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Abstract

The Hamiltonian Hopf bifurcation has an integrable normal form that describes the passage of the eigenvalues of an equilibrium
through the 1 —1 resonance. At the bifurcation the pure imaginary eigenvalues of the elliptic equilibrium turn into a complex
quadruplet of eigenvalues and the equilibrium becomes a linearly unstable focus—focus point. We explicitly calculate the frequency
(ratio) map of the integrable normal form, in particular we obtain the rotation number as a function on the image of the energy—
momentum map in the case where the fibres are compact. We prove that the isoenergetic non-degeneracy condition of the KAM
theorem is violated on a curve passing through the focus—focus point in the image of the energy—momentum map. This is
equivalent to the vanishing of twist in a Poineanap for each energy close to that of the focus—focus point. In addition we show
that in a family of periodic orbits (the non-linear normal modes) the twist also vanishes. These results imply the existence of all
the unusual dynamical phenomena associated with non-twist maps near the Hamiltonian Hopf bifurcation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the dynamics of a Hamiltonian system near equilibrium points is of fundamental importance. In
the elliptic case, the eigenvalues of the linearization are pure imaginagy,+iw;, j =1, ..., n, wherenis the
number of degrees of freedom, which will be 2 in the following. By the Lyapunov Centre theorenmitrenal
modes of the linear approximation persist in the non-linear system when the eigenvalues are non-resonant. The
resonant cases were much more recently tre@@d 7,6,16] In some sense, the most exceptional resonance is the
so called 1 —1 resonance, in which the quadratic p&g of the HamiltonianH has degenerate eigenvalues and
is not definite, 2, = w(p? + x?) — w(p% + y?). The unfolding of the normal form gives a family of Hamiltonian
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systems with an equilibrium point that loses stability by passing through thellresonance. This is called the
Hamiltonian Hopf bifurcation, and was studied in detail[h¢,20,21] also seg2,7].

When the normal form of the corresponding family of Hamiltonians is truncated it becomes Liouville integrable.

In this paper, we show that in the integrable normal form of the Hamiltonian Hopf bifurcation the twist vanishes
near the bifurcation point. The flow on an invariant 2-dimensional torus is characterised by 2 frequencies. The ratio
of these frequencies is the rotation number of the torus. For fixed energy the energy surface is foliated by 2-tori
almost everywhere. For a one-parameter family of tori the rotation number is a function of the family parameter.
If this rotation function for a family of tori on the energy surface has a critical point we say the twist vanishes for
the particular torus at which the critical point occurs. Another, equivalent, way of thinking about this is to consider
a Poincag section transversally to the torus in question and study the resulting mapping of an annulus. In the
integrable case, the annulus is foliated by invariant curves. If the rotation number changes from one invariant curve
to the next there is twist.

A torus with rational rotation number and twist breaks into a PomeRBirkhoff island chain under generic
perturbation. At the heart of this chain are an elliptic and a hyperbolic periodic orbit. When the twist vanishes and
the rational rotation number is near the critical value (assumed to be a minimum or maximum) the perturbation has
a different effect. First of all there are two PoineaBirkhoff island chains with periodic orbits of the same period.
When the energy (or an external parameter) is changed so that the rational rotation number reaches the extremur
these two island chains annihilate in an interesting so called reconnection bifurcation. In this bifurcation, there
appear meandering curves, which are invariant curves that are not graphs over the unperturbed invariant curves.

These dynamical consequences of vanishing twist are well known. They were first descr[t8Y bnd later
studied by[12,4,19] In [15] and[10], it was shown that the vanishing of twist in one parameter families of maps
occurs near the 1 : 3 resonance[9h we have shown that also in 4 dimensional symplectic maps the vanishing of
twist appears near resonance. More recentiglinwe have shown that the twist also vanishes near the saddle-centre
bifurcation, in which one multiplier passes through zero. In this paper, we show that the principle that the twist
vanishes near resonance also applies in the Hamiltonian Hopf bifurcation. For flows, the condition of vanishing twist
is one of the conditions for the standard form of the KAM theorem to hold. In this setting, it is usually called the
isoenergetic non-degeneracy condition. There exist KAM theorems with weaker conflititBisso that vanishing
twist does not necessarily imply that the torus will be destroyed. It does mean, however, that a resonant twistless
torus will create all the unexpected dynamics described by the twistless standard map.

In the following two sections, we present well known material about the Hamiltonian Hopf bifurcation, in order to
introduce the Hamiltonian and its energy—momentum map and to fix our notation. Then our own contribution starts
with the derivation of the actions and the rotation number. The rotation number and its derivative are analysed near
critical values of the energy—momentum map, namely near the isolated focus—focus point in the compact case anc
on the family of relative equilibria. The details of the expansion of the elliptic integrals are givenApgeadix A

2. Hopf normal form

Consider coordinateg = (g1, g») and conjugate momenia= (p1, p2) so that the symplectic form oR* is
£2 = dp1 A dg1 + dp2 A dgo. The normal form for the Hamiltonian Hopf bifurcation is

H(q1, g2, p1, p2) = B+ o + 8yl + I3) + CT'? + 2B s + 2D + O3(Iy, I, I3), 1)

wherels = pag1 — p1g2, I» = 3(p? + p2), I’s = 3(¢% + q3), I's = p1q1 + p2g2, andsis abifurcation parameter,
B, v, B, C, D are real constants such thiat£ 0 andD # 0. The expressio®s denotes terms of order no less than
3 with respecttd;, i = 1, 2, 3. For simplicity we will use the notatio = 8 + §y. The system has an equilibrium
point at the originp; = ¢; = 0 with eigenvalues/—3 + iw. For ease of notation we write= /—§ whens < 0,

so that the eigenvalues of the equilibrium afe + iw. The dependence af on§ is not essential for our purposes,
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because # 0. By a symplectic scaling with multiplier the parametecan be scaled to 1, aridl can be scaled
to £1 at the same time. We find it useful, however, to keep unscaled variables and parameters until the very last
section.
The Hamiltonian systetfi)is Liouville integrable when thé@; terms are omitted. A second independent constant
of motion isI. It generates th6' symmetry

cosy siny
) (2)

.ol 4 4
@S xR = R, &9, q, p) =(Spq, Ssp), Sy = (—Sinz? coss
The corresponding momentum map R* — Ris given byJ(g, p) = p2q1 — p1g2, WhichisI;. Sincel generates
the periodic flowd with period 2r it is an action of the integrable system. We denote the (constant) vallieyof
j- To perform the reduction with respect to this symmetry we use invariant theory, s¢&] eSjngular reduction
occurs in this example because the actiois not free: the equilibrium (= the origin) is a fixed point of this action.
The algebra of polynomials iR* that are invariant undep is generated by™, I, I3 and 'y = p1g1 + p2go.
This means that any polynomial gf, g2, p1, p2 that is invariant unde® can be written as a polynomial @t,
i=1,...,4. The generators satisfy the relations

G(I)=T?/2+T7/2—2I3I53=0, I3 >0, I3>0. ©)

The reduced phase spafe = J~1(j)/S* is defined by(3) with I'1 = j as a semialgebraic variety 3 with
coordinates [, I's, I4). If j # 0 the reduced phase spakgis one sheet of a two-sheeted hyperboloid given by
(3), so it is a smooth manifold. But fof = 0 it is half of an elliptic cone and hence is not smooth because of the
singular point of the cone at the origif{, I3, I'4) = (0, 0, 0).

The reduced Hamiltonian is

H{(I2, I3, Ty) = wj + 2+ 813 + Cj? 4 2BjI5 + 2DIE. (4)

The surfaceHj_l(h) is a parabolic cylinder inl(>, I3, I'4) that is independent of. The integral curves of the

reduced system are given by the intersection of the suaedgth the surfaceHj_l(h), as illustrated irFig. 1L We
denote the intersection by ;.

S

o
£
4]
Z
-
z

TrTY

Fig. 1. Atypical intersectio/;, of the reduced phase spagand the energy surfadej‘l(h).
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The Poisson brackét, -} associated with the standard symplectic struct2ien R* defines a Poisson structure
on the algebra of invariant polynomials with brackets

{I', I} = {I'1, I3} = {I'1, I3} =0, %)
{I2, I3} = T4, (I3, 14} =—2I3, {I4, 12} =-20>. (6)

The momentum map of the! action used for the reduction induces the Casimirin this Poisson bracket. In
addition, also the relation between the generaf®ygiven byG is a Casimir. Accordingly, the nonzero brackets
give a Poisson structure &¥ with coordinates{>, I3, I'4), that has the reduced spadgsas its symplectic leaves.
It can be written as

{I2, I3} = 0G/0ls, {I73, T4} =03G/dl%, {4, I2} =0G/dl3. (7)

The reduced equations of motion are

I ={I H~}—1"8Hj
I3 ={I3, Hj} = —TI4, 8)

0H,

[a={Iu, Hi} = —2I + 2I™ .
u={Iy, Hj} 2+ 33113

The integral curves of this flow are given by; ;,, the intersection of; ande_l(h). In general the intersection of
these two manifolds is either empty or diffeomorphic to a circle. The preimage of any point in reduced phase space
is the set of points in original phase space that are mapped to this point by the momentumifosme point in
the preimage is known the others can be obtained by letting the fldwiaf. the map®) act on this point to get
the complete fibre. This gives a circle unless starting in the origin. Therefore the preimage of agiydkea two
dimensional toru§? in the phase space of the original system.

Exceptions occur for equilibrium points of the reduced system. They occur either when the sﬂﬂﬁ%(@e)

is tangent toP; or whenj =0 andHo‘l(h) contains the singular point at the origin (which implies= 0). The
preimage of the singular point is not a circle, becalise= I3 = 0 impliesq1 = g2 = p1 = p2 = 0 and this is

a fixed point of the flowd. This is the equilibrium point in the full system that undergoes the Hopf bifurcation.
All other equilibrium points of the recuded system are reconstructed to periodic orbits of the full system; they are
relative equilibria of]. The S1 action generated hyis not free. The origin is a fixed point, and this is the reason
why singular reduction is needed in this example.

3. Energy—momentum map

Using the reduced system we can find the critical values of the energy momentum map

F:R*>R%  (p,q)— F(p,q) = (H(p.q). J(p.q)). )

The values of the energy—momentum map are denoteld,jy.(For every regular value &f the preimage in phase
space is a two dimensional torus. The critical values are determined from equilibrium points of the reduced system
because their preimages are fitt Since we are interested in a neighbourhood of the origin in phase space for
smalls we will only consider a small neighbourhood of the origin in the image of the momentum map.

Consider the reduced equilibrium points caused by the singularity in the reduced space first. This singularity
occurs forj = 0. The singular pointi(>, I3, I'4) = (0, 0, 0) has energy: = 0. The equilibrium at the origin in
phase space is therefore mapped to the origin in the image of the momentum map.
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Whené > 0 the intersectiod g restricted to a neighborhood of the origin in reduced phase space consists only
of the origin. It reconstructs to an elliptic equilibrium. However§ ik 0 thenMg o is a non-smooth circle with a
corner, if it is compact. The preimage &fy o is diffeomorphic to a pinched torus in this case.

Consider next the equilibrium points caused by a tangendy;aind Hj*l(h). At these critical values off;
the gradient ofH; and the gradient o are parallel. Sinc@G /oI’y = I'; the tangency may occur only on the

hyperplanel’y = 0. The intersections af; andHJfl(h) with this hyperplane are one branch of a hyperbola and a
parabola, respectively. They are described by the equations

j =403, (10)

(8 + 2Bj)?
8D

3+ZBJ')2

h=wj+Cj?+I2— D

+zD(@+- (11)
At the extremal values dfi the two curves are tangent. Eliminatidg in (10) using(11) gives a polynomial of
degree 3 in3 depending of andh

Q3(I3) := —8DI3 — 4(8 + 2Bj)[% + 4(h — wj — Cj?) 3 — j*> = 0. (12)

This polynomialQ3(73) gives the value of*42 obtained fromG = 0 and expressed in terms b%. The tangency
between the hyperbold0) and the parabolél1) occurs wherQs has a double root. We will first discuss all values
of (k, j) for which a tangency occurs, irrespective of them satisfying the constigintsO andls > 0. In a second
step, the critical values of the energy momentum will be found by consideration of these constraints.

To parametrize all tangencies we make the anga(z) = —8D(z — d/2)%(z + s2/ D/2) with parameterd and
s parametrising the double and single root®§, respectively. This leads to the parametrisation of the tangencies
by s € R. By direct computation, we obtain the basic

Lemma 1. The discriminant locus af 3 that contains the critical values of the energy—momentum map is given by

Jort(s) = sd(s). d(s) = gty (13)

heiit(s) = wjeiit(s) + Clerit(s)? — 2d(s)2D + 2sjcrit(s).

The rootI3 = —s2/D/2 always has the opposite sign thAnThe curve kerit(s), jerit(s)) has singular points
whens has one of the singular values satisfyings2 — 3s°D + §D = 0. The number of singular points changes
when the discriminant 1082(D? — §B2) vanishes. For smalb| the only change occurs &t= 0, seeFig. 2, for
two slices of the “swallowtail”.

For 8 > 0, the curve has two singular points near the origin for serag—+/8, +/8). The two singular points
are located at

1 B
= t———08%2 4 52+ 0(8%?)

V27D op2? (14)
oo a2 32 2B2=3D o | sz
V27D 18D?

for smalls > 0. The curve of critical values has a self-intersectios?at 5. The intersection point at the origin
marks the elliptic equilibrium with eigenvaluesi- +/8). The slopes of the intersecting curves are given by the
imaginary parts of the eigenvalues.

Fors < 0, the equilibrium point at the origin is unstable with eigenval/ess + iw. The curve {cit(s), Acrit(s))
does not intersect the origin, instead the origin is now an isolated critical point. The curve is above the origin for
D < 0 and below forD > 0, e.g. the point on thi-axis withs = 0 is at (j, 1) = (0, —82/8/ D).
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Fig. 2. The discriminant locus of the polynomi@k is the thick (red) line fos = —0.5 (left) ands = 0.5 (right). The critical values of the
energy—momentum map are contained in the discriminant locus. The white region is the image of the momentunrsaf.féhe triangular
part fors > 0 in the right picture is only in the image of the energy—momentum mapfer0. (B = C = D = o = 1.0).

Only tangencies that occur with the part of the hyperbola in the positive quadrant give critical values of the
energy—momentum map sin¢g and '3 are both non-negative. The double rod(s) nears = 0 occurs at

5
d(s) = —— — O(s). 15
() = —555 — 00s) (15)
Near the intersection at the origin aroune: 4-+/3 the double root is

d(s) = g(is — V/8) 4+ O(%s — /3)? (16)

If D > 0 this implies that the smooth curve &< 0 is in the (boundary of the) image of the energy—momentum
map, while the part of the curve withe (—+/8, +/3) is notin the image fos > 0. Conversely, foD < 0 the smooth
curve fors < 0 is not in the image, while fos > 0 only the triangular part with € [—+/5, v/3] is in the image.
Therefore the union of the bifurcation diagram (i.e. the set of critical values of the energy—momentum map) for
and— D gives the discrimiant of the polynomigls.

The type of the preimage of the critical values is determined by the character of the interaggtidrhe positive
half of the hyperboloids projects onto the area above the hyperbola giverjdyg 4>1%. If the parabolg11)
touches the boundary of the area from the outside, the preimage in the full phase space is a circle, hence a stabl
periodic orbit. If the parabola touches from the inside, the preimage is a circle with a separatrix, hence an unstable
periodic orbit. This can only occur whed < 0, because then the parabola is open upwards. It only occurs when
8 > 0 for sbetween the two singular values enclosing zero. In all other cases the parabola touches from the outside.
The complete bifurcation scenario in the two cases therefore is as followBigs&for illustration.

The caseD > 0: Fors < 0, there is an isolated focus—focus point at the origin and a smooth curve of elliptic
periodic orbits nearby. Fat > 0 there is an elliptic equilibirum point at the origin and there are two families of
elliptic periodic orbits (non-linear normal modes) emanating from the equilibrium.

The caseD < 0: For§ < 0, there is nothing but an isolated focus—focus point at the originé BoD there is
an elliptic equilibirum point at the origin and there are two families of elliptic periodic orbits (non-linear normal
modes) emanating from the equilibrium. Both families terminate in cusps formed with the same family of hyperbolic



H.R. Dullin, A.V. Ivanov / Physica D 201 (2005) 27-44 33

periodic orbits. The set of critical values therefore forms a triangle with two cuspoidal corners and one regular corner
at the origin.

4. Actions

From now on we shall assume the paramBt¢o be a positive number. In this case, each constant energy level
is compact and by the Liouville—Arnold theorem it is possible to define action-angle coordinates near regular points
of F. To construct the second action we need to integrate the canoncial 1fawer M ; ;,. The differential @
is the symplectic structure induced from the original symplectic strugtuby the reduction map on the reduced
phase spacg;. To find the form® we chose’s as one variable and find its conjugate variable by solving the partial
differential equation

{f(I2, I3, 1), I3} = 1. 17)
A solution of(17)is the function

Iy
15, I3, Iy) = —. 1
f(I2, I3, I'y) T (18)

Then the canonical one form @ = (I'4/2I3)dI3 and we obtain

1 rydr: 1 4505 — j2
7§ 4dl3 valals =y (19)
Mjn I3

Toh, j) = — -
2. J) 2rs 2t Ju, 2

2
for the second action. Heré&y is considered as a function 6§ by first expressindy in terms of I and 3 on the
reduced phase spaég and then by expressing in terms of/3 using H; = . As a result, the polynomiads is
found as already given k{L2). This leads to

Theorem 2. The second action integral in the Hamiltonian Hopf bifurcation normal form Witk 0 is defined on
the elliptic curve

E={(w,2):w*= 03(2)}. (20)
It is explicitly given by the integral of third kind
1
b=t f Y. (21)
4 | z

The formula for the action can also be obtained in a classical way, using polar coordinat§0asArslightly
different coordinate transformation elucidates the connection between the two approaches. The new symplectic
structure is2 = dP,; A dg 4+ dJ A d¢ and “symplectic polar coordinates” valid qu + q% > 0 are introduced by

sing

g1 = \/2g C0S9, p1 = Py\/2gcosp — J—=, (22)

g 2g

. . cos¢p
g2 = +/2gsing, p2 = Poy/2gSing + J——. (23)

g /2g

The invariant polynomials are related to these coordinates by
2 I

In=J I;x=gP;+—, Iz3=g, Iy = 2gP. (24)

4g’



34 H.R. Dullin, A.V. lvanov / Physica D 201 (2005) 27-44

In these variables, the Hamiltonian takes the form

J2
H=gP?+ Pl wJ + (8 +2BJ)g + CJ? + 2Dg?, (25)

and the equations of motion are

N
¢=—+w+2Bg+2C/

2g
g =2gPg, (26)
) ) J?
Py = P2 —Tg?_+(8+2BJ)+4Dg.

Solving the Hamiltoniar§25) for Pg gives

P2 = Q:’g(f) (27)

so that the action integrgl 9) is obtained from integrating the canonical fofpdg over a path with constamgt.

5. Rotation number

We want to check the isoenergetic non-degeneracy condition of the KAM theorem. A torus is non-degenerate in
this sense if the map from the actions to the frequency ratjiasw; restricted to a constant energy surfate= h
is non-degenerate. This means that the frequency ratio (or rotation nuWiber), /wo changes when the torus is
changed at constant energy. On a local transversal Péiseation this condition is called twist condition.

In our case, this is equivalent to the non-vanishing of the partial derivative of the rotation nifmatr respect
to the action/1. By definition the winding number is the ratio of frequenciggw,, corresponding to the actions
J1 and J». If the Hamiltonian is expressed in terms &f and J, thend1 H(J1, J2) = w1 and oz H(J1, J2) = wo.
Therefore, we find by implicit differentiation of (%, j) = j2 that

w1 daJ2

W = (28)

w2 9j

However, the simplest way to obtaild is to observe that it is the advance of the angjleonjugate tal during
the time of a full period of the motion of = I'3. The period of the motion is obtained from the reduced equation
of motion I3 = —I'4. On P; this gives

2 =4nr; — 2 (29)

and eliminatingl, by usingH; = h gives

drs\?2
(d—f) = AIsTy(Is b, j) — 2 (30)

By separation of variables, we obtain the period of the reduced motion as

(1)

T )_f drs _%‘dz
= Jann -2 Jow’
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To obtain the advance @fin time T, we change the timein (26) to “time” I3 and find

dp  j+ 2I3(w + 2C)) + B(2I3)?

_ — 32
ars 2031y (32)

Expressing in terms ofl3 on the reduced phase spateas before the period of the solution of this equation gives
the rotation number2W. The rotation numbéew can, therefore, be written as a linear combination of integrals of
the first, second and third kind,

d d i [ d

2aW(h, ) = (0 + 2Cj)f Ziopp gl = (33)

w w 2] zw
The first integral is of the first kind and proportional to the perfod’he last integral is of the third kind. When
D > 0the polynomialQ3 has three real roots whep {) is in the image of the energy—momentum map. We denote
these roots byneg, Zmin, Zmax SUCh thatneg < 0 < zmin < zmax. The closed loop integrals encircle the finite range
of positive 03, and therefore can be rewritten by the rule

7€ P / (34)

The elliptic integrals can be transformed to Legendre standard intekj(&)s E(k), andI1(k) of the first, second,
and third kind, respectively, with modullésand characteristic (or parameteargyiven by

Z — Zmi Z — Zmi
kz_ max min n= max mln‘ (35)

b
Zmax — Zneg Zmax

In this notation we obtain

Theorem 3. In the Hamiltonian Hopf bifurcation normal form with > 0 the rotation number as a function of
(j, h) on the image of the energy—momentum map is given by

(2Bzneg+ w + 2Cj)K (k) + 2B(zmax — zneg E(k) + jTI(n, k) /(2Zmax)
72D, /Zmax — Zneg

Explicit formulas for the vanishing of the twis#/d; = 0 can be derived from this.

The level lines of the rotation numb@r(j, &) are shown irFigs. 3 and 4The functionW (}, k) is dynamically
relevant only in the image of the energy—momentum part, i.e. not in the grey regions of the figure. Nevertheless, it
can be easily analytically continued into this region, and in order to make the spiralling nature of the level lines more
obvious we decided to include these non-relevant parts of the contours. In the next section, we will show that these
level lines are in fact spirals. Now it is clear that spirals cannot be the level lines of a continuous function. So in fact
W(j, h) is locally well defined and smooth for every regular valye:f, but globally it is not single valued. The
particular representation in terms of Legendres complete elliptic integrals contains a branch cut along the positive
h-axis, across whiclVis discontinuous. In this way the spirals are composed of pieces of curves beginning on this
cut and ending on the other side of it. The valuaMthen jumps by one, but the level line smoothly continues
across the cut. In order to avoid cluttering of level lines near the origin, the maximal valdasfwhich level
lines are still drawn is 3. This explains the apparent gap in the middle of e.g. the lower right pdrigl. farThe
spacing of the level lines is 1/10. The details of these pictures will be explained in the next two sections.

The rotation number is a complicated function of the constants of mojigr).(Near the cases where the
discriminant of the elliptic curv& (20) defined byQ3 vanishes, simpler formulas can be derived. This occurs either
at the boundary of the image of the energy—momentum map descril{@8pypr at the isolated focus—focus point
(h, j) = (0, 0) inside the image. In the next section, we will first treat the latter case.

W(j.h) = (36)
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Fig. 3. The level lines of the rotation number on thigh) plane. The bifurcation parametéris decreasing from top to bottond,=
—0.2,-0.13 —0.05 (w = B= C = D = 1). The right panes show zooms of the left ones. The level lines are spirals. The part of the pic-
tures outside the image of the energy—momentum map is grey. The boundary of the image corresponding to a family of relative equilibria is the
thick (red) line. The crossing of the curve of vanishing twist with the boundary is indicated by (blue) disks, as dgig&h by
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Fig. 4. The level lines of the rotation number on thei) plane. Here, the imaginary part of the eigenvaluis changed in addition, from top
to bottom §, w) = (—0.02, 1/2), (—0.1, 1), (—0.2, 2) (B = C = D = 1). The slope of the tangent of the line of vanishing twist at the origin is
shown as a dashed line, as given(B4).
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6. Rotation number near the focus—focus point

We introduce a small parameter by scalingndj by epsilon, hence replaée— he, j — je. This means that
we obtain an expansion that approaches the origin on a ray. Alternatively, one can asea formal expansion
parameter that keeps track of the fact that bbténdj are small and of the same order. The focus point only exists
for § < 0, which we henceforth assume. At the origia reduces to

03(z;h =0, j = 0) = —472(2Dz + §), (37)

so thatzmin andzpegcollide at 0 andmax = —8/2/D. The roots can be expanded in power series and the result
is

+p

ZZnegZ - &+ 0(52)»

l—p

22min = ———¢ + O(?), (38)

2 .
o DIl — jBo
2Zmax = D + 2D—058 + 0(82).

Here and in the following, we use the abbreviations

h —wj D
=17 22y 2 f==5 a=v=s. (39)

o

The expressions are only real in the case 0, otherwise the focus—focus point does not exist. Inserting this into
(35) gives

k% =1 — 2fps + O(c?),

) (40)
n=1+4+ f(l — p)e + O(e%).
For smalle both,k andn, are close to 1 and they satisfy the inequality
kK> <n<1 (41)

In the limitk — 1, the elliptic integrals are singular, but there are well known expansions that include the logarith-
mically diverging terms. The details of this expansion can be found iAfpendix A Thus we have proved

Theorem 4. The leading order terms of the rotation numbB&y j, #) near the focus—focus poifif, #) = 0 with
eigenvalues + iw in the Hamiltonian Hopf bifurcation normal form with > 0for § < Ois

27W(h, j) = —g Inp— tan’l§ + o). (42)

Keeping terms only up to order 1 is enough because when the twist con@itity is calculated the present
terms both give singular contributions, the constant term disappears and the first order teisnvary small
compared to the singular terms. Note thiéts not a single valued function. The fact that taj/1)/27 changes
by one when the origin is encircled is an expression of the monodromy of this focus—focus pdjv}, Beem the
local expansion derived in thppendix Aone can see that the function is smooth except for a branch cut extending
from the origin along the positivie-axis. Here the rotation number jumps by one. The level lines, nevertheless, are
globally well defined, except they cannot be labelled by the function values.

The level lines ofN are spirals, which are easily parametrized in polar coordinates with the pag&ysarameter.
Instead of viewing these spirals as the level linegkafhereW is a many-valued function, it might be easier to see
them as the integral curves of a flow in the plane that has an equilibrium pdintat = 0. It can be derived by
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takingWas a local Hamiltonian. The linear approximation to this flow is best written in complex notagarn- i j
so thatz = —iz wherex = o + iw. Therefore, we may formulate the result like this:

Corollary 5. The levellines of the rotation functid#( j, #) near the focus—focus critical vale, 0) are the integral
curves of a planar nodé = —Az wherer = « + iw is the eigenvalue of the equilibrium point. In particular they
are spirals.

This is in fact true for every simple focus—focus point. For the precise statement of this general regdul}. see
Calculating the leading order condition for the vanishing of twist is easily done by differentiating the first two
terms of the expansion with respecttd@he result is that
ow

- =0 = h(w? — o?) = jo(w? + o?). (43)
il

Thus, we obtain our principal result:
Corollary 6. The twist vanishes on a line that has a tangent at the focus—focus(padint= (0, 0) whose slope is
given by

h w? + o?

TEwOS 5

: (44)
Jj 10}

—
Thus, wherw > 0 for every value of the energy near 0 there is a torus with vanishing twist.

Notice that this slope only depends on the eigenvalue of the focus—focus point. Approaching the bifurcation
pointa — 0 the slope approaches seeFig. 4. Further away from the bifurcation the slope may become negative.
Again, this corollary is true for any simple focus—focus point witls- 0, seg11].

7. Vanishing twist of periodic orbits

Now we consider the vanishing of the twist for the relative equilibkigii(s), jcrit(s)) in the boundary of the
image of the energy—momentum map. First we rescale the parameters, in order to keep the formulas manageable:

Db Dc I }'a)3 _ ho? tw?

B 7C:_a = 5> - > — T~ = . 45
o 2 T T D D’ "D (43)

Note that whers < 0, which is the case we are interested here, we have—a?/w? < 0. In terms of the new
parameters the polynomigéls(z) becomes

6 -~ ~
03(z) = %Q(c), 0(0) = — (3 + (1 +2bJ)¢% + 2( + 2 — )¢ + 2, (46)

and the derivativeW/dj is

w D (1+ 2c)de (b2 + (1 + 2¢)¢ + J)2d¢
—(ih) = - - . (47)
9 4w tOY2(0) £03/2(0)
The parametrisation of the critical values has already been obtairf@@)irAfter the scaling it reads
_ 2 . . . . . . R
d(s) = o2 Go(s) = sd(s). o = Werie(s) + ¢J(s) + 24(5) + 25Tori(s). (48)

T 2bs+1)
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Onthe curye}cril(s), herit(s)), the integrals on the right hand side(d¥)can be computed by the method of residues.
Replacingj andih wherever they appear by their critical values parametrisexiyes a condition for the vanishing
of the twist on the curve of critical values. It implies the following polynomial equation

9
Ro(s) = Zaksk =0, (49)
k=0

where
ao = —12u — 4(4+ b)pu? — (3b” — 16c)u’,
a1 = —24(5+ b)u — 4(b + b? — 6¢)u? + dbeu®,
ap = —84— 12(1+ 14b + b + 3(1%? — 8¢ + 8bc)u? — 12c%1?,
az = 4(30— 66b) + 16(b + b% + 9c) 1 + (24b° — 52bc) 142,
ag = 12(5+ 25b — 23b?) + (64b° — 29? + 192 + 336c)u — 4c(16b% 4 15c) 12,
as = —12(8° — 31b% — 7b + 14c) — 12b(12b% — 29 — 16bc) . — 96bc?u?,
ag = 32063 + 832 — 312 — 36Qhc — (96b* — 64b%c — 156¢2) 1,
a7 = 4b(32b° + 38b% — 171c — 48bc) — 64bc(2b% — 3c)u,
ag = 12(8* — 32h%c — 7c?),
ag = —96hc2.

(50)

The first two coefficientsg anda1 are of the first order i, while a, is non-zero for smalk. Therefore, the roots of
Rg can be expanded in powers|pfit/? = «/w, and for smallu| there are only two roots inja|%/2 neighborhood
of the origin. The result is

Theorem 7. The critical values of the twistless relative periodic orbits near the focus—focus point in the Hamiltonian
Hopf bifurcation withD > 0 are given by the parameter

—u 4
Sy = :I:,/T + ﬁ(lo— b)u + o(Inl¥?), (51)

with corresponding scaled energy—momentum values

sy Ao 8 e 2 5/2

Ji=Eoy [+ 5 (25— 60)u” + O(jul™), (52)
. 4 |-p® 8

he =2 7"+%(43/2—6b)uz+0(|u|5/2). (53)

This gives two points shown in tHéigs. 3 and 4at which the curve of vanishing twist emanating from the origin
crosses the boundary of the image of the energy—momentum map. The value of the rotation number at these point
is

Vs = = [L 1 25— 2n) + o(ulv?). (54)
2\ —un 7

We have now treated both limiting cases, that near the focus—focus point, and that near the elliptic relative
equilibria. The curve of vanishing twist for all values in between can in principle be computed from the derivative
of (36). From our results we conjecture that sufficiently close to the bifurcation the line of twistless tori joins the
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critical value at (Q0) with those of the twistless periodic orbits. This is obvious from the pictures presented, but it
is very hard to prove rigourously.

8. Conclusion

We have analysed in detail the structure of the rotation number in the normal form of the Hamiltonian Hopf
bifurcation for the caseé > 0 with compact energy surface. The most interesting behaviour can be found for
8 < 0, i.e. on the side of the bifurcation where the equilibrium point is unstable, namely a focus—focus point with
eigenvalue/—3 + iw. In this case, the set of regular values of the energy—momentum map is not simply connected.
The boundary of the image corresponds to a family of relative periodic orbits, and in addition there is an isolated
critical value corresponding to the unstable focus—focus equilibrium. The rotation number as a function on the image
of the energy—momentum map is explicitly given by an elliptic integral. Our main result describes the level lines
of the rotation number near the isolated critical value as spirals. Since spirals always have points with a horizontal
tangent, the twist vanishes near the focus—focus point. We explicitly computed the tangent to the line of vanishing
twist crossing the origin. Moreover, we proved that in the nearby family of relative periodic orbits there are always
two periodic orbits with vanishing twist. When the bifurcation is approached these two twistless periodic orbits
collide with the unstable equilibrium, rendering it stable on the other side.

Vanishing twist implies that the isoenergetic non-degeneracy condition of the KAM theorem is violated, so that
standard results on the persistence of tori cannot be applied. But what is more interesting is that the existence of
twistless invariant tori in the Hamiltonian Hopf bifurcation means that after the loss of stability the dynamics is
more complicated than expected at first sight. When the neglected higher order terms are put back, the system
is in general non-integrable. The perturbation breaks a rational torus with twist into a ReiBg&hoff island
chain. However, a rational torus without twist creates a pair of island chains, and when they collide meandering
curves appear. These are again invariant tori, but they are not graphs over the original unperturbed torus and carry
some amazingly complicated but still regular dynamics. The vanishing of twist near focus—focus points observed
here in the setting of the Hamiltonian Hopf bifurcation for the first time is in fact a general phenomenon near
focus—focus points and thus lead to the general results presenfel.iit would be interesting to study the effect
of vanishing twist near a focus—focus point in a perturbed, non-integrable model, e.g. in the Hamiltonian Hopf
bifurcation.
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Appendix A. Expansion of W

Here, we provide details of the proof ®heorem 4 We need to expand the Legendre standard inte¢fals

andTII in the limit k — 1. For the expansion of the integral of the third kind it is important to take the inequality
k% < n < 1(41)into account. In this limit, the following formulas can e.g. be foungilih

N(n, k) = K(k) + %nR(l — Ao(6, k)), (55)
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. n 12 _ (zneg — Zmax)Zmax vz
R= ((l —n)@n — kz)) B < Zneggmin ) ' (©0

Here, Ag is Heumann’s Lambda function, which can be expressed in terms of incomplete elliptic intEfats
andE (0, k) of the first and the second kind, respectively, as

Ao(0, k) = ;(K (K)E®, k') — (K (k) — E(k))F(6, k'), (57)
B - fl-n . | Zmin(Zmax — Zneg)
0 = arcsin | -— = arcsm\/—zmax(zmin — (58)

Note that the complementary modultis= +/1 — k2 and the parameter satisfy
K?=1—k*>=0(s), 1—n=0(),

see(40). Accordingly,k’? and 1— n are of orders, while 6 is not small but of order 1. The prefact® in (55)
cancels with the prefactor @1 in (36), up to a factor of 1/2. Therefore, we find the (still exact) formula

1
W=c1K+cE+ E(l — Ao(0, k)) (59)

where with, /Zmax — zneg= /2D + O(e) it follows
w + ZBZneg+ 2Cj + j/(ZZmax) . w

mey = = —+ 0(e), (60)
v 2D\/Zmax — Zneg o
2B, /zmax— 2 B
fep = YT TO_ PE L o). (61)
~2D D
The elliptic integral of first kind in the limit’ — 0 has a logarithmic divergence of leading order
4
A =log—. (62)
k/
The convergent expansions in this limit are
A-1
K(k) = A + Tk’z + O(AK™), (63)
1 1 2 14

The incomplete elliptic integrals of moduléShave regular expansions sinde— 0, so that

0 12 o .
F(6, k) — E(9, K') = [ K sin? gdy <9 sin 2
0

J1—k2sir g
0

2" 2
. .
Foy= [ —%  _4. 1 (9 - M) K2 4 OK'™). (66)

0 J1—k2?sirfg 2

) K2+ O(k™), (65)
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For the Heumann Lambda function this gives

Ao(6, k) = ; (9 + % <A - %) sin(W)k’% + 0(Ak’4)> . (67)

The leading order terms in the expansior{3) come from the diverging(. SinceE — 1 fork — 1 there is only
a constant contribution frorp. From A the leading term is merel§, so that all together

W wA n /4 o+ Ba
aW = — = — —

o 2 D
It remains to understand the parameter dependengetofpanding gives

+ O(e) (68)

) —1
20 ~ 2 arcsin p2_ + 0(e). (69)
0

This can be simplified using the relation

2arcsing = arctany = y = 2—‘1_/32/3 (70)

V= o
Insertings? = (p — 1)/(2p) and usingo? = 1% + j2 givesy = j/I, so thai(42)is proved. Note that whej= 0 we
havep = [ and the root i, collides with the pole at = 0 in the third kind integral. This is the place where the
dependence on the parameter§idh, k) is not smooth.
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