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Abstract

This paper shows that the AL (Ablowitz—Ladik) hierarchy of (integrable) equations can be explicitly viewed as a hierarchy of commuting flows
which: (a) are Hamiltonian with respect to both a standard, local Poisson operator 7, and a new non-local, skew, almost Poisson operator /C, on
the appropriate space; (b) can be recursively generated from a recursion operator R = K.J ~1 In addition, the proof of these facts relies upon two
new pivotal resolvent identities which suggest a general method for uncovering bi-Hamiltonian structures for other families of discrete, integrable

equations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Ablowitz—Ladik (AL) system is one of the most studied
discrete integrable systems of soliton type. It can be thought
of as an integrable discretization of the Nonlinear Schrodinger
(NLS) equation. However, it has recently received a great
deal of attention as the background lattice system in a variety
of modelling applications including optical fiber arrays [4,5],
chaos in dispersive numerical schemes [22-24], and linkage
dynamics [10,18].

AL is an infinite integrable system of soliton type by which
one generally means that an infinite family of constants of
motion for the AL flow can be constructed through the inverse
scattering transform (IST) associated to a particular (discrete)
eigenvalue problem. In addition, the IST framework provides a
mechanism through which large families of solutions, such as
multi-solitons can be explicitly found.

From a geometric standpoint, AL is also an integrable
Hamiltonian system with respect to a natural local Poisson
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structure. Indeed this structure is the discretization of the
natural (local) Poisson structure for NLS. The NLS system,
just as many other integrable partial differential equations
(PDEs) of soliton type, has been found to be Hamiltonian with
respect to two distinct Poisson structures [19]. These distinct
structures are compatible in a way that enables one to construct
from them a recursion operator which generates the complete
hierarchy of commuting flows. As stated above, this hierarchy
is the signature of a completely integrable Hamiltonian system
and implicitly characterizes its Poisson geometry. If a system
has two distinct compatible Poisson structures it is referred
to as bi-Hamiltonian (see Section 2). The explicit knowledge
of two such Poisson structures allows one to “organize” the
symmetries of the system by singling out geometric sub-
hierarchies of flows which may be explicitly exhibited as bi-
Hamiltonian and pair-wise commuting. Moreover, from the two
compatible structures one may recursively and explicitly build
the flows of the selected sub-hierarchy. By the same token,
explicit knowledge of a geometric recursion operator (i.e.,
one known to result from the compatible Poisson operators)
facilitates the construction of other new, well-defined geometric
objects (such as hierarchies of Poisson structures associated to
the given problem [16]). Finally, in many specific instances, a
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given bi-Hamiltonian structure provides a means to relate the
Poisson geometry to the IST via resolvent relations associated
to the linear eigenvalue problem.

Specific examples of bi-Hamiltonian structures related to
an IST are much rarer for discrete integrable systems than for
continuous ones. The principal goal of this paper is to explicitly
build one such structure for AL and to exhibit the details of the
connection between this structure and the corresponding IST.
In the process, the hierarchies of flows and constants of motion
known to be associated to AL will be parsed out in geometric
terms.

This paper is organized as follows. In Section 2 we
review the second Poisson structure for NLS which is due to
Magri [19]. Our approach is to explicitly re-derive Magri’s
structure from a Wronskian construction of commuting flows
for soliton PDEs due to Calogero and Degasperis [7]. We
review the derivation of the second structure for the continuous
case (NLS) because it turns out to be an important guide
for identifying the second structure in the discrete case (as
demonstrated in Sections 3.3 and 4.2 of this work).

In Section 3 the necessary inverse scattering background
for the discrete case is presented including the derivation,
from a generalized Wronskian relation, of two basic operators
L4 and L£_ in terms of which the recursion operator R and
its properties are developed. In the last part of this section,
two resolvent identities related to these operators, which are
fundamental to the main results of this paper, are derived.
These resolvent identities represent a novel contribution to the
literature on scattering theory for discrete systems, as they
do, in effect, provide an explicit link between the Poisson
geometry of AL and the associated IST (see also Section 4).
Furthermore, we believe that our derivation of these resolvent
identities suggests a constructive procedure for establishing
similar relationships between the geometry and the IST of other
discrete integrable systems.

Finally in Section 4 the Poisson-geometric interpretation
of the recursion operator R is made. We prove that AL has
a bi-Hamiltonian character, in the sense defined in this same
section. This is established by showing that the operator I
gives rise to an almost Poisson structure for AL. It is an
interesting open problem to determine whether or not the
bracket defined through K is Poisson. This topic and other
potential investigations are discussed in the conclusions.

2. A generalized Wronskian approach to the Poisson
structure of NLS

To illustrate the rationale of our approach to the geometry of
the AL equations, we first look at the parallel continuous object
(the NLS hierarchy), where the geometry is already understood.

The NLS equation (7) is a well-known integrable PDE.
As such, it possesses infinite families of linearly independent
constants of motion in involution, and families of explicit
special solutions such as N-soliton solutions. In the late 1970’s,
Magri showed that NLS has a bi-Hamiltonian nature [19]. This
property (which now characterizes many integrable PDEs),
means that the NLS equation can be written as a Hamiltonian

system with respect to two different, independent Poisson
brackets. By composing the Poisson operators (denoted J and
K, for instance) induced by these brackets in the appropriate
manner, one obtains a recursion operator, R, capable of
generating a commuting family of Hamiltonian flows, which
include NLS. Typically, one of the aforementioned Poisson
operators, say J, is invertible and then R = K J -1,

In this section we will outline the derivation of Magri’s
Poisson structure for NLS from two integro-differential
operators associated to the AKNS hierarchy, a collection of
commuting integrable evolution equations which includes NLS.
The full details of what is outlined here may be found in [18].

The first of these operators, which we denote L, was
constructed by Calogero and Degasperis using a generalized
Wronskian technique [7]. The basic idea behind the generalized
Wronskian approach to integrable evolution equations is to
generate a set of scattering relations between the asymptotic
behaviors (as x — +o0o and x — —o0) of the wave-
function solutions of some initial eigenvalue problem, such as
the Zakharov—Shabat problem

Vie _ (—ik g\ (1
()= ) () W

The second operator, L_, appearing in Calogero and
Degasperis’ work and giving rise to the AKNS hierarchy is
related to L in a sort of “adjoint” way, as described below.

The specific form of the operators L and L_ (which act on
a certain space C of rapidly decaying complex-valued functions
(q(x), r(x))T — the potentials,) suggests the construction of an
anti-symmetric operator K arising from L, L_.

It turns out that (see below) one can indeed use L4 and L_ to
define two geometrically meaningful operators K and R which
act on C. The first one is Poisson, and gives rise to Magri’s
bracket for NLS. The second one is a recursion operator for
the AKNS hierarchy which may in fact be portrayed as the
composition of K with the standard Poison structure for AKNS
(given essentially as multiplication by the imaginary unit i).

The specific structure and relationship between L and L_
in the continuous setting will eventually guide the construction
of their discrete counterparts £ and £_ and also motivate the
definition of X and R — discrete analogs of K and R for the AL
hierarchy — in Section 3.

2.1. Obtaining Magri’s Poisson structure, K, for NLS through
Lyand L_

In [7], Calogero and Degasperis begin with the eigenvalue
problem (1) and use a generalized Wronskian technique to
arrive at the following formally defined class of integrable
equations:

re(x, 1), —qr (e, )T =y (L) (r(x, 1), g(x, )T, )

where y is an entire function of the integro-differential operator

L[/1 0 rlyq —rigr
L, =— a 2 ,
’ 2i[<0 —1> o <q1+q —qlyr

+o0 3)
I = / () dy.
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Perhaps one of the best-known procedures for generating
hierarchies of non-linear integrable evolution equations is
due to the work of Ablowitz, Kaup, Newell and Segur
(AKNS) [1]. In our context, their method utilizes once again
the Zakharov—Shabat eigenvalue problem together with a
second linear operator prescribing the time evolution of the
wavefunctions. The hierarchy of integrable evolution equations
arises then as a series of compatibility conditions associated to
the linear problems just described. All the evolution equations
in the hierarchy stem from the same eigenvalue problem, yet
each corresponds to a different time-evolution operator.

Calogero and Degasperis write the AKNS hierarchy as

(re(x, 1), —qr(x, )T = —2A(L_)(r(x, 1), g(x, )T, 4)
where

L/ o0 rl_qg —ri_r
=3 [(0 —1> o2 <q1—q —ql—rﬂ ’

x ®)

I =/ () dy

(A is an arbitrary entire function), and show that (2) and (4) are
equivalent.
The proof of this fact entails showing that

L ((r, ") = L"((r, )T, (6)

which follows, in turn, from the observation that L'} ((r, q)T)
is in the kernel of the difference operator L_ — L. We refer
to this as the (continuous) “kernel condition”. This can be
verified directly for n = 0 and other low values of n. The
proof for general n (which relies on the definition of two
auxiliary functions of the complex variable z) can be found in
the Appendix of [7].

We remark that, under the identification »r = —g, the
system of coupled integrable evolution equations (4) reduces
to a system of evolution equations for a single field ¢,
comprising the NLS hierarchy, which contains the well-known
NLS equation

—ig; = qxx +2lq1%q. 7)

In other words, in the reduction r = —¢, (4) becomes the NLS
family of equations.

Let us now consider the space of complex, vector valued
functions of a real variable x given by

C = [(q(x), r()c))T eC?: lgl, |r| > 0asx — ioo}.

The tangent bundle to C may be endowed with a non-
degenerate bilinear form locally described by the inner product

(1, v2)T, (w1, w)T) = — / viws + vawy dx, (8)

where (v, vz)T, (wq, wg)T are tangent vectors to C at the
point (¢,r)T, and [ fdx = [0 fdx. One may also define
a skew-adjoint operator J = Diag(—i, i), on the tangent
bundle to C which, together with the inner product just defined,

gives rise to the complexified standard Poisson bracket on C,
that is,

{(F,G}; = (VF,Diag(—i, )VG)
= ((=8,F, —8,F)", Diag(—i, i)(—5,G, —8,G)T).

Here, F and G are functionals on C which become real-
valued in the reduction ry = g; defining the standard
setting for NLS. This reality condition implies that F and
G must be symmetric (or anti-symmetric) in r and gq.
Furthermore, (4 (-), 8,(-)T denotes the variational derivative,
whereas V(-) = (=6, ("), —8,1(~))T gives the functional gradient
of each such functional, with respect to the given inner product.

We now re-consider the operators L and L_ acting on the
function space C.

The presence of the integral operators I, and /_ suggests
that L, and L_ may be combined so as to yield an anti-
symmetric operator, K, related to the hierarchy. Indeed, as we
will show below, the special properties of L_+L_ and L_—L
allow us to recover both the (second) Poisson structure for NLS
discovered by Magri [19] (prescribed by the Poisson operator
K), and the recursion operator R = K J~! associated to the
AKNS hierarchy of flows. We define

qU-—11)q ) 0

(10 —q(I_ — L)
k= (0 1> O + ( r(-—Ir  —r(_—1Iy)gq

This operator K, just as J, acts on the tangent space to C at a
point and defines a (point-dependent) operator on the tangent
bundle of C.

Proposition 1 ([18]). The bracket {F,G}x = (VF,KVG)
associated to K is skew-symmetric and satisfies the Jacobi
identity. Hence, K is Poisson. O

To establish that the bracket associated to K is indeed
Magri’s Poisson structure for NLS check directly that K and
J form a compatible pair of Poisson structures and that the
recursion operator KJ ! does indeed generate the AKNS
hierarchy of flows. This approach has the advantage of giving
an explicit description of the bi-Hamiltonian nature of the
evolution equations in the AKNS hierarchy.

Recall that the compatibility of two Poisson operators such
as K and J amounts to proving that their sum is also a Poisson
operator on the manifold in question. Two compatible Poisson
operators give rise to a bi-Hamiltonian system when there exists
a vector field that is Hamiltonian with respect to both Poisson
structures [19]. In this case, one can generate a hierarchy
of bi-Hamiltonian vector fields, by recursively applying the
composition of one of the Poisson operators with the inverse
of the other to the original bi-Hamiltonian field (assuming, of
course, that one of the Poisson operators is indeed invertible).

We define
_ -1 1 0
R=KJ ' = |:(O | Oy

N (—q(l ~ Lr

qI-—1Iy)q
r(l- —Ipr  —r(-—11)q
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0 1 0 -1
= <_1 0) (L—+ Ly) (1 0 ) (10)
and consider the functional H = — [rq. Then, JVH =
Diag(—i, i)(g, )T = (—ig,ir)T, and X,, = R"JVH defines a
hierarchy of bi-Hamiltonian vector fields. Hamilton’s equations
associated to these fields are

((g.1"; = R"JVH. (11)

Notice that Xg = JVH = (—ig,ir)T and X; = KVH =
(g« r)T. The standard NLS flow is prescribed by

X3 =i @urs —re)™ + (<2rg%, 2987 (12)

The hierarchy (11) is the NLS Hierarchy. (Note: the symbol x
is used in Eq. (10) to denote matrix multiplication. Throughout
this paper, it will also be used to denote an action of a matrix
operator on vector, and the usual cross product. The precise
meaning should be inferred from the context.)

We shall next show that the NLS hierarchy (11) is equiva-
lent to a sub-hierarchy of the family of Calogero—Degasperis
flows (2). In fact, we will demonstrate that the entire
Calogero—Degasperis hierarchy can be generated from polyno-
mials in R. The argument’s basic idea is to write the recursion
operator R in terms of L_ + L and exploit the relationship
between L and L_ given in (6).

Proposition 2. The NLS hierarchy, obtained by recursively
applying the recursion operator R to the (Hamiltonian)
field (—iq,ir)T, is equivalent to a sub-hierarchy of the
Calogero—Degasperis family (2).

Proof. We re-write Hamilton’s equations (11), using the form
of the recursion operator given in (10), to obtain

(g, N =L+ L))" )T, (13)

where

o = (? },i) (14)

is the standard Pauli matrix.
Using induction on n together with formula (6) one sees that

(Lo + L))" ()t =2" (L))" (r, )", (15)
so that (13) becomes

(g, =2"oa L (r, )" (16)
Multiplying both sides of (16) by —io», we obtain

(=1, ") = =2"L" (r, )T, (17)

which is clearly a sub-hierarchy of the Calogero—Degasperis
family of flows. O

Using Weierstrass approximation one can replace the
monomial in (17) by an arbitrary analytic function, A,

of L, and finally re-write the equation as ((r, —q)T);, +
A(L4)(r,q)T = 0, which is the form of the flow derived by
Calogero and Degasperis. Hence,

Corollary 1. The entire Calogero—Degasperis family of flows
may be formally generated from polynomials in R. O

3. Inverse scattering preliminaries

This section begins with the direct scattering formulation
for the Zakharov—Shabat eigenvalue problem (18) originally
studied by Ablowitz and Ladik in connection with the
integrable equations bearing their name.

After identifying (and characterizing) two pairs of eigen-
functions ¢y (z), ¢A>k (2) and Y (z), 1}1( (z) (which behave nicely
at either —oco or o0), we focus on a Wronskian relation
introduced by Ladik and Chiu as a means to study a family of
integrable evolution equations arising from the linear problem
(18) (which includes AL).

The generalized Wronskian identity presented by Ladik and
Chiu provides, once again, a way to relate the evolution of
the potentials r; and gi (defining (18)) to the evolution of
the scattering coefficients (i.e., the parameters specifying the
asymptotic behavior of the eigenfunctions mentioned above).
By so doing, it also singles out two sum-difference operators L
and L~!, which together generate the collection of (integrable)
equations prescribing the potentials’ evolution.

As we will soon see, the specific form and relationship
between L and L~' will guide the construction of two new
operators L4 and L_, associated to a sub-hierarchy of the
Chiu-Ladik equations which encompasses the AL system. The
latter operators can be viewed as discrete analogs of Ly and
L_ in more than one way. In particular, they will play a key
role in unveiling the Poisson-geometric picture behind AL, as
we begin to indicate below.

Exploiting the time-independence of one of the scattering
coefficients (an essential feature of these kinds of integrable
equations), one can obtain both a sequence of constants of
motion, and a generating function for the associated hierarchy
of variation (gradient) fields. It turns out that it is also possible
to explicitly write down (resolvent) identities giving the infinite
hierarchy of gradient fields in terms of powers of L and L™
These identities will be instrumental for exhibiting the bi-
Hamiltonian nature of the AL hierarchy in Section 4.

3.1. A generalized Wronskian leading to AL flows

In [8], Chiu and Ladik developed a generalized Wronskian
identity based on the discrete version of the Zakharov—Shabat
eigenvalue problem:

V| (7 g\ (v _ V|
<V2>k+1 B (’k 1/1) <V2>k =& (V2>k’ (18)

which generated a large family of integrable evolution
equations associated to AL. Here, z € C is the eigenvalue
parameter, and the complex-valued potentials g; and r; are
assumed to vanish rapidly for k — Foo0.
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Let @ (z) and &, (z) respectively denote matrix solutions to
(18) and to a second eigenvalue problem of the same form but
for a new set of potentials g, , . The initial Wronskian identity
proposed by Chiu and Ladik takes the form

S Ph+1) B Mk, 2) Brr = B, PROF (k) By %,

k=—o00

where

_[(z m _ 1/z —qxk
Mk, z) = [(ql/c 1/z> F(k+1) F(k)( oz )]
(19)

Above, P(k) = ]_[?O:k(l — rxqx) and F(k, z) is a matrix that
can be chosen arbitrarily, independent of ¢, g/, r, v’ and of the
particular choice of fundamental matrices, @, @'. In this paper
we will be using a particular choice of F that is presented in
(28). The validity of (19) results from the telescoping of the
terms in the specified series, which can be checked directly.
This identity serves to relate correlations between components
of @ and @’ to the asymptotic behavior, in k, of the scattering
coefficients a, d, b, b for @ (defined below) and o', &, b, b’
for ¢’.

Due to the asymptotic decay of the potentials, the right-
hand side of (19) makes sense and may be written in terms
of the scattering parameters (for the “primed” and “unprimed”
linear problems). Its precise form depends both on the choice
of matrix F(k, z) and on the particular eigenfunctions making
up the columns of & (z).

Remark 1. We will use the notation f; and f (k) interchange-
ably, depending on emphasis, to denote functions of the discrete
variable k. The z dependence of objects such as &, F (k) and
the scattering parameters a, a, b, b may or may not be explicitly
noted, depending on the context.

Following the work of Chiu and Ladik, we now specify
the precise form of the right-hand side of (19) by choosing
a particular fundamental matrix @ (z) and determining its
asymptotic form. We begin by considering the four special
solutions

P2 ~ 10T, (@) ~ 2750, DT,
V(@) ~ 2750, DT, i@ ~ 1,07,
of (18) and the scattering relations prescribed by

Dr(2) b(z) a@))\ (¥r(2) Vi (2)

’ =1 . ~ " = N . 22
(¢k(Z)) (a(z) b(z)) <wk(z>) @) (wk@) 22)

We then set @ (z) = (¢x(2), Yk (z)) and determine that

for k — —o0 (20)
fork — oo (21)

k _b k
Z
Py ~ go . fork — —oc0
0 e 4
C()Z (23)

k

az 0

P, ~ , fork — oo,
k (bz‘k z_k>

where det S(z) = ad — bb = Cp, and Cp = limg_, _o0 P (k) =
[12 (1 = rkqx), as shown by Ablowitz et al. [3].

We now adapt the results established by Chiu and Ladik to
our choice of @(z) and arrive at two Wronskian-type identities
based on (19). They are:

e HO k)
Pk+1)o," [I/ll ( ! ¥
Z k H;O)(k) +1

k=—00
ab d —a
21 B
_ b
z 0 a_/
Co
+ sz D (@ Pk)FD (k) Br) |, e

Jj=

00 h(o) k
Y Ph+1)#” |:I(/1_1)’< ;O)( ))} Bysy
hy (k)

k=—o00
| ab’ 0
= 7 a/C() a/l;
S\ T o
+ Z e = PO FD () B0 %, 25)

where the integro-differential operators A, A~! are given
by

A= <E 0 > 4 (—rkjk(q]E) 1T (r' E+)>
~“\o E* vI(@iET) g (riE™Y)

0 0
+<q,zqu —q,zr,zE+)
+(1_,qu)< E <rk)Jk<q,) E (r,wk(r,))
o o)
.
i E+<qkjk(q,)> E* (i)
e ( ) (rkjk(q,Eﬂ —r T (rjE~ ))
kTG EY)  —qui(rjET)

+
rqu rkrkE
()

(26)

0 0
=) (E(q;i)jmj) —E(q;()jm}))
gD <E+<rk67k<q,->) _E+(”6jk(r}))) |

@7)

as demonstrated in the original Chiu—Ladik work [8]. The shift
operators ET act in the standard fashion, EiAvk = Vk+1,
whereas Jx(v(j) u = 352, v(Hu()), and Jp(v(j) u =
p&) /2437, [(H (1 —rig))/ (A =rigi)w(Hu()/(1—
rjqj)), for p(k) = PH —k(l — rq;)/(1 — regy) and p an
arbitrary constant.
As explained both in [18] and in Chiu and Ladik’s paper,
Eq. (24) arises from an iteration in powers of z> prescribed
essentially through a suitably chosen ansatz for the M (k, z)
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factor in the summand of (19). Specifically, we can choose a
sequence of M to be of the form

M(l)(k)

_ (—fo’”(k) + 1 () 0 )

B 0 ~ZH " +H k)’
>0 (28)

where

0 HOk 0
MO = (" 5 )=(™ (k) o , and
0 gq 0 HY” (k)

Hf’H)(k) » Hl(z> ) |
Hil+l)(k) Hil)(k)
Such an ansatz completely determines the structure of the
corresponding F'(k, z) [8]. The second equation emerges in a
similar manner from a sequence M~ related to an iteration in

powers of 1/z2.

The pivotal identity for obtaining the precise time-evolution
of the vector potential (¢, gx) and the scattering parameters
associated to (18) arises by taking linear combinations of (24)
and (25) for different values of [ > 0. In particular, the family
of Wronskian identities can be used to generate families of
evolution equations by taking the primed spectral ingredients
(eigenfunctions and scattering coefficients) to be the time-
evolved counter-parts of the initial (unprimed) eigenfunctions
and scattering coefficients:

(29)

b =b(t), b =b(),
B = B(1), Ch = Colt).

a =a(),

qr = qk(1),

a =a(@),
ry = re(t),

(30)

As indicated in the original Chiu and Ladik work, by
considering linear combinations of Egs. (24) and (25) in light
of the substitutions (30), one arrives at the operators

E- 0 —pE™
L= ( 0 E+> + (1 — req) <_§E+((;i))) + (I —rrqk)

. e
= (o (705)) (e (55)
% 1—rquj l_rrjqj
- (i (55) =l ()
I—rjq; 1—rjq;

2
£ ( rkqk ) e
+ = reqr) 1 — reqr 1 — reqr

0 0
—nJH (G ET) mJl(rjET)
—q (G ET) qud (rjET)
0 0
+ _ , 31
(q/%E _rikE+> D
+ +
-1_(E 0 . PE™ (1) _
L™ = ( 0 E‘) + (1 = regr) (ﬁE_(Qk)) + (1 — rrqi)

. re

e (o (=) - (e (=75)
l—rjqj l—rjqj

_ qj — rj

e (o (=05) - (e (5)
—rjdj —rjdj

0 0
2
+0—rego) | _p- (% E( qkTk )
1 — reqe 1 — req
red (GiET)  —rJF(rjET)
aJ (q;ET) —quf (rjE7)
—rquE+ r,?E_
s (TaET B, (32)

(arising from A and A~! respectively), and to the following
(simple!) time-evolution equations for the scattering parame-
ters:

((a(2), a2 = 0,
((=b(2), b)) = w (&) (b(2), b(2)T,

(The interested reader may refer to either [8] or [18] for the
actual calculations leading to these identities.)

(33)
(Co)r =0.

Remark 2. The operator JkJr present in (31) and (32) is defined
by Jk+ (uj) = Z‘;O:k u; and is the discrete analog of the integral
operator I, appearing in the expression for the continuous
integro-differential operator L given in (3). The symbols p, p
denote (discrete) integration constants.

Obtaining evolution equations for the potentials r (), gi(?)
requires more careful arguments which exploit the analytic
properties of the Jost functions associated to the linear problem
(18) and its four special solutions (20) and (21). This derivation
is carried out systematically in [18] (Theorem 1), and yields the
time-flows which also appear in [8]:

(=1, g ) = o (L) (e, qi) s (34)

where w(x) = w;(x) + w2(x~!) and L and L~! are the sum-
difference operators (31) and (32).

The family of discrete integrable evolution equations (34)
arising from the Chiu—Ladik Wronskian approach includes
several discrete versions of mKdV equations as well as the
well-known discretization of NLS constructed by Ablowitz and
Ladik, namely,

i(go)r = A+ 1ge) (1 + ge—1), (35)

(up to the linear term —2gg.) The latter — which we will also
call the AL equation — can essentially be obtained from one of
the simplest symmetric (L), namely L + L~!. Indeed, as one
can directly check,

(=re, gD = =L + L™, 0"
= —i(l = regi)(E* + E7) (. g (36)
In the reduction ry = —g, Eq. (36) becomes (35).
3.2. The constant of motion log a and associated gradient fields
Recall that the scattering parameter a is an analytic function

of the complex variable z on the complement of the unit
disc, and can therefore be represented by its Laurent series
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expansion [3]. Since a is time-independent — as made evident
through the evolution equations (33) — so are the coefficients of
its Laurent series. Such coefficients then constitute an infinite
family of constants of motion associated with the flows (34).
The same reasoning shows that the coefficients of the Taylor
series for a (on |z| < 1) also give an infinite family of integrals.

Ablowitz and Ladik [2] utilized a recursive technique to
arrive at the collection of constants of motion arising from
loga:

Ci=) aqres,

A 1,5, (37
Cy = Zrk+1q;<—1(l —rkqr) — SATier1

The same formal method may be used to compute the hierarchy
of integrals associated to log a, namely,

C = ZerkH,

1,5, (38)
G = Z Gi1rk—1 (1 — reqr) — 3 ki1

One may also obtain a hierarchy of “symmetric” constants of
motion, by combining the above as Co, C1 + él, Cr + 6‘2, e
where Cy = ]_[,fi_oo(l — rkqk). (See (23) and (33).)

We now determine a hierarchy of gradient fields associated
to the conserved quantities arising from the series expansion of
log a and log a just discussed.

The argument is based upon considering a variation
(c}k,r'k)T = (ak,bk)T of (q, r)T along the space of rapidly
vanishing (vector) potentials, while keeping the eigenvalue z
fixed. By finding the expression for the induced variation on
the special eigenfunctions ¢y, qgk, Y, g@k (the special solutions
given in (20), (21) to the linear problem (18)), one is able to
precisely calculate the effect of the potentials’ perturbation on
the scattering parameters a, a, b, b. For instance,

Y= —0m) Y Bk + 1) (2 ";) Vi (39)

k=n

leads to
c . .
(&) = [ove- St -]

Pk +1) , .
= Z — (_¢1£21¢1§1) 'k + ¢lfr)1¢1§2) Qk> ;
(40)

in the manner outlined in Appendix A of this paper. This,
in turn, allows us to deduce an explicit expression for the
variational derivative 8y loga = (6loga/8qx, éloga/éry) of
log a, namely,

Sk (loga — Zlog(l - erk))

Pl+1 T
= D (2 —ol2") @

By Laurent-expanding the expression for this generating
function one can then obtain the desired hierarchy of
“gradient” fields, each given by the variational derivative of the
corresponding coefficient in the expansion of loga.

The results just outlined, together with the supporting
arguments presented in Appendix A, prove the following
theorem.

Theorem 1. The (z-dependent) gradients of loga(z) and
loga(z) are generating functions for the hierarchy of variation
fields 6. C,, and 6, Cy, associated to the constants of motion (37)
and (38) respectively. Their explicit expressions are

P+D @ @ M )"
= (2w o) @
Pk+1) /22 ~2 2a1) 2 \T
2 (<20 ) @)
where Hy = — Y 1o log(1 — rkqr) = —log Co and P (k +
D =171 (0 = rego). O

Notice that, on the unit circle |[z] = 1, both Egs. (42)
and (43) make sense (as the scattering coefficients a(z), a(z)
are holomorphic on the regions |z] > 1 and |z] < 1 of
C respectively). One could then combine them to obtain a
“symmetric” representation of the variational derivatives. This
line of reasoning leads to the symmetric constants of motion
stemming from the combination of (37) and (38).

Sk loga + 8 Hy =

Siloga + 8y Hy =

3.3. Constructing the generating operators: L4, L_ and R

Prima facie, one observes several qualitative analogies
between the operators Li (defined in Eq. (3)) associated
to continuous NLS and L + L~'. Both are second order
operators, and both may be obtained via parallel (generalized
Wronskian) techniques (in the discrete and continuous settings
respectively). Furthermore, they each give rise to (continuous
and discrete) integrable versions of NLS in a parallel manner:

(=, )" = L2, )T
T
= —172 (/2 = %4, (/20 = a*r)
(=%, gD = (L + LYk, gi)T
= (1 = reg)(EY + E7) (e, qi) ™

We recall that the later equation is the differential-difference
version of NLS discussed earlier (36) and which we also refer
to as the AL equation.

More precisely, setting £, = L + L™!, we note that, based
on Egs. (31) and (32),

P(ET — E7)rg )

et - _
Ly =(ET+ET)+A—rqp) (—ﬁ(E+ ~ENg

+ (1 —rkq)(EY —E7)

() o ()
I —rjaq; 1—rjq;

X
+ q; + Tj
—qiJ (—) qrJ, (—)
“\1-rjq; “\1=rjq;
rkqk —rf
_|11-r 1—r
+(1 = g E Lk Kk
—dqy qkTrk
1 —reqe 1 —riqr
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" (rkaJr(Clj) rkJ,j(rj)) (E+ — E7)

@t @) .t r))
+ 2 -
—rkq E i E >
+ _ . 44)
( q,%E —qerkET

Remark 3. From this point on, we will assume that the
integration constants p, p vanish, unless explicitly noted
otherwise.

Proposition 3. The operator L generates a sub-hierarchy of
the family of evolution equations (34) given by

((=rks g De = PL T, q0) T (45)
where P denotes an arbitrary polynomial in L.

Proof. Since L and L~ commute, all powersof £, = L+L~!
can also be written as linear combinations of powers of L and
L~!, and hence P(L;) = w1 (L) + wn(L™Y). O

Note that the hierarchy (45) encompasses various versions
of the AL equations. In the reduction r = —g, these include
(35), and also the more standard

(g = (4 g (@rs1 + qe-1) — 2qx, (46)

obtained from P(Ly) = L4 —2. Observe also the parallel with
the Calogero—Degasperis hierarchy (2) associated with NLS.

In the continuous setting, we explored a second recursive-
type operator giving rise to the NLS hierarchy generated by
L. This operator, denoted by R, was essentially constructed
as the sum of L and L_ (see (3) and (5)) and was later seen to
carry important geometric information concerning the Poisson
geometry of NLS.

In the remaining part of this section we will construct the
adjoint of £ and use it to define £_, the discrete counterpart of
L_. We then show that a certain conjugate of the sum £ + £_
defines a (discrete) recursion operator R for AL which is the
analog of the “continuous” R associated to NLS.

Let (-, -) denote the (non-Hermitean) inner product on the
complex space - - - C2 x C% x C2 - - - (indexed by k in Z) defined
by

(@b)", (e, d)") ==Y (axdr + brcr) (1 —qur) ™", (47)

where (a, b)T = (ar, bp)T, (¢, d)T = (ck, d)T, k € Z.
Inspired by an analogous relation between Ly and L_

observed in the continuous case [18], we define

L_ = agﬁ*+03_1 =o3(L* + (L_l)*)03_1, (48)

where * denotes the adjoint of an operator acting on - - - C> x

C? x C? ... with respect to the inner product (47) just defined
and o3 = Diag(1, —1). We then have,

L* = (1 — reqr)

_ 1
E T e 0
X TkQk | + (1 — riqi)
0 £ _)
1 — reqr

- (4 - (T
£ (rka (1 *F,iqj‘)) £ <rkjk (1 *rjflj>)
£ (qk]"_ <1 _q’jj‘Jj )) £ (qkj"_ <1 _rij‘h' ))
_ - %9k
1 — req

+ (1 = regy) 2
ET q—k 0
I — riq

+ < ndg (@i ET)  nd (rjEY) )
—qkdy (qiET)  —qid (rjE™)

0 —rfET
4
+ (0 qkrkE+>’ (49)
(L™H* =1 - reqr)
1
ET (—) 0
% 1—rqu 1
0 E- (_
1 — reqr
_gt - — "
£ (e (Hﬂ,)) (o (=55)
_ Vj
5~ (s ( - e (a (=2)
J1]

+ (1 = reqr) <1 - Wk)
_{ axrx )
1—%%

—riJ, (rjE” ))

) + (1 — req)

<—rka(tJjE )

qeJ; (GGEY)  qud (rjE7)
rquE+ 0
(i d)

where J,~ denotes the equivalent of the integral operator /_ in

. . — . k .
the discrete context, that is, Jy (uj) = > =—oo Uj- Summing

the two expressions above and conjugating by o3, yields

Lo=(E"+E)—(-rng)E"—E)

. ,
i (_‘U ) s (— )
1 —rjq; 1 —rjq;
—(_ 4 —(__1i
o (720) ai ()
N\ 1=rjq “C\1=rjq;

—Tkqk r]%
1—r 1—r
_ (l _ }’qu)E+ quk kqk
qi —qkTk
I—rege 1 —reqi
_ (Vka(qj') rka(rj)> (B — E7)
ard; ;) ey (rj)
_ reqrE™ _rkE+> (51)
<—611%EJr wkE”)

The (lengthy but straight-forward) calculations yielding
formulas (49) for L* and (50) for (L~!)* may be found in
Appendix B of [18].
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Let us now introduce the operator

(0 1 0 —1
R=<—1 0>(L++£)<1 o)

=2EY+E)+U—rg)EY—E™)

_ rj _ q;
a1 >< ! ) a(JF = )( )
N N

% + + 4j
Ut - ( A ( -

T (I k) l—rjqj rk(k k) l—rjqj
Tk qp
_ 1—r 1—r

+( = regi)(EY + E7) kA Kk
Ty Tkqk

1 —reqe 1 —reqk

(quﬁ*—ﬁvvﬂ

—qe (I =T (g))
—re(JF =T (r))

re (I = J10)(q))

2
x (ET —E7)+ <_‘1"§" i ) (EY+ED).  (52)
T —Tkqk
Based solely on its form and method of construction, R
may be regarded as a discrete analog of R. The analogy is
strengthened by the fact that recursive applications of R to the
(Hamiltonian) field (igy, —ir)T yield the same hierarchy of
evolution equations generated by £ . This can be verified by
direct calculation for the first few iterations; it will be proven
in the general case in Theorem 4. We note, once again, the

remarkable parallel with the continuous setting.

In Section 4 we will also prove that R is in fact the true
geometric analog of the recursion operator R associated to
the NLS hierarchy. In particular, we will realize R as the
composition of two skew-symmetric operators 7! and K on
the appropriate space of complex, vector valued functions of a
discrete real variable k.

The next section contains a pivotal result for rigorously
proving the geometric character of R; thus the framework for
unveiling the Poisson geometry of the AL equations will begin
to emerge.

3.4. Resolvent identities for L and L™

In this section we establish two resolvent identities. The first
one links the hierarchy of evolution equations generated by
powers of L to the hierarchy of gradient fields (42) stemming
from the generating function 8y loga + 8¢ Hy. The second one
relates the flows given in terms of powers of L™! to the
hierarchy of gradient fields (43) stemming from the generating
function & loga + & Ho.

The fact that the operators L and L~ satisfy these identities
will be key for postulating and proving several fundamental
results in Section 4. Through them, we will be able to show: (1)
that a discrete analog of the kernel condition holds (Theorem 4);
(2) that the hierarchy of flows (65) generated by the recursion
operator R is equivalent to the hierarchy arising from powers
of Ly = L 4+ L™ (Corollary 3); that this hierarchy is a sub-
hierarchy of the Chiu-Ladik flows; and that the R-generated
flows are bi-Hamiltonian (Theorem 5).

Theorem 2. Let L, L=! be as in (31), (32) respectively. Then
L and L™ satisfy the following resolvent identities:

(I —z72L) (e, g™ = (1 = reqr) Sk loga + 8¢ Ho),  (53)
(I —2Z2L7 Y 'k, g0 = (1 = reqe) Sk loga + 8k Ho),  (54)
where Hy = — Y 32 _ . log(1 — reqp).

Proof. Setting (B, —a)" = Pk + D/a b9, —ot"
1//,52 I)T, in accordance with (95) in Appendix B, we recall from
Theorem 1 that the non-standard squared eigenfunctions given
by —ay and B encode the hierarchy of gradient fields stemming
from the generating function 8, loga + §x Hy. The resolvent
formula (53) we seek to establish explicitly portrays (—az, B) T
as a generating function for the hierarchy of fields arising from
powers of L.

Guided by the form of the leading term of L we select the
first component of (101) and the second component of (100)
(re-writing the §y-terms in each using (104)) of Appendix B
and combine them so as to get

C% ;Q[a—mwo(ﬁg}
<o () (2]
_F<—(M—1+z%%) 0 ) (E— 0)
0 Qs + 22qk 0 1
N /S ICH R AN (ﬂk) (55)
VARYCT BV AR DY ANt

Re-grouping terms and dividing through by —z2, the last
equation is equivalent to

(1 - z—2 (% E§)+)> [(1 — reqk) (—ﬂ;k)} + Z_ZB
— <;’;) (56)

where B3 is the second term on the right-hand side of (55).

Based on the expected form of the resolvent identity and the
formula for L, Eq. (56) suggests that B ought to simply amount
to all but the first term of the operator —L acting on the vector
[(1 — rrqr) (Br, —ax)T]. In other words,

2(3 D)oy 2)fo-na (%)
—Fk— 0 B
+( 0 %H)a—mwynm(_@>, (57)

T®£<4ﬁw>.¢w)>

ARG BN ARG

(where the symbol 2 signifies a claim yet-to-be-established).
Expressing B (in (55)) in terms of 7°(k), one notices that (57)

is equivalent to Diag(—ry, gx).A 2z 0, where

_ + 22 0
A= | (1 ) Tk
|:< 0 Gr1rk + 2 ®
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- T (’i)_ bﬂ) (- rqu)} ( fo’jk> , (58)

which in turn holds if A = 0. Iterating once, we re-write the
factor Diag(E~, EN[(1- reqr) (B, —ak)T] in the second term
of A with its equivalent form given in Eq. (55). Grouping terms
in z2, we see that A amounts to the following quadratic equation
in 1 (k):

Tk—19k 0 —ri.1 0
Tk J
|:< 0 Clk+1rk> ( )< 0 Clj+1>i|

x [T(k) <_’3a"k>} + 2T

() (3 (7)) o

Now, due to the form of the matrix 7'(k), a simple calculation

shows that the coefficient of the z2 term in Eq. (59) vanishes.

The quadratic term within the first line of (59) telescopes down

to its boundary term, J,j(qu}j + rjaj)(qktr—1, —qk+1rk)T,

which is evidently the negative of the linear term in the first

line of (59). Hence A = 0 and the resolvent formula follows.
O

Remark 4. Resolvent identities similar to those we have just
proven in Theorem 2, but for integrable PDEs such as KdV or
NLS, have been known for a long time (see for instance [21]
or [7]). As pointed out in our introduction, in the continuous
setting, such identities have proven useful for relating scattering
data to the geometric picture underlying a particular integrable
equation. In our discrete scenario, Egs. (53) and (54) also give
a direct means for linking the geometry of the AL equations
(depicted through L and L~' — the key building blocks for
R and K) to the corresponding IST (through the scattering
coefficient a). The methods presented here should extend
naturally to other discrete integrable equations with second
order scattering transforms.

4. Geometry: Almost Poisson structure of AL

In this section we exhibit the bi-Hamiltonian character of the
AL hierarchy of equations, as defined in Eq. (65).

This postulated characterization is attained through the
construction of two geometrically meaningful operators on the
phase space C of these equations: an almost-Poisson operator
IC, and a recursion operator R which can be realized either in
terms of £, and £_ (see (44) and (51)), or as K7~} (where
J = Diag(—1i, i) is the standard Poisson operator on C).

The former depiction of R allows us to view the
R-generated hierarchy (65) as a sub-hierarchy of the
Chiu-Ladik flows. The latter realization of this recursion oper-
ator attests to its true geometric character, and it is responsible
for elucidating the bi-Hamiltonian character of the hierarchy.

The skew operator K can be portrayed as the discrete
counterpart of Magri’s Poisson operator for NLS, based both
on its mode of construction and on its geometric properties.
For example, we will see that, once their bi-Hamiltonian
nature is established, the skewness of I serves to prove the
commutativity of the AL flows generated by R.

4.1. The geometric context: AL as a Hamiltonian system

We begin by defining the phase space C of the AL equations
as the space of complex, vector valued functions of a discrete
real variable k € Z given by

C={(grm)Te - xCxCxC*x...:
lgkl, | r& |— 0 as k — +o0}.

A point in C will either be denoted by (q,r)T =
[ @k, 7T, (@rsr, ree) T, - -] or just by (g, )T, depend-
ing on the context.

As in the continuous case, we may endow the tangent-bundle
to C, with a non-degenerate bilinear form (-, -) arising from a
point-dependent inner product defined by

(@b (c.d)")y g1 == (ardi + brer) (1 — qer) ™,
(60)

on the tangent space to C at (¢, r)'; that s, (a, b)T, (¢, d)T liein
T(4,»7C = C. Under the identification ry = —gy, (60) defines a
positive-definite, real inner product.

Given a functional F over C we may define the
(discrete) functional gradient of F, VF, by VF((¢q,r)") =
[....VkF((q, ")), VicaF((g,r)V), ...], where for k in Z,

ViF((q, 1)) = —(1 — qere)o1 (SF /8qx, F /8ri)"
= VF((qk. 1)), (61)

where o7 is the usual Pauli matrix with ones in the off-diagonal.

Now, let ‘7((]’,)1‘ = Diag(..., Tk, Tk+15--2), Tk =
Diag(—i, i) for all k, define the (standard, point-independent)
skew-symmetric operator on T, ,yrC, acting as multiplication

by Ji on each C? component. The operator 7 (which may also
be regarded as an operator on the tangent bundle to C) may be
used to define the following Poisson bracket on C:

{F,G}7((g, ") =(VF,JVG)((g,r)")
= ((1 — qkre) (SF /81y, 8F [8qi) ",
Diag(—i, i)(1 — qxri) 8 F /8rk, 8F /8q) ) (1. (62)

where F' and G are smooth functionals over C which become
real-valued under the identification ry = —g;. Note that as in
the continuous setting, this reality requirement implies that F
and G must be either symmetric or anti-symmetric in r, gx
(for all k).

Remark 5. Since the operator [J; defined above does not
actually depend on k, we will often use the notation . to refer
to the 2 x 2 complex matrix Diag(—i, 1) originally defined as
Jk. By the same token, from now on we may omit noting
explicitly the point dependence of operators which are clearly
characterized as such by their definitions.

Let H((gk.r)T) = =22 (qrk+1 + rkqk+1). Then
the AL equations (36) can be obtained as a Hamiltonian
system on C with respect to the [J-bracket (62) for
the Hamiltonian functional H. In this same manner, the
Hamiltonian H((qk, r0)") = — 220 (qrras1 + reqes1 +
2log(1 — gxr)) produces the standard (vector) AL flow, which
becomes (46) in the reduction ry = —gy. (See also [11].)
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4.2. The operators K and R and the AL hierarchy

Guided by the parallel with the continuous NLS setting
and the form of the operators £ and £_, we re-consider the
operator R defined in (52), and define a new operator

K(gr, )™ = R((q, DT

=—i2ET+E)+ 0 —ng)(ET—E)

+_ - ] (gt _ - 4j
Uy Jk)( ) U Jk)<l—f./q_/)

% l—rr'_,q_, .
+ _ - J _ + _ g A
rk(«/k jk )(1_r‘/qj rk(Jk ‘/k )(1_rjqj
Tk —q}
N 1—
+(1 = rg)(ET +E7) ek Kk
Ty —Tkqk
I —rige 1 —rig
ar(J —

+ (‘Ik(JkJr = J) (rj) J) (‘Ij) )
—re( =IO () = = I (a))

_ 2
x (EY —E7) + < ATk Gk )(E+ +EHY. (63)
—ri  riqk

Just as with R, K is point-dependent and non-local; its
definition at site k involves functions of the vector potential at
neighboring sites, for example, functions of gxt1, rgL+1-

As IC acts on the tangent bundle of C, it may be used to define
the bracket

{(F, Glc((qr, )" = (VF,KVG)((q, 1)), (64)

on the class of functionals over C just discussed.

Theorem 3. The operator K is skew-symmetric.

Proof. One first checks that R* = o3Ro3, where, as before,
* denotes the adjoint of an operator with respect to the inner
product (60), and o3 = Diag(l, —1). This calculation uses
the fact that both +ioy and o3 are self-adjoint, while £_ =
Ugﬁj_o’;l.

The result now follows from the definition of X in terms of
R and J = —io3. Indeed,

{F,G}x = (VF,KVG) = (VF,RJVG)
= (R*VF,JVG) = (=J(03R03)VF, VG)
= (R(@i03)VF,VG) = —(RJVF,VG)
= —(VG,KVF)=—{G, F}x. O
As discussed in Section 4.3.1 of [18], the K-bracket can be seen

to satisfy Leibnitz’s identity, in addition to being skew. This
leads to the following corollary.

Corollary 2. The KC-bracket (64) defines an almost Poisson
structure on C. [

4.3. The bi-Hamiltonian character of the AL equations

Let us now consider the functional Hy((gx, ) =
— Ziooo log(1—gxrk), on C, and observe that .7V Hy((gx, r)D
= i(qk, —r)T. If we now define X,y = R"JV Hy, then Xy,
defines a hierarchy of fields on the tangent bundle to C which,
we claim, has the following properties:

(i) The fields X (,) mutually commute;
(ii) The hierarchy comprises the AL equations (36), which
occur as X (1);
(iii) The evolution equations

gk, )N = R"TVicHo = Xy, (65)

are equivalent to a sub-hierarchy of the family (45) and are
therefore integrable;

(iv) The fields X(,) in the hierarchy are Hamiltonian with
respect to J and also with respect to X, i.e., bi-
Hamiltonian.

Remark 6. The term bi-Hamiltonian here refers to sequences
of fields X(,) which satisfy the Lenard relations X, =
KVH,_1 = JVH, [9]. The clarification is pertinent due to
the fact that the Poisson nature of the skew operator X has not
yet been established.

It is a good exercise to verify properties (iii) and (iv)
explicitly for the first two iterations (in the process, property
(ii) becomes apparent). As such calculations indicate, being
able to show that the fields L7 ((rg, gr)") are in the kernel
of Ly — L_ for all n is of central importance in proving
(iii). This is precisely the content of Theorem 4. In it, we
use once again the identities derived in Appendix B to extend
the Calogero—Degasperis ‘“kernel-condition” result (see (6))
to the discrete setting. Corollary 3, the discrete analog of
Proposition 2, will establish property (iii) in full generality.
Theorem 5 will then use the resolvent identities (53) and (54)
together with Corollary 3 to establish (iv). The proof of property
(1) is rather immediate given (iv). It is the content of Corollary 5.

Throughout the remainder of this paper, » f; =
> 7% oo [j3 also the difference operator £y — £_ will often
be written as L — L_ = D + D,, where

Dy = (1 —rg)(EY —E7)

§ <rk2qj/<1 —riq))

—Trk er/(l — r.,'q/-)> . (66)
—t]kZCIj/(l —rjq;)

karj/(1 —rjq;))

and

Dzﬁ(rkZQj rerj)(pﬁ—E). (67)
Qqu/' CIkZVj

Lemmal. Let j = 1,2. If Dj (L™ (r, q0)") = D((L~H™
(rk, q0)Y) = 0 for all m, then (Ly — L_) (K'J’r(rk, qk)T) =0
for all n (m, n non-negative integers).

Proof. This follows immediately from the definition of £ (see
(44) above), the inverse relation between L and L~! and the
binomial theorem. O
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Proposition 4. For Dy as in (66), Di (L™ (r¢, q0)') =
Dy (L™H" (e, q)™) = 0.

Proof. Recall that the vector of squared eigenfunctions
(B, —ay)T defined in Appendix B may be explicitly viewed
a generating function for the hierarchy of fields arising from
powers of L (through the resolvent identities in Theorem 2).
The same is true of (—,ék,ozk)T and the fields given by
L_l((rk,qk)T). Using the inner product (60) one observes
certain relations between the aforementioned fields, which can
be compactly expressed as

(1 = reqi) Bre, —a) ™, —io3(1 — reqi) (Br, —a) ")
=iy (1= reg)(Brox — axBp) =0, (68)
(1 = reqi) (=B, )T, —ios (1 — reqi) (=B, ) ) = 0. (69)

Let us now focus attention on the particular identities

0 = ((rk, q) ", —io3(1 — reqi) (Br, —a) ™)

= iZ(‘]k,Bk + reoi), (70)
0 = ((rk, qr) ¥, —io3(1 — reqi) (—Br, ) ™)
= =i ) (qBr + ré). a1

obtained from expanding the first entry on the left-hand side of
(68) (respectively (69)) in powers of z =2 (respectively z2) as
suggested by the resolvent formula (53) (respectively (54)).

Egs. (70) and (66) together with (71) and (66) immediately
show that

Di (1 = reg) (B, —a)") = 0. and

D (0 = rego)(~ i a)™) = 0.

Using now (53) and the first part of (72), we see that

(72)

0= D%, q0)" + 272D (L g)) + -+
+272Dy (1" 00, q0T) +

or, equivalently, D (Lm (rk, qk)T) = 0, for all m. The identity
Dy (L™ (rk, qx)T) = 0 stems from Eq. (54) and the second
piece of (72) in a parallel manner. O

Remark 7. It is interesting to notice that identities (68) and
(69) directly translate into commutativity relations for certain
special Hamiltonian functions, H and H,?, defined implicitly
through Egs. (83) and (85) in Theorem 5 below. (Specifically,
the aforementioned identities imply that {HS%, H¢}
{H,‘f;, Hn&} = 0). As we will see in Corollary 5, obtaining
this commutativity result for any two Hamiltonians in the AL
hierarchy requires the full strength of Corollary 3.

Theorem 4. For any non-negative integer n, (L —L_)(L'} (r,
T
qr)") = 0.

Proof. Due to Lemma 1 and Proposition 4 it suffices to prove
that

Do((L™" (k. g0 ™) L DL (1. a0 ™) L 0. (73)

Below, we present the argument showing that equality (b) in
(73) holds. An analogous argument (based on the identities
given at the end of Appendix B) shows that identity (a) holds as
well, validating the theorem.

The key step in the argument closely resembles the
recurrence strategy employed in the derivation of the resolvent
identities (53) and (54), as described in Appendix B. In the
current scenario, the technique entails re-writing the vector

(E* — E7) [(1 = requ) (Be, —a) "] as

(272 = )Diag(1, =) [ (1 = 7eg) B —e0) ™ = (%, 910" |

(74)
+ Diag(ri1 + 2 2rks Qi1 + 27qk)

X (qeBr + 2y + 1, — (e + 27 '8 — 1)T (75)
—Diag(—(rk—1 + 221%). qr—1 + 2> q)

x E™ (quBr + 2y rea + 271 80) T, (76)

by considering the difference between Egs. (100) and (101) in
Appendix B.

The remainder of the proof amounts to a series of
calculations. First we utilize Eqs. (74)—(76) together with (98)
and (104) in Appendix B, to obtain a simplified three-term
expression for D ((1 — reqr) (Br, —ax)T). We then exploit the
particular form of the resulting expressions to show that their
combined sum vanishes. Finally, the same argument used at the
end of the proof of Proposition 4 shows that the vanishing of
the vector D> ((1 — rrqx)(Br, —ak)T) implies the vanishing of
D> (L™ (rg, gi)V) for all m.

Due to (70), the matrix pre-factor of the operator D; applied
to expression (74), becomes

i ) ) ()]
77

Expression (77) is the first term in the sought-after three-term
expression for D2 ((1 — r¢qx) (Bk, —ax)T). The second and third
terms (appearing in (78) and (79)) are essentially obtained by
re-writing (75) and (76) by means of (104), in Appendix B.
Specifically, the matrix pre-factor of D, applied to expression
(75) yields the new version of the second term in the expression
for Da((1 — rrqi) (Bx, —ax)™), namely,

(rk 0>(Zq1‘ er)
0 gk qu er
« (rk+1 +Z_2Vk 0 )
0 Qi1 + gk
+ . + .
=@y L)) Br 1
X + . Y . —q, + 0
Jk+1(61/) Jk+1(rj) k
= Diag(r, @) [ Y a;(rj1 + 272, DT

+ Z[—q/' (rj+1 +272r) +7j(qj+1 + 2%g)]
x JF @B+ nen(, )]
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= Diag(rk, gk) Z[Clj (rjg1+27%r))
+(=qj1(rj +272r) + (g + 2°9-1)
< JH @By + nen)(1, DT

= Diag(ri. gx) Y _lqj(rjs1 +27°r))
+(qjBj +rjap)J; (—qi—1r +ri—iqr

— @2 =gl DT (78)
where, recall, J; (u;) = Zl](‘:foo u ;. The last equality in the

above string of identities results from a direct application of the
summation by parts formula

S )]
= Zn| (B 2 )e)

k=—o00 j=—00

The previous one amounts simply to a convenient shift in the
summation index for the bi-infinite sum. This same series of
calculations leads to the desired third and final term. That is,
using (104), and summation by parts, the action of the matrix
pre-factor of D; on (76) leads to the vector

Diag(re. qi) Y _[—r(qj-1 +272q) + (q;B; +rjej)
2 - 2arld, DT (79)

Consider now the sum of expressions (78) and (79). The
J; -independent terms all disappear: the two z-dependent ones
cancel out; the remaining two telescope away, leaving no
boundary terms. Focusing now on the J: -dependent terms,
one observes that the z-independent ones cancel off identically.
The four z-dependent terms are pairwise-telescoping, and hence
reduce to Diag(rk, gx) Y [(q; B +rjaj)grj(z=>—z)1(1, DT,
which is exactly the negative of (77). It follows that, for all
(non-negative) m,

Da((1 = reqi) (B, —a)") =0,
D (L" (v q0)") = 0. (80)

A parallel argument, based on identities (106)—(108) in
Appendix B, yields

Da((1 = reqr) (P, a)) = 0,
Dy((L™)" (re, qi)™) = 0. (81)
The theorem follows. [

X J(=raiq +qir + (2

and hence,

and hence,

Corollary 3. If (L4 — L) (L% (rk, qx)") = 0 for m > 0, then
0 1 (0
(-1 0) (Ly+ L) (1
(0 1 2 (0
=2 <—1 0) £y (1

forn>0and Hy=—Y ;2 _

—1
0 ) JViHo
‘01> TV Ho, (82)

log(1 — rrqp).

Proof. The statement may be verified by direct computation for
n = 1. One then proceeds by using induction on n. Assuming

that identity (82) holds for n — 1, we show below that it also
holds for n. Theorem 4 is used in the last line below. Indeed,

0 1 (0 —1
(_1 0>(£++£—) (1 0)ijH0

.0 1 n—1 [Tk
=1 (_] 0) (£+ + ﬁ_)(ﬁ+ + E_) <C]k>

-(4 o) [ (194 o)
x (Ly+ L)' (C’I’;)]

= (-01 (])> Lo+ L) <(1) _01>
[ (o) ()]

o 1(_01 (1)) Ly + L)L ‘(2’;)
= (% ) [ () e (e ()]
(o) e () v ()]

(Y]t

Corollary 4 (Validity of Property (iii)).  The evolution
equations (65) are equivalent to a sub-hierarchy of the
Chiu—Ladik family (45) and, thus, are integrable.

) ijH0i| O

Proof. Working from Eq. (65) and using Corollary 3, we have

(Wc) — ankaO

14 '

(0 1 a0 —1 qk

=i(f g)erer (7 9) (%)
AN 0 n

= (5 o) e ()

or, equivalently, ((—rk, gx)T); = 2" L7 (rg, a0’
form (45), as claimed. O

which is of

Theorem 5 (Validity of Property (iv)). The fields X, in the
hierarchy (65) are Hamiltonian with respect to both, J and IC,
i.e., bi-Hamiltonian in the sense of Remark 6.

Proof. Let us once again consider the resolvent formulas for L
and L™, Starting from (53) and matching inverse powers of z2,
we see that

(1 — reqr)dx Ho = (rx, qx)*,  and also,

. (83)
(1 = reg)dcHY = LY (rie, qu)™

Using the definition of Vj given in (61), we observe
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. .. 1 (0 1
s [-¢ Yo ()]
.0 1 (0 —1 qx
_1(_1 0>LJ (1 0><—rk>

0 1\,;/[0
=<—1 O)LJ <1

Reasoning in a parallel fashion for the L~ ! resolvent, (54), we
get

—01> TV Ho. (84)

& —1\j [T
(1 = rgr)e HY = (L7 (q’;) :
(85)

P 0 1 _1.i (0 —1

a_ i
JVkHj _<_1 O) (L™ (1 0>ijHO.
(Notice that, based on Eqgs. (38) and (37), one has 8ka =

8xCj, Sy HY = 8.Cj, for j > 0.) Based in Egs. (84) and (85),
we have

t

Tk

Corollary 3 _, 0 1 n 0 —1

=772 |:<_1 0) (Ly) (1 0>JVkHo}
a0 1 o (0 —1
=2 [(_1 0)(L+L ) (1 O)ijHO:|
_amf( 0 1 n\ - (n—k)—k
- <_1 0) [n;k <k>L

A [t

n—k<k
=2"TJVik
n n a
Az @) 2 () etan)
n—k>k n—k<k
= JVkI:Ina

and so the last equality explicitly depicts the alluded hierarchy
of flows as J-Hamiltonian. Given this, one uses the fact that
R = KJ~! in a recursive fashion to show that these flows
are also K-Hamiltonian (in the sense of Remark 6). Indeed, for
n=1landn =2,

RIViHy = KViyHy = jvkljll, and
szVkHo = ]CJ_IICVkHO = ICVkﬁl,
respectively. It then follows via an inductive argument, that

R"JIViHy = KViH,_, = JViH,, for n > 0, where
Hy=Hy. O

Corollary 5 (Validity of Property (i)). Let J and K be skew
operators on the tangent bundle to C, and let {H;} be a
sequence of functionals on C indexed by j in Z. If JV Hy11 =
ICV Hy, then the H; pairwise commute, that is {H;, Hi} 7 = 0.

Proof. Simply using the skew-symmetry of C and 7, we have

(Hj, H}g = (VH;, JVH) = (VH;, KV Hy_)
= —(KVH;, VH_1)

= —(JVHjy1, VHi-1)
= (VHj11, JVH-1) = {Hj41, H-1}7.  (86)

Assume now k > j. Then after (k — j) iterations of the
procedure yielding (86), we obtain {H;, Hy} 7 = {Hy, Hj} 7,
which implies {H;, Hy} s = 0, as the J-bracket is skew. [

5. Conclusion

To summarize, this paper shows that the AL hierarchy can be
explicitly viewed as a hierarchy of commuting flows which: (a)
are Hamiltonian with respect to both the standard, local Poisson
operator 7, and a new non-local, skew, almost Poisson operator
K, on the appropriate space; (b) can be recursively generated
from the recursion operator R = K7~ '. In addition, the proof
of these facts relies upon two new pivotal resolvent identities
which suggest a general method for uncovering explicit bi-
Hamiltonian structures for other families of discrete, integrable
equations.

Another result stemming from the current research is the
clarification of the geometric framework that underlies a certain
class of geodesic linkages evolving on the sphere [10,18]. A
linkage on a Riemannian manifold is essentially defined by
specifying a sequence of points connected by geodesic arcs. A
closed linkage is usually called a polygon. Such linkages are
related to the AL hierarchy via the evolution for their “discrete”
geodesic curvature [10]. In this regard, Lozano’s preliminary
results include a geometric interpretation of a compatibility
condition associated to a Lax pair for AL and, consequently,
a bijective correspondence between discrete, integrable mKdV
flows (also AL flows) and linkage flows. (For details on
this, see [18]; also see [10,15,17] for background in terms of
continuous-analogs of the linkage models.)

In closing we also want to mention some of the many
possible avenues for further research. First, a definite answer
to the question of whether or not /C actually defines a Poisson
structure would be desirable on several counts. In [20], Maltsev
and Novikov give a non-standard set of coordinates for the
phase space of NLS in which both the second and third Poisson
brackets for this system become local. Given the parallel
between our KC-bracket and the second Poisson bracket for
NLS (i.e., Magri’s), one should explore the possibility that our
KC-bracket also be local in the appropriate coordinates. If this
were the case, the problem of deciding the validity of Jacobi’s
identity for the C-bracket may simplify considerably.

Also, some of the explicit calculations in the current
paper suggest that the IC-bracket (and probably the remaining
brackets in its hierarchy) could be seen as a discrete version of
what Maltsev and Novikov call weakly non-local brackets [20].
Again, the parallel between /C and Magri’s Poisson bracket for
NLS strengthens this hypothesis.

Now, if K were Poisson, one could also explore possible
connections between our K-induced Poisson bracket and
(a) the bi-Hamiltonian structure for finite AL described by
Faybusovich and Gekhtman [12]; (b) the family of symplectic
forms associated to periodic AL encoded in the formula
presented by Vaninsky in Section 7 of [25]. The former work
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considers the AL hierarchy within the larger class of full Toda
flows in s/(n) and presents a bi-Hamiltonian formulation for
(finite) AL stemming from the bi-Hamiltonian structure of these
Toda flows. The latter paper develops some of the Hamiltonian
formalism for AL in order to construct an invariant Gibbs’ state
for NLS.

On the other hand, an obstruction to the Jacobi identity
would place the C-bracket in the category of almost Poisson
structures and could perhaps steer further investigation in
the direction of non-holonomic mechanical systems [6]. Such
systems possess an underlying Hamiltonian structure that is
(strictly) almost Poisson.

The elucidation of new bi-Hamiltonian structures and their
connection with the evolution of non-stretching classes of
linkages could also be pursued in the context of the de-focusing
Ablowitz—Ladik system (obtained from (36) in the reduction
rt = qy) and other discrete integrable equations. This would
serve as a test of the robustness of our methods for deriving
operators such as /C, R, and resolvent identities such as those
obtained for L and L™!. It would be good, for instance, to
understand how recursion operators (such as R, or even L and
L~ are encoded in the squared eigenfunctions of a linear
problem (through resolvent identities of the right kind).

The connection with “physical linkage” spaces could also
be pursued further, both for discrete, integrable mKdV, AL
and potentially for other discrete integrable equations. In the
context of discrete integrable mKdV, AL and non-stretching
spherical linkages for instance, one should aim at understanding
the linkage recursion schemes proposed in [18] in Poisson-
geometric terms. Ideally, a well-defined lift of R to the space
of non-stretching linkages could be defined and then parsed
out as the composition of two Poisson (or perhaps one Poisson
and one almost Poisson) operators. Connections with results
of Langer and Perline (for the case of continuous NLS and
the FM model [16]), and Kapovich and Millson (regarding
the symplectic geometry of non-stretching polygons [13,14]),
could also be explored and addressed in the appropriate
context.
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Appendix A. Key elements in the proof of Theorem 1

Let (g, i)Y = (ag, bp)T denote an arbitrary variation of
(gk,rr), and v denote a (vector) solution to the eigenvalue
problem (18). The induced variation on vy satisfies

(7 oak . _ (0
Vit1 (rk 1/z> vk—(r-k O)Vk~ (87)

Setting vy = @(k)uy for @(k) as in (23), and using the
standard variation of constants method to solve (87) for vy
yields

Bk + Dutgy — <fk 1q/kz> B (k)uy

= Ok + D(ET — Dug = <r2 ‘}(;‘) Vk. (88)

Upon inverting (E+ — 1), one obtains

o0 .
({0 gk
Up = — qﬁ(k+1)1<. )vk—i—c,
n ]; rk 0 (89)
Vv, = O(n)uy,.
In particular, choosing v, = v,, we see that as n — 00,

Y, ~ (0, z_”)T. So {ﬁ,, vanishes and, clearly, so does the sum in
(89), which implies ¢ = 0. Multiplying the resulting equation
through by z" and focusing on the variation of just the second
component of the resulting vector (i.e., 7" 1//,52)) we see that

o0

‘ . 2)
PO [(Z"¢(n))q5(k +17! (2 qok> "’k}

k=n

o
=-> [(Z”(ﬁ,(lz)) (,Bk+1fk%fl) + ak+16}k%f2)>
k=n

+ (292 (e + venacw )] ©0)

where
(ak+1 ,3k+1) — B+ 1!
Vil Ok
2) (n
_ PGt < Vit _I/fk+1> o)
- 2) (n :
a _¢k+1 ¢k+1

(Here, one uses relations (22) to determine det #(k) =
¢ v — e = a/P k) 118,31)

Taking the limit of (90) as n — —oo and using the
asymptotics (23) together with (91) above, we get

(a/Co) = ) (P(k+1)/Co)

k=—00
1 1) . 2 2) .
x (ol e+ o ) 92)

Multiplying (92) by Cp/a, we obtain (40) and, hence, (41).

Focusing on the variation of z =" ) ,(ll)

manner, one arrives at the identity

and arguing in a similar

&)

(@/Co) = Y (P(k+1)/Co)
k=—00
> (A(l) 1&(l) 7 _(13(2) 1&(2) . ) 93)
k+1 Y% Tk k1 ¥k 4k )

Theorem 1 follows.
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Appendix B. Key elements in the proofs of Theorems 2 and
4

We begin by defining the following matrices of squared
eigenfunctions:

0 O

_ _1
Vi = D (O 1 P,
_ (V/;f”@ﬁz) —I/f,ﬁ')¢,§”> Pk
vl el
_ (Cr —Ag
- (Bk —D¢ )’ (%94)
0 0\ .,
Wi = & <() _1) Py
D@ D .a
_ <¢1§ ‘o v )¢1§+)1) Pk+1)
- 2,2 @) , (1) —
Vi i Y P a
Yk —Ok
= : 95
B  —dk ©5)

Note that Vj’s entries are standard squared eigenfunctions,
whereas Wy is composed of semi-shifted products. Observe
also that the constant matrix defining these identities is chosen
so that the off-diagonal entries of W are precisely the
components of the vector of squared eigenfunctions defining
the generating gradient 6 loga + 6 Hp.

One can directly verify the following identities for Vj and
Wki

o Wiy = ngkg];rll; (96)
o W, = kapk@];}l = ngil; Cn)
o (reon +27'80) — (qrBr + 2v0) = 1, (98)

where & is the coefficient matrix for our eigenvalue problem
(18), and the entries of W are now written in terms of ax, Bk,
¥k and &, as in (95).

By writing (96) in terms of the new form of W; and
tracking only the off-diagonal entries of the resulting matrix,
one observes that

+ Bk . 720 B
ela-na (%)]= (o 2)(%)
n <rkrk+10¢k + 2 Y + rk+13k)) ' (99)

—qkqk+1Bc — 2(qrdk + qr+1Vk)

Adding and subtracting the expression Diag(z =2, z2)[—rrqk
(Br, —ax)T— (rk, 1) T on the right-hand side of (99), and using
identity (98), one may re-write it as

o (5))- (2
[om5)-()

<rk+1 + 272 0 )
+ 2
0 Qi1 + 277Gk

X( qkBr + 2y + 1 ) (100)

—(rrog + Z_15k -1

By multiplying (100) by Diag(z2, z~2) E~, we obtain an almost
perfectly symmetric equation in terms of the opposite shift:

fa-na(2)]=(5 %)
Jo-nao () - (2)

n (’"k—l + 2%r 0 )
0 Qo1+ 2 2qk

Y E- (—(Qkﬁk + ZVk)) .

101
reag + 2718 (101)

Spelling out the relationship given in (97) one discovers

Dy =z'8% —qfr, and — Cy =rax — 2y, (102)

so that (98) may be written as Dy — Cy = (z’l(?k — qrPr) —
(reor — zyx) = 1. Using this fact together with the previous
relations (102), we see that the §y-dependent terms of (100)
and (101) may be written as

(g Br + rrok + Ci) (_11> + (é) , and

(qk B + rrog + Cy) (i) + (?) ,

respectively. Finally, writing out Vi1 in terms of its entries, we
find that Cy satisfies a difference equation given in terms of o
and Bi, namely

(103)

(ET — 1)Cr = qiBr + reo.

Taking Cx = —3 72;9;Bj + rje;, and substituting this
expression into Egs. (103), we obtain
Jk-:-l(r j) )

. ( akBr +zve + 1 ) _ _Jk-:-l(qj)
—(rrax +2 18— 1) ‘]Ic-:—l(q/) —J,:Srl(rj)
B 1
(%) + (o)

+ +
R ( 9k Pr +Z)1/k ) _ @) ) (ﬂk )
rro + 27 8k AR I ARG Y AN
+(7) (104)
expressing the §y-dependent terms in (100) and (101) in terms
of the sum operator J,:r in the formula for L, and the non-
standard squared eigenfunctions oy, B.

Egs. (100) and (101) used in conjunction with (104) (as
well as (106) and (107) together with (108) below) play
key roles in the proofs of Theorems 2 and 4, as indicated
therein. These last three formulas are established by arguments
similar to those just given but applied to the matrix of (semi-
shifted) squared eigenfunctions tied to the generating function
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(—PBk, ax)T described in (43), namely,
1) 22
—U b

(—?k &k) _ Pk+1)
8. &) i (2) 7(2)
P o AN

180 — (e + z00) = 1.

Starting with (105), and applying a procedure analogous to the
one described in this appendix, we obtain

e o ()= (0 2)
o ()4 3]

B (rk+1 +z27% 0 )
0 Q1 + 22

1 2 (D)
Ve i
G20 ) (105)

(reoy + z

y ( ngk‘i‘ZJ;k:f‘l ) (106)
— (el + 27185 = 1)
20
g lana ()] (5 .5
_ B
<l (3 + ()]
rk_1+zzrk 0
* ( 0 k-1 +Z_2qk>
< E ( Qk5k+Z)7kA ) (107)
—(rkbo + 27 165)
where
( kB + 27k )=<Jk+l<q,> —J;H(r,»))
—(rdx + 276 + 1 VAU I ARG
x (iﬂk> (108)
ag

as just mentioned above.
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