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ABSTRACT

In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly ob-
served. These are long nonlinear waves and can be modelled by equations of the Korteweg-de Vries type.
Typically they occur in regions of variable bottom topography when the variable-coefficient Korteweg-de
Vries equation is an appropriate model. Of special interest is the situation when the coefficient of the
quadratic nonlinear term changes sign at a certain critical point. This case has been widely studied for
a solitary wave, which is extinguished at the critical point and replaced by a train of solitary waves of
the opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here we examine
the same situation for an undular bore, represented by a modulated periodic wave train. Numerical sim-
ulations and some asymptotic analysis based on Whitham modulation equations show that the leading
solitary waves in the undular bore are destroyed and replaced by a developing rarefaction wave support-
ing emerging solitary waves of the opposite polarity. In contrast the rear of the undular bore emerges with
the same shape, but with reduced wave amplitudes, a shorter overall length scale and moves more slowly.

© 2016 Elsevier B.V. All rights reserved.

1. Variable-coefficient Korteweg-de Vries equation

Large amplitude internal wave trains are commonly observed
in the coastal ocean, see the reviews by Grimshaw [1], Holloway
et al. [2], Ostrovsky and Stepanyants [3], Helfrich and Melville [4],
Grimshaw [5], Grimshaw et al. [6] and the book by Vlasenko
et al. [7]. Since these are long nonlinear waves it is now widely
accepted that the basic paradigm for these waves is based on the
Korteweg-de Vries (KdV) equation, first derived in this context by
Benney [8] and Benjamin [9] and subsequently by many others, see
the aforementioned references. In the usual physical variables to
describe internal waves in the coastal ocean the KdV equation is,
see the afore-mentioned references,

A + CAy + UAA, + Mgy = 0. (1)
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Here A(x, t) is the amplitude of the modal function ¢(z), defined
by

{po(c — uo)’¢.}, + poN*¢p =0, for —h <z <0, (2)
¢=0 atz=—h, (c —up)’p, =g¢ atz=0. (3)

This also serves to define the phase speed c. Here py(z) is the
background density field, stably stratified so that poN?> = —g o, >
0, ug(z) is a background horizontal current and h is the undisturbed
fluid depth. The coefficients ., A are given by
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It is well-known that the KdV equation (1) is integrable, and its
principal solution is the solitary wave, as the outcome of a localised
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initial condition is a finite set of rank-ordered solitary waves and
some small-amplitude dispersing radiation, see Whitham [10];
Ablowitz and Segur [11]. Here we are concerned with the undular
bore solution, which can be found as the outcome of a step
initial condition by using the Whitham modulation equations, see
Gurevich and Pitaevskii [12].

When the depth h, and background current 1y and density pq
vary slowly in the horizontal direction with x, the KdV equation
(1) is replaced by a variable-coefficient KdV (vKdV) equation first
derived in the general case by Grimshaw [13], see also Zhou and
Grimshaw [ 14] and Grimshaw et al. [ 15,6]. It has the same form as
(1) with an extra term,

C
Ar + cAy + %A + pUAA, + My =0, Q =c2I. (7)

Here the modal equation depends also on x parametrically, that
is¢ = ¢(z:x),c = c(x), and hence the coefficients u, A, Q also
depend (slowly) on x. It is convenient to transform this to the
“spatial” evolution form,

* dx X dx
X = =, T = —, (8)
c c

Qr

AT+EA+VAAX+8AXXX =0, (9)
A

=l 5= 2 (10)
c Cc

A further simplification is

v

U=0'"%4, UT—|—WUUX+6UXXX=O. (11)

A final transformation yields the canonical form relevant for a
polarity change, that is the coefficient o changes sign,

U, + aUUy + Uyxx = 0, (12)
v

- 3Q1/2'

The coefficient « varies with 7, that is @ = «(t) in general. This
equation has two important conservation laws

T
where rzf &dT, o (13)

aU?
U+ —— +Ux! =0 (14)
2 X
UL e - B (15)
2 J, 3 P

corresponding to conservation of mass and wave action flux
respectively. The first arises directly from (12) expressed in flux
form, while the second follows from multiplying (12) by U.

Our main interest here is when there is a change of polarity,
that is the quadratic coefficient i in the KdV equation (1) changes
sign at a critical point. Since Q, A # 0 for internal waves, it follows
that then « in (12) will likewise change sign. This typically occurs
when the pycnocline, a thin layer where the density gradient is
very strong, is near the surface in deep water, but near the bottom
in shallow water. For mode one waves, it is readily shown that u is
then negative in deep water, but positive in shallow water, and so
changes sign as the waves propagate shoreward. The implication
is that solitary waves are depression waves in deep water, but
elevation waves in shallow water. The behaviour of a solitary wave
as it passes through this critical point is now well understood,
see the reviews by Grimshaw [5]; Grimshaw et al. [15,6]. As a
depression solitary wave approaches a critical point, its amplitude
decreases but at the same time a trailing shelf is generated,
which grows in amplitude as the critical point is approached. The

combination passes through the critical point and then generates
a depression rarefaction wave on which rides an undular bore of
elevation waves. The corresponding theory for a periodic wave
train has only recently been developed by Grimshaw [16] and in
contrast, the waves pass through the critical point with only a very
small change in amplitude but with a polarity reversal. In this paper
we examine how an undular bore behaves as it passes through a
critical point, noting that the leading waves in the undular bore are
solitary waves while the waves in the rear of the bore are periodic
waves. Hence there is an expectation that on passage through the
critical point, the front of the undular bore will behave similarly
to how a solitary wave behaves, while the rear of the undular bore
will behave similarly to how a periodic wave behaves.

In Section 2 we present the Whitham modulation equations for
a modulated periodic travelling wave, and describe briefly how
these may be used when waves propagate in a region where o =
a(t) varies. Then in Section 3 we discuss in detail how either a
solitary wave, or a periodic wave train, or an undular bore behaves
when there is a change of polarity. The analysis is based on the
Whitham modulation equations supplemented by some numerical
simulations. We conclude in Section 4.

2. Whitham modulation equations

When the coefficient « in (12) is a constant the KdV equation
supports a periodic travelling wave, U (X — V t), which satisfies the
ordinary differential equation,

2 al? 2

where C; , are constants of integration. This has the well-known
cnoidal wave solution

U=a{b(m)+cn2(y6;m)}+d, 60 =k(X—Vr1), a7
where «a = 12my%k*.  b(m) = 1-m_ E@m , (18)
m mK (m)
V—od = oea{Z—m ~ 3E(m) }
3 m mK (m)
_ 2.9 o 3E(m)
= 4y“k {2 m 7I<(m) } (19)

Here cn(x; m) is the Jacobian elliptic function of modulus m, 0 <
m < 1,and K(m) and E(m) are the elliptic integrals of the first and
second kind,

cn(x; m) = cos(¢),

¢ dep’ T (20)
X = T 2 a4 0 S d) S 0
o (1 —msin®¢)/? 2

/2 d¢
K(m)—/0 —(1—msin2¢)1/2’

/2 (21)
E(m) = / (1 — msin ¢)? dg.
0

The expression (17) has period 27 in 6 so that y = K(m)/m, while
the spatial period is 277 /k. The (trough-to-crest) amplitude is a and
the mean value over one period is d. It is a three-parameter family
with parameters k, m, d say. As the modulus m — 1, this becomes
a solitary wave, since then b — 0 and cn(x) — sech(x), while
y — 00,k — 0with yk = I fixed Asm — 0,b — —1/2,
y — 1/2,cn(x) — cos(x), and it reduces to a sinusoidal wave
(a/2) cos(#) of small amplitude a ~ m and wavenumber k. The
integration constants C; , can also be expressed in terms of k, m, d
but the explicit expressions are not needed here.
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The Whitham modulation theory allows this cnoidal wave
to vary slowly with 7, X, that is the wavenumber k, modulus
m and mean level d vary slowly with 7,X. The Whitham
modulation equations describing this variation can be obtained by
averaging conservation laws, the original Whitham method, see
Whitham [17,10] or by exploiting the integrability of the constant-
coefficient KdV equation, see Kamchatnov [18] for instance.
Because here we are concerned with the case when &« = /(1)
varies slowly with 7, and so the variable-coefficient KdV equation
(12) is not integrable, we will use the original Whitham method,
readily adapted to this present case. A similar strategy was used
by Myint and Grimshaw [19] for a frictionally perturbed KdV
equation. An alternative method developed by Kamchatnov [20]
for a perturbed KdV equation is not available here because to
use it one must make a change of variable in (12) U = aU to
generate a KdV equation for U with a perturbation term of the
form o U /ar. But as our main concern is with the situation when «
passes through zero, this approach cannot be used here.

As three modulation equations are needed, we supplement (14),
(15) with the equation for conservation of waves,

ke + (kV)x = 0. (22)

The remaining two modulation equations are obtained by inserting
the cnoidal wave solution into the conservation laws (14), (15) and
averaging over the phase 6. The outcomes are

U2
d-,; +O{MX = 0, M = <2> . (23)
alU?®  3U2
Me+Py=0, P=(———=X) (24)

where the (- - -) denotes a 2r-average over 6. The expression M is
given by
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Cy = mBm K(m) — 5mK(m) 4+ 4mE(m)
+2K(m) — 2E(m)},
243 2)  (1—-m)b
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Gs {15m3K (m) — 34m?K (m) + 23m*E(m)

~ 15m3K (m)
+ 27mK(m) — 23mE(m) — 8K (m) + 8E(m)}.

Here the notation C4, Cs denote (cn?), (cn®) respectively, and like
b = —C, = —(cn?) depend on the modulus m only.

It is useful to note that in the solitary wave limit m — 1 and
then b ~ —1/K(m), C4 ~ 2/3K(m), and Cs¢ ~ 8/15K(m). To
leading order M ~ d?/2 and P ~ «d?/3 and then both Egs. (23)
and (24) reduce to the same equation for d alone,

dy + addy = 0, (27)

and so d can be regarded as a known quantity. In more detail, the
cnoidal wave expression (17) becomes

U=asech’*(y8;m)+d, 6=kX-—Vr),

a 28
V—ad:%:lZyzkz, (28)

with two parameters to be determined. The equation for conser-
vation of waves (22) provides one equation for k and the second

equation is

{ @2 } 2 2
— +V{—} + —oady = 0. (29)
ky J, ky Jx = ky

This can be obtained by a more careful consideration of the limit
m — 1 in the modulation equations (23), (24) by retaining
the terms in 1/K(m), or more directly by averaging the wave
action conservation law (15) directly for a solitary wave, see
Grimshaw [21] and the discussion in El et al. [22]. The pair (22),
(29) form a nonlinear hyperbolic system for a solitary wave train,
and can be solved explicitly. Indeed, using the expressions in (28),
(29) can be written as

aa )"’
Af—i—(ad—l—?)ﬁx—t—a&ad)(:o, A:{a} . (30)
This is an equation for the amplitude a alone, and is readily
solved using characteristics. Then, with a and hence V known, the
wavenumber k can be found from (22) which is a linear hyperbolic
equation for k.

In the general case for a modulated periodic wave train the
set (22), (23), (24) form three nonlinear hyperbolic equations for
k, m, d. For the case of a periodic wave modulated only in t, we
obtain the elementary solution that k, d, M are constants. But for
an undular bore, the cnoidal wave parameters will vary with both
7, X and so this elementary solution is not available. In that case
when « is a constant Whitham [10] (see also Kamchatnov [18]
for a general approach) showed that these equations can be cast
into Riemann form. This was achieved by noting that the ordinary
differential equation (16) can be expressed as

) o
Ug=—3U—mU—n)U —r3). (31)

When « is a constant, thenrq ; 5 are the Riemann variables enabling
the nonlinear hyperbolic system to be cast into a diagonal and
hence integrable form. However, this reduction is not available
here when ¢ = «(t) as then the transformation from k, m, d to
r1,2,3 contains an explicit dependence on t, which will generate
extra terms and prevent a purely diagonal form being obtained.
Hence here instead we shall work directly with the set k, m, d.

The case of a periodic wave modulated only in T was studied by
Grimshaw [5,16] and is reproduced briefly here. In this case we can
seek a solution of the set (22), (23), (24) which depends on t only,
and we see that then k, d, M are constants. Using the expressions
in (18) these yield the formula

F(m) = K(m)?{(4 — 2m)E(m)K (m)
—3E(m)? — (1 — m)K(m)?} = Co?, (32)

where C is a constant proportional to M /k and is determined by the
initial modulus mg at T = 7. The expression (32) can be written
in the normalised form

F 2

m _ (33)
F(mo) (o7
where a9 = a(1p). A plot of the normalised F(m) (the left-

hand side of (33)) when my = 0.98 (a strongly nonlinear wave)
and my = 0.85 is shown in Fig. 1. We see that as |«| in-
creases/decreases, then so does the modulus m. Then substitution
into the expression (18) for the wave amplitude yields

a mK(m)® |F(mp) (34)
a  moK(mg)2\ F(m) ~

This expresses the normalised amplitude in terms of the modulus
m, which in turn varies with « according to (33). A plot of (34) is
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Fig. 1. A plot of the normalised FN = F(m)/F(mp) (33) versus m when my =
0.98 (lower curve, black, solid) and my = 0.85 (upper curve, blue, dash). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 2. A plot of the normalised amplitude AMP = a/a, (34) versus m when
mo = 0.98 (lower curve, black, solid) and my = 0.85 (upper curve, blue, dash).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

shown in Fig. 2 when my = 0.98, 0.85, and these show that as ||
increases/decreases then so does the amplitude. In both cases there
is a surprisingly small variation of the amplitude a untilm — 1.
Formally the solitary wave can be found by taking the limit
m — 1in(32), or more directly from the solitary wave train Egs.
(22), (30). When the modulation is only in t these give the result
that k, 4 are constants, the latter yielding the adiabatic expression
a@® o¢ a. However, this requires taking the limit k — 0 which
is inconsistent with the assumption that the width scale of the
wave should be much less than that of the variable medium defined
here by the variation in «. Instead, as is now well-known, see the
reviews by Grimshaw [5]; Grimshaw et al. [15,6], a multi-scale
asymptotic expansion for the solitary wave should be used, which
confirms the adiabatic expression a®> o« « due to conservation of
wave action flux, but also reveals that the deforming solitary wave
is accompanied by a trailing shelf needed to conserve the total
mass. The essential difference between the solitary wave and the
periodic wave is that in the latter, the mass is represented by the

independent parameter d which is a constant, whereas the solitary
wave has only one parameter, say the amplitude a whose variation
is already determined, while the solitary wave mass is 2a/y and is
not constant.

When « is a constant, a representation of an undular bore can be
found by seeking a similarity solution of the Whitham modulation
equations (22), (23), (24), where the modulus m depends only on
X /aUyt, see Gurevich and Pitaevskii [ 12]; Whitham [ 10]; Fornberg
and Whitham [23] and the review by El [24]. This describes an
expanding wave train connecting a zero level at the front where
m — 1to amean level Uy (¢Uy > 0) at the rear where m — 0. At
the front the leading wave is a solitary wave of amplitude 2Uy and
at the rear the waves are linear sinusoidal waves. However, in a
variable medium, when as here « = «(t), although the Whitham
modulation equations are again available, it would seem that no
such simple wave solution is available to describe the evolution
of an undular bore. A recent study by El et al. [22] of a water
wave undular bore propagating up a slope (that is || increases)
demonstrated that the deformation at the front of the undular
bore is essentially non-adiabatic. Briefly, it is argued that if the
undular bore retains its structure as a single-phase wave train, then
the jump Uy is preserved, and so then the leading solitary wave
would have a constant amplitude 2Uy. But this is inconsistent with
the result that the leading solitary wave amplitude should behave
as |a|'3. The resolution of this inconsistency is the formation
of a solitary wave train ahead of the undular bore. This solitary
wave train can be described by a reduced set of two modulation
equations, and there is a region where the rear of the solitary wave
train interacts with the undular bore, forming a two-phase wave
interaction. The rear part of the undular bore retains its shape,
where pertinently we note that in the similarity solution for the
constant coefficient case, o occurs only in the variable x/aUyt,
implying that the effect of a variable « is in some sense equivalent
to adjusting the time scale.

3. Change of polarity for an undular bore

Our main interest here is in the case when the nonlinear
coefficient o passes through zero at a critical point, say T = 0.
Without loss of generality we suppose that « < 0, > 0 according
as T < 0, > 0 corresponding to the usual oceanic situation when
internal solitary waves propagate shorewards. Then in T < 0 the
KdV equation (12) supports solitary waves and periodic waves of
depression, that isa < 0 in (18), but in t > 0 this polarity is
reversed, and instead a > 0.

To examine this situation we performed several simulations
of the vKdV equation (12) using a pseudo-spectral code. Here
the pseudo-spectral method based on a Fourier interpolant is
implemented to solve Eq. (12), see Boyd [25]; Weideman and
Reddy [26]. In general, Eq. (12) is stiff, a common feature when
solving partial differential equations with spectral methods, and
so the numerical solution requires special treatment if accurate
solutions are to be efficiently found. We used the recently
developed time scheme, Exponential Time Differencing (ETD), which
was first proposed by Cox and Matthews [27], but as partly
recognised by the originators, this method as originally proposed
encounters certain problems associated with eigenvalues equal
to or close to zero, especially when the coefficient matrix in
the numerical scheme is not diagonal. If these problems are not
addressed, ETD schemes prove unsuccessful for some applications.
Kassam and Trefethen [28] claims that this can be addressed by
making use of ideas of complex analysis. In this paper, we use ETD
based on fourth-order Runge-Kutta time-stepping, which is called
ETDRK4 schemes in Kassam and Trefethen [28].

In the simulations reported here the coefficient « is given by

o = tanh(K7), (35)
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where K is chosen so that « varies smoothly and slowly from —1 at

T = —7p to +1at t = t1g. The initial condition is Ui, = U(X, T =
—Tp) at T = —1y where @ = —1 is either (1) a solitary wave, (2) a
periodic wave or (3) an undular bore.
(1) : Ui = ag sech’(yoX), ao = —12y;, (36)
(2) 1 Uic = ENV(X) ao {b + cn®(yoX; m)},
2 1-m E(m)
ag=—12my; - b= —— — : (37)
m mK(m)
(3) : Ui = Ug ENV (X). (38)

In case (1) the evolving solitary wave has a time scale of (y,V) !
where the speed V = 4y02, and so to be slowly varying we choose
K <€ pwVv = 4)/03. In case (2) the periodic cnoidal wave (17) is
enclosed inside an envelope ENV (X), defined to be positive for all
X, with a maximum of 1 at X = 0 and a width much greater
than 2K (m)/yo, the spatial period of the cnoidal wave. Typically we
choose m to be quite large, say m = 0.95 and then choose ENV (X)
accordingly A suitable choice is

ENV(X) = %{tanh I'X+L)—tanh I"'(X — L)}. (39)

Here L > K(m)/yo and I' < yp, say I' = 0.5y,. Again the
temporal variation of @ should be much slower than that of the
individual waves, so that, since m ~ 1, we choose K « 47/03. In
case (3) ENV (X) is chosen to be very close to a box of height a, and
of very long length 2L, that is, choose K~ « 1 « 2L Witha <
0, Uy < 0, the front end of the box is then expected to generate
an undular bore before there is a significant change in «. Since the
leading wave in the undular bore is a solitary wave of amplitude
2U, we choose K so that K <« 40> where here Uy = —602. The
rear end of the box will generate a rarefaction wave.

The behaviour of a solitary wave as it passes through this critical
point is now well understood, see the reviews by Grimshaw [5];
Grimshaw et al. [15,6]. As the solitary wave approaches the critical
point, its amplitude decreases as a = ag|e|"/? but at the same time
the amplitude of the trailing shelf grows as |«|~%/3. Close to the
critical point, when the solitary wave and the trailing shelf have
comparable amplitudes, the adiabatic behaviour breaks down. The
whole structure passes through the critical point and in 7 > 0
generates a depression rarefaction wave connected to the original
zero level by an undular bore of elevation waves. The waves in the
undular bore have a shorter length scale than the rarefaction wave,
giving the appearance of a wave train of elevation solitary waves
riding on a depression pedestal. In this region where « > 0, the
solitary wave train Egs. (27), (30) have a similarity solution

X _XO ! ’ ’
d= s n=f a(th)dt’, X < Xo, (40)
n 0
A_lpﬁa—%ﬂ” 5_/“awwww
n né ' . (COREI (41)

a= otl/3,A2/3.

Note that the X; is not known, and its determination requires a
detailed matching with the solution at the critical point, beyond
the scope of this present article. Also the rarefaction wave (40)
can only extend to a point X — Xo = —L.() where L,(n) is
likewise undetermined. But the mass of the rarefaction wave is
then —L2()/2n and this can be approximately equated to the
initial solitary wave mass My = 2do/vo = —24(|ag/12[)'/? (36),
thus giving an upper estimate for L.(n). The expression (41) for
the solitary wave amplitude a holds on the domain —L.(n) <
X — Xo < —Ls(n) where the upper bound Ls() determines the
amplitude of the leading solitary wave, that is a; = 3a/3L,/n°>/3¢.

The value of a; and hence L, is undetermined and requires matching
with the solution at the critical point, beyond the scope of this
present article. But an approximate estimate might be based on
the assumption that since the emerging solitary wave train is the
leading edge of an undular bore resolving the jump at the rear
of the rarefaction wave, and then a; = 2L./n, where in turn L,
is estimated from conservation of mass, as above. When « is a
constant, for instance when t > 15, n ~ at, & = 3al/3/2p*/3
and thena ~ —2(X — Xp) /at. A numerical simulation of the vKdV
equation (12) with the initial condition (36) is shown in Fig. 3. The
outcome shows qualitative agreement with all the above features.
For the parameters in this simulation My = —2.2,L, = 2.1n"/? and
then a; &~ 4.2n7/?; at T = 15 = 5000, 5 = 4307 (40), and then
as ~ 0.064, in good agreement with the numerical simulation.

In contrast, the corresponding theory for a periodic wave train
has only recently been developed, see Grimshaw [ 16]. The periodic
wave train deforms adiabatically according to the expression (32).
As @ — 0 it can be shown that m ~ « and so m — 0, see Fig. 1.
But from (34) it can be shown that the amplitude a tends to a finite
value, see Fig. 2. The wave train then passes through the critical
point as a linear wave of finite amplitude, but in T > 0 reverses
polarity according to (18), this being achieved by a phase change in
the linear wave around t = 0. A numerical simulation of the vKdV
equation (12) with the initial condition (37) is shown in Fig. 4, and
there is very good agreement with the asymptotic theory.

These two contrasting scenarios raise the issue of how an
undular bore will behave as it passes through a critical point. The
leading waves are close to solitary waves, and might be expected,
asinthe study by El et al. [22] to form a solitary wave train ahead of
the undular bore. But here each solitary wave in that wave train is
expected to decrease in amplitude and after passage through the
critical point to be replaced by a train of elevation waves, riding
on a depression pedestal formed by a depression rarefaction wave.
On the other hand, the trailing waves are almost linear periodic
waves and might be expected to pass through the critical point as
linear periodic waves of finite amplitude, with a reversed polarity
as « increases. In the lack of a complete analytical theory obtained
from the Whitham modulation equations (22), (23), (24), we have
resorted here to numerical simulations of the vKdV equation (12).
A typical example is shown in Fig. 5 where Uy = —12 and we set
K = 5, whereas 0 = +/2 and so K < 4¢3 = 11.31. Simulations
with a smaller value of K are similar, but allow the undular bore
to develop a finer structure before reaching the critical point, see
Fig. 7. Comparison of the initial structure at « = —1 with that
at « = 0 and finally at « = 1 indicate that the leading solitary
waves decrease in amplitude and then after the critical point, there
is an indication that a depression rarefaction wave is forming at the
front of the undular bore, with elevation solitary waves riding on
this pedestal. In contrast the rear of the undular bore retains its
shape and passes through the critical point. Subsequent evolution
into the region where @ = 1 will lead to a dispersing nonlinear
wave train, since the whole structure is negative in a region where
o > 0. In particular note that the decrease in the undular bore
amplitude indicates non-adiabatic behaviour, as it was shown by
El et al. [22] that if an undular bore were to deform adiabatically
as a single-phase structure, then the jump across the bore is
preserved.

In more detail, for comparison Fig. 6 shows a simulation with
the same initial condition, but with « = —1 constant. The leading
edge now develops as an undular bore. The top panels of Figs. 5
and 6 when « = —1 in Fig. 5 are identical. In the middle panel
when o = 0in Fig. 5 we see that the effect of variable « has caused
the leading solitary wave to decrease markedly in amplitude and
consequently slow down; the remainder of the undular bore has
retained its shape, with an overall slight decrease in the wave
amplitudes. In the region where 7 > 0, > 0, the leading
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part consists of a depression rarefaction wave and a solitary wave
train riding on it. This may be described by the same asymptotic
solutions (40), (41) developed above for a single solitary wave,
except importantly that the variables Xg, L, as; are now different
although again determined by matching with the solution near the
critical point. This is beyond the scope of the present article, butas a
rather rough estimate, we again equate the mass —L?(n)/2n of the
rarefaction wave to My where now M is the mass carried by the
leading solitary wave in the developing undular bore; as this has an
amplitude 2Uq, My = —24(|Uy/6|) /2. Then we again estimate that
as = 2L, /n. For the simulation shown in Fig. 5, My = —33.9, L, ~
5.8n'/2 and then a; ~ 11.6n"%;at 1 = 15 = 4, n = 2.86 (40),
and then a; & 6.9, in rather good agreement with the numerical
simulation.

On the other hand the rear of the undular bore would seem to
be changing adiabatically. Hence we examine the structure of the
modulation equations as @ — 0. Assuming that in this limit the
amplitude remains finite, then the expression «a = 12my2k? in
(17) indicates that the modulus must decrease with m ~ |«|; this
is the case for the periodic wave train discussed above. Then, as
o — 0, it follows that M remains finite but P — 0, see (25), (26).
The modulation equations (23), (24) then imply that M, d become
steady, that is M;, d; — 0. In this limit there will remain an X-
dependence, and Fig. 5 shows that a has a straight-line dependence
on X as in the initial undular bore. Otherwise, the situation is
similar to that for a periodic wave train, and the rear of the
undular bore will pass through the critical point as a linear wave.
Essentially, as « — 0 the vKdV equation (12) becomes a linear
equation with constant coefficients and can support linear periodic

waves, but this cannot be the case for the leading solitary waves
which require a balance between the nonlinear and dispersive
terms even when o« — 0.

4. Discussion

Our focus in this paper is on how an undular bore behaves when
it passes through a change of polarity. The main outcome is in the
numerical simulation shown in Fig. 5 where the parameters have
been chosen to be typical of those which might occur in the coastal
ocean. The front of the undular bore is a depression solitary wave
whose amplitude decreases as the critical point is approached
and emerges after the critical point as a depression rarefaction
wave with several elevation solitary waves emerging from this
pedestal. The rear of the undular bore retains its shape, but the
wave amplitude decreases and the bore moves more slowly. The
deformation of the undular bore is a non-adiabatic process due
mainly to the inconsistency between the preservation of the jump
and hence the leading solitary wave amplitude if it were adiabatic,
and the adiabatic change in the amplitude of a solitary wave as «
varies, see El et al. [22]. Consequently, the Whitham modulation
equations (22), (23), (24) cannot be used quantitatively here, even
if explicit solutions could be found, but nevertheless do provide
some useful qualitative insights. In the case studied by El et al. [22],
|| increased, and consequently the solitary waves at the front of
the undular bore grow in amplitude and are emitted ahead of the
undular bore as a solitary wave train satisfying (30); the rear of this
solitary wave train interacts with the undular bore forming a two-
phase wave interaction region. In contrast, in the present study,
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|| initially decreases and so the solitary waves at the front of the
undular bore are immediately absorbed into the undular bore in a
two-phase interaction region. But after passage through the critical
point, || increases, and the leading solitary waves move ahead
but are now riding on a negative pedestal which has the form of
depression rarefaction wave. This last feature would seem to be
adiabatic and can be modelled the solitary wave train reduction
(27), (30) of the full Whitham modulation equations.

In the internal wave context, quite often a cubic nonlinear term
is added to the KdV equation (1), and hence also to the vKdV
equation (12), especially when there is a change of polarity. The
consequences for a solitary wave have been examined in detail,
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Fig. 6. A simulation of the vKdV equation (12) when « = —1 is constant, for the
undular bore initial condition (38) with Uy = —12 and ty = 4; the top panel, middle

panel and the bottom panel are at the same times as the corresponding panels in
Fig. 5. Note the slight variation in the horizontal and vertical axes.

see the reviews by Grimshaw [5]; Grimshaw et al. [6], and depend
inter alia on the magnitude and sign of the coefficient of the
cubic term. However, the analogous theory for an undular bore
in such an extended KdV equation has yet to be developed, and
indeed would appear to be much more complicated. In particular
only recently has the Whitham modulation theory for an undular
bore in the constant-coefficient extended KdV equation been
developed by Kamchatnov et al. [29], and it emerges that there are
sixteen different cases to be considered. Although these Whitham
modulation equations could be readily extended to allow for
variable coefficients in the same manner as was done here, the
detailed analysis and necessary numerical simulations will be a
topic for future study.
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