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A b s t r a c t  

The paper studies Hamiltonian systems with a strong potential forcing the solutions to oscillate on a very small time scale. 
In particular, we are interested in the limit situation where the size ~ of this small time scale tends to zero but the velocity 
components remain oscillating with an amplitude variation of the order O(1). The process of establishing an effective initial 
value problem for the limit positions will be called homogenization of the Hamiltonian system. This problem occurs in 
mechanics as the problem of realization of holonomic constraints, as various singular limits in fluid flow problems, in plasma 
physics as the problem of guiding center motion and in the simulation of biomolecules as the so-called smoothing problem. 
We suggest the systematic use of the notion of weak convergence in order to approach this problem. This methodology helps to 
establish unified and short proofs of many known results which throw light on the inherent structure of the problem. Moreover, 
we give a careful and critical review of the literature. 
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0. I n t r o d u c t i o n  

The concern of  this paper is the study of  Hamiltonian systems with a strong potential forcing the solution to 

oscillate on a time scale, which is vastly smaller than the time scale of  the mean evolution. In particular we are 

interested in the limit situation where the size E of  the small time scale is decreased to zero. Depending on the initial 

values three situations are possible: 

1 The position and the velocity are converging pointwise as functions of time to certain limit functions as e ~ 0. 

II Only the position is converging pointwise to a limit function as e --~ 0. The velocity remains oscillating with 

an amplitude variation of order O(1). 
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III Neither position nor velocity are converging pointwise. 
We will see, that the positions indeed converge pointwise if the corresponding total energies are bounded in the limit 

--+ 0. Thus, Case III is ruled out for bounded energies. Case I can be handled by standard averaging techniques of 
perturbation theory, cf. e.g. [21 ]. The remaining Case II leads to interesting results and deserves special techniques to 
handle the rapidly oscillating velocities. The specific problem for this Case II is to establish an effective initial value 
problem, which describes the limit solution. We decided to call this problem homogenization of the Hamiltonian 
system in order to have a clear distinction in terminology to the somewhat simpler averaging problem of Case I. 
This terminology seems to be justified since there is some methodical analogy to the problem of homogenization 

for elliptic boundary value problems [23]. 
A discussion of this particular homogenization problem is somewhat scattered in the literature. However, it 

appears at the heart of several important types of problems: 
A Realization of holonomic constraints. In some texts on Theoretical Mechanics the question appears whether 

the formalism of the d'Alembert-Lagrange principle for holonomic constraints can be justified by introducing 
strong, realistic potentials, which - in the limit of infinite stiffness - force the motion to the constraints manifold. 
This question is discussed to some extent in the monographs [4,5,13], by means of examples in [19,35]. A 
mathematically exhaustive investigation of this question is given in [33], which is heavily based on the important 
early results of [27]. 
It turns out that this intuitive approach to justify the d'Alembert-Lagrange formalism only works for either rather 
special initial data (leading in fact to Case I) or for rather special constraining potentials. The interpretation of 
the physical meaning of these special potentials is deeply connected to that of distinction between Case I and II. 
The reader may find quite controversial positions in the literature, cf. [ 19, p. 8; 35, p. 104]. 

B Singular limits in fluidflow problems. An infinite-dimensional analog to problems of type A is provided by 
several singular limits of fluid dynamics. So to mention is the incompressible or Zero-Mach-Number limit of 
compressible fluid flows [8,11,17], and the quasi-geostrophic or Zero-Rossby-Number limit of geophysical fluid 
flows [12], for which Case II appears to be important in atmosphere-ocean science due to initial data that are 
neither in geostrophic balance nor in hydrostatic balance. 

C Guiding center of motion of charged particles in nonuniform magnetic fields. The spiral motion - Larmor 
gyration - of free charges around magnetic field lines is a well-known phenomenon. The physical importance 
of Case II is doubtless here, since the velocity of this gyration necessarily remains O(1). Quite early, the correct 
limit description of fast Larmor gyration in nonuniform magnetic fields has successfully been discovered in the 
physical literature [2,24,32] although unexpected and counterintuitive in the mechanical context of problem type 
A. These results play a key role in the explanation of magnetic traps and magnetic mirrors in plasma physics. 
They in fact motivated the important mathematical research of [27]. 

D Corrected potentials for introducing constraints in the simulation of biomolecules. Modeling biomolecules as 
classical mechanical systems leads to Hamiltonian systems with vastly different time scales. There is a strong 
need for eliminating the smallest time scales, because they are a severe restriction for numerical simulation. This 
leads to the idea of just freezing the high frequency degrees of freedom. However, the naive way of doing it via 
holonomic constraints, i.e., via the d'Alembert-Lagrange principle, is bound to produce incorrect results, since 
there are strong potentials present which do not fit the requirements mentioned for problems of type A. There is 
a need for correcting the weaker potentials as was first noted in [26], where such a correction was suggested on 
the basis of (questionable) additional physical assumptions. A detailed mathematical discussion of this problem 
can be found in further work of the present authors [31 ]. 

In this paper we approach the homogenization problem by making consequent use of the notion of weak conver- 
gence, which enables us to handle the velocities in a short and lucid way. To be specific, since only averages of the 
velocities are converging, we are led to certain classes of test functions in order to have an easy-to-use concept of 
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convergence. It turns out that the weak*-convergence in Loo and in the space of distributions 79' will be appropriate 

for our purposes. The idea of  using weak convergence for homogenization problems was systematically developed 

by Murat and Tartar in the mid-seventies, cf. [23] and the literature cited therein. 

We do not claim to present any new results (except Theorem 2.1), but we hope that the methodical aspects of  

our presentation help to clarify and unify the whole business. For instance, we will show that the main difficulty 

of  the problem is the lack of weak continuity of certain nonlinear functionals like squaring a function. Besides, our 

aim is to give a critical review of  the known literature especially for problems of type A and C. To the best of our 

knowledge, the collected references are quite complete. 

O. 1. Organization of the paper 

In Section 1 an extraction principle is established for solution sequences with bounded energy. The extracted 

subsequence shows a certain mixture of  strong and weak convergences, which is of basic importance for the rest of 

the paper. We call this mixture M-convergence. In Section 2 this concept is used to derive an abstract limit equation, 

which gives a general answer to the homogenization question. However, this equation is not intrinsic and therefore 

only of minor use. Nevertheless it provides a lot of insight into the structure of the problem and allows to establish 

short proofs of  the more concrete answers for special situations. 

Section 3 is devoted to the problems of  type A, i.e., realization of  holonomic constraints. We give short proofs 

of  the known results. The general case for manifolds .A4 of  codimension r = 1 is discussed at length in Section 4. 

We show the connection to the Virial theorem of Statistical Physics and to the theory of adiabatic invariants of  

Hamiltonian systems. 

For the sake of  completeness, the general case for codimension r > 1 is shortly reviewed in Section 5. It turns 

out that resonances and some kind of singularities may cause a nondeterministic behavior of  the limit solution. This 

is the central result of  the work of  Takens [33], which implies that in general no really satisfactory answer can be 

given to the homogenization problem. Section 6 presents two examples for the codimension r = 1 case. The first 

one is academic and completes some aspects of  the discussion in Section 4, whereas the second one deals with the 

problem of type C. 

0.2. Basic notation 

For the sake of  simplicity we consider a model problem with the following separable Hamiltonian on R 2d: 

H(x ,~ :6 )  = ½1~12 + V(x) +E-2U(x) .  

Throughout the paper we make the following basic assumptions: 

(A1) V c C °o is bounded from below, i.e., infx~Ra V(x) >_ V, > -oo .  
(A2) U E Coo attains its global minimum 0 on a smooth m-dimensional manifold M ,  i.e., UIM = 0 and U(x) > 0 

for all x c ~d \ M .  The codimension is r ----- d - m. 

(A3) U is uniformly strictly convex in directions orthogonal to TA4, i.e., there is an ot > 0 with ~TD2U(x)~ >_ 
ot21~[ 2 for all ~ ~ NxA4, where N M  denotes the normal bundle of  M .  

We will denote the potential forces by 

F(x) = grad V(x), G(x) = grad U(x). 

Thus, the Hamiltonian induces corresponding canonical equations of motion, 

~2;~ + ~2F(x~ ) + G(x ~) = 0 (1) 



60 EA. Bornemann, C. Schiitte/Physica D 102 (1997) 57-77 

with initial values 

x ~ (o) = x~, ~ (o) = ~. 

We denote the energy, which is an invariant of  motion, by 

H ¢ ---- H (x~, .t~, ,~). 

Finally, we will frequently use the following notation for matrices: x ® y = x yT E ~d×d, the tensor product of 

two vectors x, y E I~ d, and A : B = tr ATB, the matrix inner product of two matrices A and B of  the same shape. 

This notation is common, for instance, in mathematical elasticity [9]. 

I. Bounded energy and compactness 

We start our investigation with a careful study of  the convergence properties of  the sequence x ~ for an increasingly 

strong potential, i.e., e --* 0. We prove an extraction principle based on energy methods. It turns out that the sequence 

x E approaches the manifold .A4 but with a rather different behavior along the manifold and normal to it. Now, for 

a small neighborhood of  a compact set in .A4 it is possible to introduce uniquely the following decomposition of  a 
point x c •d: 

X = X.M -~-XN, XA4 E .All, x N E NxA 4 j ~ .  

We view (xM, XN) as a new coordinate system for this neighborhood. More precisely, the coordinates are given by 

pulling this decomposition back to a local bundle trivialization 

X ([~r, (., .)) ~ (N.A/I, (., .)), ~ C ~m,  

which obeys the metric structure. Whenever appropriate, we will - by "abus de langage" - view the coordinates as 

(XA4,XN)  E ~ X ~r .  

For the sake of  short reference we introduce a special notion for the kind of  convergence we are going to establish. 

Definition 1.1. Given a sequence e ~ 0 and a corresponding sequence of  solutions x E 6 C2([0, T], ~d )  of  the 

Eq. (1). The sequence M-converges to a function x ° ~ C 1' 1 ([0, T], .A//) if H ~ -+ H ° in ~ and along the manifold 

E x 0 xA4 ~ i nCI ( [O ,T] ,M) ,  

as well as normal to it 

' = O(E) in C([0, T] ,Rd) ,  x N 

and furthermore if there exist the limits 

" * 5? ° in L°~([O, T],B~d), X A/I --'- 

-~v --"* 0 in L°°([O, T], B~ d) 

~ = X~N/E ~ ~l in L°°([0, T], ~d), qE ® rf ~ ~ in L~( [0 ,  T], ff~d×d). 

Remark. In the following we simplify the notation. All function spaces are understood to denote functions [0, T] -+ 
R a. Terms like O(E), O(1) applied to functions are meant to hold in the space C([0, T], ~d). 

We now state and prove our central compactness result. 
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Theorem 1.2. Let a sequence E ~ 0 be given, for which the initial position x6 as well as the initial energy H ~ are 

bounded. Then, for each choice T > 0, there is a subsequence e', such that x ' '  M-converges  to some x ° ~ C 1' I. 

Conversely, if x E M-converges,  the initial position x6 as well as the initial energy H ' are bounded. 

Proo f  Let x E E C°°([0, T, [, ~d) be the unique solutions of  the equations of  motion with the maximal possible 

choice of T, > 0. The boundedness H ~ < H,  and Ix61 < K for all E implies 

Zix El 2 < H , _ V , ,  2 

and therefore by integration 

Ix~(t)l _< Ix~l + t v / 2 ( n ,  - V,) _< g + t x / 2 ( n ,  - V,). 

Thus, existence and uniqueness theory for ordinary differential equation shows that one can choose T, = ~ .  Fixing 

some f ini te  T > 0, we thus have that x E and 2E are bounded sequences in C([0, T], Ra). By the theorems of 

Arzelh-Ascoli and Alaoglu (cf. [28, Theorem. 11.28/11.29], remember that L °° is the dual space of  L I ) we now 

conclude, that there is a subsequence of~, which we again denote by ~, and a limit function x ° c C o, t ([0, T], ~d) = 
WJ '~( [0 ,  T], Ed) such that 

x~--+ x ° in C, .t ~ ~* ~t ° in L ~ .  

D' 
Since in consequence 57 E --~ 5~ ° in the sense of  distributions and therefore 

0, 

we get by taking limits in 79 ~ for Eq. (1) that G ( x  °) = 0, i.e., x ° constitutes a path in .A//. Hence, for sufficiently 

= E makes sense and we know that X~v ~ 0 uniformly. Taylor expansion small ~ the coordinate split x E x ~  + x N 

of U shows 

E E e2(H,  - V,) > U ( x  ~) = I D2U(xEM) : x N ~ x N -+- O([x~vl3). 

Using assumption (A3) and the uniform convergence of  x~v we get for sufficiently small e the estimate 

Ix~vl 2 < C(E 2 7t-IX~vl 3) _< C~ 2 -~ ½IX~vl 2, 

= O(E). where e denotes some positive constant. This shows x N 

Using Lagrangian formalism it is straightforward, but tedious, to establish the equations of motion for coordinates 

( x ~ ,  xN) .  The  result can be found in Appendix A of this paper. Inserting the details of  the convergence established 
so far these equations take the form 

( 1 \ iCE N - E - 2 D N U ( X  ~) -1- O(1) ' 

where D ~  denotes differentiation with respect to x ~  and DN with respect to XN. The mass matrix M ( x  ~ ) (Gram- 
mian matrix of  the Euclidean metric in the new coordinates) takes the form 

1 M ( x ~ )  = \ O ( E )  I ' O(~) I + O(E) " (3) 
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Note, that the metric in the normal coordinates xu  does not change, because they belong to the Euclidean subspace 
Nx~. A4  of  R d. Taylor expansion of  the force terms yields 

D~4U (x E) -~- I DyvlD2U (x~M) " X~N ~ XEN q-O(e 3) = O(E 2) 

and 

D N U ( X  e) 2 E • = DNU(XA.1)x  N + O(E 2) = O(e), 

where we have used D U  Fm ----- 0 and the estimate X~v = O(e). Thus, the equations of  motion (2) and the expression (3) 

for the inverse of  the mass matrix give 

-~k,l = O(1), X u''• = O(e - I ) .  

Moreover X~v = O(e) implies the boundedness 

~E = X,u/e = 0 ( 1 ) ,  7• ® ~E = 0 ( 1 ) .  

Applying the theorems of  Arzel?~-Ascoli and Alaoglu once more, we can - after a further extraction of  subsequences 

- establish the missing parts of  what builds up the asserted M-convergence.  The proof of  the converse result is 

straightforward. [] 

If  we do not bound the initial energy H •, we cannot expect strong convergence of  x • nor can we expect that the 

limit x ° has range in .A//. 

Example.  Consider the Hamiltonian 

H(x, ~; e) = ½~z + e-2U(x) 

with the potential 

lx2 ,  X < 0 ,  

U ( x )  = 2x2, x > 0 .  

For the initial values x~ = 1, ~t~ = 0 we get the unbounded energy H E = 2e-2  __+ <x~. The solution of  the equation 

of  motion is given by the rapidly oscillating function x • ( t)  = x ( t / E L  where 

cos(2t) 0 < t < lzr, 

x ( t )  = - 2 s i n ( t  - In-) ¼zr < t < 45-rr, 

s i n ( 2 t -  5rr) ~Tr < t  < 3zr. 

Here, we get merely weak convergence of  x • in L ~ ,  namely 

3zr/2 

x E * x  ° - - - - 2 / z r  = 1 f 3zr/2 j x ( r )  dr,  
0 

which is not  on the manifold .A4 = {0} defined by the minimum of U. 

Corresponding to the coordinate splitting x • E • = x M + x  N for a given .A4-converging sequence x • there is a splitting 
of  the energy H E into "intrinsic" parts along the manifold and normal to the manifold - at least asymptotically: 
Using the fact that (~¢~, X~v) = 0 implies 

< ~ ,  ~v> = - < ~ ,  X~v> = o(e), 
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we get by bt 412 = 12~ 12 + 12~v 12 + 2( . t~ ,  ~t~v) and Taylor expansion of  the potentials V and U 

/4 ~ = E ~  + e~, + o((: )  

with the tangential and normal energies 

e 1 .~ 12 4 1 .4 12 / ( : - 2 D 2 U ( x ~ v . I )  XN EM = ~]XA 4 + V(x~A4), EN : ~]XN + . ¢ @XEN" 

The kinetic and the potential part of  the tangential energy E.~ are uniformly convergent each, thus E ~  -+ E ° = 

I~t ° 12/2 + V(x °) uniformly. However, each of  the kinetic and potential parts of E~v converges only weakly in general. 

Nevertheless, since the total energy converges, we surprisingly get the uniform convergence 

E~ ~ H 0 E - E2el, 

which is of  crucial importance later on. 

2.  A b s t r a c t  h o m o g e n i z a t i o n  

The question arises, whether the limit x ° of  a M-converging sequence x 4 is itself a solution of  an initial value 

problem constrained to the manifold A4. In this section we offer an abstract approach for unfolding the structure of  

such a limiting equation. 

The starting point is the observation, that we may take the limit (: --+ 0 in the equations of  motion (1) in the sense 

of distributions. The limit 2 4 --~ 2 ° in L ~ implies that 

)? ~ £o 

in D', in fact, even in the sense of  distributions of first order, i.e., in D 'l , cf. [ 15]. Thus, taking limits in (1), we get 

j?o + F(x o) + D, Llim(:-ZG(x4) = 0. (4) 
4 --~ 0 

This limit expression can be evaluated. 

Theorem 2.1. Suppose that x 4 J~d-converges to x °. Then, the limit 

Z* = D 'Ll im r/~/(: 
4--~0 

exists as a function in L °c and x ° ~ C l'l fulfills the equation 

£ ° + F ( x  ° ) + D G ( x  °).;~*+½D2G(x ° ) ' g ' = O  (5) 

almost everywhere. The quantities r/4 and 27 are from Definition 1.1. 

Proof Taylor expansion of  second order yields 

(: 2G(x 4) = (:-2 (G(x 4) __ G(XeAA)) 
1 

= DG(x~_,xa) r14 I • - -  + (1 - s)D2G(x~a + sx~) • (11E ® rl 4) ds. (6) 
(: J 

o 
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Now we have the convergence D2G(x~  + sx~) ~ D2G(x °) uniformly in s ~ [0, 1] and t ~ [0, T]. Since 

multiplication is continuous as the operator 

C O × (L ~ ,  weak-*-topology) ~ (L ~ ,  weak-*-topology),  

we get 

1 

f (l -- s)D2G(x~x~ + SXEN) : (/7 E ® r/t) ds *~ ½O2G(xO) " E. (7) 

0 

Eq. (4) shows that 79~l-limE~0 E-2G(x  E) exists as a function in L °°. Thus, relations (6) and (7) yield the existence 

of the limit 

D~L lim D G ( x ~ ) .  tIC 
E--~0 E 

as a function in L ~ .  Using the ( x ~ ,  xg) coordinates, we have 

E D2NU(x~)rl¢/E 

Note, that r/~/E ~ Nx~ M .  Our general assumption (A3) implies, that 

D2NU (X~A/t)-I --~ D2NU (xO) -1 

in C 1. Thus, using the continuity of  the multiplication as an operator 

C 1 ×79 tl ~ 79 tl, 

we get the existence of the limit 

rl E 
)~* = 79'Llim - -  = 79'Llim D ~ U ( x ~ )  -1 • D ~ U ( x ~ ) .  OE__~ = D~U(x°) -1~ 

E---~O E E---~O E 

as a function in L ~ .  Turning hack to the usual coordinates, we conclude that 

79'L lim D G ( x ~ )  r/E • __ = DG(x °) • )~*, 
E-~O E 

which finally gives the desired limit equation• [] 

Remark. For codimension r = 1, in a somewhat different form the limit equation (5) can be found in [19,Eq. (5);35, 
Eq. (8•33)] using suitable averaging operators to express 2:. 

Note, that the existence of ~DfLlimE~0 rlE/E implies that 

rl ~ ~ 0. (8) 

However, in general we nevertheless obtain 0 ~ ® r/~ *" 2: ~ 0. For example, OE(t) = s in( t /e)  yields r/~ ~ 0 but 

0 ~ ® rl ~ = I~12 ~ 2: = ½. Thus, the product mapping is not weakly continuous, cf. [10]. Likewise, the first order 
Taylor expansion 

1 
rl E 

E-2G(x  E) ] OG(x~yvl + SXEN) = . - -  ds 
J E 
0 
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cannot be used instead of (6) to evaluate the D fl-limit of  the expression. The reason is, that certainly 

1 

f D G ( x ~  + SX~u) DG(x °) ds 

0 

in C, but in general not in C I. Thus the limit is not simply DG(x °) • ~.*, since the product is not continuous on 
C x D II as the following example shows: Take 4~ (t) = e cos(t /E) and ~ = ~-1 cos( t /e ) .  We have ~b E --~ 0 in C, 

but not in C l, and D/Llim~__,0 ~p~ = 0, since ~ (t) = d sin(t/e)/dt.  However, the product converges not to zero, 
• 1 

It is possible to provide further insight into the meaning of the additional force term D2G - E / 2 .  The following 

lemma shows that the term is directly related to the limit energy dissipation of the normal components. The notion 
of normal energy was introduced at the end of Section 1. 

Lemma 2.2. The normal energy E~v of an .M-converging sequence x ~ obeys in the limit 

t if EON(t) = E°(O) + ~ (.t°(r),  D2G(x°(r)) • E ( r ) )  d r  

o 

and asymptotically 

t if E~N(t) = E~v(0) + ~ (.t°(r),  D2G(x°(r)) • r/E(r) ® r l ' ( r ) )  d r  + o(1). 

0 

Proof Since H ° is a constant, differentiating the relation E0N = H ° - ½ [.t°l 2 - V(x °) for the limit normal energy 
with respect to time yields 

/~o = _ (.to, 5/0 + grad V(x°)). 

If we insert the limit equation (5) of  Theorem 2.1 and note that .t o .1_ DG(x°))~ * because of DG(x°)k * ~ Nxo.M, 
Yc ° ~ Txo.M, we end up with the differential equation 

Eo = ½1.to O20(xO). El, 

which proves the limit part of  the lemma. The uniform asymptotics stated for E~v can be derived from this limit 

expression by using the uniform convergence of E~v and the weak*-convergence 0 E ® r(  *" •, which makes the 
integral term uniformly convergent to the corresponding integral term of the limit expression by a further application 

of the Arzelh-Ascoli  theorem. [] 

The abstract homogenization process of  this section does not yield an intrinsic description of x ° on A/I. This is 
not even possible, since the "shadow" ,~ of  the normal components cannot in general be predicted by its initial value 
2?(0) as will be explained in Section 5. However, for certain important situations it is indeed possible to derive a 
completely intrinsic description of  the limit x °. This will be the subject of  the next two sections. 
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3. Realization of holonomie constraints 

If the last force term of the limit equation (5) vanishes in the tangential direction, i.e., if 

I D2G(x°) : r E Nxo.M, (9) 
2 

the limit function obeys 

5? ° + grad V(x °) E Nxo.M, (10) 

because DG(x °) • Z* ~ Nxo.M holds in any case. By the d'Alembert-Lagrange principle, relation (10) describes 

the motion due to the potential V under the holonomic constraints 

x°(t) E .A4 Vt E [O,T]. 

Thus, the limit ~ --~ 0 "realizes" holonomic constraints with potential V, if and only if condition (9) is fulfilled. Stan- 

dard textbooks on classical mechanics like [1,4,5,22] prove the existence of a unique solution x ° E C2([0, T], .M) 

of (10) for given initial values ~o ~ Txo.M. 

Since the limit tangential energy E ° ---- ½ I~°12 + V(x °) is a constant of motion of the constrained system (10), 

the limit normal energy E0N = H ° - E ° is necessarily constant in time as Well. However, E ° being a constant in 

time is not sufficient for condition (9) to hold. We will come back to this point in Section 6. 
There are essentially just two cases, where one can show, that condition (9) holds. For the sake of simplicity we 

state our results forfixed initial values only. They can easily be extended to converging initial values. 

3.1. Case I: Vanishing normal energy 

Theorem 3.1. Suppose the initial values satisfy 

Then, the sequence x E .M-converges to the unique solution x ° of the constrained system (10) with initial values x ° 
and .~o. 

Proof The assumptions concerning the initial data imply that the initial normal energy is zero, E~v (0) = 0. Upon 
introducing the function 

l 

~ ' ( t )  = ] I~v(r)l  2 + I~/ '(r) l  2 dr,  

o 

we ge t by assumption (A3) and Lemma 2.2 thedifferential inequality 

~E (t) < Cl EEN(t) _< 8(E)+  c2q~e(t), 

where 'Cl andS2 are certain positive constants and 8 (e) ~ 0 for e ~ 0 denotes explicitly the o(l)-term of Lemma 
2.2. Gronwall's inequality yields 

~be(t) < 8(E)Te ¢2r, 0 < t < T. 
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This proves the uniform convergence of  4~ ~ --+ 0 which in turn proves the strong L2_convergence XN. E ~ 0 and 

17 ~ ~ 0. This strong convergence allows us to conclude that 

~7 ~ ® rf  ~ 0 

strongly, cf. [10], hence Z' = 0. Theorems 1.2 and 2.1 yield the existence o f a  subsequence x +', which M-converges  

to the solution x ° of  the constrained system (10). Since this limit is unique we can disregard the extraction of  

subsequences and have thus proved the convergence of  the original sequence. [] 

Remark. The first mathematical proof of this theorem was given by Rubin and Ungar [27]. It appears in the form of 

an example in the textbook of Arnold [4, Chap. 17A]. For codimension r -- 1 one can find a discussion in [19,35]. 

It is restated as Theorem 9 in [5, Chap. 1, Section 6.2]. 

Because of the occurrence of  strong convergence in this case it is possible to apply the "slow manifold" technique 

of Kreiss [20] which is worked out in [21] with no explicit mention, however. 

An infinite-dimensional analog of  the case is provided by the incompressible limit of  fluid dynamics for balanced 

initial data. A Hamiltonian approach was given by Ebin [11], a careful perturbation analysis can be found in the 

work of Klainerman and Majda [17], and weak topologies are considered in [8]. 

The proof of Theorem 3.1 allows us to state a necessary and sufficient condition for the strong convergence of 

the normal velocities that only involves the given initial data: .t~v ~ 0 strongly if and only if E°N (0) = 0. 

3.2. Case H: Constraining potentials with constant gully width 

Theorem 3.2. Suppose that initial values satisfy 

0 • ~ ~ d .  
X 0 ~---X E ./k4, X 0 ----- V E 

If  the constraining potential U satisfies 

D 2 U IA4 = const., 

the sequence x ~ M-converges  to the unique solution x ° of  the system (10) with initial values x ° and ~t0 ° = vM 

T~oM, the orthogonal projection of  v. 

Proof By Theorem 1.2 there is a subsequence x d,  which M-converges  to a solution x ° of  the limit equation (5). 

Since ~7 E is normal to the manifold, the tensor Z7 takes the form 

(001 
0 ZNN 

using (xM, XN)-coordinates. For a given vector field X E TxoM we get in the metric of  .At 

(D2G(x °) • S ,  X) = (D2DxUIx=x o) • E = (D2 DxUIx=x o) : ~NN = (OxD2Nglx=x o) " ~NN, (11) 

because the tangential derivates Dx commutes with the normal derivative DN. Note, that by construction the normal 
components are provided with an Euclidean structure which allows the use of  the matrix inner product ' : ' .  Since 

by assumption D× D~v U = 0 for all X ~ T.A//, condition (9) is satisfied. Theorem 2.1 shows that x ° is the unique 
solution of  the constrained system (10). This uniqueness of  the limit x ° implies that already the original sequence 

x ~ M-converges  to x °. [] 
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Remark.  An example of  a potential U satisfying the condition of  this theorem is provided by U (x) = dist(x, .h4) 2. 
This theorem has been stated and proved by Gallavotti [ 13, Chap. 3, Section 3.8], who calls it "Arnold's theorem" 

in view of a remark, which was made by Arnold on p. 91f of  his textbook [4]. Takens [33] offers a proof under 

somewhat more restrictive conditions than ours, cf. his remark on p. 429. For codimension r = 1 one can find a 
discussion in [19,27,35]. 

As mentioned at the beginning of  this section, the limit normal energy E ° is constant in time. Benettin et al. [6,7] 
have shown that even in the case 0 < ~ << 1 the normal energy is nearly a constant for exponential ly  large times. 

To be precise they have proved the following Nekhoroshev-type of result: 

lEVy(t) - E~v(0)[ < E fo r0  < t < e x p ( b ~ - a ) ,  

where a and b are positive constants. In general, one has a = 1/ r ,  where r denotes the codimension of the constraints 
manifold .M, but for instance, the special potential U ( x )  = dist(x, .M) 2 yields a = 1 in any dimension. These 

results should be contrasted with the comparatively rather trivial estimate given by Schmidt [29, Proposition 1]. 
An infinite-dimensional analog is provided by certain fluid flow problems with unbalanced initial data. If  the con- 

straining forces appear to be isotropic they fulfill conditions like the one given in our theorem. For the incompressible 

limit consult [30] and for the quasi-geostrophic limit [12]. 

4. The  genera l  case for  codimension 1 

In general, the explicit evaluation of the term 

1 D 2 G ( x ° )  : r (12) 

demands a careful study of the normal oscillations x~v. For reasons, which will become clear in Section 5, we restrict 
this study to the codimension r = 1 case. We are slightly changing notation in this case: Since we are interested in 
local properties, we may assume without loss of  generality that the manifold .A4 is orientable. Let eu ~ N.M be 
a smooth field of  unit normal vectors. Now, the local coordinate system of  points x near to the range of the limit 

function x ° is given by 

x = xg4 + X N  • eN(XA4).  

In this way, the ma t r ix / ?  takes the special form 

~, = a • e u ( X  °) ® eN(xO),  

where the scalar  function a is given by the limit 

)2 * ( x ~ / ~  ~ o.  

On the manifold .A4 the constraining potential U shows the "spring constant" 

~O2(X) = D 2 U ( x )  = D 2 U ( x )  : ( e u ( x )  ® e u ( x ) )  Vx E . /~ ,  

in normal direction. Note that w(x)  _> c~ > 0 by assumption (A3). The normal energy resembles the energy of a 
harmonic oscillator, 

= + 
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In fact, the equation of motion in the xN-coordinate is nearly that of a slowly modulated harmonic oscillator, 

'~ + e -2w2(x~)x~v = O(1). (13) x N 

This equation can be established using the second order equations (2) of  motion and a further Taylor expansion. 
We will see, that the additional force term (12) is conservative, i.e., there is an additional potential yielding the 

equation of motion for the limit x ° as a constrained Hamiltonian system. 

4.1. Heuristic derivation of the additional potential 

The structure of  this additional potential can easily be derived, if we assume that the normal oscillation is described 

by the equation 

"" + ~:-20)2(X~v4)X~V = 0, X N 

thus oversimplifying the asymptotic result (13). Now, the perturbation theory for integrable Harniltonian systems is 

applicable. In fact, one can show that the action variable E / w  of a single-frequency system is an adiabatic invariant, 
cf. [5] Chap. 5, Section 4, Theorem 23. This means that 

lim E~u(t) -- 69 = const., 
~ o  c o ( x ~ ( t ) )  

which yields the following expression for the limit normal energy: 

E o = Oo~(x°).  

Thus, the term 

H 0 = 1 J~°12 + V(x O) + 09 og(x O) 

would be a first integral of  the motion on .M. This motivates, that x ° is described by holonomic constrained 
Hamiltonian mechanics with the potential 

W ( x )  = V ( x )  -}- Vadd(X), Vadd(X ) -~- O(,o(x), 

which is defined for all x ~ A4. 

4.2. Rigorous derivation of the additional potential 

We will base the rigorous derivation of the above given additional potential Vad d on the fact that in the limit ~ ~ 0 
the normal energy E~¢ is equipartitioned into its kinetic 

= ½1x ,l 2 

and its potential part 

= ½ , - 2 o , 2 ( x 2 0  ( x D  2, 

i.e., T ° = U ° = ~Eu.l 0 This equipartition is a well-known fact for the time averages of the corresponding 
energy parts for harmonic oscillations and is connected to the so-called Virial theorem of Statistical Mechanics, a 
mathematical result which has the appearance of an ergodic theorem, but no ergodicity is assumed, of. [1,14,34]. 
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Lemma 4.1. 
weakly in L ~ ,  

*TON * U  ° T~--~ U~ ---~ 
N " 

Moreover, we get 

TON = gOAl = I~E NO = la)2(x0)o." 

Proof By definition of  a and the strong convergence x ~  --+ x ° we have 

U~/ a ) i (xM)  ( f ~ - )  2 * a)2(x0) 

2 2 

Hence, by the uniform convergence E~v ~ E ° 

* o u o  T~ v EN E __~ E - E = E _ U  N 
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For a given M-converging sequence x ~ the kinetic and the potential part of  the normal energy converges 

The next arguments follow closely the proof of  the Virial theorem as given for instance in [ 14]: 

E = O(E), we get the uniform convergence Since ~t~v is a bounded sequence and x N 

I E . E  
~XNX N --+ 0 

and therefore 

d l  ~ '  
dt 2 xNxN 

This limit can be evaluated in a different way, using the description (13) of  the normal oscillations, 

d 1 E .E = ~]XN]2 1 E "~ ½12~vl 2 I -2  2 E E 2 . ~ X N X  N 1 .~ _~ ~XNX N = -- ~E? (1) ( X j ~ ) ( X N )  q-O((: )  

= - + * T° - u< 

which gives the desired result. [] 

We are now able to show the adiabatic invariance of E/a). 

Theorem 4.2. Suppose x ~ M-converges  to x °. Then, there is a constant 69, such that 

69 
E o : O a ) ( x ° ) ,  ~ _ a ) ( xO~  • 

Proof Lemma 2.2 establishes a further relation between the limit normal energy and the unknown quantity a" 

E ° = ( D 2 G ( x O ) :  E ,  .~0} = 2 w2(x 0) • o'. 

In the last step we have used the identity (11). On the other hand, Lemma 4. I gives cr = EON/wZ(xO), which finally 
yields the differential equation 

IE 0 1 d w Z ( x O ) / d t  d w ( x O ) / d t  

E O 2 a)2 (X0) a)(X 0 ) 
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Thus, there is a constant 0 ,  such that 

E ° = (O o0(x°), 

finishing the proof  if we note the relation between E ° and a once again. [] 

Remark. In retrospective, the proof of  this theorem was based on Eq. (13) of the normal oscillation and on the 

explicit  l imit equation of  Theorem 2.1. Van Kampen [35, p. 103f] argues by formal use of the WKB method, that the 

invariance of  E°/co(x °) follows at once from Eq. (13). However, the following example shows that his argument 

is not correct since an arbitrary O(1)-term can introduce resonances which precludes the adiabatic invariance: 

Suppose we have 

..~ ~ o0t 
"~N q- (:-2092 XN ----- COS - -  = 0 (1 )  

(: 

with a constant frequency o0. For the initial data x~v (0) = x N" ~ (0) -- 0 we get the solution 

~t wt 
sin - - .  x~v(t) = ~ (: 

This gives a limit normal energy 

E~,(t) = l[,f~v(t)12 + ½(::2o021X~v(t)12 = l t 2  -I-O((:)--+ EON(t)= It2, 

which is not of the form 6)o0. 

The limit function x ° can now be described in a completely intrinsic way. 

Theorem 4.3. Suppose the initial values x o, x o are given, such that the limits 

= lira 2~. M • T~oM x 0 lim x a • 34 ,  ~t°° = ~ o  
e-+0 

and 

(~9 = lim ('~0N)2-1-(:-2O02(XS)(XoN)2 

,-~o 2o0(x8) 

exist. Then, the sequence x ~ .M-converges to the unique solution x ° • C 2 of  the constrained system 

2 o + grad W(x °) • Nxo3A 

with the corrected potential 

W ( X )  --~ V(X)  q- Vadd(X), Vadd(X) = (~tO(X), 

which is defined for all x • .M. 

Proof. In view of  the discussion at the beginning of  Section 3, we only have to show that 

( ½ D2G(x °) : ~7, X) ---- (grad Vadd]x=x O, X) 

for each vector field X • Txo.A4. In fact, using relation (1 l),  i.e., 

(½D2G(xO) : ~7, X) = ½(DxD2U(xO)).cr, 
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we get by Theorem 4.2 

t9 
(½D2G(x °) • ,~, X) = ½ (grad cO21x=x o, X ) .  ~ = 69(grad OJIx=x0, X). 

Again, the uniqueness of  the limit x ° allows us to disregard the extraction of  subsequences. [] 

Remark. This theorem was first proved by Rubin and Ungar [27, p. 82f], however, the result is somewhat hidden in 

their paper. Independently, it can be found by means of an example in the work of Koppe and Jensen [19, Eq. (7)]. 

The additional potential does not have any influence if and only if either 69 = 0, i.e., the normal energy vanishes 

initially in the limit, or og(x) is a constant on the manifold .A4. This shows, that the two cases discussed in Section 3 
essentially exhaust all possibilities for the realization of holonomic constrained motions under the potential V. 

5. A review of  the general case 

The case of  codimension r > 1 is considerably more difficult and has been carefully analyzed by Takens [33]. 
We restrict ourselves to a short review of  his results. Takens calls the Hessian matrix D 2 U of the strong potential 

in the normal directions of  A4 smoothly diagonizable, if there is a smooth field (e~ . . . . .  e~v) of  orthonormal bases 
of  N.A4, which are eigenvectors of  D 2 U, i.e., 

D 2 U ( x )  : ( e ~ c ( x ) ® e J ( x ) ) =  o~/2(x)"~ij Vx E . ~ .  

Here, the eigenfrequencies CO i shall depend smoothly on x E .A4. Takens ([33, Theorem 1]) proves that Theorem 4.2 

extends to each normal component, if one can exclude certain resonances, 2 i.e., if for x ~ .A4 we always have 

and 

O)i(X) ~ O)j(X), l < i, j < r, i ~ j ,  

o)i(x)~odj(X)--~O)k(X),  l < i , j , k  < r .  

Using this result, we can extend Theorem 4.3 in a straightforward fashion using the same proof. However, in general 

not smoothly diagonizable case, there can be situations, where the limit x ° cannot be described intrinsically by a 

deterministic initial value problem. In fact, Takens [33, Theorem 3] constructs an example with d = 4, r = 2, where 
a one-parameter family of  initial data x ~ (0;/z),  ~E (0;/z),  depending on /z  ~ [0, 1 ], yields a one-parameter family 

of  limit solutions x° ( t ; / z )  having the following property: There is a time t. > 0 such that 

x° ( t ; / z )  ---- x°( t )  

does not depend on the parameter ~ for 0 < t < t.. However, for fixed t > t .  the values o f x ° ( t ;  /z), /z e [0, 1], 
constitute a continuum, i.e., for t > t. the family forms a funnel. This resembles the properties of  nonuniquely 
solvable initial value problems, cf. [25]. Thus, for a fixed parameter/z  we cannot describe the limit x ° by a uniquely 
solvable initial value problem. Koiller [ 18] coined the notion "Takens-chaos" for this effect. 

Remark. Keller and Rubinstein [16] deal with the corresponding general case for the semilinear wave equation 
1)tt = A V  - -  E - 2  grad U(v).  Using an ingenious multiple scale asymptotics they arrive at the same limit equation as 

2 Note added in proof." By extending the methods developed in this paper the first author was recently able to show that these resonances 
have only to be excluded along the limit x 0 almost everywhere, thus allowing for simple eigenvalue crossings. 



EA. Bornemann, C. Schiitte/Physica D 102 (1997) 57-77 73 

Takens. However, their analysis being only formal it cannot predict difficulties at resonances or even the appearance 

of  Takens chaos. 

6. Two examples  

We will discuss two examples for the general codimension r = 1 case, which illustrate the occurrence of the 

additional potential Vadd. A further nontrivial example in the context of molecular dynamics including numerical 

simulations of  the Butan molecule can be found in [31 ]. 

6.1. Example I. Illustrative, but artificial 

We take the Hamiltonian 

H ~ = ½2 2 + ½9 2 + V(x,  y) + E -2 U(x, y), U(x,  y) = ½092(x)y2, 

describing a motion in ~2 with the corresponding constraint manifold .M = {y = 0} of dimension m = ! and 

codimension r = 1. The equation of  motion reads as 

j~E = _Vx(x  ~, yE) _ E-209(x~)09,(xe)(ye)2, j;E = _Vv(x ~, yE) _ E-2092(x*)yE. 

Using the initial values 

x '  (0) = x0, 2 ~ (0) = v0, y '  (0) ----- 0, ~ (0) = w0, 

we get as an immediate consequence of Theorem 4.3 that 

x E ~ x  ° i n C  1, yE ~ 0  in C O , 

where x ° is the solution of the initial value problem 

.i~ ° = - V x ( x  °, O) - 0 09'(x°), x°(O) = xo, 20(0) = vo, (9 = w~/209(xo). 

This result enables us to discuss a further important point. If  we consider the special situation that initially 

-Vx(xo ,  O)= w2 w'(xo)~aO and v 0 = 0 ,  
209(x0) 

we get the stationary solution x ° -- xo. On the one hand, this proves the necessity of the additional potential 

Vadd = 6)09. On the other hand, Theorem 4.2 gives us in this case a normal energy, 

E0N : 1 2 
~WO, 

which is constant in time. Thus, a constant limit normal energy is only necessary for the vanishing of the potential 

correction Vaad, but not sufficient, cf. the discussion in Section 3. 

Remark. This example is discussed at length by Koppe and Jensen [19], who in fact prove Theorem 4.3 only for 
this example. Gallavotti [ 1 3, p. 172ff] discusses the special case 092 (x) = 1 + x 2 "only in a heuristic, nonrigorous 

way", as he writes. Instead of  

Vad d (X) ~--- 1 q'- X 2 
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he arrives at the wrong potential correction 

l 210g(1 + x e ) .  Vwrong (x) = 4 too 

The reason for this flaw is that he first correctly derives for x ~ xo 

grad Vadd(X) ~ w2 x 
2 l + x  2 '  

but in turn he argues that grad Vadd is therefore given by 

w0 2 x 

2 l + x  2'  

which in fact yields Vwrong. Interestingly enough, the potential correction suggested by Reich [26], the so-called 

Fixman potential, also turns out to be the same Vwrong. 

6.2. Example II. The magnetic mirror 

We consider the motion of a charged particle in a nonuniform axially symmetric magnetic B-field, whose field 
lines lie in planes passing through the symmetry axis. Thus, in cylindrical coordinates r, z, q~ the B-field does 
not depend on the angle ~b and its ~b-component vanishes. Hence, there is a vector potential ,.4 with components 
.,4 = (0, 0, A(r, z)), such that B = curl ..4, i.e., 

( 3 A O A A )  
B =  3z 3r + ,0 (14) 

The motion takes place according to the Lagrangian 

/~ = ~ml.~[ 2 q- e(.~, .,z[} = lm(?2 q- ~2 q_ raq~2) q_ er4A" 

Since £ does not depend on 4~ we obtain conservation of the angular momentum, 

8£ 
= J = c o n s t . ,  i.e., mr2 & + er A = J. 

We eliminate the cyclic variable ~b by the classical method of Routh reducing the Lagrangian in (r, z)-coordinates 
to (cf. [5, Chap. 3, Section 2.1]) 

2me2( erJ)2" •red -~- £ -- J~)lmr2~+erA=J ~- 2 (?2 + ~.2) _ A -- 

Equivalently, the corresponding motion fits into our framework with the Hamiltonian 

zl = 2 1 (  j ) 2  , m H-= ..(?2 q-z2) q-6-2U(r,z), U(r,z) A -  ~-=- 
er e 

The theory developed in this paper shows that for a large specific charge E -1 = e/m the projection of  the motion 
to the (r, z)-plane oscillates very rapidly in a small neighborhood of the line 

• Mred = {(r, z): A(r, z) -= J/er}. 
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In addition, we are able to describe the secular oscillations of the angular variable 4', Using the notation and results 

of Section 4 together with the limit relation (8) we obtain 

q~e = ~-I  ( j r  ~ er e _ A ( r e z e ) ) = ± x / 2 E _ 2 U / r e  = w(x~)rler e q- O(EI /2)  * 0, 

implying by the Arzel~t-Ascoli theorem the uniform convergence 4'e ~ 4'o to a fixed initial value 4'o = 4" (0). 
Thus, the actual motion in space is a small amplitude gyration around the line 

,M[ = {(r, z, 4'): a(r,  z) = J /er ,  4' = 4'0}, 

the so-called guiding center of the motion, which in fact is a field line of the magnetic field (14). The frequency of 
gyration is given by ~-lco with 

092 = D Z u  : (eN ® eN)l~red = (D(A  - J / e r ) .  eN)  2 ----- IB[ 2, 

since D(A - J / e r )  • eN = -I-I B I on .A/Ire d by (14). Thus, just as in the case of uniform magnetic fields the particle 

gyrates with Larmor frequency el B l~ m. 

Theorem 4.3 shows, that in the limit E ~ 0 the average tangential motion along the guiding center A4 is governed 

by the potential 

w = ~)IBI, 

where the adiabatic invariant 0 is the magnetic moment of the particle motion. The equation of motion now reads 

0 
;~ = - ( o  as IBI, (15) 

where s denotes arc length on the line A/[. As we see, the appearance of the additional potential W introduces the 
only force term for the limit motion. This force term is of utmost importance in engineering and natural sciences: 

Charged particles are moderated by an increasingly strong magnetic field - and that the more, the bigger the initial 
normal velocity was. This is the working principle of magnetic traps and magnetic mirrors in plasma physics, as 

well as of the Van Allen radiation belt of the earth with all its implications for northern lights and astronautics. 

Remark. The first derivation of Eq. (15) by physical reasoning was given by the Swedish Nobel prize winner Alfv6n 
[2, Chap. 2.3], see also [24,32]. 

The first mathematical discussion of the limit e / m  ~ oo was given by Rubin and Ungar [27], who also discuss a 
nice mechanical analog of the magnetic mirror. However, they only consider the reduced motion in the (r, z)-plane. 

The adiabatic invariance of the magnetic moment was also shown by Arnold in his seminal paper [31. 

Appendix A 

Here, we derive the equations of motion in the (xM, XN)-coordinates of Section 1. The Lagrangian is given in 
these coordinates by 

£ = ~g(xM,  XN)  " (.~.M ~ JQA.4) -~- h ( x ~ ,  X u )  " (fi~.AA ~ -~U) ~- ~ IJfU 12 -- V ( x . M ,  XN)  -- E - Z U ( x . M ,  XU),  

where g denotes the metric tensor on A//and we have h(x ,  0) = 0 for x E 3/l because of the orthogonality of the 
coordinate splitting. The equations of motion are given by the Euler-Lagrange equations: 

d 8/2 0/2 d OE 0/2 

dt 0 2 ~  O x ~  dt OJCN OXN 
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We compute the derivatives and simplify them using the asymptotic results k E - O(1) and X~v = O(E): 

0L x=x, O x M = 1 D / r i g  : ( Jc ~M ® Jc ~ ) 4- O jv~ h " (,tE x~ ® JC EN ) --  D M V - 6 - 2 D M U 

= -- ~ - 2 D A a U  4- O(1), 

and 

thUS, 

O ~ X-~-X E 
OXN = 1 D N g  : (YC~A4 ~ JC~)  4- O N h  " (YCEA4 ® JC~N) --  D N  V - 6 - 2  D N U  

= - E - 2 D N  U -k- O(1), 

~--~ X ~ X  E 
OYcAa = g "  Yc~  + h . YC~N, a L  x=x E h T  .~ .~ OgCN = • X M  + X N,  

d OC. x=x ,  "" ..E d 0£.. x=x ,  = hT" j?~ 4- J~¢ 4- O(1). d t  OJc M = g "xEsv~ + h • x N 4- O(1), dt ~3c N 

Hence, the Euler-Lagrange equations take the form (2), where the mass matrix is given by 

h T I \ 0 ( 6 )  I 

because of h ( x ~ ,  O) = 0 and therefore h ( x  E) --- h ( x ~ ,  X~v) - O(E). Now, 

(' (: :/ 
M . - h  T g 0 g --  h T  h = + O ( e ) ,  

which gives 

- - h T g  -1  I + 0 ( ~ )  = \ o(~) t + O(E) 

This proves the equations in (3). 
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