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a b s t r a c t

We study nonlinear states for the NLS-type equation with additional periodic potential U(x), also called
the Gross–Pitaevskii equation, GPE, in theory of Bose–Einstein Condensate, BEC. We prove that if the
nonlinearity is defocusing (repulsive, in the BEC context) then under some conditions there exists a
homeomorphism between the set of all nonlinear states for GPE (i.e. real bounded solutions of some
nonlinear ODE) and the set of bi-infinite sequences of numbers from 1 to N for some integer N . These
sequences can be viewed as codes of the nonlinear states. We present numerical arguments that for GPE
with cosine potential these conditions hold in certain areas of the plane of the external parameters. This
implies that for these values of parameters all the nonlinear states can be described in terms of the coding
sequences.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear Schrödinger equation with additional potential
U(x),

iΨt = −∆Ψ + U(x)Ψ + σ |Ψ |
2Ψ , (1)

∆ ≡
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
, σ = ±1

arises in many physical applications including models of optics
[1], plasma physics [2] and theory of ultracold gases [3]. In the
last context, Eq. (1) (called the Gross–Pitaevskii equation, GPE)
appears as one of the basic equations to describe the phenomenon
of Bose–Einstein condensation (BEC) in so-called mean-field
approximation. In this case Ψ (t, x) means the macroscopic wave
function of the condensate, σ = 1 corresponds to the case of
repulsive interparticle interactions and σ = −1 — to the case of
attractive interactions. The functionU(x) describes the potential of
the trap to confine the condensate. In particular, magnetic trap has
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been modeled by the parabolic potential U(x) = |x|2 and optical
trap has been described by the potential which is periodic with
respect to one or several spatial variables [4–6].

An important class of solutions for Eq. (1) are stationary
nonlinear states defined by the ansatz

Ψ (t, x) = e−iωtψ(x). (2)

The parameter ω in terms of BEC corresponds to the chemical
potential. The function ψ(x) solves the equation

∆ψ + (ω − U(x))ψ − σ |ψ |
2ψ = 0. (3)

It is known that Eq. (3) describes a great variety of nonlinear
objects. In particular, it has been found that real 1D-version of
Eq. (3)

ψxx + (ω − U(x))ψ − σψ3
= 0 (4)

with the model cosine potential

U(x) = A cos 2x (5)

has as solutions bright and dark gap solitons [7–10], nonlinear
periodic structures (nonlinear Bloch waves) [7,11], domain walls
[12], gapwaves [13] and so on. Some interesting relations between
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various nonlinear objects described by Eq. (4) have been observed.
In particular, in papers [14,15] the composition relation between
gap solitons and nonlinear Bloch waves was established: it has
been observed that a nonlinear Bloch wave can be approximated
by an infinite chain of narrow gap solitons (called fundamental gap
solitons, FGS), each localized in one well of the periodic potential.
In [16] this principle has been applied to the case of more general
nonlinearity. It is worth noting that the results of [13] can also
be interpreted in a similar sense, since the gap waves discovered
in [13] can be regarded as compositions of finite number of FGS.

In the present paper, we address the problem of description
of nonlinear states covered by Eq. (4) in the case of repulsive
interactions, σ = 1, i.e for the equation

ψxx + (ω − U(x))ψ − ψ3
= 0. (6)

We argue that if ω and the periodic potential U(x) satisfy some
sufficient conditions (called inwhat follows Hypotheses 1–3), then
all the solutions of Eq. (6) defined at the whole R can be put in one-
to-one correspondence with bi-infinite sequences of integers n =

1, . . . ,N (called codes). The correspondence is a homeomorphism
for properly introduced topological spaces. Each of the integers
n is ‘‘responsible’’ for the behavior of the solution ψ(x) on one
period of the potential U(x). From this viewpoint, the solutions
ψ(x) may be regarded as compositions of FGS localized in the
wells of the periodic potential and taken with a proper sign. So,
the coding technique gives a unified approach to describe both gap
solitons and nonlinear Bloch waves and generalizes (and justifies)
the composition relation of [14,15]. As an example, we applied this
method to the case of model periodic potential (5). In spite of the
fact that the verification of Hypotheses 1–3 is not mathematically
rigorous, we have strong numerical evidence that these sufficient
conditions hold in certain regions of the parameter plane (ω, A).
Therefore in these regions all the nonlinear states can be described
completely in terms of the coding sequences.

Our approach is based on the following observation: ‘‘most’’
of the solutions for Eq. (6) are singular, i.e. they collapse (tend to
infinity) at some finite point of real axis. The set of initial data
at x = 0 for non-collapsing solutions can be found numerically
by a properly organized scanning procedure. Then we study
transformations of this set under the action of Poincare map using
methods of symbolic dynamics. A similar idea was used to justify
a strategy of ‘‘demonstrative computations’’ of nonlinear modes
for 1D GPE with repulsive interactions and multi-well potential
[17,18]. This allowed us to find numerically all the localizedmodes
for Eq. (6) with single-well and double-well potentials and to
guarantee that no other localized modes exist.

The paper is organized as follows. In Section 2 we introduce
some notations and definitions which will be used throughout the
rest of the text and make some assertions about them. In Section 3
we formulate a statement (Theorem 3.1) which gives a base for
our method. Section 4 contains an application of Theorem 3.1 to
the case of Eq. (6). In Section 4 Hypotheses 1–3 are formulated. In
Section 5 we set forth numerical results for the case of the cosine
potential (5). Section 6 includes summary and discussion.

For the sake of clarity all the proofs are removed from the main
text to Appendices A–D.

2. Bounded and singular solutions

2.1. Some definitions

Inwhat followswe refer to a solutionψ(x) of Eq. (6) as a singular
solution if for some x = x0

lim
x→x0

ψ(x) = +∞ or lim
x→x0

ψ(x) = −∞.
In this case we say that the solutionψ(x) collapses at x0. Also let us
introduce the following definitions:
Collapsing and non-collapsing points: A point (ψ0, ψ

′

0) of the plane
R2

= (ψ,ψ ′) is
• L-collapsing forward point, L > 0, if the solution of Cauchy

problem for Eq. (6) with initial data ψ(0) = ψ0, ψx(0) = ψ ′

0
collapses at value x = x0 and 0 < x0 < L;

• L-non-collapsing forward point, L > 0, if the solution of Cauchy
problem for Eq. (6) with initial data ψ(0) = ψ0, ψx(0) = ψ ′

0
does not collapse at any value x = x0, 0 < x0 ≤ L;

• L-collapsing backward point if the corresponding solution of
Cauchy problem for Eq. (6) collapses at some value x = −x0
and 0 < x0 < L;

• L-non-collapsing backward point if the corresponding solution
of Cauchy problem for Eq. (6) does not collapse at any value
x = −x0, 0 < x0 ≤ L;

• ∞-non-collapsing forward/backward point if it is not L-collapsing
forward/backward point for any L > 0;

• ∞-non-collapsing point if it is a ∞-non-collapsing forward and
backward point simultaneously;

• a collapsing point if it is either L-collapsing forward or backward
for some L.

Functions h±(ψ̃, ψ̃ ′). The functions h+(ψ̃, ψ̃ ′) and h−(ψ̃, ψ̃ ′) are
defined in R2 as follows: h+(ψ̃, ψ̃ ′) = x0 if the solution of Cauchy
problem for Eq. (6) with initial data ψ(0) = ψ̃, ψx(0) = ψ̃ ′

collapses at value x = x0, x0 > 0. By convention, we assume that
h+(ψ̃, ψ̃ ′) = ∞ if (ψ̃, ψ̃ ′) is ∞-non-collapsing forward point.
Similarly, h−(ψ̃, ψ̃ ′) = −x0 if the solution of Cauchy problem for
Eq. (6) with initial data ψ(0) = ψ̃, ψx(0) = ψ̃ ′ collapses at value
x = x0, x0 < 0.
The sets U±

L and UL. We denote the set of all L-non-collapsing
forward points byU+

L and the set of all L-non-collapsing backward
points by U−

L . In terms of the functions h±(ψ,ψ ′) these sets are

U+

L = {(ψ,ψ ′) ∈ R2
| h+(ψ,ψ ′) > L},

U−

L = {(ψ,ψ ′) ∈ R2
| h−(ψ,ψ ′) > L}.

The intersection of U+

L and U−

L will be denoted by UL. Evidently,
if L1 < L2 then U+

L2
⊂ U+

L1
,U−

L2
⊂ U−

L1
and UL2 ⊂ UL1 .

The valuesΩ andΩ . We define

Ω ≡ sup
x∈R
(ω − U(x)), Ω ≡ inf

x∈R
(ω − U(x)).

2.2. Some statements about collapsing points

In what follows we will use some statements from the paper
[17], in particular so-called Comparison Lemma (reproduced in
Appendix A for convenience). It is known [17] that for Ω < 0
Eq. (6) has no bounded on R solutions; therefore, we restrict our
analysis by the case Ω ≥ 0. Also it is known [17, Lemma 2] that
all ∞-non-collapsing points for Eq. (6) are situated in the strip
−

√

Ω ≤ ψ ≤

√

Ω . Theorem 2.1 below gives more detailed
information about collapsing points for Eq. (6).

Theorem 2.1. Let the potential U(x) be continuous and bounded on
R. Then for each L there exist ψ̃L and ψ̃ ′

L such that the set UL is situated
in the rectangle −ψ̃L < ψ < ψ̃L,−ψ̃

′

L < ψ ′ < ψ̃ ′

L.

The proof of Theorem 2.1 is quite technical. We postponed it in
Appendix A.

Another important statement is as follows.

Theorem 2.2. Let the potential U(x) be continuous and bounded on
R and h+(ψ0, ψ

′

0) = L < ∞. Then h+(ψ,ψ ′) is a continuous
function in some vicinity of the point (ψ0, ψ

′

0).
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Fig. 1. The point P , the manifoldM+(x0), the curve α+(x0).

The proof of Theorem2.2 can be found in Appendix B. It isworth
commenting Theorem 2.2 as follows.

(i) Analogous statement is valid for the function h−(ψ,ψ ′).
(ii) It follows from Theorem 2.2 that if the potential U(x) is

continuous and bounded on R, then U±

L and UL are open
sets. The boundary of the set U+

L consists of continuous
curves and corresponds to the level lines h+(ψ,ψ ′) = L of
the function h+(ψ,ψ ′). This boundary consists of the points
(ψ̃, ψ̃ ′) such that the solution of Eq. (6) with initial data
ψ(0) = ψ̃, ψx(0) = ψ̃ ′ satisfies one of the conditions

lim
x→L

ψ(x) = +∞ or lim
x→L

ψ(x) = −∞.

Correspondingly, the boundary of the set U−

L is also continu-
ous and consists of the points (ψ̃, ψ̃ ′) such that the solution
of Eq. (6) with initial data ψ(0) = ψ̃, ψx(0) = ψ̃ ′ satisfies
similar conditions

lim
x→−L

ψ(x) = +∞ or lim
x→−L

ψ(x) = −∞.

(iii) Theorem 2.2 states nothing about the behavior of h+(ψ,ψ ′)
in a vicinity of a point (ψ0, ψ

′

0) where h+(ψ0, ψ
′

0) = ∞. In
practice, this behaviormay be very complex; see Section 2.3.2.

The set of solutions for Eq. (6) that collapse at a given point
x = x0 can be described more precisely in terms of asymptotic
expansions.

Theorem 2.3. Let x = x0 be an arbitrary fixed real. Assume that
Ũ(x) = ω − U(x) in a vicinity of x = x0 can be represented as
follows:

Ũ(x) = U0 + U1δ + U2δ
2
+ U3δ

3
+ o


δ3


where δ ≡ x − x0. Then the solutions of Eq. (6) which satisfy the
condition

lim
x→x0

ψ(x) = +∞ (7)

obey the asymptotic expansion

ψ(δ) =

√
2
δ

+ A1δ + A2δ
2

+ A3δ
3 ln |δ| + Cδ3 + A4δ

4
+ o


δ4


. (8)
Here C ∈ R is a free parameter and

A1 =

√
2U0

6
; A2 =

√
2U1

4
;

A3 = −

√
2U2

5
, A4 =

√
2
6


U0U1

12
− U3


.

Proof. The result follows from straightforward substitution of
series (8) into Eq. (6). �

Theorem 2.3 should be commented as follows.
(i) The free parameter C is an ‘‘internal’’ parameter of continuous

one-parameter set of solutions which tend to +∞ at the point
x = x0. This situation can be illustrated by the following
heuristic reasoning. Let P = (ψ0, ψ

′

0) be a collapsing point
and the solutionψ(x) of Cauchy problem for Eq. (6) with initial
data ψ(0) = ψ0, ψx(0) = ψ ′

0 collapses at x = x0 > 0.
Then, genericallyψ(x) belongs to a continuous one-parameter
set of solutions which also satisfy the condition (7) and obey
the expansion (8). In 3D space (x, ψ,ψ ′) this set generates 2D
manifold M+(x0) (see Fig. 1). Intersection of M+(x0) with the
plane (ψ,ψ ′) at x = 0 includes the point P and is non-empty.
Generically, this intersection in somevicinity of P is an1Dcurve
which we denote by α+(x0). In the plane (ψ,ψ ′) this curve
corresponds to the level line h+(ψ,ψ ′) = x0.

(ii) Since Eq. (6) is invariant with respect to the symmetry ψ →

−ψ , the solutions of Eq. (6) which satisfy the condition

lim
x→x0

ψ(x) = −∞

obey the same, up to sign, asymptotic expansion (8). The
corresponding manifold M−(x0) and the curve α−(x0) are
defined in the same way.

2.3. Example: the sets U±

L and UL for the cosine potential

Let us give now examples of the sets U±

L for Eq. (6) in the case
of the cosine potential (5). Eq. (6) takes the form

ψxx + (ω − A cos 2x)ψ − ψ3
= 0. (9)

The sets U±

L possess the following symmetry properties:

1. Since the nonlinearity in Eq. (9) is odd, both the sets U±

L are
symmetric in the plane (ψ,ψ ′)with respect to the origin.

2. Since Eq. (9) is invariantwith respect to x-inversion, the setsU+

L
and U−

L are related to each other by the symmetry with respect
to the axis ψ and due to p.1, with respect to the axis ψ ′ also.

2.3.1. π-non-collapsing forward/backward points of Eq. (9)
The setsU±

π were found by thorough numerical scanning in the
plane of initial data (ψ,ψ ′) (some details of numerical procedure
can be found in Section 5). The numerical study shows that for any
values of parameters ω and A, the sets U±

π are infinite curvilinear
strips. The typical shapes of the sets U±

π for Eq. (9) are shown in
Fig. 2. The boundary ofU+

π is representedby two continuous curves
α±. The curve α+ consists of such points (ψ0, ψ

′

0) that the solution
ψ(x) of the Cauchy problem for Eq. (9) with initial data ψ(0) =

ψ0, ψ
′(0) = ψ ′

0 collapses at x = π and limx→π ψ(x) = +∞.
At the curve α− the solution ψ(x) of the corresponding Cauchy
problem obeys the condition limx→π ψ(x) = −∞. Similarly, the
boundary of U−

π is represented by two continuous curves β±.
The curves β± consist of points (ψ0, ψ

′

0) such that the solution
ψ(x) of the Cauchy problem for Eq. (9) with initial data ψ(0) =

ψ0, ψ
′(0) = ψ ′

0 collapses at x = −π and limx→−π ψ(x) = ±∞.
π-non-collapsing forward and backward points of Eq. (9) form

the set Uπ = U+
π ∩ U−

π . It follows from Fig. 2 that this set may
consist of several disjoined components. More detailed discussion
of the sets U±

π and Uπ is postponed to Section 5.
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A B

DC

Fig. 2. The sets U+
π and U−

π for Eq. (9) and the parameters ω and A lying in the first (panels A and B) and the second (panels C and D) gaps; see Section 5 for detail. The
parameters are (A) ω = 1, A = −1; (B) ω = 1, A = −3; (C) ω = 4, A = −4; (D) ω = 4, A = −10. The sets were obtained numerically by scanning the initial data plane for
Eq. (9). The areas Uπ = U+

π ∩ U−
π are shown in dark.
2.3.2. πn-non-collapsing forward/backward points of Eq. (9), n > 1
Fig. 3 exhibits the sets U+

6π for ω = 1 and various values of A.
The sets U−

6π are the reflections of the sets U+

6π with respect to the
ψ axis. It follows from Fig. 3 that the setsU±

6π have quite a complex
layered structure. When n grows, the structure of U±

nπ becomes
more complex resembling fractals. The situation is similar to one
described in [19] for Eq. (4) in the case of delta-comb potential.

3. Symbolic dynamics: theory

In this section we give a theoretical background for description
of the non-collapsing solutions of Eq. (6) in terms of symbolic
dynamics. Results of such kind are well-known in dynamical
system theory. The language and the technique go back to sixties
to seventies; see e.g. [20–22]. In fact, the conditions which we
formulate (Theorem 3.1) can be regarded as some version of
the Conley-Moser conditions; see e.g. [22]. An advantage of the
statement which we give below is that it is convenient for direct
numerical check.

Let (ψ,ψ ′) be Cartesian coordinates in R2 and µ(S) be a
measure of set S in R2. Remind that a function f (x) is called γ -
Lipschitz function if for any x1 and x2 the relation holds
|f (x2)− f (x1)| ≤ γ |x2 − x1|.
Also introduce the following definitions.
Definition. Let γ be a fixed real. We call an island an open
curvilinear quadrangle D ⊂ R2 formed by nonintersecting curve
segments α+, β+, α−, β− (α+ and α− are opposite sides of the
quadrangle andhave no commonpoints aswell asβ+ andβ−) such
that

• the segments α+ and α− are graphs of monotone non-
decreasing/non-increasing γ -Lipschitz functions ψ ′

= v±(ψ);
• the segments β+ and β− are graphs of monotone non-

increasing/non-decreasing γ -Lipschitz functionsψ = w±(ψ
′);

• if v±(ψ) are non-decreasing functions, then w±(ψ
′) are non-

increasing functions and vice versa.

Definition. Let γ be a fixed real and D be an island bounded
by curve segments α+, β+, α−, β−. We call v-curve a segment of
curve β with endpoints on α− and α+ which

• is a graph of monotone non-decreasing/non-increasing γ -
Lipschitz function ψ ′

= v(ψ);
• if β± are graphs of monotone non-decreasing functions, then
v(ψ) is also a monotone non-decreasing function. If β± are
graphs ofmonotone non-increasing functions, then v(ψ) is also
a monotone non-increasing function.

Similarly, we call h-curve a segment of curve with endpoints on
β− and β+ which
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A B

C D

Fig. 3. The sets U+

6π for Eq. (9). In all the cases ω = 1 and (A) A = −0.4; (B) A = −0.7; (C) A = −1.5; (D) A = −2.0. The rectangle in panel D is shown magnified in Fig. 12.
• is a graph of monotone non-increasing/non-decreasing γ -
Lipschitz function ψ = w(ψ ′);

• if α± are graphs of monotone non-decreasing functions, then
w(ψ ′) is also a monotone non-decreasing function. If α± are
graphs of monotone non-increasing functions, then w(ψ ′) is
also a monotone non-increasing function.

Definition. Let D be an island. We call v-strip a curvilinear
strip contained between two nonintersecting v-curves, including
both v-curves. Similarly, we call h-strip an open curvilinear strip
contained between two nonintersecting h-curves, including both
h-curves.

Fig. 4 illustrates schematically the definitions introduced above.
We note also that the sets Dk in panels B and D of Fig. 2 are islands.
This fact will be crucial in what follows.

Let us denoteΩN the set of bi-infinite sequences {. . . , i−1, i0, i1,
. . .} where ik ∈ {1, 2, . . . ,N}.ΩN has the structure of topological
space where the neighborhood of a point a∗

= {. . . , i∗
−1, i

∗

0, i
∗

1, . . .}
is defined by the sets

Wk(a∗) = {a ∈ ΩN
| ij = i∗j , |j| < k}.

Let T be adiffeomorphismdefined on a setD =
N

i=1 Di where each
Di ⊂ R2, i = 1, . . . ,N , is an island and all the islands are disjoined.
Introduce the set P of bi-infinite sequences (called orbits)

s = {. . . , p−1, p0, p1, . . .}, Tpi = pi+1,
Fig. 4. An island D with v-curve β , v-strip V , h-curve α and h-strip H .

where each pi = (ψi, ψ
′

i ), i = 0,±1,±2, . . . , belongs to D. P has
the structure ofmetric spacewith distanceρ between the elements
s(1) = {. . . , p(1)

−1, p
(1)
0 , p

(1)
1 , . . .} and s(2) = {. . . , p(2)

−1, p
(2)
0 , p

(2)
1 , . . .}

defined as Euclidean distance between the points p(1)0 and p(2)0
in R2,

ρ(s(1), s(2)) =


(ψ

(2)
0 − ψ

(1)
0 )2 + (ψ

′(2)
0 − ψ

′(1)
0 )2.
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Define a map Σ : P → ΩN as follows: ik is the number i of the
component Di where the point pk lies. The following statement is
valid.

Theorem 3.1. Assume that

(i) a diffeomorphism T is defined on a set of N disjoined islands
Di, i = 1, . . . ,N,D =

N
i=1 Di;

(ii) for any i, i = 1, . . . ,N, and for each v-strip V ∈ Di the
intersection TV ∩ Dj, j = 1, . . . ,N is non-empty and is also a
v-strip. Similarly, for any i, i = 1, . . . ,N, and for each h-strip
H ∈ Di the intersection T−1H ∩ Dj, j = 1, . . . ,N is non-empty
and is also an h-strip;

(iii) for the sequences of sets defined recurrently

∆+

0 = D, ∆+

n = T∆+

n−1 ∩ D,

∆−

0 = D, ∆−

n = T−1∆−

n−1 ∩ D

the conditions hold

lim
n→∞

µ(∆+

n ) = 0, lim
n→∞

µ(∆−

n ) = 0.

Then Σ is a homeomorphism between the topological spaces P
andΩN .

Proof of Theorem 3.1 is postponed in Appendix C.

4. Coding of solutions

4.1. Poincare map

Assume now that the potential U(x) is continuous and π-
periodic

U(x + π) = U(x).

The Poincare map T : R2
→ R2 associated with Eq. (6) is defined

as follows: if p = (ψ̃, ψ̃ ′) ∈ R2, then Tp = (ψ(π), ψx(π)) where
ψ(x) is a solution of Eq. (6) with initial data ψ(0) = ψ̃, ψx(0) =

ψ̃ ′.
The map T is an area-preserving diffeomorphism. It is important

that T is defined not in the whole R2, but only on the set of π-
non-collapsing forward points for Eq. (6), i.e. U+

π . Inverse map T−1

is defined on the set U−
π . Evidently, for each p ∈ U+

π the image
Tp ∈ U−

π and for each q ∈ U−
π the pre-image T−1q ∈ U+

π ;
therefore TU+

π = U−
π and T−1U−

π = U+
π .

If, in addition, the potential U(x) is even, U(x) = U(−x), Eq. (6)
is reversible. The prototypical example is the cosine potential (5)
which appears as a basic model in numerous studies. Denote I
the reflection with respect to ψ axis in the plane (ψ,ψ ′). Due to
reversibility of Eq. (6), if p ∈ U+

π , then

T−1Ip = ITp. (10)

Therefore the sets U+
π and U−

π are connected by the relations
IU+

π = U−
π , IU

−
π = U+

π . The set Uπ = U+
π ∩ U−

π consists of
the pointswhich have both T -image and T -pre-image. Theorem2.1
implies that Uπ is bounded. It follows from Section 2.3 that Uπ

may consist of several disjoined components Di, i = 1, . . . ,N .
The orbits defined by T are sequences of points (finite, infinite

or bi-infinite) {pn}, such that Tpn = pn+1. The fixed points of T
correspond to π-periodic solutions of Eq. (6) (such solutions do
exist for quite general periodic potentialU(x); see [23]). For a fixed
point p let us denote DTp the operator of linearization of T at p. Let
λ1,2 be the eigenvalues of DTp. Since the map T is area-preserving,
λ1λ2 = 1. Depending on the behavior of T in a vicinity of a fixed
point, it may be of elliptic or hyperbolic type [22]. In the case of
hyperbolic fixed point both λ1,2 are real and in the case of elliptic
point they are complex conjugated, |λ1,2| = 1. Also we call a k-
cycle an orbit which consists of points p1, . . . , pk ∈ R2 such that

Tp1 = p2, Tp2 = p3, . . . , Tpk = p1.

Evidently p1, . . . , pk are fixed points for T k. The k-cycles corre-
spond to kπ-periodic solutions of Eq. (6). A k-cycle may also be of
elliptic or hyperbolic type. This is determined by the type (elliptic
or hyperbolic) of the fixed point p1 for the map T k.

Below we consider bi-infinite orbits which lie completely
within the set Uπ . Based on Theorem 3.1 we formulate necessary
conditions which guarantee that these orbits can be coded
unambiguously by the sequences of numbers i of Di in the order
the orbit ‘‘visits’’ them.

4.2. Symbolic dynamics: application to Eq. (6)

The application of Theorem 3.1 to Eq. (6) gives sufficient
conditions for existence of coding homeomorphism. They can be
formulated as follows.

Hypothesis 1. The set Uπ consists of N disjoined islands Di, i =

1, . . . ,N , i.e. of N curvilinear quadrangles bounded by curves
which possess some monotonic properties (see the definitions in
Section 3).

Hypothesis 2. The Poincare map T associated with Eq. (6) is such
that

(a) T maps v-strips of any Di, i = 1, . . . ,N , in such a way that
for any v-strip V , V ∈ Di, all the intersections TV ∩ Dj, j =

1, . . . ,N , are nonempty and are v-strips;
(b) the inverse map T−1 maps h-strips of any Di, i = 1, . . . ,N , in

such a way that for any h-strip H,H ∈ Di, the intersections
T−1H ∩ Dj, j = 1, . . . ,N , are nonempty and are h-strips.

Hypothesis 3. The sequences of sets∆±
n defined as follows,

∆+

0 = Uπ , ∆+

n = T∆+

n−1 ∩ Uπ ,

∆−

0 = Uπ , ∆−

n = T−1∆−

n−1 ∩ Uπ ,

are such that limn→∞ µ(∆
±
n ) = 0.

It follows from Theorem 3.1 that if Hypotheses 1–3 hold, then
one can assert that there exists a homeomorphism between all
bounded inR solutions of Eq. (6) and the sequences fromΩN which
can be regarded as codes for these solutions.

Example. Let U(x) = 0. A simple phase plane analysis shows
that there exists a continuous set of bounded (periodic) solutions
and each of these solutions is defined up to translations with
respect to independent variable. This implies that in the plane of
initial data, there exists a region of non-zero area which consists of
∞-non-collapsing points. Therefore, Hypothesis 3 is not satisfied.
Moreover, one can check that in this case the set Uπ consists
of one connected component, but it is not an island. Therefore,
Hypothesis 1 also does not hold. Consequently, the coding theorem
cannot be applied.

In practice, the validity of Hypotheses 1–3 can be justified
by numerical arguments. From practical viewpoint, the following
comments may be useful:

1. If the periodic potential U(x) is even the point (b) of
Hypothesis 2 follows from the point (a). In fact, ifH is an h-strip,
then IH is a v-strip where I is a reflectionwith respect toψ axis.
Then the statement (b) follows from relation (10).

2. Let DTp be the operator of linearization of T at point p. Let

e1 =


1
0


; e2 =


0
1


(11)
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Define the functions

g1(p) = (DTpe1, e1) · (DTpe2, e1),
g2(p) = (DTpe1, e2) · (DTpe2, e2).

Then the following statement is valid.

Theorem 4.1. Assume that the potential U(x) is even and the
following conditions hold:
• U+

π is an infinite curvilinear strip;
• U+

π ∩ U−
π = Uπ =

N
i=1 Di where Di are non-overlapping

islands;
• for each pair (i, j), if

– β±

i are graphs ofmonotone non-decreasing functions, then for
any p ∈ T−1Dj ∩ Di the relations g1(p) > 0, g2(p) > 0 hold;

– β±

i are graphs of monotone non-increasing functions, then for
any p ∈ T−1Dj ∩ Di the relations g1(p) < 0, g2(p) < 0 hold.

Then the conditions of Hypothesis 2 take place.

The proof of Theorem 4.1 can be found in Appendix D.
It follows from Theorem 4.1 that numerical evidence for
Hypothesis 2 can be given by calculation of g1(p) and g2(p)
within the set Uπ .

3. If the periodic potential U(x) is even, relation (10) implies
that µ(∆+

n ) = µ(∆−
n ) for any n. Therefore in order to verify

Hypothesis 3 in this case it is enough to check the condition
limn→∞ µ(∆

+
n ) = 0 only.

In the next section we describe the results of numerical study
for Eq. (6)with cosine potential (5).Wepresent numerical evidence
that Hypotheses 1–3 hold for vast areas in the plane of parameters
(ω, A).

5. The case of cosine potential

For numerical study of Eq. (6) with cosine potential (5), i.e. of
Eq. (9), special interactive software was elaborated. It is aimed to
fulfill thorough numerical scanning of the plane (ψ,ψ ′) of initial
data and visualize the sets U±

L and UL for a given L. Also the
software allowsus tomeasure areas ofUL, to trace orbits generated
by iterations of T , to find fixed points of T k, k = 1, 2, . . . , to
calculate values g1,2(p) and visualize areas where g1,2(p) > 0 and
g1,2(p) < 0, and has some other useful features.

For the numerical scanning of the plane (ψ,ψ ′) a 2D grid with
steps ∆ψ,∆ψ ′ was introduced. For each initial data ψ(0) =

ψ0, ψ
′(0) = ψ ′

0 at the grid nodes the Cauchy problem for Eq. (9)
on the interval [0; L] was solved numerically. If the solution ψ(x)
of the Cauchy problem remains bounded (in modulus) by some
large number B on the interval [0; L]we concluded that no collapse
occurs and these initial data were regarded as an L-non-collapsing
point. Typically the values∆ψ = 0.0005 and∆ψ ′

= 0.0002 were
taken. We found that the results for B = 100 and B = 1000 in all
the cases were almost indistinguishable.

Let us set forth the results of the numerical study of Eq. (9) for
each of the hypotheses separately.

5.1. Hypothesis 1

Some examples of the setsU+
π andU−

π are shown in Fig. 2. In all
the cases the sets U+

π and U−
π are curvilinear strips. We found that

this is a general feature of Eq. (9) for all values of the parameters ω
and A that we considered.

The shape of the strips U±
π may be quite complex and their

intersectionUπ may consist of a different number of disjoined sets.
Since the strips U+

π and U−
π are related to each other by symmetry

with respect to theψ axis, the typical situation is that Uπ consists
of several number of curvilinear deltoids (see Fig. 2, panels B and D)
which are symmetrical with respect to ψ or ψ ′ axes.
Fig. 5. The plane of parameters (ω, A) with band and gap zones. The boundaries
of the regions where Uπ is disjoined in three (the curve N = 3) or five (the curve
N = 5) connected components are shown. If ω and A belong to the dark zones
between the marked curves and upper boundaries of the corresponding gaps, then
these components are islands (in the sense of Section 3). The points marked with
letters A–D correspond to the panels of Fig. 2. The pointω = −1, A = −2 ismarked
with a star. It also belongs to the dark zone; the shapes of corresponding islands are
shown in Fig. 6.

Fig. 5 shows the regions in the parameter plane (ω, A) where
such decomposition of Uπ takes place. Due to the symmetry

A → −A, x → x + π/2

the study has been restricted to the area A < 0. The zones corre-
sponding to gaps and bands are also shown. Let us remind that the
separation of the gap zones and the band zones in the parameter
plane (ω, A) is the key point for the theory of linearized (Mathieu)
equation [24]

ψxx + (ω − A cos 2x)ψ = 0. (12)

If a point (ω, A) belongs to a band, all the solutions of Eq. (12) are
bounded in R and if it belongs to a gap, all of them are unbounded.
It is known that band/gap structure also plays an important role in
the theory of nonlinear equation (9) (see e.g. [4]). In terms of the
Poincare map T associated with Eq. (9), if the point (ω, A) is situ-
ated in a band, then the origin O(0, 0) is an elliptic fixed point for
T , and if (ω, A) lies in a gap, then O(0, 0) is a hyperbolic fixed point
for T .

In Fig. 5 two curvesmarked asN = 3 andN = 5 are depicted. In
the area above the curve N = 3 and below the curve N = 5 the set
Uπ consists of three connected components, in the area above the
curve N = 5 it consists of five connected components, etc. Due to
Theorem 2.2 the boundary of each of the component is continuous,
but a conclusion about monotonicity and Lipschitz properties of
the boundaries should be made using numerical arguments. Our
numerical study indicates that all these components are islands in
the sense of Section 3 in the areas (in dark) between the marked
curves and upper boundaries of the gaps; see Fig. 5.

We note that possible numbers of islands are related (indi-
rectly) to numbers of fixed points of the Poincaremap T . In its turn,
the number of fixed points of T is determined by the number of
band or gap where the point (ω, A) is situated. More detailed anal-
ysis of these relations is an interesting issue for a further study.

5.2. Hypothesis 2

Since the potential U(x) is even and U+
π and U−

π are infinite
curvilinear strips, the verification of Hypothesis 2 can be fulfilled
using Theorem4.1. To this end, the calculation of the values of g1(p)
and g2(p) was incorporated into the procedure of the numerical
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A B

g1>0 g1<0 g2>0 g2<0

Fig. 6. The region of the plane (ψ,ψ ′),−1.5 < ψ < 1.5,−1.5 < ψ < 1.5 with the sets Uπ and T−1Uπ , ω = 1, A = −2. The set Uπ consists of three islands D1,D2 and
D3; the boundaries β±

1,2,3 of the islands are marked by bold dash lines. The areas where g1(p) > 0 and g1(p) < 0 for p ∈ T−1D1,2,3 are indicated in panel A. Corresponding
areas for g2(p) are shown in panel B.
scanning described above. To confirm the results we also used
direct visualization of the vectors DTpe1,2 for various p ∈ Uπ .

Let us describe in detail the case ω = 1, A = −2 which is
typical of the gray zone situated in the first gap; see Fig. 5. The
set Uπ consists of three islands D1,D2 and D3; see Fig. 6. Their
pre-images T−1D1, T−1D2 and T−1D3 intersectD1,D2 andD3. Fig. 6
shows the signs of g1,2(p) for all the intersections T−1Di ∩Dj, i, j =

1, 2, 3. The boundariesβ±

1,2,3 of the islands aremarked by bold dash
lines. In the islands D1 and D3 the boundaries β±

1,3 are graphs of
increasing functions, whereas for D2 the boundaries β±

2 are graphs
of decreasing functions. It follows from Fig. 6 that the signs of
g1,2(p) confirm Hypothesis 2.

Overall, the numerical study allows us to suppose that
Hypothesis 2, as well as Hypothesis 1, holds for ω and A lying in
the dark areas in Fig. 5.

5.3. Hypothesis 3

The behavior of µ(∆+
n ), n = 1, 2, . . . , for various values of

parameters ω and A was also studied numerically. Some of the
results are depicted in Fig. 7.

It follows from Fig. 7 that Hypothesis 3 is valid not for all the
cases under consideration. A natural obstruction for Hypothesis 3
to hold is the presence of elliptic fixed points or cycles. Generically,
in vicinity of an elliptic fixed point (or cycle) one can expect a
set of positive measure that consists of points which remain in
this vicinity after any number of iterations of T . This means that
Hypothesis 3 should not be valid if the point (ω, A) is situated in a
band in the plane of parameters (see Section 5.1), because in this
case the point O(0, 0) is an elliptic fixed point of T . This situation
takes place for the case 1, ω = 1 and A = −0.7, in Fig. 7.

As the point (ω, A) crosses a lower boundary of a gap in the
plane of parameters, the point O(0, 0) becomes a hyperbolic fixed
point and a pair of elliptic 2-cycles appears. It has been observed
that this bifurcation is the first bifurcation in a cascade of period
doubling bifurcations. Each of the bifurcations of this cascade gives
birth to elliptic cycles of double period. Omitting the details, we
summarize that the gap zones in the plane (ω, A) also contain areas
where Hypothesis 3 is not valid due to the presence of the elliptic
cycles.
At the same time, if the point (ω, A) is situated in the dark
zones in Fig. 5, numerical results indicate that Hypothesis 3 holds.
Moreover, our results allow us to suppose exponential convergence
of µ(∆+

n ) to zero. The ratios Rn = µ(∆+

n+1)/µ(∆
+
n ) are shown in

panel B of Fig. 7. For the cases 2 and 3, these ratios are smaller than
1 and remain close to the value µ(TUπ ∩ Uπ )/µ(Uπ ).

To summarize, based on the numerical results presented above
one can conclude that if ω and A are situated in the dark zones of the
parameter plane, see Fig. 5, the conditions of Hypotheses 1–3 hold.
Therefore for these values of parameters all the nonlinear states of
GPEwith cosine potential can be put in one-to-one correspondence
with codes from ΩN . When crossing the lower boundary of the
gray zones (marked N = 3 or N = 5 in Fig. 5) the conditions of
Hypothesis 1 fail, whereas other two hypotheses remain valid.

5.4. More details about the map T

Let us describe inmore detail the transformation of the setsU+
π

and Uπ by the map T .
The action of T on vertical sections ofU+

π is shown in Fig. 8. Note
that TU+

π = U−
π = IU+

π where I is the reflectionwith respect toψ
axis. Fig. 9 illustrates themapping ofU+

π and the islandsD1,D2,D3
(the shape of U+

π was calculated for ω = 1, A = −3).
It is convenient to describe the action of the map T as follows.

Let us regard that the boundaries of U+
π are the pairs α± and α̃±

where α̃± are in infinity; see Fig. 9. Correspondingly, we assume
that the boundaries of U−

π are the pairs β± and β̃± where β̃± are
in infinity. The map T transforms α̃± into β± and α± into β̃±.
Then, it is practical to represent the map T as a composition of
three transformations: U+

π → S1 → S2 → U−
π , where S1 is

an infinite horizontal strip and S2 is an infinite vertical strip. The
transformation U+

π → S1 is a deformation which straighten the
boundariesα±. The transformation of S1 to S2 consists in stretching
of S1 in one dimension and contraction in another in such a way
that the boundaries α̃± transform into vertical lines β± but α± go
to infinity. The transformation S2 → U−

π is again a deformation.
As a result, T maps the islands D1,D2,D3 into infinite curvilinear
strips. Each of these strips crosses the islands D1,D2,D3 and each
of the intersections is a v-strip.

An interesting issue is the study of ordering of the v-strips in
U+
π and the h-strips inU−

π corresponding to codes with coinciding
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Fig. 7. Panel (A): The area of the set∆+
n versus n for ω = 1 and (1) A = −0.7, (2) A = −1.2 and (3) A = −2. Panel (B): The ratio Rn = µ(∆+

n+1)/µ(∆
+
n ) for the same values

of ω and A. Only few points are shown in panel (B) for the cases (2) and (3) since accuracy of calculations drastically falls due to division of small numbers.
Fig. 8. The action of T on U+
π , ω = 1, A = −1.5. Vertical sections Sk, k = 1 ÷ 7 of U+

π are mapped into the infinite curves shown in the right panel.
blocks. The understanding of the strip ordering is also of practical
usage, since it explains the order of the nonlinear modes as they
appear in shooting procedure; see Section 5.5. We describe the
ordering of v-strips; the ordering of h-strips is similar. Assume that
Uπ consists of N disjoined islands and N is odd. Consider orbits
that visit the islands Di−n ,Di−n+1 , . . . ,Di0 , in the given order. The
points in Di0 which has this ‘‘prehistory’’ are situated in a strip
Vi−n i−n+1...i−2 i−1 i0 constructed by the following recurrence rule:

Vi−n i−n+1 = TDi−n ∩ Di−n+1

. . .

Vi−n i−n+1...i−2 i−1 i0 = TVi−ni−n+1...i−2 i−1 ∩ Di0

and (see Appendix C)

· · · ⊂ Vi−n i−n+1...i−2 i−1 i0 ⊂ Vi−n+1...i−2 i−1 i0

⊂ · · · ⊂ Vi−2 i−1i0 ⊂ Vi−1 i0 ⊂ Di0 .

The orbit of a point p ∈ Vi−n i−n+1...i−2i−1i0 has in its code a block

(· · · i−ni−n+1 · · · i−2i−1i0   · · ·).

Since each of ik can take the values 1, . . . ,N , there are Nn+1 strips
in U+

π each coded by the sequence of length n + 1. The algorithm
for their ordering in U+
π follows immediately from geometrical

properties of the intersection of the strips U−
π and U+

π . It can be
described as follows:

1. Mark the islands D1, . . . ,DN as they are ordered in U+
π ; see

Fig. 10. Drawan arrow I0 over all of thempointing fromD1 toDN .
2. Draw arrows I01, . . . , I0N over each island in such a way

that the directions of rightmost I01 and leftmost I0N arrows
coincided with the direction of I0, but the directions of any two
neighboring arrowswere opposite. Sketch v-strips inDi0 in such
a way that their ordering (from V1i0 to VNi0 ) agreed with the
direction of the arrow I0i0 .

3. Draw an arrow over each of Vi−1i0 by the same manner and
sketch v-strips Vi−2 i−1 i0 according to the directions of these
arrows, etc.
It turns out that the algorithm given above is similar to proce-

dure of ordering of localized modes for DNLS described in [25].

5.5. Examples

Let the parameters (ω, A) belong to the dark zone in the first
gap; see Fig. 5. Then, according to the results above, all the bounded
in R solutions of Eq. (9) can be coded by bi-infinite sequences of
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Fig. 9. The action of the map T on U+
π and the islands D1,D2,D3 . The map T can be regarded as a composition of three transformations: U+

π → S1 → S2 → U−
π :

(i) deformation of U+
π into infinite strip S1; (ii) stretching of S1 in one dimension and contraction in another one to get an infinite strip S2; (iii) deformation of S2 into U−

π . As
a result, T maps the islands D1,D2,D3 into infinite curvilinear strips. Each of these strips crosses again the islands D1,D2,D3 and each of the intersections is a v-strip. The
shape of U+

π was calculated for ω = 1, A = −3.
Fig. 10. Algorithm for ordering of v-strips in U+
π .
three symbol ‘‘alphabet’’. Conversely, for each bi-infinite ‘‘word’’
composed of symbols of this ‘‘alphabet’’ there exists a solution
with corresponding code. The symbols may be chosen as ‘‘−’’, ‘‘0’’
and ‘‘+’’, and they mark entering of the orbit into D1,D2 and D3
respectively.

Example 1. Localized modes described by Eq. (9) correspond to
the codes with finite numbers of nonzero symbols. In particular,
Eq. (9) admits well-known solution in the form of bright gap-
soliton, ψ(x), [7,9], localized in one well of the potential; see
Fig. 11(A). This solution corresponds to the code (· · · 00 + 00 · · ·).
Also there exists the gap soliton solution −ψ(x) with the code
(· · · 00 − 00 · · ·).

Example 2. There exist exactly two π-periodic solutions of Eq. (9)
with the codes (· · ·+++ · · ·) and (· · ·−−− · · ·), related to each
other by symmetry ψ → −ψ; see Fig. 11(B).
Example 3. There exists a solution of Eq. (9) having the form of
dark soliton against periodic background. It corresponds to the
code (· · · − − − + + + · · ·); see Fig. 11(C). Also the coding
predicts that there exist other solutions of this type, having the
codes (· · · − − − 0 + + + · · ·), (· · · − − − 00 + + + · · ·), etc.

Example 4. There exist ‘‘domainwall’’-type solutions correspond-
ing to the codes (· · · 000 + + + · · ·), (· · · − − − 000 · · ·). These
objects were found to exist in the case of GPE with attractive non-
linearity [12]. The coding approach predicts their existence in the
case of repulsive nonlinearity also. They have been found numeri-
cally; see Fig. 11(D).

Example 5. Consider boundary value problem for Eq. (9) on the
interval [−4π, 0]with Neumann boundary conditions at x = −4π
and x = 0. These solutions can be viewed as reductions to the
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Fig. 11. Nonlinear states for GPE, ω = 1, A = −2: A: bright gap-soliton, the code (· · · 00 + 00 · · ·); B: π-periodic structure, the code (· · · + + + · · ·); C: dark soliton, the
code (· · · − − − + + + · · ·); D: domain wall, the code (· · · 000 + + + · · ·).
interval of length 4π of periodic solutions with period 8π which
satisfy additional symmetry conditions

u(x) = u(−x); u(−4π + x) = u(−4π − x).

The codes for these solutions are of the form

(· · · θ5θ4θ3θ2 θ1θ2θ3θ4θ5θ4θ3θ2  
the period

θ1θ2θ3θ4θ5 · · ·),

where θi, i = 1 ÷ 5, is one of the symbols ‘‘+’’, ‘‘0’’ or ‘‘−’’.
Therefore there are 35

= 243 solutions of this type. In Fig. 12
nine of these solutions are depicted for A = −2, ω = 1. From
numerical viewpoint, these nonlinear modes can be found by a
shooting method taking initial data ψ(−4π) = ψ̃, ψx(−4π) = 0
and adjusting ψ̃ in such a way that ψx(0) = 0. As ψ̃ increases,
one gets the nonlinear modes one by one in the order described in
Section 5.4.

All the solutions shown in Fig. 12 have the codeswith θ1 = θ5 =

‘‘0’’. Therefore they can be viewed as approximations for localized
modes which have the domain of localization of length 4π . These
localized modes correspond to the codes

(· · · 00 θ2θ3θ4 00 · · ·).
There are 33
= 27 sequences of this type but only 10 of them

(including one which consists of zeros only and corresponds to the
zero solution) are different in the sense that they are not related to
each other by symmetry reductions. Fig. 12 shows just these nine
nonzero solutions.

6. Conclusion

In this paper, we describe the method for coding of nonlin-
ear states covered by the 1D Gross–Pitaevskii equation with pe-
riodic potential U(x) and repulsive nonlinearity. We prove that
under certain conditions there exists one-to-one correspondence
between the set of all bounded in R solutions of Eq. (6) and the
set of bi-infinite sequences of numbers 1, . . . ,N . These sequences
can be regarded as codes for the solutions of Eq. (6). The number
N is determined by the parameters of Eq. (6). It is important that
(i) each coding sequence corresponds to one and only one solu-
tion and (ii) each solution has a corresponding code. The conditions
for the coding to be possible are presented in a form of three hy-
potheses. For a given U(x), the hypotheses should be supported by
numerical arguments. We report on numerical results in the case
of cosine potential, i.e., for Eq. (9). Specifically, in the plane of pa-
rameters (ω, A) we mark the regions where the hypotheses were
confirmed by numerical study.
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Fig. 12. The solutions of Eq. (9) (A = −2, ω = 1) on the interval [−4π, 0] with Neumann boundary conditions at x = −4π and x = 0 (nine panels below) and the position
of corresponding points in the intersection of U+

4π and U−

4π (upper panel). The upper panel represents the scaled rectangle marked in panel D of Fig. 3 with fragments of
U−

4π (in black) and U+

4π (in gray). The codes (the blocks (θ1θ2θ3θ4θ5)) are: A: (0 + −00); B: (0 + − + 0); C: (0 + 000); D: (0 + 0 + 0); E: (0 + 0 − 0); F: (0 + +00); G:
(0 + + + 0); H: (0 + + − 0); I: (00 + 00).
Heuristically, the coding technique described above can be
interpreted as follows. The periodic potential can be regarded
as an infinite chain of equidistantly spaced potential wells. It is
known that if U(x) is a ‘‘deep enough’’ single-well potential, Eq. (6)
admits one or more localized solutions called ‘‘fundamental gap
soliton’’, FGS, in [14,15]. Also Eq. (6) admits zero state. Assume
that in total there exist N states (including zero state) described
by the single well potential. Note that the number N is odd:
since the nonlinearity is odd if ψ(x) is a FGS, then −ψ(x) is
also a solution Eq. (6) and the zero solution should also be
taken into account. In these terms the coding means that one
assigns to each of possible single-well states a number from 1 to
N and attributes to ‘‘bound states’’ of these entities situated in
the wells of periodic potential bi-infinite ‘‘words’’ consisting of
numbers from 1 to N . This viewpoint exploits an analogy between
periodic problem and discrete problem replacing the solution on
each period by a lattice node. The corresponding reduction can
be made consistently and rigorously using Wannier functions
technique [26] but the resulting system of discrete equations is
nonlocal and quite difficult for a comprehensive study.

The approach presented in this paper may be applied to Eq. (6)
with different types of the periodic potential U(x). Also it may be
extended in various directions. In particular, preliminary studies
show that it can be applied with minor modifications to the
equation

ψxx + (ω − U(x))ψ + g1ψ3
+ g2ψ5

= 0 (13)

where g2 < 0. Eq. (13) also arises in the theory of BEC [27,
28]. The shapes of the sets U±

π in this case are similar to ones
described above for Eq. (6). Another possible extension of this
approach can bemade for complex nonlinear states of GPE,ψ(x) =

ρ(x) exp{iφ(x)}. It is known [9] that the amplitude ρ(x) obeys the
equation

ρxx + (ω − U(x))ρ − ρ3
−

M2

ρ3
= 0, (14)
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where M is an arbitrary real constant. For a given amplitude ρ(x),
the phase φ(x) can be found from the relation ρ2(x)φx(x) = M .
Other possible extensions of the approach may be related to the
cases when Uπ consists of partially overlapping islands or of more
general sets which are not islands at all.

Having in hand a complete description of nonlinear modes for
Eq. (6) in terms of their codes, one can return to the problem of
stability of these modes. In our opinion, a relation between the
code and the stability of correspondingmode is an interesting issue
for further study. A good example of such a study is paper [29]
where the similar problem was considered for DNLS.

At last, let us note that the approach developed in this paper
cannot be applied (at least, directly) to the case of GPE with
attractive interactions, σ < 0 in Eq. (4). One can prove that in
this case all the solutions of Eq. (4) are non-collapsing under quite
general assumptions for the potential U(x).
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Appendix A. Proof of Theorem 2.1

The following statement proved in [17] will be used below.

Comparison Lemma. Let the functions y(t) and x(t), t ∈ [a; b] be
solutions of equations

ytt − g(t, y) = 0 (A.1)
xtt − f (t, x) = 0 (A.2)

correspondingly. Let also the following conditions hold:

(i) f (t, ξ), g(t, ξ) are defined on [a; b]×[A; B] and locally Lipschitz
continuous with respect to ξ, ξ ∈ [A; B], (A, B, b may be finite or
infinite);

(ii) g(t, ξ) ≥ f (t, ξ) for any t ∈ [a; b], ξ ∈ [A; B];
(iii) f (t, ξ) is monotone nondecreasing with respect to ξ, ξ ∈ [A; B].

Let A < x(a) ≤ y(a) < B and xt(a) ≤ yt(a). Then xt(t) ≤ yt(t)
and x(t) ≤ y(t) while A < x(t), y(t) < B or for the whole interval
t ∈ [a; b]

In what follows we assume that the potential U(x) be
continuous and bounded on R and use the notations introduced in
Section 2.1. To prove Theorem 2.1 we need the following lemmas.

Lemma A.1. Let ψ ′

0 ≥ 0. Then for ψ0 >
√

Ω

h+(ψ0, ψ
′

0) ≤ h+

0 (ψ0) ≡


∞

ψ0

√
2 dη

η4 − ψ4
0 − 2Ω(η2 − ψ2

0 )

, (A.3)

and h+

0 (ψ0) ∼
K(1/

√
2)

ψ0
when ψ0 → +∞. Here K(·) is complete

elliptic integral of the first kind.

Proof. Consider the equation

φxx +Ωφ − φ3
= 0 (A.4)
The solutionφ(x) for Eq. (A.4) with initial dataφ(0) = ψ0, φx(0) =

ψ ′

0 can be written in implicit form as follows:

x =

 φ

ψ0

√
2 dη

∆− 2Ωη2 + η4
; ∆ = 2(ψ ′

0)
2
+ 2Ωψ2

0 − ψ4
0 . (A.5)

The solution φ(x) tends to +∞ at the point

x0 =


∞

ψ0

√
2 dη

η4 − ψ4
0 − 2Ω(η2 − ψ2

0 )+ 2(ψ ′

0)
2

and the following estimation holds

x0 ≤ h+(ψ0) ≡


∞

ψ0

√
2 dη

η4 − ψ4
0 − 2Ω(η2 − ψ2

0 )

∼

K

1/

√
2


ψ0
, ψ0 → +∞.

Now let us consider the solution ψ(x) of Eq. (6) with initial data
ψ(0) = ψ0, ψx(0) = ψ ′

0. Since for ξ >
√

Ω the function F(ξ) =

ξ 3 − Ωξ is monotonic and ξ 3 − (ω − U(x))ξ ≥ F(ξ) one can
apply Comparison Lemma from [17] to Eqs. (6) and (A.4). Therefore
for x > 0 the inequality ψ(x) ≥ φ(x) holds. This means that
ψ(x) collapses at a point h+(ψ0, ψ

′

0) ≤ x0 ≤ h+

0 (ψ0). This proves
Lemma A.1. �

Lemma A.2. For each L there exists a value ψ̃L such that the set UL is
situated in the plane R2

= (ψ,ψ ′) in the strip −ψ̃L < ψ < ψ̃L.

Proof. Due to Lemma A.1 for each L there exists ψ̃L such that there
are no points of UL in the sector ψ > ψ̃L, ψ

′
≥ 0. Since Eq. (6) is

invariant with respect to the symmetry ψ → −ψ the estimation
(A.3) holds also for ψ ′

0 ≤ 0 and ψ0 < −

√

Ω; therefore there
are no points of UL in the sector ψ < −ψ̃L, ψ

′
≤ 0. Making the

transformation x → −x and repeating the reasoning of Lemma A.1
we obtain the estimation

h−(ψ0, ψ
′

0) ≤ h−

0 (ψ0) ≡

 ψ0

−∞

√
2 dη

η4 − ψ4
0 − 2Ω(η2 − ψ2

0 )

for the two cases: (i) ψ0 >
√

Ω, ψ ′

0 ≤ 0 and (ii) ψ0 < −

√

Ω,

ψ ′

0 ≥ 0. Similarly, h−

0 (ψ0) ∼ −
K(1/

√
2)

ψ0
, ψ0 → −∞. Therefore

there are no points of UL in the sectors ψ > ψ̃L, ψ
′

≤ 0 and
ψ < −ψ̃L, ψ

′
≥ 0. This implies the statement of Lemma A.2. �

Proof of Theorem 2.1. Due to LemmaA.2 there exists the value ψ̃L

such that no points of UL are situated out of the strip −ψ̃L < ψ <

ψ̃L. Therefore it is enough to prove that there are no points of UL
in two half-strips

S+

R = {(ψ,ψ ′) ∈ R2
| − ψ̃L < ψ < ψ̃L, ψ

′ > R}

S−

R = {(ψ,ψ ′) ∈ R2
| − ψ̃L < ψ < ψ̃L, ψ

′ < −R}

for R large enough. Let us prove this fact for S+

R ; the proof for S−

R
is analogous. It follows from Lemma A.2 that there exists the value
ψ̃L/2 > ψ̃L such that all the points (ψ,ψ ′) forψ > ψ̃L/2 andψ ′

≥ 0
are L/2-collapsing forward points. Introduce the value

ML ≡ min
ξ∈[−ψ̃L/2;ψ̃L/2]

η∈[Ω;Ω]


ξ 3 − ηξ


.

Evidently ML ≤ 0. Consider the solution ψ(x) of Cauchy problem
for Eq. (6) with initial data ψ(0) = ψ0, ψ0 ∈ [−ψ̃L; ψ̃L] and
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ψx(0) = ψ ′

0, ψ
′

0 > R. While −ψ̃L/2 ≤ ψ(x) ≤ ψ̃L/2 one has
ψxx(x) ≥ ML. Then the following relations hold:

ψx(x) ≥ ψx(0)+ MLx ≥ R + MLx, (A.6)

ψ(x) ≥ ψ(0)+ Rx +
ML

2
x2 ≥ −ψ̃L + Rx +

ML

2
x2. (A.7)

We claim that if the initial data for Eq. (6) are situated in the half-
strip S+

R with

R > ψ̃ ′

L ≡ max

−

MLL
2
,
1
4L


8ψ̃L/2 + 8ψ̃L − MLL2


then the segment of curve {(ψ(x), ψx(x)), 0 ≤ x ≤ L/2} crosses
the line ψ = ψ̃L/2 in some point where ψ ′

≥ 0. In fact, assuming
that −ψ̃L/2 ≤ ψ(x) ≤ ψ̃L/2 for x ∈ [0; L/2] from (A.6) and (A.7)
one concludes that

ψx(x) ≥ R + MLx > 0, x ∈ [0; L/2];

ψ(0) ≤ ψ̃L ≤ ψ̃L/2;

ψ(L/2) ≥ −ψ̃L +
RL
2

+
MLL2

8
> ψ̃L/2,

i.e. we arrive at the contradiction. Therefore there exists a value x̃ ∈

[0; L/2] such that ψ(x̃) > ψ̃L/2 and ψx(x̃) > 0 i.e. (ψ(x̃), ψx(x̃))
is L/2-collapsing forward point. Then (ψ(0), ψx(0)) is L-collapsing
forward point. So, forR > ψ̃ ′

L there are nopoints fromUL in S+

R . �

Appendix B. Proof of Theorem 2.2

Proof of Theorem 2.2. Introduce the following functions:

(a) The function H̃+(ψ̃, ψ̃ ′,Ω; t) defined as H̃+(ψ̃, ψ̃ ′,
Ω; t) = x0 if the solution of Cauchy problem for the equation

φxx +Ωφ − φ3
= 0

with initial data φ(t) = ψ̃, φx(t) = ψ̃ ′ collapses at the value
x = x0, x0 > 0. Exact formula for H̃+(ψ̃, ψ̃ ′,Ω; t) is

H̃+(ψ̃, ψ̃ ′,Ω; t)

= t +


∞

ψ̃

√
2 dη

η4 − ψ̃4 − 2Ω(η2 − ψ̃2)+ 2(ψ̃ ′)2
(B.1)

it follows from (B.1) that if H̃+(ψ0, ψ
′

0,Ω0; t) < ∞ then
for t fixed the function H+(ψ̃, ψ̃ ′,Ω; t) is a continuous
function of the variables ψ̃, ψ̃ ′,Ω in some vicinity of the point
(ψ0, ψ

′

0,Ω0).
(b) The function h̃+(ψ̃, ψ̃ ′

; t) defined as h̃+(ψ̃, ψ̃ ′
; t) = x0 if the

solution of Cauchy problem for Eq. (6) with initial dataψ(t) =

ψ̃, ψx(t) = ψ̃ ′ collapses at value x = x0, x0 > 0. Evidently, if
ψ(x) is a solution of Eq. (6) then

h+(ψ(0), ψx(0)) = h̃+(ψ(t), ψx(t); t)+ t (B.2)

(c) The two functions

Ω1(t) = min
x∈[t;L]

(ω − U(x)), Ω2(t) = max
x∈[t;L]

(ω − U(x))

which are continuous functions in some vicinity of the point
t = L.

Also let us denote by Dδ(ζ , ζ ′) a disc in R2 with center at (ζ , ζ ′)
and radius δ.

It follows from the conditions of Theorem 2.2 that the solution
ψ(x) of Eq. (6) with initial data ψ(0) = ψ0, ψx(0) = ψ ′

0 satisfies
one of the conditions

lim
x→L

ψ(x) = +∞, or lim
x→L

ψ(x) = −∞.
Let the behavior of ψ(x) in vicinity of x = L obey the first of the
two formulas above (the analysis of the second case is similar).
Then there exists t such that ψ(x) >

√
Ω1(t) and ψx(x) > 0 for

x ∈ [t; L). By virtue of Comparison Lemma, see Appendix A, one
has

H̃+(ψ̃, ψ̃ ′,Ω1(t∗); t∗) ≤ h̃+(ψ̃, ψ̃ ′
; t∗)

≤ H̃+(ψ̃, ψ̃ ′,Ω2(t∗); t∗) (B.3)

for any t∗ ∈ [t; L) and for any ψ̃, ψ̃ ′ in some vicinity of the point
(ψ(t∗), ψ ′(t∗)).

Let us describe 3-step algorithmwhich allows us by given ε > 0
to find δ > 0 such that if (ψ,ψ ′) ∈ Dδ(ψ0, ψ

′

0) then

|h+(ψ,ψ ′)− h+(ψ0, ψ
′

0)| < ε. (B.4)

1. By given ε one can find t∗ such that the inequality holds

|H̃+(ψ(t∗), ψ ′(t∗),Ω2(t∗); t∗)

− H̃+(ψ(t∗), ψ ′(t∗),Ω1(t∗); t∗)| ≤ ε/2. (B.5)

2. Since H̃+(ψ̃, ψ̃ ′,Ω; t) is continuous there exists δ1 > 0 such
that when (ψ̃, ψ̃ ′) ∈ Dδ1(ψ(t

∗), ψ ′(t∗)) the inequalities hold

|H̃+(ψ̃, ψ̃ ′,Ω2(t∗); t∗)

− H̃+(ψ(t∗), ψ ′(t∗),Ω2(t∗); t∗)| ≤ ε/2

|H̃+(ψ̃, ψ̃ ′,Ω1(t∗); t∗)

− H̃+(ψ(t∗), ψ ′(t∗),Ω1(t∗); t∗)| ≤ ε/2.

It follows from (B.3) and (B.5) that if (ψ̃, ψ̃ ′) ∈ Dδ1(ψ(t
∗),

ψ ′(t∗)) then

|h̃+(ψ̃, ψ̃ ′
; t∗)− h̃+(ψ(t∗), ψ ′(t∗); t∗)| ≤ ε. (B.6)

3. The flow defined by Eq. (6) generates a diffeomorphism Tt∗ :

R2
→ R2 which maps a point (ψ(t∗), ψx(t∗)) to a point

(ψ(0), ψx(0)) where ψ(x) is a solution of Eq. (6). Then there
exists δ such that Dδ(ψ0, ψ

′

0) ⊂ Tt∗Dδ1(ψ(t
∗), ψx(t∗)). By

means of (B.2) and (B.6) one concludes that for (ψ,ψ ′) ∈

Dδ(ψ0, ψ
′

0) relation (B.4) holds. Theorem 2.2 is proved. �

Appendix C. Proof of Theorem 3.1

Before proving Theorem 3.1 we prove the following lemma.

Lemma C.1. Let D be an island.
(i) Let D ⊃ V1 ⊃ V2 ⊃ · · · be an infinite sequence of nested v-strips

such that

lim
n→∞

µ(Vn) = 0. (C.1)

Then the intersection

V∞ =

∞
n=1

Vn

is a v-curve.
(ii) Let D ⊃ H1 ⊃ H2 ⊃ · · · is an infinite sequence of nested h-strips

and

lim
n→∞

µ(Hn) = 0.

Then the intersection

H∞ =

∞
n=1

Hn

is an h-curve.

Proof of Lemma C.1. Let us prove point (i); point (ii) can be
proved similarly. Denote the v-curves which bound the strip Vn by
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Fig. C.13. Illustration to the proof of Lemma C.1.

β−
n (which lies closer to β−) and β+

n (which lies closer to β+). Let
the endpoints of β+

n be A+
n (situated at α−) and B+

n (situated at α+).
Let the endpoints of β−

n be A−
n (situated at α−) and B−

n (situated at
α−), see Fig. C.13.

First, we show that A−
n → A+

n and B−
n → B+

n as n → ∞. The
sequence of points A−

1 , A
−

2 , . . . is situated on the curve α− from
one side from the point A+

1 and is ‘‘monotonic’’ in the sense that
for any n the point A−

n+1 is situated on α− between the points A−
n

and A+

1 . Therefore it has a limit point A+
∞

∈ α−. The sequence of
points A+

1 , A
+

2 , . . . is situated on the curve α− from one side of the
point A−

1 and has similar monotonic property. Therefore it also has
a limit point A−

∞
∈ α−. Suppose that A+

∞
≠ A−

∞
. Then, since β±

n are
graphs of monotone non-increasing/non-decreasing γ -Lipschitz
functions and α− is a graph of monotone non-decreasing/non-
increasing γ -Lipschitz function, the area of Vn cannot tend to zero
as n → ∞. Therefore A+

∞
= A−

∞
= A∞. In the same way one can

introduce the limit points B−
∞

∈ α+ and B+
∞

∈ α+ and conclude
that B+

∞
= B−

∞
= B∞.

Second, let coordinates of A∞ be (ψA, ψ
′

A) and coordinates of B∞

be (ψB, ψ
′

B). Consider a real value z situated between ψA and ψB.
Since A−

n → A+
n and B−

n → B+
n as n → ∞ there exists n0 such

that for n > n0 both β+
n and β−

n intersect the line ψ = z. Denote
the points of intersections of β+

n and β−
n with the line ψ = z

correspondingly C+
n (z) and C−

n (z). Evidently, both the sequences
{C+

n (z)} and {C−
n (z)} have limits as n → ∞. Denote these limits

C+(z) and C−(z) correspondingly.
Assume that at some z = z∗ one has |C+(z)−C−(z)| = δC > 0.

The relation C+(z) ≠ C−(z) cannot hold in some vicinity of the
point z = z∗; otherwise there exists a set of nonzero measure
which belongs to all the nested strips Vn and µ(Vn) does not tend
to zero as n → ∞. Therefore for any ε there exists a value z1, such
that |z1 − z∗

| < ε and C+(z1) = C−(z1). This means that (at least)
one of the ratios

|C+(z1)− C+(z∗)|

|z1 − z∗|
,

|C−(z1)− C−(z∗)|

|z1 − z∗|

is greater than δC/2ε. Since ε can be taken arbitrarily small, this
contradicts the condition that β±

n are graphs of monotone non-
increasing/non-decreasing γ -Lipschitz functions. This implies that
C+(z) = C−(z) ≡ C(z) for all z, ψA < z < ψB.

Third, each of the curves β−
n is a graph of a monotone non-

increasing/non-decreasing γ -Lipschitz function. Passing to the
limit n → ∞ we obtain a curve consisting of the points
C(z), ψA < z < ψB. This curve is also a graph of monotone non-
increasing/non-decreasing γ -Lipschitz function with the same γ ,
(see [22, Section 4.3]), i.e. v-curve. �

Proof of Theorem 3.1. Evidently, for each p ∈ P the image s =

Σp ∈ ΩN is defined uniquely. Let us prove that for each s ∈ ΩN

there exists unique p ∈ P such that s = Σp. Consider a sequence
s = {. . . , i−1, i0, i1, . . .}, ik ∈ {1, . . . ,N}. Let us find the location
of the points p ∈ Di0 such that T−1p ∈ Di−1 , T

−2p ∈ Di−2 , etc. It is
easy to check the following:

– The points p ∈ Di0 such that T−1p ∈ Di−1 are situated in the set
Vi−1 i0 = TDi−1 ∩ Di0 . Due to the condition (i) of theorem, Vi−1 i0
is a v-strip. Moreover, Vji0 and Vki0 have no common points if
j ≠ k.

– The points q ∈ Di−1 such that T−1q ∈ Di−2 are situated in the
set Vi−2i−1 = TDi−2 ∩ Di−1 which is a v-strip. The points p ∈ Di0
such that T−1p = q ∈ Di−1 , T

−2p = T−1q ∈ Di−2 are situated in
the set Vi−2 i−1 i0 = TVi−2 i−1 ∩Di0 which is also v-strip. Evidently,
Vi−2 i−1 i0 ⊂ Vi−1 i0 . Also,Vji−1i0 andVki−1 i0 have no commonpoints
if j ≠ k.

Continuing the process, we have nested sequence of v-strips

· · · Vi−(n+1) i−n···i−2 i−1 i0 ⊂ Vi−n···i−2 i−1 i0 ⊂ · · · ⊂ Vi−2 i−1 i0

⊂ Vi−1i0 ⊂ Di0

such that Vi−(n+1) i−n...i−2i−1 i0 = TVi−(n+1)i−n...i−2 i−1 ∩ Di0 . Since

µ(Vi−n...i−2 i−1 i0) ≤ µ(∆+

n )

the area of v-strip Vi−n...i−2 i−1 i0 tends to zero as n → ∞. According
to Lemma C.1 the intersection of these nested strips, V∞, exists and
is a v-curve.

In the same manner the nested sequence of h-strips can be
constructed,

· · ·Hi0 i1···in in+1 ⊂ Hi0i1···in ⊂ · · · ⊂ Hi0 i1 i2 ⊂ Hi0i1 ⊂ Di0

where Hi0 i1...in in+1 = T−1Hi0i1...in ∩ Di0 . The area of the strip Hi0 i1...in
tends to zero asn → ∞ so according to LemmaC.1 the intersection
of these nested strips, H∞, exists and is an h-curve.

The orbit p ∈ P corresponding to bi-infinite sequence s =

{. . . , i−1, i0, i1, . . .} is generated by T - and T−1-iterations of the
intersection H∞ ∩ V∞ which according to the definition of h- and
v-curves consists of one point. Therefore p exists and is unique.

The continuity of Σ and Σ−1 follows from the following
observations:

– since T is continuous, if

p(1) = {. . . , p(1)
−1, p

(1)
0 , p

(1)
1 , . . .} and

p(2) = {. . . , p(2)
−1, p

(2)
0 , p

(2)
1 , . . .}

are close enough in P (i.e. the points p(1)0 and p(2)0 are close in
R2), then their Σ-images share the same central block |i| < k
for some k. Therefore they are also close inΩN -topology;

– if s(1) = Σp(1) and s(2) = Σp(2) share the same central block
|i| < k for some k, the points p(1)0 and p(2)0 are situated in the
curvilinear quadrangle Vi−k...i−2 i−1i0 ∩ Hi0 i1...ik , so p(1) and p(2)
are close in P -topology. �
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Appendix D. Proof of Theorem 4.1

Let e1,2 be unit vectors (11). Define the following cones

R2
++

= {a| a = xe1 + ye2, x > 0, y > 0},

R2
++

= {a| a = xe1 + ye2, x ≥ 0, y ≥ 0},

R2
−+

= {a| a = xe1 + ye2, x > 0, y < 0},

R2
−+

= {a| a = xe1 + ye2, x ≥ 0, y ≤ 0},

R2
+−

= {a| a = xe1 + ye2, x > 0, y < 0},

R2
+−

= {a| a = xe1 + ye2, x ≥ 0, y ≤ 0},

R2
−−

= {a| a = xe1 + ye2, x < 0, y < 0},

R2
−−

= {a| a = xe1 + ye2, x ≤ 0, y ≤ 0}.

Lemma D.1. Let S ⊂ R2 be a compact connected set, T be a
diffeomorphism defined on S, the operator DTp be nondegenerate for
all p ∈ S and e1, e2 be the unit vectors defined by (11).

I. Let for all p ∈ S the relations g1(p) > 0 and g2(p) > 0 hold. Then
a. for all p ∈ S one and only one of the following alternative

conditions holds
[A1] DTp[R

2
++

] ⊂ R2
++

; [A2] DTp[R
2
++

] ⊂ R2
−−

;

[A3] DTp[R
2
++

] ⊂ R2
+−

; [A4] DTp[R
2
++

] ⊂ R2
−+

b. there exists γ > 0 such that for any two points p1 =

(ψ1, ψ
′

1) ∈ S and p2 = (ψ2, ψ
′

2) ∈ S, ψ1 < ψ2 and ψ ′

1 < ψ ′

2
the images Tp1 = q1 = (φ1, φ

′

1), Tp2 = q2 = (φ2, φ
′

2) are
such that
in the case [A1] : 0 < φ2 − φ1 < γ (φ′

2 − φ′

1)

in the case [A2] : 0 < φ1 − φ2 < γ (φ′

1 − φ′

2)

in the case [A3] : 0 < φ1 − φ2 < γ (φ′

2 − φ′

1)

in the case [A4] : 0 < φ2 − φ1 < γ (φ′

1 − φ′

2).
II. Let for all p ∈ S the relations g1(p) < 0 and g2(p) < 0 hold. Then

a. for all p ∈ S one and only one of the following alternative
conditions holds:
[B1] DTp[R

2
−+

] ⊂ R2
++

; [B2] DTp[R
2
−+

] ⊂ R2
−−

;

[B3] DTp[R
2
−+

] ⊂ R2
+−

; [B4] DTp[R
2
−+

] ⊂ R2
−+
.

b. There exists γ > 0 such that for any two points p1 =

(ψ1, ψ
′

1) ∈ S and p2 = (ψ2, ψ
′

2) ∈ S, ψ1 < ψ2 and ψ ′

1 > ψ ′

2
the images Tp1 = q1 = (φ1, φ

′

1), Tp2 = q2 = (φ2, φ
′

2) are
such that
in the case [B1] : 0 < φ2 − φ1 < γ (φ′

2 − φ′

1)

in the case [B2] : 0 < φ1 − φ2 < γ (φ′

1 − φ′

2)

in the case [B3] : 0 < φ1 − φ2 < γ (φ′

2 − φ′

1)

in the case [B4] : 0 < φ2 − φ1 < γ (φ′

1 − φ′

2).

Proof of Lemma D.1. Let us prove point Ia; point IIa can be proved
similarly. Evidently, the relations g1(p) > 0 and g2(p) > 0
mean that both the vectors DTpe1,DTpe2 are situated in the same
quadrant, R2

++
,R2

−+
,R2

+−
or R2

−−
for any p ∈ S. Let for two points

p1 and p2 these quadrants are different. Connect these points by
continuous curve ζ ⊂ S. Since DTpe1,DTpe2 depend continuously
on p there exists a point p∗

∈ ζ , such that one of (DTpei, ej), i =

1, 2, j = 1, 2 vanishes; therefore g1(p∗) = 0 or g2(p∗) = 0. This
implies that point I is valid.

Let us prove point Ib. Assume that g1(p) > 0 and g2(p) > 0 hold
and the situation [A1] takes place, the situations [A2]–[A4] can be
treated similarly. It follows from condition [A1] and compactness
of S that there exists a supremum

γ̃ = sup
ξ2

ξ1
,


ξ1
ξ2


= DTpz, z ∈ R2

++
, p ∈ S.
Let ψ2 > ψ1 and ψ ′

2 > ψ ′

1 and p1 = (ψ1, ψ
′

1), p2 = (ψ2, ψ
′

2),
q1 = Tp1 = (φ1, φ

′

1), q2 = Tp2 = (φ2, φ
′

2). Then
φ2 − φ1
φ′

2 − φ′

1


= DTp1


ψ2 − ψ1
ψ ′

2 − ψ ′

1


+ r

where ∥r∥/∥p2 − p1∥ → 0 when ∥p2 − p1∥ → 0. This implies
that for close enough p1 and p2 one can choose γ > γ̃ such that
for corresponding q1 and q2

0 < φ′

2 − φ′

1 < γ (φ2 − φ1). (D.1)

This ordering is transitive: from the relation (D.1) and the relation
0 < φ′

3−φ
′

2 < γ (φ3−φ2) it follows that 0 < φ′

3−φ
′

1 < γ (φ3−φ1).
Therefore we can omit the words ‘‘for close enough’’ above and
state that (D.1) holds for any p1,2 such thatψ2 > ψ1 andψ ′

2 > ψ ′

1.
So, point Ib under the assumption [A1] is proved. In the same
manner point Ib can be proved for other three cases, [A2]–[A4]. The
proof of the point IIb consists in considering in the same manner
the situations [B1]–[B4]. �

Proof of Theorem 4.1. Since Eq. (6) is invariant with respect to x-
inversion, the strip U+

π is symmetric with respect to the origin. If
a point (ψ̃; ψ̃ ′) is situated on one edge, α+, of the strip U+

π the
solution ψ(x) of Cauchy problem with initial data (ψ̃; ψ̃ ′) obeys
the condition

lim
x→π

ψ(x) = +∞ (D.2)

whereas for initial data on another edge, α−, of U+
π the

corresponding condition is

lim
x→π

ψ(x) = −∞. (D.3)

The set U−
π is also infinite curvilinear strip related to U+

π by the
symmetry with respect to the axis ψ .

Let V be v-strip situated in an island Di between two v-curves
β̃+

i and β̃−

i . V is curvilinear quadrangle bounded by β̃+

i and β̃−

i
and two more bounds lying on α+ and α−. Taking into account
(D.2) and (D.3) one concludes that TV is an infinite curvilinear strip
stretching along U−

π having the edges T β̃+

i and T β̃−

i . This means
that TV crosses all α±

j , j = 1, . . . ,N at least once and pass through
all the sets Dj, j = 1, . . . ,N .

Let a pair (i, j) be fixed. Assume that the curves β±

i are graphs
of monotone non-decreasing functions. Then β̃+

i are also graphs
of monotone non-decreasing functions. Let for all p ∈ T−1Dj ∩ Di
the conditions g1(p) > 0 and g2(p) > 0 hold. It follows from
Lemma D.1 that for all the points p ∈ T−1Dj ∩ Di only one of the
conditions [A1]–[A4] hold. This means that the images T β̃+

i ∩ Dj

and T β̃−

i ∩ Dj consist of one connected component. In fact, if T β̃+

i
crosses α+

j or α−

j twice one can choose two pairs of points p1,2 ∈

β̃+

i , p3,4 ∈ β̃+

i ,

p1 = (ψ1, ψ
′

1), p2 = (ψ2, ψ
′

2), ψ1 < ψ2, ψ
′

1 < ψ ′

2

p3 = (ψ3, ψ
′

3), p4 = (ψ4, ψ
′

4), ψ3 < ψ4, ψ
′

3 < ψ ′

4

such that their images qk = Tpk ∈ Dj,

q1 = (φ1, φ
′

1), q2 = (φ2, φ
′

2),

q3 = (φ3, φ
′

3), q4 = (φ4, φ
′

4)

are mismatched in the sense that at least one of the products

(φ2 − φ1)(φ4 − φ3) or (φ′

2 − φ′

1)(φ
′

4 − φ′

3)

is negative. By Lemma D.1 the images T β̃±

i ∩ Dj are graphs of non-
decreasing or non-increasing γ -Lipschitz functions. Since Dj is an
island, the boundaries β±

j are graphs of monotonic functions and
by geometric reasons themonotonicity properties (non-increasing
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or non-decreasing) of β±

j and T β̃±

i ∩ Dj are the same. Therefore
T β̃±

i ∩ Dj are v-curves. They bounded the set TV ∩ Dj; therefore
TV ∩ Dj is a v-strip.

If the curves β±

i are graphs of monotone non-increasing
functions and for all p ∈ T−1Dj ∩ Di the conditions g1(p) < 0 and
g2(p) < 0 hold the proof repeats the reasoning given abovemaking
use of the conditions [B1]–[B4]. Theorem 4.1 is proved. �
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