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h i g h l i g h t s

• Finite-dimensional Poisson systems are present in most fields of physics.
• We show that some Poisson systems are orbital equivalent to a linear Darboux canonical form.
• After perturbations we analyze the bifurcation phenomena of periodic orbits.
• We apply the technique to several interesting oscillators.
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a b s t r a c t

Analytical perturbations of a family of finite-dimensional Poisson systems are considered. It is shown
that the family is analytically orbitally conjugate in U ⊂ Rn to a planar harmonic oscillator defined on the
symplectic leaves. As a consequence, the perturbed vector field can be transformed in the domainU to the
Lagrange standard form. On the latter, use can be made of averaging theory up to second order to study
the existence, number and bifurcation phenomena of periodic orbits. Examples are given ranging from
harmonic oscillators with a potential and Duffing oscillators, to a kind of zero-Hopf singularity analytic
normal form.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Finite-dimensional Poisson systems (e.g. see [1,2] and refer-
ences therein for an overview and a historical discussion) are
present in most fields of physics (including mechanics, electro-
magnetism, plasma physics, optics, dynamical systems theory)
and applied mathematics, as well as closely related areas such as
engineering (for instance in control theory), population dynam-
ics, etc. Actually, the description of a given dynamical system
in terms of a Poisson structure has implied the development of
a number of applied mathematical tools for the obtainment of
information about such vector field, including perturbative solu-
tions, invariants, bifurcation properties, stability analysis, numeri-
cal integration, integrability results, etc. For instance, see [3–8] and
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references therein for a sample. The significance of Poisson dynam-
ical systems is due to several reasons. One is that they provide a
generalization of classical Hamiltonian systems, allowing not only
for odd-dimensional vector fields, but also because Poisson struc-
ture matrices admit a great diversity of forms apart from the fixed
one associated with the Hamiltonian case. Additionally, an impor-
tant feature of Poisson systems is that they are not restricted by
the use of canonical transformations. In fact, every diffeomorphic
change of variables maps a Poisson system into another Poisson
system.

An additional topic relevant for this work is averaging theory.
Its starting point can be traced back to Lagrange’s study of the
three-body problem as a perturbation of the two-body problem,
in spite that no formal proof of the validity of the method was
given until Fatou’s in the XXth century. Soon after, it was the
subject of further investigations that led to the establishment of
the averaging method as one of the classical tools for the analysis
of nonlinear oscillations. Essentially, the underlying idea of this
methodology is to approximate the initial system by an averaged
(and presumably simpler) version of it, in such a way that the
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analysis of certain properties of the averaged system will lead to
an understanding of the original system.

The first-order (in the small perturbation parameter ε)
averaging theory for studying periodic orbits of differential
equations in standard form and in arbitrary finite dimension n is a
classical tool for the analysis of vector fields; see [9,10]. In addition,
in [11] the averaging theory for differential equations in Rn up to
order 3 in ε was presented. In [12], the averaging theory in Rn was
described in a recursive way to any order in ε, and it was applied
to the center problem for planar differential systems. The second-
order averaging theory in Rn was considered in [13], where the
key tool in that development is the Lyapunov–Schmidt reduction
method applied to the translation Poincaré–Andronov mapping.
In a recent work [14] the explicit expressions of the bifurcation
functions up to third order of the averaging theory in Rn was
presented. Also recently, in [15] the averaging theorywas explicitly
developed inR up to an arbitrary order in ε. Some additional recent
works devoted to improve and apply the averaging method are
[16,17].

As anticipated, one of the advantages of the Poisson representa-
tion is that it allows the application of diversemethods (frequently
coming fromHamiltonian dynamics) in amore general context. Ac-
cording to this perspective, it is worth noting that the averaging
method [9,10] provides a quantitative relationship between the so-
lutions of some non-autonomous differential systems and the so-
lutions of the averaged (with respect to the independent variable)
autonomous differential system.When the system is T -periodic, by
using the averaging method it is possible to extract some precise
information about the existence and number of T -periodic solu-
tions as well as their stability. It is worth emphasizing that for the
application of averaging theory it is first necessary to express the
system in the called standard form: the right-hand side of the sys-
temmust be sufficiently small, and actually it must be a function of
order O(ε) when depending on a small real perturbation parame-
ter ε. To express a perturbed system into a standard form bymeans
of changes of variables and a rescaling of the independent variable
is in general neither algorithmic nor an easy task. The purpose of
this work is to show that the entire approach just described be-
comes possible for some classes of Poisson systems when they are
perturbed under any nonlinear analytic vector field.

The structure of the article is as follows. Section 2 provides a
detailed description of the method developed. This description is
divided in three main parts. Thus, Section 2.1 is devoted to the
description of the Poisson system family of interest together with
the general reduction to the Darboux canonical form. In Section 2.2
the transformation of such canonical form into the Lagrange
standard form is constructed. Taking this as a starting point, the
application of averaging theory to the analysis of periodic orbits
is the issue of Section 2.3. Once the method is fully developed,
Section 3 is focused on the presentation of three examples.

2. Description of the method

The purpose of the forthcoming development is to generalize
the application of the averaging theory and detect periodic orbits
in the framework of Poisson systems analytically perturbed. The
Poisson systems to be considered are those globally (in a domain)
and constructively analytically reducible to an orbitally equivalent
planar harmonic oscillator defined on the symplectic leaves. In
particular, this means that our Poisson systems must have a
singularity with a couple of nonzero pure imaginary eigenvalues
±iω with ω ≠ 0 as well as the zero eigenvalue with algebraic
multiplicity n − 2. The eigenvalues ±iω ≠ 0 will be rescaled to
their final value ±i after the forthcoming time reparametrization
(6).

An important fact that has to be also enlighted is that our
Poisson systems are locally completely analytically integrable and
there exists a neighborhood of the former singularity completely
foliated by periodic orbits (including continua of equilibriums).
2.1. Reduction to the Darboux canonical form

Our starting point is an analytic Poisson structure of dimension
n and constant rank 2 in a open and connected set (a domain)
Ω ⊆ Rn containing the origin. In terms of local coordinates we
have a vector field of the form:

dx
dt

= J(x) · ∇H(x). (1)

Here H(x) is the analytic Hamiltonian function, and J(x) is the
structure matrix. For what is to come it is convenient to recall
the definition of Casimir invariants, which are first integrals D(x)
of the Poisson system obtained as the solution of the system
J(x) · ∇D(x) = 0. For a Poisson structure of dimension n and
constant rank r , the number or functionally independent Casimir
invariants equals n−r (in particular n−2 in the present situation).
In addition, the structure matrix in (1) is assumed to have the
form J(x) = I(x)J0(x), where J0(x) is any analytic rank-2
structure matrix defined in Ω , and I : Ω → R is any analytic
nonvanishing first integral (hence it has the functional form I(x) ≡

µ(D3(x), . . . ,Dn(x),H(x)), where {D3(x), . . . ,Dn(x)} is a complete
set of functionally independent Casimir invariants of the system,
see [5,6] for further details).

Theorem 1. Let us consider the Poisson system (1)with Hamiltonian
of the form

H(x) =
1
2
[x21h

2
1(x) + x22h

2
2(x)] (2)

where hi are analytic functions inΩ satisfying hi(0) = 1 for i = 1, 2.
Assume in addition that there exist a complete set of independent
Casimir invariants of the form

Dj(x) = xj + φj(x) (3)

where φj(x) are analytic functions in Ω and such that φj(0) = 0 and
∇φj(0) = 0 for j = 3, . . . , n. Then system (1) is analytically orbital
equivalent to a linear Darboux canonical form in a domain U ⊆ Ω

containing the origin. Moreover, such reduction can be constructively
determined.

Proof. Under our hypotheses, the transformation x → Φ(x) = y
defined by
yi(x) = xihi(x), i = 1, 2
yj(x) = Dj(x), j = 3, . . . , n (4)

is an analytic diffeomorphism in a domain U ⊆ Ω containing the
origin whose inverse Φ−1(y) = Iny + · · · has a linear part being
the identity matrix of order n.

Combining the ideas of [5,6] we shall develop a generalized
procedure such that our Poisson system can be reduced globally in
U to a one degree of freedomHamiltonian system and the Darboux
canonical form is accomplished globally and diffeomorphically in
U . This can be done as follows: in the new coordinate system
(y1, . . . , yn) we arrive to the new Poisson system

dy
dt

= J∗(y) · ∇H∗(y)

where H∗(y) = H ◦ Φ−1(y) = (y21 + y22)/2, and

J∗(y) = I

Φ−1(y)


η(y) · JD.

Here η(y) =

(∇xy1(x))T · J(x) · (∇xy2(x))


|Φ−1(y) where by

construction it is η(y) ≠ 0 in U as a direct consequence of the
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preservation of the structure matrix (constant) rank under any
diffeomorphic transformation, and in addition

JD ≡


0 1

−1 0


⊕ On−2 =

 0 1
−1 0

On−2


(5)

is the Darboux canonical form matrix for the rank-2 case, where
On−2 denotes the null square matrix of order n − 2.

Accordingly, in the next reduction step we define the new time
τ in terms of the time reparametrization

dτ = I

Φ−1(y)


η(y) dt. (6)

After both transformations, the outcome is the linear Poisson
system

dy
dτ

= JD · ∇H∗(y) (7)

where the Darboux canonical form is therefore constructed. In
other words, both Poisson systems (1) and (7) are orbitally
equivalent in U , and consequently the former is orbitally
linearized. �

2.2. Perturbation and reduction to the Lagrange standard form

We consider now the analytical perturbations of the initial
Poisson system

dx
dt

= J(x) · ∇H(x) + εF(x; ε) (8)

where ε ≠ 0 is a small perturbation real parameter and F is an
analytic vector field in Ω depending analytically on the parameter
ε and satisfying F(0; ε) = 0 and ∇xF(0; ε) = 0. The purpose of
the perturbations will be to analyze the bifurcation phenomena
of periodic orbits via the averaging theory. We shall see that the
reduction of Theorem 1 can be used in order to write in suitable
coordinates the perturbed system (8) into the so-called Lagrange
standard form.

Theorem 2. Consider the perturbation (8) of the Poisson system
(1) defined in U ⊆ Ω . Then, after applying the same reduction
performed in Theorem 1, followed by an n-dimensional cylindrical
transformation, system (8) is constructively transformed into a
Lagrange standard form.

Proof. Notice that any perturbation field F preserves both the
linear part and the analyticity in U of the system obtained after
the transformation x → Φ(x) = y defined by (4) and the time
reparametrization (6) leading to the Darboux canonical form for
the unperturbed system. We thus obtain that (8) becomes the
analytic system

dy
dτ

= JD · ∇H∗(y) + εF∗(y; ε) (9)

defined in Φ(U). Now we perform the following change to n-
dimensional cylindrical coordinates

y → Ψ (y) = (θ, r, z) ∈ S1
× U∗

defined by y1 = r cos θ, y2 = r sin θ and zj = yj for j =

3, . . . , n. Here S1
= R/2πZ and U∗

= {(r, z) ∈ R+
× Rn−2

:

(r cos θ, r sin θ, z) ∈ Φ(U) for all θ ∈ S1
}. In these coordinates the

system becomes

ṙ = ε G∗

1(θ, r, z; ε),

θ̇ = −1 +
ε

r
G∗

2(θ, r, z; ε), (10)

żj = ε G∗

j (θ, r, z; ε), j = 3, . . . , n,
where

G∗

1(θ, r, z; ε) = cos θ F∗

1 (Ψ −1(θ, r, z); ε)

+ sin θ F∗

2 (Ψ −1(θ, r, z); ε),

G∗

2(θ, r, z; ε) = cos θ F∗

2 (Ψ −1(θ, r, z); ε)

− sin θ F∗

1 (Ψ −1(θ, r, z); ε),

G∗

j (θ, r, z; ε) = F∗

j (Ψ −1(θ, r, z); ε), j = 3, . . . , n.

Notice that this system is only well defined for r > 0. Moreover,
in this region, since for sufficiently small ε we have θ̇ < 0 in
an arbitrarily large ball centered at the origin, we can rewrite the
differential system (10) in such ball into the form

dr
dθ

= ε G1(θ, r, z; ε),
dz
dθ

= ε G2(θ, r, z; ε), (11)

by taking θ as the new independent variable and using an obvious
vectorial notation for the z variables. It is worth emphasizing that
any 2π-periodic solution of (11) corresponds biunivocally with a
periodic orbit of (8) in U .

System (11) is 2π-periodic in variable θ and is in the Lagrange
standard form. �

2.3. Periodic orbits via averaging theory

Now we shall present the basic results from averaging theory
that we shall need to apply the theory in the forthcoming sections.
The classical averaging theory, that is, the first order in ε averaging
theory, is presented for example in Theorems 11.5 and 11.6 of
Verhulst [10]. See also [9] for more details. Concerning averaging
theory up to third order in ε, the reader is referred to [11].

The reduction to the standard form (11) performed in
Theorem 2 can now be used in order to apply the averaging theory.
More precisely, we define the vector function G(θ, r, z; ε) =

(G1(θ, r, z; ε),G2(θ, r, z; ε)) and since G is analytic in the
parameter ε, we can expand in Taylor series the function
G(θ, r, z; ε) =


k≥0 gk(θ, r, z) εk.

The averaging theory up to second order shall be used in what
follows, although there are no restrictions in order to increase the
perturbation order if required. The auxiliary function is defined as:

ρ(θ, r, z) = D(r,z)g0(θ, r, z)
 θ

0
g0(s, r, z) ds + g1(θ, r, z)

where D(r,z)f (θ, r, z) denotes the Jacobian matrix with respect to
the derivation variables (r, z) for any differentiable function f .
The following bifurcation functions can now be constructed by
averaging with respect to the angular variable θ :

ḡ0(r, z) =
1
2π

 2π

0
g0(θ, r, z) dθ,

ρ̄(r, z) =
1
2π

 2π

0
ρ(θ, r, z) dθ.

(12)

Then, up to second order of perturbation we have:

(i) If ḡ0(r, z) ≢ 0, then for each simple zero (r0, z0) ∈ U∗ with
r0 > 0 of ḡ0(r, z) and for all |ε| > 0 sufficiently small,
there exists a 2π-periodic solution ξ(θ; ε) of Eq. (11) such that
ξ(0; ε) → (r0, z0) as ε → 0. Moreover, if all the eigenvalues
of D(r,z)ḡ0(r0, z0) have negative real part, the corresponding
periodic orbit ξ(θ; ε) is asymptotically stable for ε sufficiently
small. Otherwise, if one of such eigenvalues has positive real
part, then ξ(θ; ε) is unstable.

(ii) If ḡ0(r, z) ≡ 0 and ρ̄(r, z) ≢ 0, then for each simple zero
(r0, z0) ∈ U∗ with r0 > 0 of ρ̄(r, z) and for all |ε| > 0
sufficiently small, there exists a 2π-periodic solution ξ(θ; ε)
of Eq. (11) such that ξ(0; ε) → (r0, z0) as ε → 0.
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Remark 3. As we mentioned, when ḡ0(r, z) ≢ 0, a simple zero
(r0, z0) ∈ U∗ with r0 > 0 of ḡ0 corresponds, for |ε| > 0 sufficiently
small, with a 2π-periodic solution of Eq. (11) with initial condition
tending to (r0, z0) as ε → 0. Clearly, this periodic orbit is in
correspondence with a periodic orbit of (9) such that its initial
condition tends to a point y0 ∈ Φ(U) as ε → 0 which in turn
corresponds with a periodic orbit of (8) having an initial condition
which tends to a point x0 ∈ U as ε → 0.

Remark 4. As described, after some computations it is possible to
find the function g0(θ, r, z) in terms of F ◦ Φ−1

◦ Ψ −1(θ, r, z)
needed to arrive at the expression of the first bifurcation function
ḡ0(r, z) =

1
2π

 2π
0 g0(θ, r, z) dθ as defined in (12). It is worth

noting at this point that a common computational difficulty may
arise, as far as sometimes the former quadrature is not amenable
to a closed formevaluation, even for simple perturbation fields F . In
those cases, a local analysis of the zeros of ḡ0 near (r, z) = (0, 0)
can be performed with the aim of computing an upper bound of
the maximum number of small amplitude periodic orbits. For an
instance, see Section 3.

In what follows, the previous theory is illustrated by means of
some applied examples.

3. Examples

3.1. Harmonic oscillator with a potential

We shall now see how the particular case n = 3, Ω = R3, with
invariant Casimir D(x) = x3 and Hamiltonian H(x) =

1
2x

2
1 +

1
2x

2
2 +

V (x) with potential function V (x) =
1
2x

2
2h(x1, x3)[2 + h(x1, x3)]

can be studied. Notice that in this case we have, according with
(2) and (3): φ ≡ 0, h1 ≡ 1 and h2(x) = 1 + h(x1, x3).
Therefore the diffeomorphism x → Φ(x) = y defined in (4) on
U is given by Φ(x) = (x1, x2(1 + h(x1, x3)), x3). Its inverse is
Φ−1(y) =


y1,

y2
1+h(y1,y3)

, y3

and the rescaling factor is η(y) =

1 + h(y1, y3). We do not elaborate further on this example as far
as the perturbations considered are interesting only on a purely
formal level.

3.2. A zero-Hopf singularity analytic normal form

With Ω = R3 and the invariant Casimir D(x) = x3 + φ(x1, x2)
we obtain the following structure matrix

J(x) =

 0 1 −∂x2φ(x)
−1 0 ∂x1φ(x)

∂x2φ(x) −∂x1φ(x) 0


. (13)

According to the previous theory, we shall use the Hamiltonian
H(x) =

1
2 (x

2
1 + x22). This is a case in which the inverse of the

diffeomorphism Φ given by (4) on Ω is explicitly and globally
invertible in Ω . More precisely Φ(x) = (x1, x2, x3 + φ(x1, x2))
whose inverse becomes Φ−1(y) = (y1, y2, y3 − φ(y1, y2)) and we
have a constant rescaling η(y) = 1.

It is known (see for instance [18]) that our Poisson system
(1) associated with these structure matrix J and Hamiltonian
H corresponds to a special case of an analytic normal form of
the zero-Hopf singularity at the origin in the particular case that
φ(x, y) = P(x2 + y2) with P an analytic function at the origin with
P(0) = 0.

Proposition 5. Consider the unperturbed Poisson system (1) in R3

withHamiltonianH(x) =
1
2 (x

2
1+x22) and structurematrix (13)where
φ(x1, x2) = P(x21 + x22) is an analytic function with P(0) = 0.
Consider a perturbation of it as in (8) with any analytic perturbation
field

F(x; ε) =

 
i+j+k≥2

aijkxi1x
j
2x

k
3,


i+j+k≥2

bijkxi1x
j
2x

k
3,


i+j+k≥2

cijkxi1x
j
2x

k
3


. (14)

Assume that at least one of the following three conditions is not
fulfilled: (I) aijk = 0 if i is odd and j is even; (II) bijk = 0 if i is even and
j is odd; (III) cijk = 0 if both i and j are even. Let m be the number of
nontrivial periodic orbits in R3 of (8) with |ε| ≠ 0 sufficiently small.
Then the following holds.

(i) If F is an homogeneous polynomial vector field then m = 0.
(ii) If F is polynomial of degree 3 then m ∈ {0, 1, 2} and all the

possibilities are realizable.

Proof. Let us first recall that the map Φ of (4) is in this case a
global diffeomorphism in U = R3. Take any analytic perturbation
field F(x; ε) = (F1(x), F2(x), F3(x)) such that Fi(x; ε) = O(∥x∥2).
Computing the first-order bifurcation function ḡ0 as defined in (12)
we find that ḡ0(r, z) = (A(r, z), B(r, z) + 2rP ′(r2)A(r, z)) where

A(r, z) = −
1
2π

 2π

0
cos θ F1 ◦ γ (θ, r, z)

+ sin θ F2 ◦ γ (θ, r, z) dθ,

B(r, z) = −
1
2π

 2π

0
F3 ◦ γ (θ, r, z) dθ,

and γ (θ, r, z) = (r cos θ, r sin θ, z − P(r2)). Clearly the zeros
of ḡ0 coincide with the zeros of Ḡ0(r, z) = (A(r, z), B(r, z)).
Additionally the Jacobian is

det(Dḡ0) =
∂B
∂z

∂A
∂r

−
∂A
∂z


2A(P ′

+ 2r2P ′′) +
∂B
∂r


which implies that the simple zeros (r0, z0) of ḡ0 also coincidewith
the simple zeros of Ḡ0(r, z).

Using now the Maclaurin expansion (14) we obtain that

A(r, z) =


i+j+k≥2

Iijk r i+j(z − P(r2))k,

B(r, z) =


i+j+k≥2

Jijk r i+j(z − P(r2))k,

where

Iijk = −
1
2π

 2π

0
(aijk cosi+1 θ sinj θ + bijk cosi θ sinj+1 θ) dθ,

Jijk = −
1
2π

cijk

 2π

0
cosi θ sinj θ dθ.

It is worth mentioning that ḡ0 ≡ 0 if and only if Ḡ0 ≡ 0 which is
equivalent to Iijk = Jijk = 0 for all subindices. Therefore, ḡ0 ≡ 0 if
and only if aijk = 0 if i is odd and j is even, bijk = 0 if i is even and
j is odd and cijk = 0 if both i and j are even. Hence, if at least one
of the conditions (I)–(III) of the statement of the proposition is not
fulfilled then we have ḡ0 ≢ 0 and we can use first-order averaging
theory to study the periodic orbits of the perturbed system (8) in
all the phase space R3.

We use the new variable w defined by w = z − P(r2). Thus
we obtain that GĎ(r, w) = Ḡ0(r, w + P(r2)) = (A(r, w +



I.A. García, B. Hernández-Bermejo / Physica D 276 (2014) 1–6 5
P(r2)), B(r, w + P(r2))) has the expression

GĎ(r, w) = (GĎ
1(r, w),GĎ

2(r, w))

=

 
i+j+k≥2

Iijk r i+jwk,


i+j+k≥2

Jijkr i+jwk


.

We shall analyze the simple real zeros (r0, w0) of GĎ with r0 > 0
in some cases. Recall that these zeros are in correspondence with
those zeros (r0, z0) of ḡ0 via z0 = w0 + P(r20 ).

To prove statement (i) we assume from now on that F is any ho-
mogeneous polynomial perturbation field degree of d ≥ 2, namely
it has the form F(x; ε) = (


i+j+k=d aijkx

i
1x

j
2x

k
3,


i+j+k=d bijkx
i
1x

j
2x

k
3,

i+j+k=d cijkx
i
1x

j
2x

k
3). Then GĎ(r, w) = (


i+j+k=d Iijk r

i+jwk,
i+j+k=d Jijkr

i+jwk) has its components GĎ
i given by homogeneous

polynomials in R[r, w] of degree d. Therefore we state that GĎ has
not simple real zeros (r0, w0) with r0 > 0. Such claim follows af-
ter taking into account that (due to homogeneity) there is a unique
factorization GĎ

i =
d

j=1 Lij where Lij(r, w) ∈ C[r, w] are linear
polynomials; hence Lij(0, 0) = 0. In particular, the only real zeros
(r0, w0) ∈ R2 of GĎ are either (r0, w0) = (0, 0) (corresponding to
the intersection of two real lines L1j = 0 and L2k = 0) or they are
multiple of each other (belonging to the intersection of two real
coincident lines L1j = L2k = 0).

Going back we find that ḡ0 has no real simple root (r0, z0)
with r0 > 0. Hence, since U = R3 by applying first-order
averaging theory we conclude that, for |ε| ≠ 0 sufficiently small,
the perturbed system (8) has no periodic orbits in R3.

Now we shall prove statement (ii). Let F be any admissible
polynomial perturbation field of degree 3; hence it is of the form
(14) but with 2 ≤ i + j + k ≤ 3. We arrive at

GĎ(r, w) = (GĎ
1(r, w),GĎ

2(r, w))

=

 
2≤i+j+k≤3

Iijk r i+jwk,


2≤i+j+k≤3

Jijkr i+jwk


.

More precisely one has

GĎ
1(r, w) = r


α1r2 + β1w + γ1w

2

,

GĎ
2(r, w) = α2r2 + β2r2w + γ2w

3,

where α1 = −(a120 + 3a300 + 3b030 + b210)/8, β1 = −(a101 +

b011)/2, γ1 = −(a102 + b012)/2, α2 = −(c020 + c200)/2,
β2 = −(c021 + c201)/2 and γ20 − (c002 + c003). Observe that
the parameters αi, βj and γk are independent because of the
independence of the parameters aijk, bijk and cijk. Therefore, solving
for r2 from GĎ

1(r, w) = 0 and inserting it into the equation
GĎ
2(r, w) = 0 gives wQ2(w) = 0 with Q2(w) a polynomial of

second degree. Note that zeros (r0, w0) of GĎ with w0 = 0 imply
r0 = 0; hence they are rejected. In summary w0 must be a root of
Q2 and, depending on its discriminant, all the possibilities for the
numberm of simple zeros are obtained:m ∈ {0, 1, 2}. �

3.3. Duffing oscillator

The Duffing oscillator is recognized as one of the paradigmatic
examples of planar Hamiltonian dynamics [19]. Inwhat followswe
consider the unforced and undamped Duffing oscillator ϕ̈ + ϕ +

βϕ3
= 0 with a real stiffness parameter β . It is well-known that

for β > 0, the equation represents a hard spring system, while
for β < 0, it corresponds to a soft spring. In order to analyze
perturbations in which parameter β is no longer a constant, the
systemwill be embedded in a three-dimensional space by defining
x = (x1, x2, x3) = (ϕ, ϕ̇, β). In terms of these variables, the model
can be written as a Poisson system in Ω = R3

dx
dt

= JD · ∇H(x) (15)

of structure matrix JD which is the 3-dimensional version of (5),
and Hamiltonian function H(x) of the form (2) with h2

1(x) = 1 +

x3x21/2 and h2
2(x) = 1. Notice that D(x) = x3 is a Casimir invariant.

On each symplectic leaf {D(x) = c} with c ∈ R the system has a
center at (x1, x2) = (0, 0)which has an unbounded period annulus
if c ≥ 0 and a period annulus bounded by heteroclinic connections
between two saddle points when c < 0.

Let us regard now the analytical perturbations of (15) as already
defined in (8), that is with an analytic perturbation field given by
F(x; ε) = (F1(x; ε), F2(x; ε), F3(x; ε)) with no constant or linear
terms in the phase variables x.

Proposition 6. Consider the unperturbed Poisson representation
(15) in Ω = R3 associated with the Duffing system. Consider
a perturbation of it as in (8) with any analytic perturbation field
F(x; ε) = (F1(x; ε), F2(x; ε), F3(x; ε)) such that Fi(x; ε) = O(∥x∥2).
Taking 0 = (0, 0, 0; 0) ∈ R3

× R and ∂n1n2n3 ≡ ∂/∂xn11 ∂xn22 ∂xn33 ,
the following quantities are introduced

∆1 = −∂003F1(0) − ∂012F2(0) − ∂021F1(0) − ∂030F2(0)
− 3∂012F1(0) − 2∂111F2(0) − ∂120F1(0) − 3∂201F1(0)
− ∂210F2(0) − ∂300F1(0),

∆2 = −∂002F3(0) − ∂020F3(0) − 2∂101F3(0) − ∂200F3(0).

In the generic case that ∆1 ≠ 0 or ∆2 ≠ 0, then for |ε| ≠ 0
sufficiently small there are no periodic solutions in a neighborhood of
the origin of (8).

Proof. The unperturbed system (15) and its perturbation F(x; ε)
are ready for the application of the procedure described in
Theorem 1. The diffeomorphism Φ defined in (4) takes the form

Φ(x) = (x1

1 + x21x3/2, x2, x3) in its definition domain U =

{(x1, x2, x3) ∈ Ω : x21x3 + 2 > 0}. The inverse is Φ−1(y) =
−1+

√
1+2y21y3
y3

, y2, y3


. Moreover the first integral I and the

scalar function η(y) used in the time rescaling (6) now are I ≡ 1

and η(y) =

√
2+4y21y3

1+
√

1+2y21y3
. The corresponding system (9) defined in

Φ(U) becomes as expected

ẏ1 = y2 + εF∗

1 (y; ε), ẏ2 = −y1 + εF∗

2 (y; ε),

ẏ3 = εF∗

3 (y; ε).
(16)

Now cylindrical coordinates are taken y → Ψ (y) = (θ, r, z)
with y1 = r cos θ, y2 = r sin θ and y3 = z, and we obtain
the expression of the corresponding system (11) in Lagrange
standard form. In this example, the bifurcation function ḡ0(r, z) =
1
2π

 2π
0 g0(θ, r, z) dθ as defined in (12) cannot be obtained in

closed form. Therefore a local analysis around (r, z) = (0, 0) will
be performed as it was anticipated in Remark 4.

First we check that ḡ0(r, z) =

r3ĝ1(r, z), r2ĝ2(r, z)


where

ĝi(0, z) ≢ 0. Therefore the zeros with r > 0 of ḡ0(r, z) and those of
the function ĝ(r, z) =


ĝ1(r, z), ĝ2(r, z)


coincide. Additionally it

is found that ĝ1(0, 0) = ∆1/16 and ĝ2(0, 0) = ∆2/4 where ∆i are
defined in the statement of the proposition. Clearly, by continuity
of ĝ at the origin, if ∆1 ≠ 0 or ∆2 ≠ 0 there are not zeros of
ĝ in a neighborhood of (r, z) = (0, 0) which in turn proves the
proposition if we use first-order averaging theory and go back to
the original perturbed system (8). �
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