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Abstract

The Hamiltonian Hopf bifurcation has an integrable normal form that describes the passage of the eigenvalues of an equilibrium
through the 1 :−1 resonance. At the bifurcation the pure imaginary eigenvalues of the elliptic equilibrium turn into a complex
quadruplet of eigenvalues and the equilibrium becomes a linearly unstable focus–focus point. We explicitly calculate the frequency
(ratio) map of the integrable normal form, in particular we obtain the rotation number as a function on the image of the energy–
momentum map in the case where the fibres are compact. We prove that the isoenergetic non-degeneracy condition of the KAM
theorem is violated on a curve passing through the focus–focus point in the image of the energy–momentum map. This is
equivalent to the vanishing of twist in a Poincaré map for each energy close to that of the focus–focus point. In addition we show
that in a family of periodic orbits (the non-linear normal modes) the twist also vanishes. These results imply the existence of all
the unusual dynamical phenomena associated with non-twist maps near the Hamiltonian Hopf bifurcation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the dynamics of a Hamiltonian system near equilibrium points is of fundamental importance. In
the elliptic case, the eigenvalues of the linearization are pure imaginary,λj = ±iωj, j = 1, . . . , n, wheren is the
number of degrees of freedom, which will be 2 in the following. By the Lyapunov Centre theorem then normal
modes of the linear approximation persist in the non-linear system when the eigenvalues are non-resonant. The
resonant cases were much more recently treated[22,17,6,16]. In some sense, the most exceptional resonance is the
so called 1 :−1 resonance, in which the quadratic partH2 of the HamiltonianH has degenerate eigenvalues and
is not definite, 2H2 = ω(p2

x + x2) − ω(p2
y + y2). The unfolding of the normal form gives a family of Hamiltonian
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systems with an equilibrium point that loses stability by passing through the 1 :−1 resonance. This is called the
Hamiltonian Hopf bifurcation, and was studied in detail by[14,20,21], also see[2,7].

When the normal form of the corresponding family of Hamiltonians is truncated it becomes Liouville integrable.
In this paper, we show that in the integrable normal form of the Hamiltonian Hopf bifurcation the twist vanishes
near the bifurcation point. The flow on an invariant 2-dimensional torus is characterised by 2 frequencies. The ratio
of these frequencies is the rotation number of the torus. For fixed energy the energy surface is foliated by 2-tori
almost everywhere. For a one-parameter family of tori the rotation number is a function of the family parameter.
If this rotation function for a family of tori on the energy surface has a critical point we say the twist vanishes for
the particular torus at which the critical point occurs. Another, equivalent, way of thinking about this is to consider
a Poincaŕe section transversally to the torus in question and study the resulting mapping of an annulus. In the
integrable case, the annulus is foliated by invariant curves. If the rotation number changes from one invariant curve
to the next there is twist.

A torus with rational rotation number and twist breaks into a Poincaré–Birkhoff island chain under generic
perturbation. At the heart of this chain are an elliptic and a hyperbolic periodic orbit. When the twist vanishes and
the rational rotation number is near the critical value (assumed to be a minimum or maximum) the perturbation has
a different effect. First of all there are two Poincaré–Birkhoff island chains with periodic orbits of the same period.
When the energy (or an external parameter) is changed so that the rational rotation number reaches the extremum
these two island chains annihilate in an interesting so called reconnection bifurcation. In this bifurcation, there
appear meandering curves, which are invariant curves that are not graphs over the unperturbed invariant curves.

These dynamical consequences of vanishing twist are well known. They were first described by[13], and later
studied by[12,4,19]. In [15] and[10], it was shown that the vanishing of twist in one parameter families of maps
occurs near the 1 : 3 resonance. In[9], we have shown that also in 4 dimensional symplectic maps the vanishing of
twist appears near resonance. More recently in[8], we have shown that the twist also vanishes near the saddle-centre
bifurcation, in which one multiplier passes through zero. In this paper, we show that the principle that the twist
vanishes near resonance also applies in the Hamiltonian Hopf bifurcation. For flows, the condition of vanishing twist
is one of the conditions for the standard form of the KAM theorem to hold. In this setting, it is usually called the
isoenergetic non-degeneracy condition. There exist KAM theorems with weaker conditions[5,18], so that vanishing
twist does not necessarily imply that the torus will be destroyed. It does mean, however, that a resonant twistless
torus will create all the unexpected dynamics described by the twistless standard map.

In the following two sections, we present well known material about the Hamiltonian Hopf bifurcation, in order to
introduce the Hamiltonian and its energy–momentum map and to fix our notation. Then our own contribution starts
with the derivation of the actions and the rotation number. The rotation number and its derivative are analysed near
critical values of the energy–momentum map, namely near the isolated focus–focus point in the compact case and
on the family of relative equilibria. The details of the expansion of the elliptic integrals are given in theAppendix A.

2. Hopf normal form

Consider coordinatesq = (q1, q2) and conjugate momentap = (p1, p2) so that the symplectic form onR4 is
Ω = dp1 ∧ dq1 + dp2 ∧ dq2. The normal form for the Hamiltonian Hopf bifurcation is

H(q1, q2, p1, p2) = βΓ1 + Γ2 + δ(γΓ1 + Γ3) + CΓ 2
1 + 2BΓ1Γ3 + 2DΓ 2

3 +O3(Γ1, Γ2, Γ3), (1)

whereΓ1 = p2q1 − p1q2,Γ2 = 1
2(p2

1 + p2
2),Γ3 = 1

2(q2
1 + q2

2),Γ4 = p1q1 + p2q2, andδ is a bifurcation parameter,
β, γ, B,C,D are real constants such thatβ �= 0 andD �= 0. The expressionO3 denotes terms of order no less than
3 with respect toΓi, i = 1,2,3. For simplicity we will use the notationω = β + δγ. The system has an equilibrium
point at the originpi = qi = 0 with eigenvalues

√−δ± iω. For ease of notation we writeα = √−δ whenδ < 0,
so that the eigenvalues of the equilibrium are±α± iω. The dependence ofω onδ is not essential for our purposes,
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becauseβ �= 0. By a symplectic scaling with multiplier the parameterω can be scaled to 1, andD can be scaled
to ±1 at the same time. We find it useful, however, to keep unscaled variables and parameters until the very last
section.

The Hamiltonian system(1) is Liouville integrable when theO3 terms are omitted. A second independent constant
of motion isΓ1. It generates theS1 symmetry

Φ : S1 × R
4 → R

4, Φ(ϑ, q, p) = (Sϑq, Sϑp), Sϑ =
(

cosϑ sinϑ

− sinϑ cosϑ

)
(2)

The corresponding momentum mapJ : R
4 → R is given byJ(q, p) = p2q1 − p1q2, which isΓ1. SinceJgenerates

the periodic flowΦ with period 2π it is an action of the integrable system. We denote the (constant) value ofJ by
j. To perform the reduction with respect to this symmetry we use invariant theory, see e.g.[3]. Singular reduction
occurs in this example because the actionΦ is not free: the equilibrium (= the origin) is a fixed point of this action.
The algebra of polynomials inR4 that are invariant underΦ is generated byΓ1, Γ2, Γ3 andΓ4 = p1q1 + p2q2.
This means that any polynomial ofq1, q2, p1, p2 that is invariant underΦ can be written as a polynomial ofΓi,
i = 1, . . . ,4. The generators satisfy the relations

G(Γ ) = Γ 2
1 /2 + Γ 2

4 /2 − 2Γ2Γ3 = 0, Γ2 ≥ 0, Γ3 ≥ 0. (3)

The reduced phase spacePj = J−1(j)/S1 is defined by(3) with Γ1 = j as a semialgebraic variety inR3 with
coordinates (Γ2, Γ3, Γ4). If j �= 0 the reduced phase spacePj is one sheet of a two-sheeted hyperboloid given by
(3), so it is a smooth manifold. But forj = 0 it is half of an elliptic cone and hence is not smooth because of the
singular point of the cone at the origin (Γ2, Γ3, Γ4) = (0,0,0).

The reduced Hamiltonian is

Hj(Γ2, Γ3, Γ4) = ωj + Γ2 + δΓ3 + Cj2 + 2BjΓ3 + 2DΓ 2
3 . (4)

The surfaceH−1
j (h) is a parabolic cylinder in (Γ2, Γ3, Γ4) that is independent ofΓ4. The integral curves of the

reduced system are given by the intersection of the surfacePj with the surfaceH−1
j (h), as illustrated inFig. 1. We

denote the intersection byMj,h.

Fig. 1. A typical intersectionMj,h of the reduced phase spacePj and the energy surfaceH−1
j (h).
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The Poisson bracket{·, ·} associated with the standard symplectic structureΩ onR
4 defines a Poisson structure

on the algebra of invariant polynomials with brackets

{Γ1, Γ2} = {Γ1, Γ3} = {Γ1, Γ4} = 0, (5)

{Γ2, Γ3} = Γ4, {Γ3, Γ4} = −2Γ3, {Γ4, Γ2} = −2Γ2. (6)

The momentum map of theS1 action used for the reduction induces the CasimirΓ1 in this Poisson bracket. In
addition, also the relation between the generators(3) given byG is a Casimir. Accordingly, the nonzero brackets
give a Poisson structure onR3 with coordinates (Γ2, Γ3, Γ4), that has the reduced spacesPj as its symplectic leaves.
It can be written as

{Γ2, Γ3} = ∂G/∂Γ4, {Γ3, Γ4} = ∂G/∂Γ2, {Γ4, Γ2} = ∂G/∂Γ3. (7)

The reduced equations of motion are

Γ̇2 = {Γ2, Hj} = Γ4
∂Hj

∂Γ3
,

Γ̇3 = {Γ3, Hj} = −Γ4,

Γ̇4 = {Γ4, Hj} = −2Γ2 + 2Γ3
∂Hj

∂Γ3
.

(8)

The integral curves of this flow are given byMj,h, the intersection ofPj andH−1
j (h). In general the intersection of

these two manifolds is either empty or diffeomorphic to a circle. The preimage of any point in reduced phase space
is the set of points in original phase space that are mapped to this point by the momentum mapJ. If one point in
the preimage is known the others can be obtained by letting the flow ofJ (i.e. the mapΦ) act on this point to get
the complete fibre. This gives a circle unless starting in the origin. Therefore the preimage of a circleMj,h is a two
dimensional torusT2 in the phase space of the original system.

Exceptions occur for equilibrium points of the reduced system. They occur either when the surfaceH−1
j (h)

is tangent toPj or whenj = 0 andH−1
0 (h) contains the singular point at the origin (which impliesh = 0). The

preimage of the singular point is not a circle, becauseΓ2 = Γ3 = 0 impliesq1 = q2 = p1 = p2 = 0 and this is
a fixed point of the flowΦ. This is the equilibrium point in the full system that undergoes the Hopf bifurcation.
All other equilibrium points of the recuded system are reconstructed to periodic orbits of the full system; they are
relative equilibria ofJ. TheS1 action generated byJ is not free. The origin is a fixed point, and this is the reason
why singular reduction is needed in this example.

3. Energy–momentum map

Using the reduced system we can find the critical values of the energy momentum map

F : R
4 → R

2, (p, q) �→ F (p, q) = (H(p, q), J(p, q)). (9)

The values of the energy–momentum map are denoted by (h, j). For every regular value ofF the preimage in phase
space is a two dimensional torus. The critical values are determined from equilibrium points of the reduced system
because their preimages are notT

2. Since we are interested in a neighbourhood of the origin in phase space for
smallδ we will only consider a small neighbourhood of the origin in the image of the momentum map.

Consider the reduced equilibrium points caused by the singularity in the reduced space first. This singularity
occurs forj = 0. The singular point (Γ2, Γ3, Γ4) = (0,0,0) has energyh = 0. The equilibrium at the origin in
phase space is therefore mapped to the origin in the image of the momentum map.



H.R. Dullin, A.V. Ivanov / Physica D 201 (2005) 27–44 31

Whenδ > 0 the intersectionM0,0 restricted to a neighborhood of the origin in reduced phase space consists only
of the origin. It reconstructs to an elliptic equilibrium. However, ifδ < 0 thenM0,0 is a non-smooth circle with a
corner, if it is compact. The preimage ofM0,0 is diffeomorphic to a pinched torus in this case.

Consider next the equilibrium points caused by a tangency ofPj andH−1
j (h). At these critical values ofHj

the gradient ofHj and the gradient ofG are parallel. Since∂G/∂Γ4 = Γ4 the tangency may occur only on the
hyperplaneΓ4 = 0. The intersections ofPj andH−1

j (h) with this hyperplane are one branch of a hyperbola and a
parabola, respectively. They are described by the equations

j2 = 4Γ2Γ3, (10)

h = ωj + Cj2 + Γ2 − (δ+ 2Bj)2

8D
+ 2D

(
Γ3 + δ+ 2Bj

4D

)2

. (11)

At the extremal values ofh the two curves are tangent. EliminatingΓ2 in (10) using(11) gives a polynomial of
degree 3 inΓ3 depending onj andh

Q3(Γ3) := −8DΓ 3
3 − 4(δ+ 2Bj)Γ 2

3 + 4(h− ωj − Cj2)Γ3 − j2 = 0. (12)

This polynomialQ3(Γ3) gives the value ofΓ 2
4 obtained fromG = 0 and expressed in terms ofΓ3. The tangency

between the hyperbola(10)and the parabola(11)occurs whenQ3 has a double root. We will first discuss all values
of (h, j) for which a tangency occurs, irrespective of them satisfying the constraintsΓ2 ≥ 0 andΓ3 ≥ 0. In a second
step, the critical values of the energy momentum will be found by consideration of these constraints.

To parametrize all tangencies we make the ansatzQ3(z) = −8D(z− d/2)2(z+ s2/D/2) with parametersd and
sparametrising the double and single root ofQ3, respectively. This leads to the parametrisation of the tangencies
by s ∈ R. By direct computation, we obtain the basic

Lemma 1. The discriminant locus ofQ3 that contains the critical values of the energy–momentummap is given by

jcrit(s) = sd(s), d(s) = δ−s2

2(Bs−D) ,

hcrit(s) = ωjcrit(s) + Cjcrit(s)2 − 2d(s)2D + 2sjcrit(s).
(13)

The rootΓ3 = −s2/D/2 always has the opposite sign thanD. The curve (hcrit(s), jcrit(s)) has singular points
whens has one of the singular values satisfying 2Bs3 − 3s2D + δD = 0. The number of singular points changes
when the discriminant 108δD2(D2 − δB2) vanishes. For small|δ| the only change occurs atδ = 0, seeFig. 2, for
two slices of the “swallowtail”.

For δ > 0, the curve has two singular points near the origin for somes ∈ (−√
δ,

√
δ). The two singular points

are located at

j∗ = ± 1√
27D

δ3/2 + B

9D2
δ2 ±O(δ5/2)

h∗ = ± ω√
27D

δ3/2 + 2Bω − 3D

18D2
δ2 ±O(δ5/2)

(14)

for small δ ≥ 0. The curve of critical values has a self-intersection ats2 = δ. The intersection point at the origin
marks the elliptic equilibrium with eigenvalues i(ω ± √

δ). The slopes of the intersecting curves are given by the
imaginary parts of the eigenvalues.

Forδ < 0, the equilibrium point at the origin is unstable with eigenvalues
√−δ+ iω. The curve (jcrit(s), hcrit(s))

does not intersect the origin, instead the origin is now an isolated critical point. The curve is above the origin for
D < 0 and below forD > 0, e.g. the point on theh-axis withs = 0 is at (j, h) = (0,−δ2/8/D).
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Fig. 2. The discriminant locus of the polynomialQ3 is the thick (red) line forδ = −0.5 (left) andδ = 0.5 (right). The critical values of the
energy–momentum map are contained in the discriminant locus. The white region is the image of the momentum map forD > 0. The triangular
part forδ > 0 in the right picture is only in the image of the energy–momentum map forD < 0. (B = C = D = ω = 1.0).

Only tangencies that occur with the part of the hyperbola in the positive quadrant give critical values of the
energy–momentum map sinceΓ2 andΓ3 are both non-negative. The double rootsd(s) nears = 0 occurs at

d(s) = − δ

2D
−O(s). (15)

Near the intersection at the origin arounds = ±√
δ the double root is

d(s) =
√
δ

D
(±s −

√
δ) +O(±s −

√
δ)2 (16)

If D > 0 this implies that the smooth curve forδ < 0 is in the (boundary of the) image of the energy–momentum
map, while the part of the curve withs ∈ (−√

δ,
√
δ) isnot in the image forδ > 0. Conversely, forD < 0 the smooth

curve forδ < 0 is not in the image, while forδ > 0 only the triangular part withs ∈ [−√
δ,

√
δ] is in the image.

Therefore the union of the bifurcation diagram (i.e. the set of critical values of the energy–momentum map) for+D

and−D gives the discrimiant of the polynomialQ3.
The type of the preimage of the critical values is determined by the character of the intersectionMj,h. The positive

half of the hyperboloidG projects onto the area above the hyperbola given byj2 ≤ 4Γ2Γ3. If the parabola(11)
touches the boundary of the area from the outside, the preimage in the full phase space is a circle, hence a stable
periodic orbit. If the parabola touches from the inside, the preimage is a circle with a separatrix, hence an unstable
periodic orbit. This can only occur whenD < 0, because then the parabola is open upwards. It only occurs when
δ > 0 for sbetween the two singular values enclosing zero. In all other cases the parabola touches from the outside.
The complete bifurcation scenario in the two cases therefore is as follows, seeFig. 2for illustration.
The caseD > 0: For δ < 0, there is an isolated focus–focus point at the origin and a smooth curve of elliptic

periodic orbits nearby. Forδ > 0 there is an elliptic equilibirum point at the origin and there are two families of
elliptic periodic orbits (non-linear normal modes) emanating from the equilibrium.
The caseD < 0: Forδ < 0, there is nothing but an isolated focus–focus point at the origin. Forδ > 0 there is

an elliptic equilibirum point at the origin and there are two families of elliptic periodic orbits (non-linear normal
modes) emanating from the equilibrium. Both families terminate in cusps formed with the same family of hyperbolic



H.R. Dullin, A.V. Ivanov / Physica D 201 (2005) 27–44 33

periodic orbits. The set of critical values therefore forms a triangle with two cuspoidal corners and one regular corner
at the origin.

4. Actions

From now on we shall assume the parameterD to be a positive number. In this case, each constant energy level
is compact and by the Liouville–Arnold theorem it is possible to define action-angle coordinates near regular points
of F. To construct the second action we need to integrate the canoncial 1-formΘ overMj,h. The differential dΘ
is the symplectic structure induced from the original symplectic structureΩ by the reduction map on the reduced
phase spacePj. To find the formΘ we choseΓ3 as one variable and find its conjugate variable by solving the partial
differential equation

{f (Γ2, Γ3, Γ4), Γ3} = 1. (17)

A solution of(17) is the function

f (Γ2, Γ3, Γ4) = Γ4

2Γ3
. (18)

Then the canonical one form isΘ = (Γ4/2Γ3)dΓ3 and we obtain

J2(h, j) = 1

2π

∮
Mj,h

Γ4dΓ3

2Γ3
= 1

2π

∮
Mj,h

√
4Γ2Γ3 − j2

2Γ3
dΓ3 (19)

for the second action. Here,Γ4 is considered as a function ofΓ3 by first expressingΓ4 in terms ofΓ2 andΓ3 on the
reduced phase spacePj and then by expressingΓ2 in terms ofΓ3 usingHj = h. As a result, the polynomialQ3 is
found as already given by(12). This leads to

Theorem 2. The second action integral in the Hamiltonian Hopf bifurcation normal form withD > 0 is defined on
the elliptic curve

E = {(w, z) : w2 = Q3(z)}. (20)

It is explicitly given by the integral of third kind

J2 = 1

4π

∮
w

z
dz. (21)

The formula for the action can also be obtained in a classical way, using polar coordinates as in[20]. A slightly
different coordinate transformation elucidates the connection between the two approaches. The new symplectic
structure isΩ = dPg ∧ dg + dJ ∧ dφ and “symplectic polar coordinates” valid forq2

1 + q2
2 > 0 are introduced by

q1 =
√

2g cosφ, p1 = Pg
√

2g cosφ − J
sinφ√

2g
, (22)

q2 =
√

2g sinφ, p2 = Pg
√

2g sinφ + J
cosφ√

2g
. (23)

The invariant polynomials are related to these coordinates by

Γ1 = J, Γ2 = gP2
g + J2

4g
, Γ3 = g, Γ4 = 2gPg. (24)
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In these variables, the Hamiltonian takes the form

H = gP2
g + J2

4g
+ ωJ + (δ+ 2BJ)g + CJ2 + 2Dg2, (25)

and the equations of motion are

φ̇ = J

2g
+ ω + 2Bg + 2CJ,

ġ = 2gPg,

Ṗg = P2
g − J2

4g2
+ (δ+ 2BJ) + 4Dg.

(26)

Solving the Hamiltonian(25) for P2
g gives

P2
g = Q3(g)

4g2
(27)

so that the action integral(19) is obtained from integrating the canonical formPgdg over a path with constantφ.

5. Rotation number

We want to check the isoenergetic non-degeneracy condition of the KAM theorem. A torus is non-degenerate in
this sense if the map from the actions to the frequency ratiosω1 : ω2 restricted to a constant energy surfaceH = h

is non-degenerate. This means that the frequency ratio (or rotation number)W = ω1/ω2 changes when the torus is
changed at constant energy. On a local transversal Poincaré section this condition is called twist condition.

In our case, this is equivalent to the non-vanishing of the partial derivative of the rotation numberWwith respect
to the actionJ1. By definition the winding number is the ratio of frequenciesω1/ω2, corresponding to the actions
J1 andJ2. If the Hamiltonian is expressed in terms ofJ1 andJ2 then∂1H(J1, J2) = ω1 and∂2H(J1, J2) = ω2.
Therefore, we find by implicit differentiation ofJ2(h, j) = j2 that

W = ω1

ω2
= −∂J2

∂j
. (28)

However, the simplest way to obtainW is to observe that it is the advance of the angleφ conjugate toJ during
the time of a full period of the motion ofg = Γ3. The period of the motion is obtained from the reduced equation
of motionΓ̇3 = −Γ4. OnPj this gives

Γ̇ 2
3 = 4Γ2Γ3 − j2 (29)

and eliminatingΓ2 by usingHj = h gives

(
dΓ3

dt

)2

= 4Γ3Γ2(Γ3;h, j) − j2. (30)

By separation of variables, we obtain the period of the reduced motion as

T (h, j) =
∮

dΓ3√
4Γ3Γ2 − j2

=
∮

dz

w
. (31)
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To obtain the advance ofφ in timeT, we change the timet in (26) to “time” Γ3 and find

dφ

dΓ3
= j + 2Γ3(ω + 2Cj) + B(2Γ3)2

2Γ3Γ4
(32)

ExpressingΓ4 in terms ofΓ3 on the reduced phase spacePj as before the period of the solution of this equation gives
the rotation number 2πW . The rotation numberWcan, therefore, be written as a linear combination of integrals of
the first, second and third kind,

2πW(h, j) = (ω + 2Cj)
∮

dz

w
+ 2B

∮
zdz

w
+ j

2

∮
dz

zw
. (33)

The first integral is of the first kind and proportional to the periodT. The last integral is of the third kind. When
D > 0 the polynomialQ3 has three real roots when (j, h) is in the image of the energy–momentum map. We denote
these roots byzneg, zmin, zmax, such thatzneg ≤ 0 ≤ zmin ≤ zmax. The closed loop integrals encircle the finite range
of positiveQ3, and therefore can be rewritten by the rule∮

= 2
∫ zmax

zmin

. (34)

The elliptic integrals can be transformed to Legendre standard integralsK(k), E(k), and4(k) of the first, second,
and third kind, respectively, with modulusk and characteristic (or parameter)n given by

k2 = zmax − zmin

zmax − zneg
, n = zmax − zmin

zmax
. (35)

In this notation we obtain

Theorem 3. In the Hamiltonian Hopf bifurcation normal form withD > 0 the rotation number as a function of
(j, h) on the image of the energy–momentum map is given by

W(j, h) = (2Bzneg+ ω + 2Cj)K(k) + 2B(zmax − zneg)E(k) + j4(n, k)/(2zmax)

π
√

2D
√
zmax − zneg

. (36)

Explicit formulas for the vanishing of the twist∂W/∂j = 0 can be derived from this.
The level lines of the rotation numberW(j, h) are shown inFigs. 3 and 4. The functionW(j, h) is dynamically

relevant only in the image of the energy–momentum part, i.e. not in the grey regions of the figure. Nevertheless, it
can be easily analytically continued into this region, and in order to make the spiralling nature of the level lines more
obvious we decided to include these non-relevant parts of the contours. In the next section, we will show that these
level lines are in fact spirals. Now it is clear that spirals cannot be the level lines of a continuous function. So in fact
W(j, h) is locally well defined and smooth for every regular value (j, h), but globally it is not single valued. The
particular representation in terms of Legendres complete elliptic integrals contains a branch cut along the positive
h-axis, across whichW is discontinuous. In this way the spirals are composed of pieces of curves beginning on this
cut and ending on the other side of it. The value ofW then jumps by one, but the level line smoothly continues
across the cut. In order to avoid cluttering of level lines near the origin, the maximal value ofW for which level
lines are still drawn is 3. This explains the apparent gap in the middle of e.g. the lower right panel forFig. 3. The
spacing of the level lines is 1/10. The details of these pictures will be explained in the next two sections.

The rotation number is a complicated function of the constants of motion (j, h). Near the cases where the
discriminant of the elliptic curveE (20)defined byQ3 vanishes, simpler formulas can be derived. This occurs either
at the boundary of the image of the energy–momentum map described by(13), or at the isolated focus–focus point
(h, j) = (0,0) inside the image. In the next section, we will first treat the latter case.
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Fig. 3. The level lines of the rotation number on the (j, h) plane. The bifurcation parameterδ is decreasing from top to bottom,δ =
−0.2,−0.13,−0.05 (ω = B = C = D = 1). The right panes show zooms of the left ones. The level lines are spirals. The part of the pic-
tures outside the image of the energy–momentum map is grey. The boundary of the image corresponding to a family of relative equilibria is the
thick (red) line. The crossing of the curve of vanishing twist with the boundary is indicated by (blue) disks, as given by(51).
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Fig. 4. The level lines of the rotation number on the (j, h) plane. Here, the imaginary part of the eigenvalueω is changed in addition, from top
to bottom (δ, ω) = (−0.02,1/2), (−0.1,1), (−0.2,2) (B = C = D = 1). The slope of the tangent of the line of vanishing twist at the origin is
shown as a dashed line, as given by(44).
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6. Rotation number near the focus–focus point

We introduce a small parameter by scalingh andj by epsilon, hence replaceh → hε, j → jε. This means that
we obtain an expansion that approaches the origin on a ray. Alternatively, one can viewε as a formal expansion
parameter that keeps track of the fact that both,h andj are small and of the same order. The focus point only exists
for δ < 0, which we henceforth assume. At the originQ3 reduces to

Q3(z;h = 0, j = 0) = −4z2(2Dz+ δ), (37)

so thatzmin andznegcollide at 0 andzmax = −δ/2/D. The roots can be expanded in power series inε, and the result
is

2zneg = − l + ρ

α
ε+O(ε2),

2zmin = − l − ρ

α
ε+O(ε2),

2zmax = α2

D
+ 2

Dl − jBα

Dα
ε+O(ε2).

(38)

Here and in the following, we use the abbreviations

l = h− ωj

α
, ρ2 = l2 + j2, f = D

α3
, α = √−δ. (39)

The expressions are only real in the caseδ < 0, otherwise the focus–focus point does not exist. Inserting this into
(35)gives

k2 = 1 − 2fρε+O(ε2),

n = 1 + f (l − ρ)ε+O(ε2).
(40)

For smallε both,k andn, are close to 1 and they satisfy the inequality

k2 ≤ n ≤ 1. (41)

In the limit k → 1, the elliptic integrals are singular, but there are well known expansions that include the logarith-
mically diverging terms. The details of this expansion can be found in theAppendix A. Thus we have proved

Theorem 4. The leading order terms of the rotation numberW(j, h) near the focus–focus point(j, h) = 0 with
eigenvaluesα+ iω in the Hamiltonian Hopf bifurcation normal form withD > 0 for δ < 0 is

2πW(h, j) = −ω

α
ln ρ − tan−1 j

l
+O(1). (42)

Keeping terms only up to order 1 is enough because when the twist condition∂W/∂j is calculated the present
terms both give singular contributions, the constant term disappears and the first order term inε is very small
compared to the singular terms. Note thatW is not a single valued function. The fact that tan−1(j/ l)/2π changes
by one when the origin is encircled is an expression of the monodromy of this focus–focus point, see[7]. From the
local expansion derived in theAppendix Aone can see that the function is smooth except for a branch cut extending
from the origin along the positiveh-axis. Here the rotation number jumps by one. The level lines, nevertheless, are
globally well defined, except they cannot be labelled by the function values.

The level lines ofWare spirals, which are easily parametrized in polar coordinates with the radiusρ as parameter.
Instead of viewing these spirals as the level lines ofWwhereW is a many-valued function, it might be easier to see
them as the integral curves of a flow in the plane that has an equilibrium point ath = j = 0. It can be derived by
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takingWas a local Hamiltonian. The linear approximation to this flow is best written in complex notationz = l + ij
so that ˙z = −λ̄z whereλ = α+ iω. Therefore, we may formulate the result like this:

Corollary 5. The level lines of the rotation functionW(j, h) near the focus–focus critical value(0,0)are the integral
curves of a planar nodėz = −λz̄ whereλ = α+ iω is the eigenvalue of the equilibrium point. In particular they
are spirals.

This is in fact true for every simple focus–focus point. For the precise statement of this general result see[11].
Calculating the leading order condition for the vanishing of twist is easily done by differentiating the first two

terms of the expansion with respect toj. The result is that

∂W

∂j
= 0 ⇒ h(ω2 − α2) = jω(ω2 + α2). (43)

Thus, we obtain our principal result:

Corollary 6. The twist vanishes on a line that has a tangent at the focus–focus point(j, h) = (0,0)whose slope is
given by

h

j
= ω

ω2 + α2

ω2 − α2
. (44)

Thus, whenω > 0 for every value of the energy near 0 there is a torus with vanishing twist.

Notice that this slope only depends on the eigenvalue of the focus–focus point. Approaching the bifurcation
pointα → 0 the slope approachesω, seeFig. 4. Further away from the bifurcation the slope may become negative.
Again, this corollary is true for any simple focus–focus point withω > 0, see[11].

7. Vanishing twist of periodic orbits

Now we consider the vanishing of the twist for the relative equilibria (hcrit(s), jcrit(s)) in the boundary of the
image of the energy–momentum map. First we rescale the parameters, in order to keep the formulas manageable:

B = Db

ω
, C = Dc

ω2
, µ = δ

ω2
, j = ĵω3

D
, h = ĥω4

D
, z = ζω2

D
. (45)

Note that whenδ < 0, which is the case we are interested here, we haveµ = −α2/ω2 < 0. In terms of the new
parameters the polynomialQ3(z) becomes

Q3(z) = ω6

D3
Q̂(ζ), Q̂(ζ) = −(ζ3 + (µ+ 2bĵ)ζ2 + 2(ĵ + cĵ2 − ĥ)ζ + ĵ2), (46)

and the derivative∂W/∂j is

∂W

∂j
(j, h) = D

4πω3

(∮
(1 + 2cζ)dζ

ζQ̂1/2(ζ)
+
∮

(bζ2 + (1 + 2cĵ)ζ + ĵ)2dζ

ζQ̂3/2(ζ)

)
. (47)

The parametrisation of the critical values has already been obtained in(13). After the scaling it reads

d̂(s) = µ− s2

2(bs + 1)
, ĵcrit(s) = sd̂(s), ĥcrit = ωĵcrit(s) + cĵ2

crit(s) + 2d̂(s)2 + 2sĵcrit(s). (48)
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On the curve (̂jcrit(s), ĥcrit(s)), the integrals on the right hand side of(47)can be computed by the method of residues.
Replacinĝj andĥwherever they appear by their critical values parametrised bysgives a condition for the vanishing
of the twist on the curve of critical values. It implies the following polynomial equation

R9(s) =
9∑

k=0

aks
k = 0, (49)

where

a0 = −12µ− 4(4+ b)µ2 − (3b2 − 16c)µ3,

a1 = −24(5+ b)µ− 4(b + b2 − 6c)µ2 + 4bcµ3,

a2 = −84− 12(1+ 14b + b2)µ+ 3(15b2 − 8c + 8bc)µ2 − 12c2µ2,

a3 = 4(30− 66b) + 16(b + b2 + 9c)µ+ (24b3 − 52bc)µ2,

a4 = 12(5+ 25b − 23b2) + (64b3 − 29b2 + 192c + 336bc)µ− 4c(16b2 + 15c)µ2,

a5 = −12(8b3 − 31b2 − 7b + 14c) − 12b(12b2 − 29c − 16bc)µ− 96bc2µ2,

a6 = 320b3 + 83b2 − 312c − 360bc − (96b4 − 64b2c − 156c2)µ,

a7 = 4b(32b3 + 38b2 − 171c − 48bc) − 64bc(2b2 − 3c)µ,

a8 = 12(8b4 − 32b2c − 7c2),

a9 = −96bc2.

(50)

The first two coefficientsa0 anda1 are of the first order inµ, whilea2 is non-zero for smallµ. Therefore, the roots of
R9 can be expanded in powers of|µ|1/2 = α/ω, and for small|µ| there are only two roots in a|µ|1/2 neighborhood
of the origin. The result is

Theorem7.The critical values of the twistless relative periodic orbits near the focus–focus point in theHamiltonian
Hopf bifurcation withD > 0 are given by the parameter

s± = ±
√−µ

7
+ 4

72
(10− b)µ+O(|µ|3/2), (51)

with corresponding scaled energy–momentum values

ĵ± = ±4

7

√
−µ3

7
+ 8

73
(25− 6b)µ2 +O(|µ|5/2), (52)

ĥ± = ±4

7

√
−µ3

7
+ 8

73
(43/2 − 6b)µ2 +O(|µ|5/2). (53)

This gives two points shown in theFigs. 3 and 4, at which the curve of vanishing twist emanating from the origin
crosses the boundary of the image of the energy–momentum map. The value of the rotation number at these points
is

√
5W± = 1

2

√
7

−µ
± 1

7
(5 − 2b) +O(|µ|1/2). (54)

We have now treated both limiting cases, that near the focus–focus point, and that near the elliptic relative
equilibria. The curve of vanishing twist for all values in between can in principle be computed from the derivative
of (36). From our results we conjecture that sufficiently close to the bifurcation the line of twistless tori joins the
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critical value at (0,0) with those of the twistless periodic orbits. This is obvious from the pictures presented, but it
is very hard to prove rigourously.

8. Conclusion

We have analysed in detail the structure of the rotation number in the normal form of the Hamiltonian Hopf
bifurcation for the caseD > 0 with compact energy surface. The most interesting behaviour can be found for
δ < 0, i.e. on the side of the bifurcation where the equilibrium point is unstable, namely a focus–focus point with
eigenvalue

√−δ± iω. In this case, the set of regular values of the energy–momentum map is not simply connected.
The boundary of the image corresponds to a family of relative periodic orbits, and in addition there is an isolated
critical value corresponding to the unstable focus–focus equilibrium. The rotation number as a function on the image
of the energy–momentum map is explicitly given by an elliptic integral. Our main result describes the level lines
of the rotation number near the isolated critical value as spirals. Since spirals always have points with a horizontal
tangent, the twist vanishes near the focus–focus point. We explicitly computed the tangent to the line of vanishing
twist crossing the origin. Moreover, we proved that in the nearby family of relative periodic orbits there are always
two periodic orbits with vanishing twist. When the bifurcation is approached these two twistless periodic orbits
collide with the unstable equilibrium, rendering it stable on the other side.

Vanishing twist implies that the isoenergetic non-degeneracy condition of the KAM theorem is violated, so that
standard results on the persistence of tori cannot be applied. But what is more interesting is that the existence of
twistless invariant tori in the Hamiltonian Hopf bifurcation means that after the loss of stability the dynamics is
more complicated than expected at first sight. When the neglected higher order terms are put back, the system
is in general non-integrable. The perturbation breaks a rational torus with twist into a Poincaré–Birkhoff island
chain. However, a rational torus without twist creates a pair of island chains, and when they collide meandering
curves appear. These are again invariant tori, but they are not graphs over the original unperturbed torus and carry
some amazingly complicated but still regular dynamics. The vanishing of twist near focus–focus points observed
here in the setting of the Hamiltonian Hopf bifurcation for the first time is in fact a general phenomenon near
focus–focus points and thus lead to the general results presented in[11]. It would be interesting to study the effect
of vanishing twist near a focus–focus point in a perturbed, non-integrable model, e.g. in the Hamiltonian Hopf
bifurcation.
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Appendix A. Expansion ofW

Here, we provide details of the proof ofTheorem 4. We need to expand the Legendre standard integralsK, E,
and4 in the limit k → 1. For the expansion of the integral of the third kind it is important to take the inequality
k2 ≤ n ≤ 1 (41) into account. In this limit, the following formulas can e.g. be found in[1]:

4(n, k) = K(k) + 1

2
πR(1 −>0(θ, k)), (55)
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R =
(

n

(1 − n)(n− k2)

)1/2

=
(

(zneg− zmax)zmax

znegzmin

)1/2

. (56)

Here,>0 is Heumann’s Lambda function, which can be expressed in terms of incomplete elliptic integralsF (θ, k)
andE(θ, k) of the first and the second kind, respectively, as

>0(θ, k) = 2

π
(K(k)E(θ, k′) − (K(k) − E(k))F (θ, k′)), (57)

θ = arcsin

√
1 − n

1 − k2
= arcsin

√
zmin(zmax − zneg)

zmax(zmin − zneg)
. (58)

Note that the complementary modulusk′ = √
1 − k2 and the parameter satisfy

k′2 = 1 − k2 = O(ε), 1 − n = O(ε),

see(40). Accordingly,k′2 and 1− n are of orderε, while θ is not small but of order 1. The prefactorR in (55)
cancels with the prefactor of4 in (36), up to a factor of 1/2. Therefore, we find the (still exact) formula

W = c1K + c2E + 1

2
(1 −>0(θ, k)) (59)

where with
√
zmax − zneg = α/

√
2D +O(ε) it follows

πc1 = ω + 2Bzneg+ 2Cj + j/(2zmax)√
2D
√
zmax − zneg

= ω

α
+O(ε), (60)

πc2 = 2B
√
zmax − zneg√

2D
= Bα

D
+O(ε). (61)

The elliptic integral of first kind in the limitk′ → 0 has a logarithmic divergence of leading order

> = log
4

k′ . (62)

The convergent expansions in this limit are

K(k) = >+ >− 1

4
k′2 +O(>k′4), (63)

E(k) = 1 + 1

2

(
>− 1

2

)
k′2 +O(>k′4), (64)

The incomplete elliptic integrals of modulusk′ have regular expansions sincek′ → 0, so that

F (θ, k′) − E(θ, k′) =
∫ θ

0

k′2 sin2 ϕdϕ√
1 − k′2 sin2 ϕ

=
(
θ

2
− sin 2θ

4

)
k′2 +O(k′4), (65)

F (θ, k′) =
∫ θ

0

dϕ√
1 − k′2 sin2 ϕ

= θ + 1

2

(
θ

2
− sin 2θ

4

)
k′2 +O(k′4). (66)
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For the Heumann Lambda function this gives

>0(θ, k) = 2

π

(
θ + 1

4

(
>− 1

2

)
sin(2θ)k′2 +O(>k′4)

)
. (67)

The leading order terms in the expansion of(36)come from the divergingK. SinceE → 1 for k → 1 there is only
a constant contribution fromc2. From>0 the leading term is merelyθ, so that all together

πW = ω

α
>+ π

2
− θ + Bα

D
+O(ε) (68)

It remains to understand the parameter dependence ofθ. Expandingθ gives

2θ ≈ 2 arcsin

√
ρ − l

2ρ
+O(ε). (69)

This can be simplified using the relation

2 arcsinβ = arctanγ ⇒ γ = 2

√
1 − β2β

1 − 2β2
. (70)

Insertingβ2 = (ρ − l)/(2ρ) and usingρ2 = l2 + j2 givesγ = j/ l, so that(42) is proved. Note that whenj = 0 we
haveρ = l and the rootzmin collides with the pole atz = 0 in the third kind integral. This is the place where the
dependence on the parameters of4(n, k) is not smooth.
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[19] C. Simó, Invariant curves of analytic perturbed nontwist area preserving maps, Regular Chaotic Dyn. 3 (1998) 180–195.
[20] A.G. Sokol’skĭı, On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance, Prikl. Mat.

Meh. 41 (1) (1977) 24–33.
[21] J.-C. van der Meer, The Hamiltonian Hopf bifurcation, volume 1160 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.
[22] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973) 47–57.


	Vanishing twist in the Hamiltonian Hopf bifurcation
	Introduction
	Hopf normal form
	Energy--momentum map
	Actions
	Rotation number
	Rotation number near the focus--focus point
	Vanishing twist of periodic orbits
	Conclusion
	Acknowledgements
	Appendix A Expansion of W
	References


