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• We introduce a new nonlocal equation similar to the Navier–Stokes equation.
• The inviscid version of this new equation possesses an infinite number of conserved quantities.
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a b s t r a c t

We introduce a modification of the Navier–Stokes equation that has the remarkable property of possess-
ing an infinite number of conserved quantities in the inviscid limit. This new equation is studied numeri-
cally and turbulence properties are analyzed concerning energy spectra and scaling of structure functions.
The dissipative structures arising in this new equation are curled vortex sheets instead of the vortex tubes
arising inNavier–Stokes turbulence. The numerically calculated scaling of structure functions is compared
with a phenomenological model based on the She–Lévêque approach.

Finally, for this equation we demonstrate global well-posedness for sufficiently smooth initial
conditions in the periodic case and in R3. The key feature is the availability of an additional estimate
which shows that the L4-norm of the velocity field remains finite.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we introduce a new equation which is a hybrid
of the Navier–Stokes equation and the Burgers equation. Our goal
is to show the existence of multi-dimensional model equations
whichpossess a direct turbulent cascade to small scales, non-trivial
intermittency, nonlocal interaction and yet an infinite number of
conserved quantities. To our knowledge, there seems to be no
model equation in the literature with these desirable properties.
Our model could therefore be seen as an interesting starting
point for testing numerous methods like e.g. phenomenological
approaches or methods from field theory (Martin–Siggia–Rose
formalism [1], instantons [2], OPE [3]), in a multi-dimensional
setup. Our new equationmay play the same role as the 1D-Burgers
equation in higher dimensions.
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Turbulence properties of this equation are analyzed using
numerical simulations. We calculate energy spectra and scaling
of higher order structure functions. A key observation from the
numerical simulations of this modified Navier–Stokes equation
is that the most dissipative structures consist of curled vortex
sheets instead of the vortex tubes in conventional Navier–Stokes
turbulence. Using this information, a She–Lévêque type model [4]
is derived and compared to the numerically obtained scaling of
higher order structure functions.

In addition, for this new equation we can show existence and
regularity for H1 initial conditions of arbitrary size. This will be
carried out in R3 and periodic domains in R3. The simple modifi-
cation of the nonlinearity makes the proof of global solutions pos-
sible, insofar as an additional estimate is available showing that
the solution remains finite in Lp, 2 < p < ∞. With p = 4, this
is then coupled with standard estimates for the H1-norm to com-
plete the proof. In contrast to other approaches for regularization
of the Navier–Stokes equation using dispersive mollification [5–7]
acting on small scales, our modification acts on all spatial scales.
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The outline of this paper is as follows: in Section 2 we moti-
vate and introduce our new equation. Turbulence statistics and
phenomenological modeling are considered in Section 3. Section 4
contains the proof of existence of global solutions. We finish with
remarks on possible further consequences of the existence of an
infinite number of conserved quantities.

2. Model equation

We consider a three-dimensional domain Ω which shall be
either R3 or a bounded cube in R3 with periodic boundary
conditions. Let P = 1 − ∆−1

∇ ⊗ ∇ be the Leray–Hopf projection
operator (with periodic boundary conditions whenΩ is bounded):

P[P[u]] = P[u], ∇ · P[u] = 0. (1)

The usual incompressible Navier–Stokes equation

∂

∂t
v + v · ∇v + ∇p = ν∆v + f, ∇ · v = 0 (2)

can be written with the projection operator P

∂

∂t
v + P[v · ∇v] = ν∆v + P[f], ∇ · v = 0

so that no explicit pressure term is present in the equation.
We can rewrite the Navier–Stokes equationwithout the incom-

pressibility constraint in the form

∂

∂t
u + P[u] · ∇P[u] = ν∆u + f, (3)

where the solution of the Navier–Stokes equation can be recovered
by taking v = P[u].

Eq. (3) can be compared with the Burgers equation whose
structure is formally similar:

∂

∂t
u + u · ∇u = ν∆u + f. (4)

For Eq. (4) the nonlinearity is purely local, whereas for Eq. (3) the
nonlinear interaction involves the nonlocal projection.

A natural hybrid of these two equations leads a new model
equation involving a compressible velocity fieldu that is convected
by its solenoidal part P[u]:

∂

∂t
u + P[u] · ∇u = ν∆u + f. (5)

More accurately thismeans that the convection of the velocity field
u is local in position space, but the projection operator is local in
Fourier space and thus shares this mixture of local and nonlocal
interactions with the original Navier–Stokes equation.

Writing this equation in the more conventional form of a
solenoidal velocity field v,

∂

∂t
v + v · ∇v + ∇


∂

∂t
ϕ − ν∆ϕ


+ v · ∇∇ϕ = ν∆v, (6)

where the compressible vector u is decomposed as u = v + ∇ϕ,
the similarity as well as the difference to the original Navier–
Stokes equation (2) is stressed: the gradient term ∇


∂
∂t ϕ −

ν∆ϕ

corresponds to the pressure contribution ∇p whereas the

additional term v · ∇∇ϕ forms the difference to the Navier–Stokes
equation.

3. Turbulence statistics

By construction the presented model equation is an intermedi-
ate step between the Navier–Stokes and Burgers equation, which
in turn differ significantly in their dynamical evolution and turbu-
lent behavior. In Navier–Stokes turbulence, on the one hand, the
most dissipative structures are vortex filaments, while for Burgers
equation shocks dominate the turbulent flow. It is of obvious inter-
est in how far our model equation bridges between those, which
structures are the most dominant for turbulent flows and how
these structures influence the turbulence statistics. We therefore
extend the She–Lévêque reasoning,which describesNavier–Stokes
and Burgers turbulence well, to our model equation and test it
against numerical simulations by comparing the scaling exponents
of the structure functions.

Numerical simulations are carried out with a second-order in
space finite difference scheme with a strongly stable third-order
Runge–Kutta time integration with resolutions up to 5123. The
initial conditions were chosen as Orszag–Tang-like (see [8]) large-
scale perturbations:

ux = A (−2 sin(2y) + sin(z) + 2 cos(2y) + cos(z))
uy = A (−2 sin(x) + sin(z) + 2 cos(x) + cos(z))
uz = A (sin(x) + sin(y) − 2 cos(2x) + cos(y)) .

For simplicity and comparability both velocity and its solenoidal
projection are set to equal values. The physical domain stretches
from −π to π ; the above defined conditions, thus, are both large-
scale perturbations and periodic. All hydrodynamical models will
be simulated in comparison, using these initial conditions. We
consider only decaying turbulence without external forces. For
the parameters of all performed runs see Table 1, which shows
the numerical value of the quantities at the time of maximum
enstrophy t = tE .

Fig. 1 shows the decay of kinetic energy for the considered
hydrodynamical models in comparison. The tendency of Burgers
turbulence to form shocks and the dissipative nature of these struc-
tures lead to a faster energy decay compared to the Navier–Stokes
equation. The new model equation exhibits a less violent form of
dissipation; its energy decay lies in between the others. The differ-
ence in turbulence development is identified in amore preciseway
when comparing the time tE ofmaximumenstrophy E =


Ω

ω2dx.
As Fig. 1 (right) indicates, the enstrophy of Burgers turbulence
reaches its peak significantly faster than for the Navier–Stokes
equation, in which vortex filaments dominate the turbulent flow.
The proposed model equation ranges between them. This hints at
the development of coherent structures at a timescale slower than
shock-formation of Burgers equation but faster than the formation
of vortex tubes for the Navier–Stokes equation. Precise values for
the timescales are stated in Table 1.

Fig. 2 depicts a volume render of the fully developed turbulence,
the snapshot in each case taken at t = tE . As expected, the
Burgers flow (left) is dominated by shocks and the Navier–Stokes
flow (right) consists of vortex filaments. For the proposed
model equation (middle), the most dominant structures are two-
dimensional folded vortex-sheets.

A phenomenological description, which takes into account the
most dissipative structures of the turbulent flow, is the model of
She and Lévêque [4] connected to log-Poisson statistics of the local
energy dissipation [9]. They state that the scaling exponent ζp of
the p-th structure function behaves like

ζp =
(1 − k)p

3
+ C0


1 −


C0 − k
C0

 p
3


, (7)

where C0 is the co-dimension of the most dissipative structures in
the evolved flow and k is the time-scaling exponent. This formula
will be referred to as the She–Lévêque model even though in [4] it
is applied exclusively to the Navier–Stokes equation (where C0 =

2, k = 2/3).
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Table 1
Parameters of the numerical simulations. Number of collocation points N3; grid spacing dx; time of fully developed turbulence tE ; viscosity ν; root-mean-square velocity
vrms =

√
2/3Ekin; mean energy dissipation rate ε; integral scale L = (2/3Ekin)3/2/ε; dissipation length scale η = (ν3/ε)1/4; Taylor–Reynolds number Rλ =

√
15vrmsL/ν; all

taken at the time of maximum enstrophy t = tE .

PDE N ∆x tE ν vrms ε L η Rλ

Burgers 128 0.0491 0.461 0.0241 1.761 3.564 1.533 0.0445 40.99
256 0.0245 0.603 0.015 1.637 3.320 1.320 0.0318 46.49
512 0.0123 0.634 0.009 1.656 3.361 1.352 0.0216 61.10

Model equation 128 0.0491 1.438 0.01 1.316 0.983 2.318 0.0318 67.65
256 0.0245 1.459 0.006 1.369 1.044 2.459 0.0213 91.75
512 0.0123 1.624 0.0036 1.370 1.096 2.344 0.0144 115.7

Navier–Stokes 128 0.0491 2.502 0.007 1.482 0.918 3.549 0.0247 106.2
256 0.0245 2.616 0.00278 1.518 1.268 2.761 0.0114 150.4
512 0.0123 2.545 0.00110 1.551 1.572 2.376 0.00539 224.2
Fig. 1. Left: comparison of the kinetic energies for the Navier–Stokes, Burgers and the proposed model equation. The steep discontinuities of a Burgers flow explain the fast
energy dissipation. Right: Evolution of free-falling turbulence for the Burgers equation, the proposedmodel equation and Navier–Stokes equation. The turbulent flow is fully
developed at t = tE , when the enstrophy E reaches its maximum.
Fig. 2. Dissipative structures in fully developed turbulence for different hydrodynamical models. Left: 2-dimensional shock fronts in Burgers turbulence. Middle: Folded
vortex sheets in the new model equation. Right: Vortex filaments in Navier–Stokes turbulence.
The typical time tl for the evolution of discontinuities for turbu-
lent Burgers flows scales linearly with l, which accounts for k = 1.
As the shocks traveling through the domain are two-dimensional
we furthermore obtain C0 = 1. Inserting this into Eq. (7) leads to
ζp = 1. Since parts of the velocity field are continuous, for p < 1
the smoother regions of the velocity field are pronounced. This
would equal a scaling exponent of ζp = p for these orders. Since
this result is smaller than ζp = 1, it is dominant for p < 1. There-
fore, we get

ζp =


p for p < 1
1 for p ≥ 1 (8)

for the Burgers equation.
Table 2
Scaling exponents ζp for the Burgers equation. The αp measured with ESS are
compared to the ζp predicted by the She–Lévêque model.

p 1 2 4 5 6 7

αp 0.70 0.95 1.00 1.00 0.98 1.00
ζp 1.00 1.00 1.00 1.00 1.00 1.00

Table 2 shows the measurements of a direct numerical simula-
tion with 5123 grid points. Here, αp are the data obtained via ESS
and ζp is the prediction of Eq. (8). The visualization of this result is
shown in Fig. 3 on the left. Especially for high order of p (p > 3)
the scaling exponent agrees with the prediction, yet smears out for
smaller p (see also [10]).
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Fig. 3. Scaling exponents for fully developed turbulence, comparison between theory and numerical simulation. Left: Burgers equation. Right: Presented model equation.
Table 3
Scaling exponents ζp for the newmodel equation. The αp for Pumeasured with ESS
are compared to the ζp predicted by the She–Lévêque model.

p 1 2 4 5 6 7

αp(Pu) 0.4 0.73 1.22 1.39 1.55 1.69
ζp 0.418 0.751 1.213 1.395 1.556 1.701

Similar to the Burgers equation the introduced model equation
allows for shocks to develop, since no incompressibility condition
is stated. Nevertheless, energy decays solely via the dissipative
term. Because of this, the hypotheses of Kolmogorov may be
adapted to the Euler–Burgers equation. The Richardson cascade
as well as the properties of the energy spectrum and the scaling
behavior of structure functions should agree with the conclusions
of Kolmogorov and the She–Lévêquemodel. On the other hand, the
structures that evolve seem to be significantly different from the
vortex filaments known from Navier–Stokes.

Fig. 2 (middle) shows the most dissipative structures of fully
developed turbulent flow. The normof the vorticity visualizes two-
dimensional folded vortex sheets as the structures that correspond
to the vortex tubes of Navier–Stokes. This suggest C0 = 1. The
time-scaling exponent tl for the introduced equation is estimated
as k = 2/3, with the same reasoning as for Navier–Stokes. Thus,

ζp =
p
9

+


1 −


1
3

 p
3


(9)

is the prediction for the scaling exponents proposed by the
She–Lévêque model.

Table 3 features the results measured via ESS for the scaling
exponents of Pu. As can be seen in Fig. 3 (right) the numerical data
agree very well with the prediction of the She–Lévêquemodel. The
solenoidal field is consistent with theory from low orders of p up
to the highest order that was measured.

4. Global solutions

In this section, we show global regularity for Eq. (5) for suitable
initial data without any size restrictions. For this, we prove
the remarkable property that this equation possesses an infinite
number of conserved quantities in the inviscid limit. Especially,
the finiteness of the L4-norm of the velocity field coupled with
standard estimates for the H1-norm enables us to show global
regularity.

The problem of whether the three-dimensional incompressible
Navier–Stokes equations can develop a finite time singularity from
smooth initial conditions or if it has global solutions remains
unresolved (see [11–15] and the references therein). The answer
to this important question is recognized as one of the Millennium
prize problems [16,17].

Despite the complexity of the topic, a lot of progress has been
made on this field in the past. For the two-dimensional case,
global-in-time existence of unique weak and strong solutions is
well-known (see [11,12]). In three dimensions weak solutions are
known to exist globally in time. For strong solutions, existence and
uniqueness is known for a short interval of time which depends
continuously on the initial data [18]. Many results published in the
past, starting with [19], provide criteria for the global regularity
of solutions via conditions applied to the velocity field [20,21] or
components thereof [22], the vorticity [23], its direction [24] or to
the pressure field [25,26].

The theory for the compressible Navier–Stokes equation is less
well developed, and we will not attempt a summary here. The
multi-dimensional Burgers equation [27] can be regarded as a
crude simplification of this model. Global existence and unique-
ness of strong solutions can be established in two and three-
dimensions for suitably small initial conditions, much as with the
Navier–Stokes system. Irrotational flows do possess global solu-
tions for large data in arbitrary dimension, thanks to the Cole–Hopf
transformation [28,29]. However, there is no multi-dimensional
weak theory because of the absence of amechanism for energy dis-
sipation, unlike Navier–Stokes.

The situation for this newmodified Navier–Stokes like equation
is rather different. In this section, the existence of global solutions
is proven for the model equation (5) in a domain Ω which shall
either be R3 or a periodic cube in R3.

Theorem 1. Let u0 ∈ H1(Ω). Let f ∈ L2loc(R
+, L2(Ω)) ∩ L1loc(R

+,

L4(Ω)). Then the initial value problem for the model equation (5) has
a unique global solution

u ∈ C(R+,H1(Ω)) ∩ L2loc(R
+,H2(Ω)).

The aim is to show that the solution remains a priori bounded
in L∞([0, T ),H1(Ω)) ∩ L2([0, T ),H2(Ω)) for any T > 0, which
implies its existence and uniqueness with standard arguments
comparable to e.g. [11,30]. Throughout the argument, we denote
the Euclidean norm of the vector u =


i uiei by u = (


i u

2
i )

1/2.
We first prove the following lemma.

Lemma 1. Let u0, f, Ω be defined as above. Then the quantity
∥u(t)∥Lp remains finite for 2 ≤ p ∈ R.

Proof. Taking the Euclidean inner product of (5) with u yields the
identity

1
2


∂

∂t
u2

+ Pu · ∇u2


=
ν

2
∆u2

− ν|∇u|
2
+ f · u. (10)
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Integrate (10) over Ω , use the fact that Pu is divergence free, and
then apply the Cauchy–Schwarz inequality to obtain

1
2

∂

∂t
∥u∥

2
L2 + ν∥∇u∥

2
L2 ≤ ∥f∥L2∥u∥L2 . (11)

Defining x(t) =
1
2


∥u(t)∥2

L2 +
 t
0 ν∥∇u(s)∥2

L2ds

, we have that

x′(t) ≤ ∥f(t)∥L2(2x(t))
1/2.

Upon integration, this gives the inequality

∥u(t)∥2
L2 +

 t

0
ν∥∇u(s)∥2

L2ds

≤


∥u0∥L2 +

 t

0
∥f(s)∥L2ds

2

. (12)

With this estimate the lemma is shown for the case p = 2.
Let 2 ≤ n ∈ R and multiply the identity (10) by u2(n−1):

1
2n


∂

∂t
u2n

+ Pu · ∇u2n


=
ν

2


∂

∂xj


u2(n−1) ∂

∂xj
u2


−
4(n − 1)

n2
|∇un

|
2


− νu2(n−1)
|∇u|

2
+ u2(n−1)f · u.

Integrate this over Ω and apply Hölder’s inequality:

1
2n

∂

∂t
∥u∥

2n
L2n +


Ω


2ν(n − 1)

n2

∇un
2 + νu2(n−1)

|∇u|
2

dx

≤ ∥f∥L2n∥u∥
2n−1
L2n

.

If we let

y(t) =
1
2n

∥u(t)∥2n
L2n +

 t

0


Ω


2ν(n − 1)

n2

∇un(s)
2

+ νu2(n−1)(s)|∇u(s)|2

dxds,

then we obtain

y′(t) ≤ ∥f(t)∥L2n(2n y(t))
2n−1
2n .

This leads to the estimate

∥u(t)∥2n
L2n + 2n

 t

0


Ω


2ν(n − 1)

n2

∇un(s)
2

+ νu2(n−1)(s)|∇u(s)|2

dxds

≤


∥u0∥L2n +

 t

0
∥f(s)∥L2nds

2n

. (13)

Since n ≥ 2, this proves the result for p ≥ 4. The cases 2 < p < 4
follow by interpolation. �

Remark. This key argument fails for the case of the Navier–Stokes
equation. At the same time, this estimate establishes an infinite
number of conserved quantities in the unforced inviscid case.

Proof of Theorem 1. Take the L2-inner product of (5)with∆u and
integrate by parts:

1
2

∂

∂t
∥∇u∥

2
L2 + ν∥∆u∥

2
L2

=


Ω

(Pu · ∇u) · ∆u dx  
(i)

+


Ω

f · ∆u dx  
(ii)

.

The forcing term (ii) has the bound
Ω

f · ∆udx ≤ ∥f∥L2∥∆u∥L2 ≤
ν

4
∥∆u∥

2
L2 +

1
ν
∥f∥2

L2 .

The nonlinear term (i) is estimated as follows:
Ω

(Pu · ∇u) · ∆u dx = −


∂

∂xk
ui

∂

∂xk


(Pu)j

∂

∂xj
ui


dx

= −


∂

∂xk
ui


(Pu)j

∂

∂xj

∂

∂xk
ui +

∂

∂xk
(Pu)j

∂

∂xj
ui


dx

= −

 
1
2
(Pu)j

∂

∂xj
|∇u|

2
+

∂

∂xk
ui

∂

∂xj


∂

∂xk
(Pu)jui


dx

=


∂

∂xj

∂

∂xk
ui

∂

∂xk
(Pu)jui dx

≤ ∥∇
2u∥L2∥∇Pu∥L4∥u∥L4 .

The second norm above is handled by interpolation. We first note
that

∥∇Pu∥L4 ≤ ∥∇Pu∥
3/4
L6

∥∇Pu∥
1/4
L2

.

Now when Ω = R3, the Sobolev embedding theorem gives

∥∇Pu∥L6 ≤ C∥∇
2Pu∥L2 . (14)

When Ω is a periodic domain, the norm on the right must be re-
placed by ∥∇Pu∥H1 . However, since ∇Pu has zero mean, this is
bounded again by C∥∇

2Pu∥L2 , by the Poincaré inequality. There-
fore, (14) holds in both cases. Using the facts that the operator P
commuteswith derivatives and that it is a projection in L2, we have
that

∥∇Pu∥L2 ≤ ∥∇u∥L2 and ∥∇
2Pu∥L2 ≤ ∥∇

2u∥L2 .

Next, we use integration by parts to obtain the simple ellipticity
identity

∥∇
2u∥

2
L2 =


Ω

∂

∂xj

∂

∂xk
ui

∂

∂xj

∂

∂xk
ui dx

=


Ω

∂

∂xj

∂

∂xj
ui

∂

∂xk

∂

∂xk
ui dx

= ∥∆u∥
2
L2 . (15)

Combining these observations with Young’s inequality, we con-
clude that the nonlinear term (i) is bounded by

C∥∆u∥
7/4
L2

∥∇u∥
1/4
L2

∥u∥L4 ≤
ν

4
∥∆u∥

2
L2 +

C
ν7

∥∇u∥
2
L2∥u∥

8
L4 .

Altogether, we get the inequality

∂

∂t
∥∇u∥

2
L2 + ν∥∆u∥

2
L2 ≤

C
ν7

∥∇u∥
2
L2∥u∥

8
L4 +

C
ν

∥f∥2
L2 .

Using Gronwall’s inequality, we find that

∥∇u∥
2
L2 + ν

 t

0
∥∆u(s)∥2

L2 ds

≤ ∥∇u0∥
2
L2 exp

C
ν7

 t

0
∥u(s)∥8

L4 ds

+
C
ν

 t

0


exp

C
ν7

 t

s
∥u(σ )∥8

L4 dσ


∥f(s)∥2
L2 ds. (16)

Combining (12) and Lemma 1with p = 4, and (16), we see that the
quantity

∥u(t)∥2
H1 +

 t

0
ν[∥∇u(s)∥2

L2 + ∥∆u(s)∥2
L2 ] ds
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remains finite. However, by (15) and the fact that L∞

loc(R
+, L2(Ω)) ⊂

L2loc(R
+, L2(Ω)) we have that

∥u(t)∥2
H1 +

 t

0
ν ∥u(s)∥|2H2(Ω)

ds

also remains finite. �

5. Final remarks

In this paper, a modified Navier–Stokes equation is presented.
Its dynamics and turbulent behavior are studied in terms of the
scaling properties of its structure functions. The most dissipative
structures are identified as vortex sheets of co-dimension 1, which
allows us to compare the numerically measured scaling exponents
to a modified phenomenologically based She–Lévêque approach.

Furthermore, we prove the existence of global solutions for
this equation. A remarkable consequence of this proof is the
existence of an infinite number of conserved quantities∥u∥Lp in the
ideal (non-viscous) case without forcing. This property is not only
responsible for the existence of global solutions but should show
up in the statistics of intermittent turbulent fluctuations. Work in
this direction is in progress.
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