

at (3.11) is a curious blend of the expressions for the harmonic oscillator and its

se. + In this case, the Hamiltonian can be obtained from a Lagrangian. Its thermal

erties are then obtained from the real time propagation in the inverted oscillator [4].

treatment of general Hamiltonians in section 6 may be considered to be a further

ralization, since it also replaces a stable equilibrium by an unstable point. First we

here with the more restricted class of general quadratic Hamiltonians (2.1) and its

tization.

A crucial characteristic of the Weyl representation is its symplectic invariance,

is, the functions that represent operators in phase space are invariant under linear

nical transformations of its arguments (see e.g. [16]). Indeed these classical-like

sformations are just a particularly apt expression of similarity transformations by

quantum metaplectic group of unitary operators [19, 20, 21]. These are generated

he quantization of (2.1), such that the SC form is exact, that is, for a single degree

eedom the Weyl propagators for the metaplectic operators are

Ut(x|H) =
1

cos(Ωt/2)
exp

[
−1

h̄
tan(Ωt/2)

x ·H x

Ω

]
, (3.15)

e Ω2 ≡ det H.

Thus, the unitary metaplectic operators have the same general form as those which

evolve them through a similarity transformation. This is not so for their analytic

inuation as non-normalized thermal Wigner functions, provided Ω2 > 0. Rather,

e metaplectic Wigner functions become the exact generalization of (3.11):

e−βH(x|H) =
1

cosh(Ωθ/2)
exp

[
−1

h̄
tanh(Ωθ/2)

x ·H x

Ω

]
(3.16)

θ = h̄β. So one may include, for instance, a constant magnetic field for a charged

onic oscillator. Extending to β < 0, the complete set of operators exp[−β x̂ ·Hx̂/2]

a group that is isomorphic to the metaplectic group.

In the case of a free particle, such that Ω→ 0 as x ·H x→ p2/2m, one obtains

e−βH(x) = exp

[
− β

2m
p2

]
, (3.17)

n-normalized version of Pβ(x). So one encounters the general rule that the Weyl

esentation of any operator that is a function either exclusively of the momenta, or

sively of the positions, has exactly its classical form.

For N > 1 the transformation which diagonalizes the symmetric matrix H in the

ive quadratic Hamiltonian also places the matrix JH in its Williamson normal

like the harmonic oscillator action, which is singular at ωt = π, the action for its inverse stabilises

thly due to the relevant trajectory merely hugging the stable and the unstable manifold closer
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loser as t increases. Due to structural stability, this also holds for nonlinearly deformed unstable

ibria.
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(see e.g. [13]), so that this transformation is symplectic. The only option of the

al form, if the Hamiltonian is bounded from bellow, is that all degrees of freedom

lliptic. Thus the thermal Wigner function at sufficiently low temperature reduces to

oduct of N individual harmonic oscillator Wigner functions (3.11) with frequencies

ach in its own phase plane.

The lowest correction to the action for a general Hamiltonian at short times is

St(x) ≈ −tH(x)− t3

24
ẋ ∧ ẍ = −tH(x)− t3

24
ẋ ·Hx ẋ ; (3.18)

first version derived in [17], whereas the second in [8] evinces the connection with

local quadratic approximation of the Hamiltonian in terms of its Hessian matrix

= ∂2H(x)/∂x2. Indeed, following the appendix in [8] the local inhomogeneous

ratic approximation to the Hamiltonian

H(2)(x′|x) ≡ H(x) + hx · (x′ − x) +
1

2
(x′ − x) ·Hx (x′ − x), (3.19)

e hx is the local gradient of the Hamiltonian, generates a symplectic flow in a

of tangent space, with points (x′ − x). We can now reexpress this in terms of the

ogeneous quadratic Hamiltonian (2.1)

H(2)(x′|x) = [H(x)−H(x− γx|Hx)] +H(x′ − γx|Hx), (3.20)

efining the local centre of curvature:

γx ≡ x−Hx
−1hx. (3.21)

should notice that (3.20) holds even for x′ → x, so that one may evaluate the time

atives ẋ = JHx(x−γx) and ẍ = JHxJHx(x−γx) at the centre x itself. But for a

e degree of freedom, (JHx)2 = −Ω2
xI, so that the acceleration always points to the

centre of curvature: ẍ = −Ω2
x(x− γx).

The quantization of the approximate Hamiltonian (3.20), with x kept as a constant

further parametrized by the local centre of curvature γx, then identifies the

ction to the short time approximation for the centre action (3.18) as merely the

order expansion in time of the action generated by a quadratic Hamiltonian: tan

real time) and tanh (for imaginary thermal time). For a general Hamiltonian one

obtains the short time approximation of e−βH(x) as the generalization of the third

r expansion of the action in (3.16), i.e.

e−βH(x) ≈ 1

1 + (h̄βΩx)2/8
exp

[
−βH(x)− h̄2β3

24
ẋ ·Hx ẋ

]
(3.22)

=
1

1 + (h̄βΩx/2)2/2
exp

[
−βH(x)− (h̄βΩx/2)3

3

(x− γx) ·Hx (x− γx)

h̄ Ωx

]
.

second form is less convenient for calculations, since it requires the evaluation of the

centre of curvature γx, but it clearly evinces the dimensionless expansion parameter

x/2), where h̄β = θ is the thermal time, while Ωx is the angular frequency of
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ctories within the local quadratic approximation.
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A final step follows from the recognition that, to be consistent with the local

ratic approximation to the Hamiltonian, one can keep the whole series for tanh

cosh instead of just the third order in the dimensionless parameter. This leads to a

pened version of the metaplectic Wigner function (3.16) with the origin displaced

e centre of curvature γx:

e−βH(x) ≈ e−∆(x) e−βH(x− γx|Hx). (3.23)

exponent of the attenuation factor in this local metaplectic Wigner function is

∆(x) = β(H(x)−H(x− γx|Hx) = β(H(2)(γx|x)), (3.24)

at quantum effects are only represented within the metaplectic Wigner function

f, the second factor in (3.23). One can then picture a tangent space at each

t x as holding a displaced generalized harmonic oscillator, from which the local

plectic Wigner function is constructed. This alternative form then consists of a

ical attenuation of a fully quantum thermal Wigner function, replacing the quantum

ction to the classical distribution obtained in (3.22). It is not evident a priori, which

ese approximations will best extend to increasing thermal time. One should note

(3.23) is nonsingular for all time, but its real time version will have the singularities

e Weyl propagator for the harmonic oscillator.

ormal forms and the Kerr Hamiltonian

a temperature that includes energies beyond the range of validity of the quadratic

oximation, the region surrounding the absolute minimum of the Hamiltonian can

ansformed to its Birkhoff normal form [13, 14], that is, for N = 1,

(x) = ω

(
p2 + q2

2

)
+H2

(
p2 + q2

2

)2

+H3

(
p2 + q2

2

)3

+ ... ≡ F

(
x2

2

)
, (4.1)

h simply separates into polynomials Fn (x2
n/2) for higher degrees of freedom.

erally, for N > 1, the infinite series has no hope of converging, because the

rable normal form cannot cope with the intricate KAM-type motion that surrounds

equilibrium, but a higher truncation than the simple quadratic can lead to a

t improvement in the accuracy of trajectories for a finite time. Evidently this

oximation cannot be extended up to a saddle point, if it arises in the Hamiltonian,

the classic expansion by Gustavson [22] for the Henon-Heiles Hamiltonian [23],

w the energy of its three saddles, supplies good trajectories for a finite time.

We cannot use the normal form transformation to transport exactly a Wigner

tion, because this is a nonlinear transformation, even if it can be chosen to be

nical. Nonetheless, this is just the truncated Wigner approximation [25, 24] (TWA,

referred to as LSC-IVR [26]). It is widely used and adequate for Wigner functions

are not highly oscillatory, as here, for the Gibbs ensemble. Specially interesting is

err Hamiltonian ( ) ( )2
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HK(x) = ω
p2 + q2

2
+
ω2

ε

p2 + q2

2
, (4.2)
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e ε has the dimension of energy, for the single photon Kerr effect [27, 28], i. e.

ly the harmonic oscillator coupled to its square, so that it arises naturally as an

tly truncated normal form. The quantum evolution of a Kerr system is not governed

n ordinary second order Schrödinger equation, even though its quantum evolution is

n exactly [29, 30]. The SC treatment relies on a closed expression for the action and,

e case of the homogeneous limit where ε→ 0, such that effectively HK(x) ∝ Hh(x)2,

s been verified in detail [31].

Before considering the analytic continuation of the SC Weyl propagator with an

inary thermal time for a normal form, let us discuss its fully quantum spectral

mposition in the simple case were N = 1. The only dependence on the function F

e definition of the normal form (4.1) lies in the eigenenergies Ej = F
((

1
2

+ j
)
h̄
)

rmining the weight of the Wigner functions Wj(x) for the eigenstates. That

latter are exactly harmonic oscillator eigenstates is not discrepant with the SC

oximation of Berry [15], since it builds each of these Wigner functions relying only

he geometry of the energy level curve, which is here a circle for any form of F .

However, the lowest states are poorly represented by this SC approximation and it

r off from the Gaussian ground state that dominates the thermal Wigner function

e limit of very low temperatures. Indeed, for the exponent in the first term of

spectral sum to be already large, we have βF (h̄ω/2) � 1. For a monotonically

asing function F , this would imply that either β or h̄ is large. But for the normal

to be dominated by its first harmonic term, h̄ should be small, as expected within

l SC approximations. Then the condition for the thermal Wigner function to be

tively reduced to that of the harmonic oscillator ground state is expressed in terms

e thermal time as θ � 2/ω. In the extreme case of the homogeneous Kerr system,

orrect quantum expression for this low temperature Wigner function still portrays

ground state of the harmonic oscillator, so that correspondence with the classical

tic oscillator is jeopardised. ∗
Even if the energy is too high for individual states to be useful, the normal form may

extend smoothly the picture of the motion beyond the quadratic approximation.

implicity, the discussion is again limited to a single (typical) degree of freedom. The

ical trajectories generated by the normal form are identical to the arcs of concentric

es for the harmonic oscillator, but the angular frequency of each arc depends on its

al value: ω(X) = F ′(X2/2), in terms of the derivative of F with respect to its scalar

ment. Let us run forward and backward in time a pair of trajectories from a given

t X for the duration t/2. Then the chord joining the endpoints of the full trajectory

spanning the angle tF ′(X2/2), is centred on

x = cos

[
t

2
F ′
(

X2

2

)]
X. (4.3)

area of the triangle formed by these endpoints with the origin is just

F ′(X2/2)] X2/2, which must be subtracted from the arc area tF ′(X2/2) X2/2
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volution operator in real time, because the weight of each state is just a phase factor.
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btain the area between the trajectory arc and the chord. Finally, subtracting

) = tF (X2/2), one obtains the implicit expression for the action (3.3) as

St(x(X)) =

[
tF ′

(
X2

2

)
− sin

(
tF ′

(
X2

2

))]
X2

2
− t F

(
X2

2

)
. (4.4)

analytic continuation of the action for imaginary thermal time −iθ = −ih̄β is then

Sθ(x(X)) =

[
θF ′

(
X2

2

)
− sinh

(
θF ′

(
X2

2

))]
X2

2
− θ F

(
X2

2

)
. (4.5)

explicit expression obtained by substituting X by x is generally much messier but,

he harmonic oscillator one has simply F ′ = ω, so that only the central term survives

the actions become

St(x) = − tan(tω/2) x2 and Sθ(x) = − tanh(θω/2) x2, (4.6)

e with (3.10) and (3.11).

The amplitude of the thermal Wigner function is again more simply expressed in

s of the centre of the trajectory (see Appendix B):

1

cosh
(
θ
2
F ′
(
X2

2

))√
1 + θ F ′′

(
X2

2

)
X2

2
tanh

(
θ
2
F ′
(
X2

2

)) . (4.7)

ractice there is no advantage in working out the full explicit expression for the

mal action in terms of the centre x, since the expectation of observables can be

puted by integrating directly over the trajectory midpoint X, as will be discussed

ction 7. On the other hand, it is illuminating to consider the long thermal time

of Sθ(x). Recalling the identity sinh 2x = 2 sinh x coshx and that, fixing x, X→ 0

nentially with increasing thermal time according to the analytic continuation of

, one obtains in the limit a single term

Sθ(x)→ − tanh(h̄βF ′(0)/2) x2. (4.8)

F ′(0) = ω, so that the SC approximation for the normal form collapses into the

mal Wigner function for the harmonic oscillator just as discussed above. The case

e homogeneous Kerr Hamiltonian is anomalous, since there is no limiting quadratic

viour.

One should contrast this straightforward SC scenario of the thermal Wigner

tion for the normal form with the one for the Weyl propagator. The latter has

larities in its action (4.4) and the amplitude of the SC propagator, i.e. caustics,

h are not a feature of the exact quantum propagator. They subdivide the phase

e into distinct regions to be traversed with caution, as exemplified in the case of

Kerr Hamiltonian in [31]. Thus, in comparison, the thermal Wigner function is

rkably well behaved for Hamiltonians with a single minimum. See Appendix B.

The further pursuit of analytic continuation of the classical centre action for general

iltonians would be an uncertain enterprise, due to the reliance on approximately
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oximation directly to the thermal context. In passing, it should be recalled that for

ary Hamiltonians, with both the classical and the Weyl form

Hs(x) =
p2

2m
+ V (q), (4.9)

lassical dynamical system can be derived directly from a Lagrangian function. This

s for a remarkable simplification of the thermal density matrix in the position

esentation, through the expedient of redefining the momenta: Imaginary time

ils an imaginary velocity in the Lagrangian [4] and hence one deals with imaginary

entum pi in the Hamiltonian, such that ipi ≡ p, so that the only vestige of the

plexification is that p2 7→ −(pi)2. ] This turns stable equilibria into unstable points

vice versa, generalizing the outcome for the harmonic oscillator. Our purpose here

mimic such a procedure for the Lagrangian, but through a complexification of

e space variables for arbitrary Hamiltonians, so as to obtain a general real SC

oximation for the thermal Wigner function.

ouble phase space

simple artifact of defining an imaginary momentum does not guarantee that

ctories centred on arbitrary phase space points will be real, even for Hamiltonians of

orm (4.9). Nonetheless, the doubling of the phase space does allow for an analogous

edure for general Hamiltonians. Let us first describe this for the Weyl propagator,

reaking up the quantum evolution operator into half-times:

e−itĤ/h̄ = e−itĤ/2h̄ Î e−itĤ/2h̄ = e−itĤ+/2h̄ Î e+itĤ−/2h̄ (5.1)

Ĥ± = ±Ĥ. In this last form, one immediately recognizes the operator ÎL(t),

h propagates the quantum Loschmidt echo or the fidelity, that is, the overlap of two

rent evolutions of the same initial state [32]. In the present particular case the pair

antum evolutions are merely the forward evolution in the interval (0, t/2) and its

reversal (0,−t/2) with the same Hamiltonian Ĥ.

The corresponding classical echo matches the outcome of the following procedure:

picks a real initial value X and evolves this forwards and backwards in time,

t′ ≤ t/2, forming the trajectories x̃+(X, t′) and x̃−(X,−t′). One can then picture

entre and the chord, defined in (3.4), as having evolved continuously in time, from

nitial conditions x̃(0) = X and ξ̃(0) = 0 respectively, so that

x̃(t′) =
x̃+(t′) + x̃−(t)

2
, ξ̃(t′) = x̃+(t′)− x̃−(t′), or (5.2)

x̃±(t′) = x̃(t′)± ξ̃(t′)

2
.

one obtains the action in (3.3) as simply

St(x(X)) =
∫ t/2

0
dt′ ξ̃(t′) ∧ ˙̃x(t′)− tH(X), (5.3)

Jo
ur

na
l P

re
-p

ro
of
e switch q̇2 7→ −(q̇i)2 in the Lagrangian is already a part of Feyman’s adaptation of the path

ral for the density matrix, though the SC limit is not considered in [2].



The

conj

of op

x =

cano

dot

such

equa

intui

the c

poin

as d

cons

the

integ

evalu

depe

cont

impo

so th

dete

But

In te

†† In
here.

Journal Pre-proof
quantum canonical ensemble in phase space 16

At this stage, it is advantageous to define a new variable y ≡ Jξ. This is the true

ugate variable to x in the double phase space that arises in the semiclassical theory

en quantum systems [11] and superoperators [33]. In this expanded classical picture

(p,q) stands for a double position, whereas y = (yp,yq) assumes the role of its

nical double momentum. Thus, the wedge product in (5.3) reduces to an ordinary

product. Furthermore, it is now possible to define the double Hamiltonian

IH(x,y) ≡ H+(x− Jy

2
)−H−(x +

Jy

2
) = H(x+) +H(x−) (5.4)

that Hamilton’s equations in the enlarged phase space provide the appropriate

tions of motion for the centre and chord trajectories in (5.3):

∂IH

∂x
=
∂H+

∂x+

− ∂H−
∂x−

= −J(ẋ+ − ẋ−) = −Jξ̇ = −ẏ (5.5)

∂IH

∂y
=

J

2

∂H+

∂x+

+
J

2

∂H−
∂x−

=
ẋ+ + ẋ−

2
= ẋ.

One should comment that the equalities for both ξ̇ and ẋ may seem to subvert

tion for chords and centres for a single evolution generated by H(x), but they are

onsequence of taking H−(x) = −H+(x) = −H(x). Just consider that, for the initial

t x̃+(0) = x̃−(0) = X, one has ξ̇ = ẋ+ − ẋ− = 2Ẋ, whereas ẋ = (ẋ+ + ẋ−)/2 = 0

epicted in Fig.2. Nonetheless, ẋ is only instantaneously zero, so that x̃(t′) is not

tant, because generally the curvature of the trajectory is nonzero. †† In conclusion,

double Hamiltonian allows us to express the action in its standard form, as an

ral involving the (double) position x and its conjugate (double) momentum y,

ated on half the time interval:

St(x(X)) =
∫ t/2

0
dt′ ỹ(t′) · ˙̃x(t′)− t

2
IH(X). (5.6)

The fact that the action is determined by the trajectory midpoint, X, and is here

ndent only indirectly on the centre, x, may seem to be a disadvantage. On the

rary, it allows us to dispense completely with the root search for trajectories in

rtant applications. Indeed differentiating the first equation in (5.2) leads to

∂x̃

∂X
(t/2) =

1

2
(Mt/2 + M−t/2), (5.7)

at, recalling that M−t = (Mt)
−1 and that det Mt = 1 for all t, the Jacobian

rminant for the change of variables X→ x̃(t/2) = x is

| det
∂x

∂X
| = 1

22N
| det(I + Mt)|. (5.8)

this is just the square of the inverse amplitude of the Weyl propagator (3.1)!

Let us consider the overlap of an initial function |ψ〉 with its evolution |ψt〉 = Ût|ψ〉.
rms of the corresponding Wigner function Wψ(X), the exact expression is

〈ψ|ψt〉 = tr Ût|ψ〉〈ψ| =
∫

dx Wψ(x) Ut(x). (5.9)
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Figure 2. The action for a doubled time, S2t(x(X)), is now built up from the forward

and backward trajectories, with X as their initial value.

e, the change of variable x→ X leads to the SC approximation

〈ψ|ψt〉 ≈
∫

dX | det
∂x

∂X
|1/2 exp

[
i

h̄
(St(x(X)))

]
Wψ(x(X)) . (5.10)

e is no extra integration and no worry about amplitude singularities at caustics,

use these are cancelled by the new Jacobian factor in the integral. In this way

e is no search for trajectories, even though the Weyl propagator itself is not an

al value representation (IVR), such as for instance the Herman-Kluk propagator

26]. One should note that previous treatments of time evolution of overlaps within

eyl-Wigner representation [35] dealt only with its square-modulus, that is, the self

lation of the evolved state.

omplexified and decomplexified double phase space

complexification of time as t 7→ −ih̄β, which has been adopted so far, leads to

lts that are equivalent to choosing the real thermal time, θ ≡ h̄β, together with the

plex Hamiltonian

H i(x) ≡ −iH(x). (6.1)

is imaginary for real x, so that then ẋ is imaginary and all trajectories depart

the real plane. Such an option is verified to be legitimate in the short time limit

e action (3.18) and one can always build the actions for longer times from the

t time trajectory segments [8]. In other words, whereas the SC approximation for
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Weyl propagator results from a formally exact path integral by stationary phase
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ration, its analytic continuation, which we now present, follows from the saddle

t approximation to the same path integral with imaginary time. The essential

mon feature is that the action defined in terms of the set of paths, which share the

centre x, is stationary for classical trajectories.

For a general point in the complex phase space x→ z, Hamilton’s equations become

ż = J
∂H i

∂z
= −iJ∂H

∂z
. (6.2)

uated at the complex conjugate point z∗, one obtains ż(z∗) = −[ż(z)]∗, which is the

ity for the reverse trajectory in time, leading in particular to an imaginary velocity

ever z = z∗. Reiterating the process, z̈(0) will be real, and, more generally,

odd time derivatives will be imaginary whereas the even ones will be real. As a

equence, if we evolve the real phase space point X forwards and backwards in time,

θ′ ≤ θ/2, forming the trajectories z̃(X, θ′) = z(0) + θż(0) + θ2

2
z̈(0) + . . . and

,−θ′) = z(0)−θż(0)+ θ2

2
z̈(0)+ . . ., then z̃(X,−θ′) = [z̃(X, θ′)]∗ and one can define

volving chord and centre:




x̃(X, θ′) =
z̃(X, θ′) + z̃(X,−θ′)

2
= Re z̃(X, θ′) = xr

ξ̃(X, θ′) = z̃(X, θ′)− z̃(X,−θ′) = 2i Im z̃(X, θ′) = −iξi,
(6.3)

e xr and ξi are real. Thus, one guarantees that the evolving centre trajectory

ins real for all time, whereas the chord is always imaginary. But this is just what

should obtain from the complexification of the time in (3.4): the action being an

function of time, it becomes purely imaginary for imaginary time and the chord

follow suit.

This preliminary remark sets up the option to map the complexified double phase

e into a real double phase space. Assuming analyticity of the action with respect

me, we extend the expression (5.6) to an imaginary time t = −iθ, with θ ∈ IR, and

e

S−iθ(x(X)) =
∫ −iθ/2

0
dt′ ỹ(t′) · ˙̃x(t′)− −iθ

2
IH(X, 0), (6.4)

the complex time generalization of (5.6),




y(0) = 0

x(0) = X

dy

d(−iθ) = −∂IH
∂x

(x,y)

dx

d(−iθ) =
∂IH

∂y
(x,y).
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preliminary remark suggests the replacement of x by xr and y by −iyi, leading to




yi(0) = 0

xr(0) = X

dyi

dθ
= −∂IH

r

∂x
(xr,yi)

dxr

dθ
=
∂IHr

∂yi
(xr,yi).

(6.6)

IHr(xr,yi) = IH(x,y) = H(xr + i
Jyi

2
) +H(xr − iJyi

2
). (6.7)

ce that IHr(xr,yi) is real if xr and yi are real, and therefore, since xr and yi are

ally real, equations (6.6) ensure that they will stay real for any θ, thus confirming

reliminary remark.

In its essence, the scenario depicted here is equivalent to our previous treatment

e complex action [9], but it is worth investigating it further. The full trajectory

ouble phase space may be considered as combining both segments of z̃(X,±θ′)
θ′ ≥ θ

2
, or, which is equivalent, the single phase space trajectory z̃(z−, θ′), with

θ, generated by H i(z), starting at z− up to X, and then on to its final point:

, θ) = z+. The real part of this trajectory is just xr(θ/2 − θ′) from x(X) to X

then it exactly retraces itself, whereas the imaginary part is Jyi(θ/2− θ′)/2. This

le behaviour is not the general rule for arbitrary initial points z−, so that it is an

to be able always to start instead at the real midpoint, X.

With these new real variables, one can see explicitly that the action (6.4) is purely

inary, that is

Sθ(x(X)) = (−i)Siθ(x(X)) (6.8)

e the real action Siθ(x(X)) is defined by

Siθ(x(X)) =
∫ θ/2

0
dθ′ yi(θ′) · ẋr(θ′)− θ

2
IH(X, 0). (6.9)

ther words, the actual exponent of the thermal Wigner function is Siθ(x(X))/h̄,

it is built on the dynamics of a trajectory in the real phase space (xr,yi), so

here xr is the generalized position and yi is the generalized momentum. Even

t should be recalled that the double Hamiltonian is entirely specified by H(x) and

X, 0) = 2H(X). Viewed as a function of the centre x, rather than the midpoint X of

ull trajectory generated by the double Hamiltonian IHr(xr,yi), one should note that

) is exactly portrayed by (3.3), so that this trajectory satisfies the centre variational

ciple [36, 8]: In short, the action is stationary with respect to infinitesimal changes

e path in phase space, which preserve its centre x (as opposed to the trajectory

oint X) .

As an example to help overcome the unfamiliarity of these double phase space
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essions, let us return to the simple harmonic oscillator. Feeding its Hamiltonian
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into the general expression for the double Hamiltonian (6.7), while leaving aside

abels r and i to alleviate notation, leads to

x,y) = ω

(
x2 −

(y2

4

))
= − ω

((y2
p

4

)
− p2

)
− ω

((y2
q

4

)
− q2

)
, (6.10)

lling that here one interprets the centre, x = (p, q), as a double phase space position,

eas the (rotated) chord, y = (yp, yq), stands for the momentum. So we recognize

(6.10) is akin to the Hamiltonian for a double inverted oscillator (3.13) (moving

wards). Resolution of (6.6) gives x(X, θ) = cosh(ωθ/2) X and brings the harmonic

lator action (4.6).

The close connection established in section 2 between the thermal Wigner function

he harmonic oscillator and the third order short time approximation for general

iltonians clearly implies that one can also generalize the procedure above, so as

btain this approximation within the double phase space approach. Indeed, it is

esting that the original derivation in [17] for the Weyl propagator already makes

f a construction around the midpoint of the trajectory at t/2, here labeled X.

A further example of a double Hamiltonian is obtained for the Kerr system (4.2),

hich IHr
K(x,y) 6= [IHr

h(x,y)]2. Indeed, in the homogeneous limit of small ε

x,y) =
ω2

2ε

[(
p2 − y2

p

4

)2
+
(
q2 − y2

q

4

)2
+ 2

(
p2 − y2

p

4

)(
p2 − y2

p

4

)
− (qyp − pyq)2

]
,(6.11)

h has a nonquadratic equilibrium at the origin. In spite of the increased complexity,

that IHr
K(x,y) = 0 along x = ±y, so preserving something of the hyperbolic

ture of IHr
h(x,y).

races, averages and saddle points

important to realize that the explicit action in terms of the trajectory midpoint

nstead of the centre x at which the thermal Wigner function is evaluated, is no

back for the evaluation of thermal averages. Indeed, the only difference with respect

e previous case of the wave function overlap at the end of section 5 is that the real

le Hamiltonian, which generates the classical trajectories for the real thermal time

h̄β/2 is expressed as (6.7), instead of (5.4). Hence, the same change of integration

ble, x = x̃(θ/2)→ X with Jacobian (5.8), allows for the full semiclassical thermal

age of an arbitrary observable Ô to be expressed as a simple modification of (5.10):

〈Ô〉β ≈
1

Zβ

∫
dX | det

∂x

∂X
|1/2 exp

[
1

h̄
(Sih̄β(x(X)))

]
O(x(X)). (7.1)

Here, the partition function Zβ is evaluated by a similar integral in which O(x) = 1.

igh temperatures corresponding to short imaginary times there will be no caustics,

even if these should arise, they would only be zero curves, or more general zero

ifolds, of the Jacobian determinant. Should they arise, the residual task is then
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aluate an overall sign, which is the only remnant of Maslov phases in the Weyl

agator [21] if caustics separate the domain of integration.
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The expectation of functions of the energy itself 〈F (Ĥ)〉β are important examples of

eneral SC formula (7.1). They are related by standard thermodynamical relations,

h are not quite obvious within the SC approximation, as we discuss in Appendix

The exact expression (3.11) supplies the partition function for the harmonic

lator:

Zβ =
∫

dx e−βH(x) (7.2)

=
1

cosh(h̄βω/2)

∫
dx exp

[
−1

h̄
tanh(h̄βω/2) (p2 + q2)

]
=

πh̄

sinh(h̄βω/2)
.

diverges for β → 0 as the the classical high temperature approximation Zβ =

ω, but then it decays exponentially. Being that the exponent of the thermal Wigner

tion for the harmonic oscillator is already quadratic, one may identify the above

ition function with its own saddle point approximation. For a general Hamiltonian,

alidity of this approximation depends on large β so as to confine the thermal Wigner

tion close to the saddle point at the origin, just the opposite of the high temperature

oximation. But this is just the condition for the normal form approximation for

thermal Wigner function in section 4 to hold, so that it merely collapses onto the

ral harmonic oscillator.

There is no saddle point contribution to the trace from periodic orbits in the

ical flow generated by the hyperbolic double Hamiltonian (6.10), except for the

librium point at the origin itself. For the normal form approximation in section

e same is true. A saddle point evaluation of the expectation of an observable,

ccording to (7.1), would be merely O(0), its Weyl value at the origin, which is

ously unsatisfactory at high temperatures, for which the thermal Wigner function

t concentrated near the origin.

Thus, in the limit of low temperatures, one loses the complexity of the full

classical theory of the thermal Wigner function when evaluating the thermal average

ooth observables. It is required that the energy has a minimum for any thermal

age even to be considered. Then this minimum will correspond generically to an

tic equilibrium, whatever the number of degrees of freedom; the linearization of

ow (the quadratic approximation of the Hamiltonian) close to this origin provides

ultidimensional) harmonic oscillator. The corresponding double Hamiltonian will

be a (multidimensional) inverted harmonic oscillator, so that we are guaranteed

bsence of any periodic orbits in the saddle point approximation of the trace, or the

ctation of any smooth observable.

The special case of the Kerr Hamiltonian (4.2) reminds us that there may be no

ratic approximation in the homogeneous limit, but still there is a minimum. In

case, the high temperature approximation is

Z =
∫

dx exp{−β[(ω/2) (p2 + q2)]2} =
π
√
π
. (7.3)
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ntrast, the equilibrium of the quartic double Hamiltonian (6.11) is not a minimum
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aximum), just as that of a hyperbolic Hamiltonian, so so that even in this special

there are no periodic orbits, which could contribute to the semiclassical partition

tion.

Further results on the partition function for the Kerr Hamiltonian are resented in

endix B.

iscussion

density operator is the appropriate description of a system that is not isolated.

ed, a system described by an initially pure state, the projector corresponding to a

or in Hilbert space, is known to evolve into a mixed state, losing quantum coherence

to contact with an external environment. Once the equilibrium of the system with

nvironment is achieved, it is characterized by the overall temperature T = 1/κBβ,

at the resulting mixed state can be identified with the one defined by the canonical

mble, provided that the coupling to the environment is sufficiently weak.

The observation that the product h̄β ≡ θ has the dimension of time, a thermal

, permits an analogy of the static thermal density operator to the outcome of a

do-evolution in θ. The semiclassical approximation of the thermal Wigner function

thes life into this metaphor, with the added quirk that one moves in thermal time

the initial classical canonical distribution, with no trace of Planck’s constant, into

uantum realm.

Hamilton’s equations and the entire classical pseudo-motion, on which the SC

oximation is based, are parametrized by thermal time. For small θ, the classical

ctories are short, so that the semiclassical approximation depends only on a

quadratic approximation of the Hamiltonian. This provides the lowest quantum

ctions to the high temperature limit. Increasing thermal time requires the action

longer trajectory, either immersed in a complexified phase space [9], or in the real

led phase space presented here. The fact that the appropriate double Hamiltonian

a saddle point instead of a stable equilibrium prevents the relevant trajectory from

ing beyond the constraint provided by the pair of stable and unstable manifolds.

limits the action, which converges for large θ to the exponent of the Wigner function

e dominant ground state in the low temperature limit. Therefore our semiclassical

oximation bridges the entire range, effectively anchored at both the very high and

very low temperatures. It remains to verify computationally how well it behaves

e intermediate temperature range, that is, intermediate thermal time, given that

ically h̄ is a constant.

Having indulged in the metaphor of a thermal-dynamical system, we must reiterate

only strictly equilibrium properties have been here considered. Some of our results

e extricated from a previous paper on the complexified semiclassical approximation

uantum work and its employment in the Jarzynski equality [9]. But that was

amentally a dynamical context, even if it may be considered in an adiabatic, quasi-
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cal limit. So it is important to gain a full clear view of the rich underlying pure
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cs. It should be pointed out that the present approximations are insensitive to any

l effect of tunnelling under saddle points on steady states, if the Hamiltonian has

than one minimum.

Digging deeper, one may even question the central assumption that the thermal

librium of the system can be independent of the (in most cases) uncontrollable

ronment and their coupling, when viewed in a full quantum scenario. After all, the

m Hamiltonian does not in general commute with the total Hamiltonian, which

des the system, the environment and their coupling, so one is implicitly assuming

imit of weak coupling. Indeed, the damping strength, characteristic of dissipative

tum evolution, will appear in the equilibrium state. In the partition function, this

ndence on the damping strength is to be expected because it reflects the broadening

screte eigenstates [41, 4].

Notwithstanding the complexity of the general features of quantum equilibrium

the processes by which it is attained, it is of fundamental importance to be able

eal with thermal quantum systems on their own, described in their simplest form

he canonical density operator, that is, the quantum Gibbs ensemble. The thermal

ner function presents this in a very convenient form, permitting the evaluation of

partition function and thermal averages as classical phase space integrals. The

classical approximation to the thermal Wigner function presented here bridges

xtreme limits, while leading to simple quantum corrections to the classical high

erature limit. We have shown that attempting further saddle point approximations

d discard most of the information contained in the full semiclassical theory. On

other hand, it is revealed that full content is preserved by a mere shift of the

ration variable of a thermal average, which has the offshoot of dispensing with

rious searches for trajectories that are indirectly defined. No restriction to systems

satisfy the ordinary second order Schrödinger equation impinges on the present

classical approximation for the density operators of the canonical ensemble.

endix A. Thermodynamic relations

SC expectation of a smooth function of the Hamiltonian is a special case of (7.1),

is,

〈F (Ĥ)〉β ≈
1

Zβ

∫
dX | det

∂x

∂X
|1/2 exp

[
1

h̄
(Sih̄β(x(X)))

]
F (H(x)), (A.1)

uivalently the SC approximation to the thermal Wigner function is inserted directly

.6) to provide a macroscopic property of the system in complete thermal equilibrium

its environment. In the case of the exact thermal average of the Hamiltonian itself

elation

〈Ĥ〉β = − 1

Zβ

dZβ
dβ

(A.2)
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dely employed, even though there is an implicit assumption of an evolution of the

erature through the derivative, just as with the Jarzynski equality discussed in
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on 8. Then, the strength of the coupling to the environment becomes relevant and

ed, one should restrict (A.2) to the limit of weak coupling [42]. In any case it is easily

to hold formally, whereas it is more problematic within the full SC approximation.

Even though (A.2) is readily verified for a quadratic Hamiltonian (as it should,

here SC is exact), there are two major difficulties for general Hamiltonians. The

is that the amplitude of the Wigner function depends on β, not just its action. The

litude cannot be taken out of the integral, since it also depends on x, so that, on

g the derivative within the integral, there is a second term beyond the derivative

e exponential. The second problem is that, in taking the derivative of the exponent

x(X)) itself, one obtains H(X) instead of H(x), together with the derivative of the

ral in (6.9), which depends nonlinearly on β. Thus, the approximate satisfaction

e relation (A.2) depends on the counterbalancing of several terms and the direct

ation of (A.1) should be preferred to the RHS of (A.2).

Curiously, both approximations (3.21) and (3.23), which account for the lowest

tum correction to the non-normalized thermal Wigner function, accommodate a

on of the relation (A.2). Indeed, separating the exponent in the former into its

r and nonlinear parts,

(x) ≈ exp [−β1H(x)]

1 + (h̄β2Ωx/2)2/2
exp

[
−(h̄β2Ωx/2)3

3

(x− γx) ·Hx (x− γx)

h̄ Ωx

] ∣∣∣
β1=β2=β

,(A.3)

obtains a double-β partition function

β2) ≡
∫
dx

exp [−β1H(x)]

1 + (h̄β2Ωx/2)2/2
exp

[
−(h̄β2Ωx/2)3

3

(x− γx) ·Hx (x− γx)

h̄ Ωx

]
(A.4)

thus a lopsided version of (A.2):

〈Ĥ〉β ≈ −
d logZ(β1,β2)

dβ1

∣∣∣
β1=β2=β

. (A.5)

same equality results from the isolation of the linear part of the exponent in the

plectic Wigner function, with the alternative definition of a double-β partition

tion as

β2) ≡
∫
dx exp[−β1H(x)] exp[β2H(x− γx|Hx)] e−β2H(x− γx|Hx). (A.6)

Either of these definitions of a double-β partition function will again introduce a

quantum correction to further thermodynamic relations. The definition of the heat

city again implies a dynamic (even if quasi-static) process of feeding in heat and

nite coupling to the environment its definition is no longer unique [42]. However,

ssumption of weak coupling to the environment allows to relate the heat capacity

e second derivative of the partition function,

d〈Ĥ〉β
dT

=
−1

kBT 2

d〈Ĥ〉β
dβ

=
1

kBT 2



(

1

Zβ

dZβ
dβ

)2

−
(

1

Zβ

d2Zβ
dβ2

)
 =

1

kBT 2

[
〈Ĥ2〉β−〈Ĥ〉2β

]

SC quantum correction at high temperatures is obtained as
( )2 (

2
)
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1

kBT 2
 1

Z(β1,β2)

dZ(β1,β2)

dβ1

− 1

Z(β1,β2)

d Z(β1,β2)

dβ2
1


β1=β2=β

. (A.8)
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n, at lower temperatures where one needs a full SC approximation for the thermal

ner function, the relation for the specific heat is not transparently reproduced.

rtheless, the variance of the energy, given by the final equality in (A.7), is easily

inable through the general formula for expectations (7.1), whilst recalling that the

l representation H2(x) of Ĥ2 only equals the classical function (H(x))2, within a

ction of order h̄.

endix B. Comparing the semiclassical Wigner function with the exact

ndix B.1. Expression of the Wigner function for a normal form Hamiltonian

valuate the prefactor of the Weyl symbol of exp (−βĤ), with Ĥ = F (x
2

2
), we use

xpressions (4.5) and (5.8), leading to

e−βH (x (X)) ' e
i
θ

[
θF ′
(

X2

2

)
−sinh

(
θF ′
(

X2

2

))]
X2

2
− θ
h̄
F

(
X2

2

)

√
| det

(
∂x
∂X

)
|

, (B.1)

e X is the starting point for the pair of arcs evolving forward and backwards in

, and x is the middle of the chord joining the tips of that arc. In order to evaluate

bove prefactor, we take the imaginary time version of the identity (4.3),

x = cosh

[
θ

2
F ′
(

X2

2

)]
X, (B.2)

we take its derivative with respect to X = (P,Q). We obtain

∂x

∂X
= cosh

[
θ

2
F ′
(

X2

2

)]
I +

θ

2
F ′′

(
X2

2

)
sinh

[
θ

2
F ′
(

X2

2

)]
XX>, (B.3)

h is of the form

∂x

∂X
=

(
C + SP 2 SPQ

SQP C + SQ2

)
, (B.4)

whose determinant is therefore

det
∂x

∂X
= C2 + CS(P 2 +Q2), (B.5)

e have

det

(
∂x

∂X

)
= N

(
X2

2

)
(B.6)

N (R) = cosh2

[
θF ′ (R)

2

]
+θRF ′′ (R) cosh

[
θF ′ (R)

2

]
sinh

[
θF ′ (R)

2

]
,(B.7)

the expression of exp(−βĤ) follows

−βH e
1
h̄

[
θF ′
(

X2

2

)
−sinh

(
θF ′
(

X2

2

))]
X2

2
− θ
h̄
F

(
X2

2

)
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e (x (X)) '
cosh

[
θ
2
F ′
(
X2

2

)]√
1 + θ X2

2
F ′′

(
X2

2

)
tanh

[
θ
2
F ′
(
X2

2

)] .(B.8)
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On the other hand, we can have an expression for the exact Weyl symbol by using

ecomposition in the basis of the harmonic oscillator {|n〉}, that is

e−βĤ =
∞∑

n=0

e−βF(h̄(n+ 1
2)) |n〉〈n| (B.9)

x̂2

2
|n〉 = h̄

(
n+

1

2

)
|n〉, (B.10)

, knowing that the Weyl symbol of |n〉〈n| is given by (2.2), we have

e−βH (x) =
∞∑

n=0

e−
θ
h̄
F(h̄(n+ 1

2)) (−1)n

πh̄
e−

x2

h̄ Ln

(
2x2

h̄

)
. (B.11)

, to compare (B.8) with (B.11), we need to put the later with the same variable X,

h requires to use expression (B.2),

e−βH (x (X)) =
∞∑

n=0

(−1)n

πh̄
e−

θ
h̄
F(h̄(n+ 1

2))−
X2 cosh

[
θ
2F
′
(

X2

2

)]2

h̄ Ln




2X2 cosh
[
θ
2
F

h̄

ndix B.2. Partition function

partition function in the Weyl Wigner representation is given by

Tr
(
e−βĤ

)
=

1

2πh̄

∫
e−βH (x) d2x. (B.13)

enefit from the simple expression of the action used in this article, we change the

ble from the midpoint x of the chord to the starting point of the arc X, related by

), and obtain

Tr
(
e−βĤ

)
=

1

2πh̄

∫
e−βH (x (X)) | det

(
∂x

∂X

)
| d2X. (B.14)

, noticing that the Jacobian of this change of variable is the square of the inverse

e prefactor which appears in (B.1), the semiclassical expression for e−βH (x (X)),

et Tr
(
e−βĤ

)
' Zsc with

Zsc =
1

2πh̄

∫
e

1
h̄
σθ

(
X2

2

)√√√√| det

(
∂x

∂X

)
| d2X, (B.15)

σθ

(
X2

2

)
=

[
θF ′

(
X2

2

)
− sinh

(
θF ′

(
X2

2

))]
X2

2
− θF

(
X2

2

)
. (B.16)

, according to (B.6),

Zsc =
1

2πh̄

∫
e

1
h̄
σθ

(
X2

2

)√√√√N
(

X2

2

)
d2X. (B.17)
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+ θω2u
ε

)
du

h̄
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lying the change of variables, X =
(√

2u cosφ,
√

2u sinφ
)
, so that u = X2/2, one

d2X = dudφ, and, integrating over φ, we are left with a single integral

Zsc =
1

h̄

∫ ∞

0
e

1
h̄
σθ(u)

√
N (u) du. (B.18)

he other hand, the exact partition function is given by

Zq =
∞∑

n=0

e−βF(h̄(n+ 1
2)) =

∞∑

n=0

e−
θ
h̄
F(h̄(n+ 1

2)). (B.19)

comparison, the classical partition function is

Zc =
∫ ∞

0
e−

θ
h̄
F (y) dy. (B.20)

ce that Zsc contains the integrand of Zc, but multiplied by a function, that is

Zsc =
1

h̄

∫ ∞

0
e−

θ
h̄
F (u)e

1
h̄

∆θ(u)
√
N (u) du, (B.21)

∆θ (u) = u [θF ′ (u)− sinh (θF ′ (u))] . (B.22)

ndix B.3. Some example

us take, as an example, a general nonhomogeneous Kerr oscillator, that is

H(x) = ω
x2

2
+
ω2

ε

(
x2

2

)2

. (B.23)

corresponds to

F (u) = ωu+
ω2

ε
u2 F ′(u) = ω + 2

ω2

ε
u F ′′(u) = 2

ω2

ε
, (B.24)

e semiclassical partition function writes

Zsc =
∫ ∞

0
e
u
h̄

[
θω2u
ε
−sinh

(
θω+ 2θω2u

ε

)]
cosh

(
θω

2
+
θω2u

ε

)
√√√√

1 +
2θω2u tanh

(
θω
2

ε

re B1 compares the semiclassical, the quantum and the classical partition function

function of ε. Obviously the semiclassical approximation loses accuracy for the

ly Kerr hamiltonian.
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Figure B1. Ratio Zsc/Zq as a function of ε, for h̄ = 0.2 and ω = 0.5. The semiclassical

partition function Zsc deviates from the exact quantum one, Zq, in the homogeneous

limit ε→ 0. The ratio of the classical partition function Zc to the latter is also shown.
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