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a b s t r a c t

Covariant Lyapunov vectors or Oseledets vectors are increasingly being used for a variety of model
analyses in areas such as partial differential equations, nonautonomous differentiable dynamical systems,
and random dynamical systems. These vectors identify spatially varying directions of specific asymptotic
growth rates and obey equivariance principles. In recent years new computational methods for
approximating Oseledets vectors have been developed, motivated by increasing model complexity and
greater demands for accuracy. In this numerical study we introduce two new approaches based on
singular value decomposition and exponential dichotomies and comparatively review and improve two
recent popular approaches of Ginelli et al. (2007) [36] and Wolfe and Samelson (2007) [37]. We compare
the performance of the four approaches via three case studies with very different dynamics in terms of
symmetry, spectral separation, and dimension. We also investigate which methods perform well with
limited data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The asymptotic behavior of a linear ODE ẋ(t) = Ax(t), x(t) ∈ Rd is completely determined by the spectral properties of the d×dmatrix
A. Similarly, the long-term behavior of a nonlinear ODE ẋ(t) = f (x(t)) in a small neighborhood of a fixed point x0, for which f (x0) = 0, is
completely determined by the spectral properties of the linearization of f at x0. Well-known extensions of these facts can be constructed
when x0 is periodic via Floquet theory. However, for general time-dependent linear ODEs ẋ(t) = A(t)x(t), the eigenvalues of A(t) contain
no useful information about the asymptotic behavior as the simple example of [1, p. 30] illustrates. On the other hand, if the A(t) are
generated by a process with well-defined statistics, there is a good spectral theory for the system ẋ(t) = A(t)x(t), and this is the content
of the celebrated Oseledets Multiplicative Ergodic Theorem (MET), which we state and explain shortly. The ‘‘well-defined statistics’’ are
often generated by some underlying (typically ergodic) dynamical system.

For clarity of exposition, we will discuss discrete-time dynamics; it is trivial to convert a continuous-time system to a discrete-time
system by creating e.g. time-1 maps flowing from time t to time t + 1. Let X denote our base space, the space on which the underlying
process that controls the time-dependence of the matrices A occurs. As we will place a probability measure on X , we formally need a
σ -algebra X of sets that we canmeasure.1 We denote the underlying process on X by T : X 	 and assume that T is invertible. One formally
requires that T is measurable2 with respect to X. The ‘‘well-defined statistics’’ are captured by a T -invariant probability measure µ on X;
that is, µ = µ ◦ T−1, and we say that T preserves µ. Finally, it is common to assume that the underlying process is ergodic, which means
that any subsets X ′

∈ X of X that are invariant (T−1(X ′) = X ′, implying that trajectories beginning in X ′ stay in X ′ forever in forward time
and in backward time) have either µ-measure 0 (they are trivial), or µ-measure 1 (up to sets of µ-measure 0 they are all of X).
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Now we come to the matrices A, which are generated by a measurable matrix-valued function A : X → Md(R), where Md(R) is the
space of d× d real matrices. We choose an initial x ∈ X and begin iterating T to produce an orbit x, Tx, T 2x, . . . . Concurrently, wemultiply
· · · A(T 2x) · A(Tx) · A(x), and we are interested in the asymptotic behavior of this matrix product. In particular, we are interested in (i) the
growth rates

λ(x, v) := lim
n→∞

1
n
log ∥A(T n−1x) · · · A(Tx) · A(x)v∥

as v varies in Rd and (ii) the subspaces W (x) ⊂ Rd on which the various growth rates occur. Throughout, ∥·∥ denotes the standard
Euclidean vector norm or the associated matrix operator norm ∥A∥ = max∥v∥=1 ∥Av∥; whether ∥·∥ is a vector or matrix norm will be
clear from the context. Surprisingly, the ‘‘well-defined statistics’’ and ergodicity ensures that these limits exist, and that there are at most
d different values λ1 > λ2 > · · · > λℓ ≥ −∞ that λ(x, v) can take, as v varies over Rd and x varies over µ-almost all of X (note we
allow λℓ = −∞ to include the case of non-invertible A). We can also decompose Rd pointwise in X as Rd

=
ℓ

i=1 Wi(x), where for all
v ∈ Wi(x) \ {0}, one has

lim
n→∞

1
n
log ∥A(T n−1x) · · · A(x)v∥ = λi. (1)

The subspacesWi are equivariant (or covariant) with respect to A over T ; that is, they satisfy

Wi(Tx) = A(x)Wi(x) (2)

for 1 ≤ i < ℓ.
We use the following stronger version of theMET,which guarantees anOseledets splitting evenwhen thematrices A are non-invertible.

Theorem 1.1 ([2, Theorem 4.1]). Let T be an invertible ergodic measure-preserving transformation of the probability space (X,X, µ). Let
A : X → Md(R) be a measurable family of matrices satisfying

log+
∥A(x)∥ dµ(x) < ∞.

Then there exist λ1 > λ2 > · · · > λℓ ≥ −∞ and dimensions m1, . . . ,mℓ with m1 + · · · + mℓ = d, and a measurable family of subspaces
Wi(x) ⊂ Rd such that for µ-almost every x ∈ X, the following hold.

1. dimWi(x) = mi,
2. Rd

=
ℓ

i=1 Wi(x),
3. A(x)Wi(x) ⊂ Wi(Tx) with equality if λi > −∞,
4. For all v ∈ Wi(x) \ {0}, one has

lim
n→∞

1
n
log ∥A(T n−1x) · · · A(x)v∥ = λi.

The range of applications of the MET to the analysis of dynamical systems is vast. Below, wemention just a few of the settings in which
the MET is used.

Example 1.2. 1. Differentiable dynamics: One of the first applications of the MET was to differentiable dynamical systems T : X 	
on smooth d-dimensional compact manifolds. The matrix function A is the spatial derivative of T , denoted DT . The space Rd is
associated with the tangent space of X and the equivariance condition becomes Wi(Tx) = DT (x) · Wi(x). If T is uniformly hyperbolic,

i:λi>0 Wi(x) = W u(x), the unstable subspace at x ∈ X and


i:λi<0 Wi(x) = W s(x), the stable subspace at x. The spacesWi(x) provide
a refinement ofW u(x) andW s(x) into subspaces with different growth rates.

2. Hard disk system: Consider a fixed number N of hard disks in a region Lx × Ly moving freely between collisions. In each collision a
pair of disks change their velocities [3]. The region may be finite (hard walls) or periodic (toroidal) in either coordinate direction. The
quasi-one-dimensional system studied here is a two-dimensional systemwith Ly less than twice the particle diameter so that the disks
remain ordered in the x direction. Here X = ([0, Lx] × [0, Ly])N × R2N (with the appropriate equivalence classes depending on the
choice of hard wall or toroidal boundary conditions) is the collection of 4N-tuples containing all the coordinates and momenta of the
N particles.
Themap T : X → X, x → C ◦F τ(x)(x) is the composition of a free-flowmap F τ(x) and a collisionmap C. The free-flowmapmoves the
disks in straight lines according to their momentum while none of the disks are colliding. The time between collisions is the free-flow
time τ(x)which depends on the initial condition x ∈ X . Collisions occur when the boundary of two disks (or one disk and a wall) touch,
and the collision map exchanges velocities along the direction of collision (since all disks are of equal mass). Again, the matrix function
A is the spatial derivative of T , so that A(x) = DT (x) = D


C ◦ F τ(x)


(x). Precise details may be found in [4].

3. PDE: The Kuramoto–Sivashinski equation is a model for weakly turbulent fluids and flame fronts

ηt = (η2)x − ηxx − νηxxxx,

where ν is a damping coefficient. Another familiar example is the complex Ginzburg–Landau equation

ηt = η − (1 + iβ)|η|2η + (1 + iα)ηxx,

where η(x, t) is complex and α and β are parameters. In both of these cases it is possible to approximate solutions of the
partial differential equations using Fourier spectral methods (see [5] for details). For instance, in the case of the 1-dimensional
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Kuramoto–Sivashinski PDE we look for solutions of the form

η(x, t) =

∞
k=−∞

ak(t)eikx/L̃,

where L̃ is a unitless length parameter, then solve the following system of ODEs for the Fourier coefficients ak(t):

ȧk = (q2k − q4k)ak − i
qk
2

∞
m=−∞

amak−m,

where qk = k/L̃. Since the ak decrease rapidly with k, truncating the above system of ODEs is justified.
In the setting of this review we treat X as the space of Fourier coefficients (a1, . . . , ad) of the truncated PDE, and consider the
transformation T : X → X defined by choosing some τ > 0 and letting T ((a1, . . . , ad)) = (a1(τ ), . . . , ad(τ )) where the ak(t)
are solutions to the system of ODEs with initial conditions ak(0) = ak. The matrix function A is again the spatial derivative of T so that

A(x) = DT (x) =


∂a1(τ )
∂a1

∂a1(τ )
∂a2

· · ·

∂a2(τ )
∂a1

∂a2(τ )
∂a2

...
. . .

 .

4. Nonautonomous ODEs and transfer operators: Consider an autonomous ODE ẋ(t) = f (x(t)) on X (for example, the Lorenz flow on
X = R3), and its flowmap ξ(τ , x)which flows the points x forward τ time units. We think of the coordinates x as a ‘‘generalized time’’
and the ODE ẋ(t) = f (x(t)) is our base system. We use this base ODE (the driving system) to construct a nonautonomous ODE or skew
product ODE as ẏ(t) = F(ξ(t, x), y(t)). Given an initial time t and a flow time τ , one may construct finite-rank approximations P (τ )x (t)
of the Perron–Frobenius operator P (τ )(x(t)) that track the evolution of densities from base ‘‘time’’ x(t) to x(t + τ); see [6] for details.
The matrices P (τ )x (t) form a cocycle and Oseledets subspace computations enable the extraction of coherent sets in the nonautonomous
flow (see [6]). Coherent sets are time-dependent analogues of almost-invariant sets for autonomous systems; see [7–9]. Finite-time
constructions for coherent sets are described in [10]. In the setting of this review, T : X → X is defined as T (x) = ξ(τ , x), and
A(x) = P (τ )x (t).

From now on, we denote A(T n−1x) · · · A(x) as A(x, n). The proof of the classical MET [11] shows that the matrix limit

Ψ (x) = lim
n→∞


(A(x, n))∗ A(x, n)

1/2n (3)

exists for µ-almost all x ∈ X . The matrix Ψ (x) is symmetric, depends measurably on x, and its eigenvalues are eλ1(x) > · · · > eλℓ(x). The
corresponding eigenspaces are denoted U1(x), . . . ,Uℓ(x) and one has

Vi(x) :=

ℓ
j=i

Wj(x) =

ℓ
j=i

Uj(x). (4)

Thus Vi(x) captures growth rates from λi down to λℓ; that is, for v ∈ Vi(x) \ Vi+1(x)

λi = lim
n→∞

1
n
log ∥A(x, n)v∥ . (5)

There are many ways to write the Vi(x) as a direct sum of subspaces Yi(x), . . . , Yℓ(x) such that (5) holds for v ∈ Yi(x). Two
such ways are shown in (4), but one can inductively choose the Yi(x) to be any space of dimension mi contained in Vi, with trivial
intersectionwith Vi+1(x). Regarding the two possibilities in (5), the ‘‘U ’’ decomposition ofVi(x) is orthogonal, while the ‘‘W ’’ decomposition
(the Oseledets splitting of Theorem 1.1) is equivariant (satisfies property (2)). Thus, Wi(x) is mapped onto Wi(Tx) by A(x), and the
subspaces Wi(x),Wi(Tx),Wi(T 2x), . . . , track the evolution of their elements under the linear action of A(x), A(Tx), A(T 2x), . . . . On the
other hand, the image of Ui(x) under A(x) is in general not mapped onto Ui(Tx) and the same is true of other non-equivariant (or non-
covariant) splittings. The splitting given by the Wi(x) is the unique3 splitting with both the correct growth rates and the equivariance
property.

Until recently, classical results provided existence of the splitting Rd
= W1(x)⊕ · · · ⊕ Wℓ(x) only in the situation where the matrices

A(x), x ∈ X were invertible (see e.g. Theorem 3.4.11 [13]), and otherwise, one only obtained a filtration (or flag) Rd
= V1(x) ⊃

V2(x) ⊃ · · · ⊃ Vℓ(x) ⊃ Vℓ+1(x) = {0} (see e.g. Theorem 3.4.1 [13]). Theorem 1.1 (cf. Theorem 4.1 of [2]) demonstrated that one can
remove the invertible matrix hypothesis and still obtain a splitting; we thus in this paper deal directly with the equivariant splitting
Rd

= W1(x)⊕ · · · ⊕Wℓ(x) as it separates the vectors into individual subspaces directly responsible for each distinct Lyapunov exponent,

3 Uniqueness of the Wi(x) is clear in the case where the matrices A(x), x ∈ X are invertible as the Wi(x) may be defined to be the spaces with the right growth rates in
both forward and backward time (in the backward time case, T−1 and A−1 are used), however the splitting is also unique even when the matrices A are not invertible; see
also [12] for an operator setting.
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with the additional important dynamical property of equivariance. We call the subspaces of this decomposition ‘‘Oseledets subspaces’’;
these are spanned by ‘‘Oseledets vectors’’ (also known as ‘‘covariant Lyapunov vectors’’4).

Non-covariant subspaces such as the Ui(x) have been studied by many authors. Dieci et al. [14–16] prove convergence rates for SVD
and QRmethods used to approximate the Ui(x) above under the assumption of integral separation (discussed later in this section), as well
as convergence rates for approximations of the Sacker–Sell spectrum. The directional information that arises as a byproduct of common
QR-based numerical Lyapunov exponent approximationmethods [17–19] has been used extensively to analyze particle systems [4,20–23]
and is precisely the above Ui(x) decomposition applied to the time-reversed system (in the case where both the map T and matrices A(x)
are invertible) [24].

An alternative approach for finding covariant vectors in non-autonomous systems is based on the so called Sacker–Sell spectrum,
cf. [25]. The Sacker–Sell spectrum is defined via exponential dichotomies, cf. [26,27] which we briefly introduce for linear difference
equations of the form

wn+1 = Anwn, n ∈ Z, An ∈ Md(R) invertible. (6)

In the current context we associate the sequence of matrices {An}n∈Z with an invertible matrix cocycle over a single orbit, e.g. for some
x ∈ X let An = A(T nx). We restrict the introduction of exponential dichotomies to invertible systems only, and note that a justification of
our algorithm for computing dichotomyprojectors strongly depends on this assumption. Theory defining exponential dichotomies for non-
invertible matrices is contained in e.g. [28]. Numerical experiments indicate that Algorithms 3.1 and 3.2 also apply in the non-invertible
case, however, the corresponding analysis is a topic of future research.

We denote byΦ the solution operator of (6), defined as

Φ(n,m) :=

An−1 . . . Am, for n > m,
I, for n = m,
A−1
n . . . A−1

m−1, for n < m.

Definition 1.3. The linear difference equation (6) has an exponential dichotomy with data (K , αs, αu, P s
n, P

u
n ) on J ⊂ Z, if there exist two

families of projectors P s
n and Pu

n = I − P s
n and constants K , αs, αu > 0, such that the following statements hold:

P s
nΦ(n,m) = Φ(n,m)P s

m ∀n,m ∈ J, (7)Φ(n,m)P s
m

 ≤ Ke−αs(n−m)Φ(m, n)Pu
n

 ≤ Ke−αu(n−m) ∀n ≥ m, n,m ∈ J.

Consider the scaled equation

wn+1 = e−λAnwn, n ∈ Z. (8)

Definition 1.4. The Sacker–Sell or dichotomy spectrum is defined as

σED := {λ ∈ R : (8) has no exponential dichotomy on Z}.

The complementary set R \ σED is called the resolvent set.

In the literature, the Sacker–Sell spectrum is often defined as the set γ ∈ R+, for which the scaled equation

wn+1 =
1
γ
Anwn, n ∈ Z, (9)

has no exponential dichotomy, see, for example [28]. Note that the Sacker–Sell spectrum with respect to (8) is the logarithm of the
Sacker–Sell spectrum with respect to (9).

Under the additional assumptions that An and (An)
−1 are uniformly bounded, the Sacker–Sell spectrum consists of at most d disjoint,

closed intervals, where d denotes the dimension of the space, cf. [25,29], i.e. there exists an ℓ < d such that

σED =

ℓ
i=1

[λ−

i , λ
+

i ], where λ+

i+1 < λ−

i for i = 1, . . . , ℓ− 1.

It is well known that the Lyapunov spectrum,when it exists, is a subset of the Sacker–Sell spectrum, see [30].While the Lyapunov spectrum
provides information on bounded solutions of (6) from time 0 to time n ≥ 0, the Sacker–Sell spectrum gives information on bounded
solutions from time m to time n. These answers may be different for different initial n because, in contrast to the MET setting, there is
no a priori stationarity assumption on a base dynamical system generating the matrix cocycle. Note that for λ ∈ R \ σED it follows from
[27, Lemma 2.7] that the inhomogeneous equation wn+1 = e−λAnwn + rn has for every bounded sequence rZ a unique bounded solution
on Z.

Dichotomy projectors of the scaled equation (8) are constant in resolvent intervals Ri := (λ+

i , λ
−

i−1), i = 1, . . . , ℓ+ 1, where λ−

0 = ∞

and λ+

ℓ+1 = −∞, see Fig. 1. We denote these families of projectors by (P i,s
n , P

i,u
n ).

4 In the literature, there is an inconsistent use of the term ‘‘Lyapunov vector’’. In some cases, Lyapunov vectors refer to the subspaces Ui(x), while in others the term refers
to theWi(x). The presence of the adjective ‘‘covariant’’ indicates that one is referring to the equivariant Oseledets vectorsWi(x). We therefore use the expressions ‘‘Oseledets
vector’’ or ‘‘covariant Lyapunov vector’’ to refer to theWi(x) and refrain from using ‘‘Lyapunov vector’’.
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Fig. 1. Spectral setup.

In analogy to the MET we obtain the family of subspaces

W i
n = R(P i,s

n ) ∩ R(P i+1,u
n ), n ∈ Z, i = 1, . . . , ℓ

that decompose Rd for each n ∈ Z

Rd
=

ℓ
i=1

W i
n, (10)

and using the invariance property (7) it follows for all i = 1, . . . , ℓ that

AnW i
n = W i

n+1, n ∈ Z.

Furthermore, for eachw ∈ W i
m, there exists a constant K = K(w) > 0 such that the following equations hold

∥Φ(n,m)w∥ = Ke

λ+

i +r+i (n−m)

(n−m)

, for n ≥ m, where lim sup
n→∞

r+

i (n) = 0,

∥Φ(n,m)w∥ = Ke

λ−

i +r−i (n−m)

(n−m)

, for n < m, where lim sup
n→∞

r−

i (n) = 0.

Under the assumption of integral separateness one finds d solutions of (6) with pairwise different exponential growth rates [31,32].
Consequently, integrally separated systemhave d distinct Lyapunov exponents and these exponents are stablew.r.t. additive perturbations
of the system, see Theorem 5.4.8 [31]. The latter property is particularly useful for proving error estimates for numerical methods, [14–16].
In contrast to an integral separation, an exponential separation allows a decomposition into ℓ < d covariant subspaces Rd

=
ℓ

i=1 W
i
n,

such that each pair of solutions from different subspaces, has a different exponential growth rate; see [33,34]. Exponential separation
and integral separation both imply a lower bound on the angle between pairs of subspaces with different growth rates; see [34] and
references therein. If a discrete time system has an exponential dichotomy, it is exponentially separated, however, the converse is not
true, because, for example, exponential separationmay be present, but either exponential expansion or contractionmay be absent [34]. In
the multiplicative ergodic theorem setting (e.g. Theorem 1.1), one obtains a discrete Lyapunov spectrumwith at most d distinct Lyapunov
exponents, howeverwithout further assumptions, such as exponential separation, in general there is no lower bound on the angle between
subspaces in the Oseledets splitting. In the present work, we do not assume simplicity of the covariant splitting (10); i.e. we do not assume
that dimW i

n = 1 for all i = 1, . . . , d.
When working with data over a finite time interval, one has access only to a finite sequence A0, A1, . . . , An−1. In this case, one either

assumes there is an underlying ergodic process generating the sequence A0, A1, . . . , An−1 or one considers exponential dichotomies.
An outline of the paper is as follows. In Sections 2 and 3, we introduce two new methods for computing Oseledets vectors. The first

method is based on the proof of the generalizedMET in [2] and is particularly simple to implement and fast to execute. The secondmethod
is an adaptation of an approach to compute dichotomy projectors [35]. In Section 4 we review the approaches by Ginelli et al. [36] and
Wolfe and Samelson [37]. In Sections 2–4 we provide MATLAB code snippets to implement the algorithms presented. Section 5 contains
numerical comparisons of the performance of the four methods on three dynamical systems. The first case study is a dynamical systems
formed via composition of a sequence of 8 × 8 matrices constructed so that all Oseledets vectors are known at time 0; we thus compare
the accuracy of the methods exactly in this case study. The second case study is an eight-dimensional system generated by two hard disks
in a quasi-one-dimensional box. The third case study is a nonlinear model of time-dependent fluid flow in a cylinder; the matrices are
generated by finite-rank approximations of the corresponding time-dependent transfer operators. The three case studies have been chosen
to represent a cross-section of a variety of features of systems that either help or hinder the computation of Oseledets vectors, and we
draw out the advantages and disadvantages of each of the four methods considered.

2. An SVD-based approach

The approach outlined in this section is simple to execute and exhibits quick convergence. However, as the length of the sample orbit
becomes too large this approach fails.

In [2, proof of Theorem 4.1] it is proven that the limit

lim
N→∞

A(T−Nx,N)Ui(T−Nx)

exists and is equal to the ith Oseledets subspace Wi(x). That is, if one computes Ui in the far past and pushes forward to the present, the
result is a subspace close toWi(x). Thus, the strategy in [2] is to first estimate Ui in the past and push forward.

The numerical method of approximatingWj(x), x ∈ X , is implemented in the following steps:

Algorithm 2.1 (To Estimate Wj(x)).
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Fig. 2. Schematic of the re-orthogonalization described in Section 2.1. The black line represents the orbit centered at x ∈ X and the points T−Nk x are those points at which
we ensure orthogonality with the subspaces Vj(T−Nk x)⊥ . To do this we use the (blue) approximations Ψ (M)(T−Nk x) to approximate Vj(T−Nk x)⊥ and perform the (red) push-
forward and orthogonalization steps starting with U (M)j (T−N1 x) and ending with W (M,0)

j (x) (see Algorithm 2.2). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

1. ChooseM,N > 0 and form the matrix

Ψ (M)(T−Nx) =

A(T−Nx,M)∗A(T−Nx,M)

1/2M
(11)

as an approximation of (3) at T−Nx ∈ X .
2. Compute U (M)j (T−Nx), the jth orthonormal eigenspace of Ψ (M)(T−Nx) as an approximation of Uj(T−Nx).

3. DefineW (M,N)
j (x) = A(T−Nx,N)U (M)j (T−Nx), approximating the Oseledets subspaceWj(x).

Listing 1 shows part of a MATLAB implementation of Algorithm 2.1. The array A =

A(T−Nx) | A(T−N+1x)| · · · |A(TM−1x)


contains the

d × d matrices which generate the cocycle A : X × Z+
→ Md(R), and the matrix Psi is formed by multiplying the matrices contained in

A. Step 1 of Algorithm 2.1 is performed prior to the code in Listing 1, Step 2 is performed in lines 1–3 and lines 4–7 perform Step 3. The
function returns Wj as its estimate to Wj(x).

Listing 1: Sample MATLAB code of Algorithm 2.1 to approximateWj(x).

1 [ ~ ,s , v ] = SVD (Psi ) ;
2 [ ~ ,p ] = SORT ( DIAG (s ) , ’ descend ’ ) ;
3 Wj = v ( : , p (j ) ) / NORM (v ( : , p (j ) ) ) ;
4 FOR h = 1:N
5 Wj = A ( : , ( h−1)∗dim+1:h∗dim)∗Wj ;
6 Wj = Wj / NORM (Wj ) ;
7 END

The values ofM and N can be chosen with relative freedom and in our examples that follow we have chosenM = 2N to compute over
a time window centered on x, from T−Nx to TNx. Unfortunately, we cannot choose M and N arbitrarily large and expect accurate results.
If A(T−Nx,M) is constructed via the product

A(T−Nx,M) = A(TM−N−1x) · · · A(T−N+1x)A(T−Nx)

then with larger M the numerical inaccuracies of matrix multiplication compound and this product becomes more singular and thus
a poorer approximation of A(T−Nx,M). Because of this, Ψ (M)(T−Nx) cannot be expected to accurately approximate Ψ (T−Nx) for large
M . However, even if we suppose Ψ (M)(T−Nx) accurately approximates Ψ (T−Nx), the small, but non-zero, difference in U (M)j (T−Nx) and
Uj(T−Nx) grows roughly as O


eN(λ1−λj)


during the push-forward in Step 3 above. For these reasonsM and N must be chosen carefully.

2.1. Improving the basic SVD-based approach

We present a simple improvement that can overcome one of the sources of numerical instability, namely the push-forward process in
Step 3 above (see Fig. 2).

Recall that the subspace Vj(x) = Uj(x)⊕ · · · ⊕ Uℓ(x) =

U1(x)⊕ · · · ⊕ Uj−1(x)

⊥ is A-invariant and that for v ∈ Vj(x) \ Vj+1(x) (with
Vℓ+1(x) = {0}) we have

λj(x) = lim
n→∞

1
n
log ∥A(x, n)v∥ .

The subspace Vj(x) contains Wj(x),Wj+1(x), . . . ,Wℓ(x), and so the Oseledets subspace Wj(x) is necessarily perpendicular to all
U1(x), . . . ,Uj−1(x). To solve the numerical instability of Step 3 we enforce this condition periodically.

The amended algorithm is implemented as follows:

Algorithm 2.2 (To Estimate Wj(x)).

1. ChooseM,N1 > N2 > · · · > Nn = 0 and form the matrices

Ψ (M)(T−Nkx) =

A(T−Nkx,M)∗A(T−Nkx,M)

1/2M
, k = 1, . . . , n.
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2. Compute all the orthonormal eigenspaces U (M)i (T−Nkx), i = 1, . . . , j − 1 of (11) (replacing N with Nk in (11)) and the eigenspace
U (M)j (T−N1x).

3. Let projV : Rd
→ Rd be the orthogonal projection onto the subspace V so that ker (projV ) = V⊥ and V (M)j (x) =


U (M)1 (x) ⊕ · · · ⊕

U (M)j−1 (x)
⊥

. DefineW (M,N1)
j (T−N1x) = U (M)j (T−N1x), and then define iteratively by pushing forward and taking orthogonal projections:

W (M,Nk+1)
j


T−Nk+1x


= proj

V (M)j


T−Nk+1 x

(A(T−Nkx,Nk+1 − Nk)W
(M,Nk)
j (T−Nkx)).

4. W (M,Nn)
j (x) = W (M,0)

j (x) is our approximation ofWj(x).

Listing 2 shows an example implementation of Algorithm 2.2 in MATLAB. Lines 1–18 are responsible for performing Steps 1
and 2, whilst the push forward procedure of Step 3 is performed in lines 20–30. Again, the matrix cocycle is stored in A =
A(T−Nx) | A(TN−1x)| · · · |A(TM−1x)


and the function returns Wj as its approximation ofWj(x). The variable Nk is a one-dimensional array

containing the elements of {Nk} and is counted by k.

Listing 2: Sample MATLAB code of Algorithm 2.2 to approximateWj(x).

1 k=0;
2 FOR n = Nk ,
3 Psi = EYE (dim ) ;
4 FOR i=0:M−1,
5 Psi = A ( : , ( n + i − 1)∗dim + 1: (n + i)∗dim)∗Psi ;
6 Psi = Psi / NORMEST (Psi ) ;
7 END

8 [ ~ ,s , u ] = SVD (Psi ) ;
9 [ ~ ,p ] = SORT ( DIAG (s ) , ’ descend ’ ) ;

10 IF n==1 ,
11 Wj = u ( : , p (j ) ) / NORM (u ( : , p (j ) ) ) ;
12 ELSE

13 FOR i = 1:j−1,
14 k = k+1;
15 U ( : , i , k ) = u ( : , p (i ) ) / NORM (u ( : , p (i ) ) ) ;
16 END

17 END

18 END

19 k=0;
20 FOR n = 1:N ,
21 Wj = A ( : , ( n−1)∗dim+1:n∗dim)∗Wj ;
22 Wj = Wj / NORM (Wj ) ;
23 IF ANY (Nk == n+1) ,
24 k = k+1;
25 FOR i = 1:j−1,
26 Wj = Wj − DOT (Wj , U ( : , i , k ) )∗U ( : , i , k ) ;
27 Wj = Wj / NORM (Wj ) ;
28 END

29 END

30 END

Remark 1. Unfortunately, some numerical issueswith this approach remain. They stemprimarily from the longmultiplication involved in
building the variable Psi of Listings 1 and 2. This results in Psi becoming too singular and hence U (M)j (T−nx) (j ≠ 1) poorly approximates
Uj(T−nx). As can be seen in Section 5, Algorithm 2.2 works superbly for W2(x) as U

(M)
1 (T−nx) is well approximated for large n. However

when estimating Wj(x), j > 2, a good estimate of U (M)j−1 (x) is required for an accurate projection projV (M)j
and for large n such an estimate

becomes unreliable.

3. A dichotomy projector approach

We derive an approach for the computation of a vectorwj
n ∈ W j

n = R(P j,s
n )∩R(P j+1,u

n ). For this task, we first need a guess ofΛright
∈ Ri

and ofΛleft
∈ Ri+1 in two neighboring resolvent intervals that lie close to the common spectral interval, see Fig. 3.

Numerical experiments indicate that we get the best results by choosing Λright and Λleft close to (but outside) the second Sacker–Sell
interval. This conclusion is supported by theoretical estimates on the approximation error for Algorithm 3.2, discussed at the end of
Section 3.

The following observation from [35,38] allows the computation of dichotomy projectors by solving

wi
n+1 = Anw

i
n + δn,m−1ei, n ∈ Z, ei i-th unit vector. (12)
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Fig. 3. Choice ofΛleft/right in case i = 2.

With Green’s function, cf. [27], the unique bounded solutionwi
Z of (12) has the explicit form

wi
n = G(n,m)ei, n ∈ Z, where G(n,m) =


Φ(n,m)P s

m, n ≥ m,
−Φ(n,m)Pu

m, n < m, (13)

and consequently

P s
m =

 | |

w1
m · · · wd

m
| |

 .
Numerically, we approximate the unique bounded solution on Z by the least squares solution of (12) on a sufficiently long interval. For an
error analysis of this approximation process, we refer to [38, Theorem 4].

The algorithms that we propose in this section compute a vector w ∈ W j
0 in analogy to Wj(x) in the previous sections. For simplicity,

we restrict the representation to the case j = 2 and assume thatW 1
n and W 2

n are one-dimensional subspaces.
In the absence of information about the dichotomy intervals, one may proceed as follows. Given a finite sequence of matrices, one

can estimate a point in the spectral interval [λ−
q , λ

+
q ], q = 1, 2, 3 by computing the (logarithmic) growth rates of one-, two-, and three-

dimensional subspaces using direct multiplication; these growth rates should approximate λ1, λ1 +λ2, and λ1 +λ2 +λ3, respectively. By
taking differences to obtain estimates λ̂q, q = 1, 2, 3, (the caret indicating estimated quantities) one should obtain values in the interior
of [λ−

q , λ
+
q ], q = 1, 2, 3. We then estimateΛleft

= λ̂2 − (λ̂2 − λ̂3)/10 / λ−

2 andΛright
= λ̂2 − (λ̂2 − λ̂1)/10 ' λ+

2 .
In the first step of our first algorithm, we compute a basis of the two-dimensional space R(P3,u

0 ). Then, in the second step, we search
for the directionw in this subspace that additionally lies in R(P2,s

0 ) and assure in this way thatw ∈ R(P2,s
0 ) ∩ R(P3,u

0 ) = W 2
0 .

Algorithm 3.1 (A Dichotomy Projector Approach to Estimate W2(x) by Computing W 2
0 ).

1. Suppose N ∈ N and consider n ∈ [−N,N] ∩ Z. Let An = A(T nx).
Solve the least squares problem

w̃i
n+1 = e−Λleft

Anw̃
i
n + δn,−1r i, n = −N, . . . ,N − 1, i = 1, 2 such that ∥(w̃i

−N , . . . , w̃
i
N)∥2 is minimized, (14)

where the r i are chosen at random and ∥·∥2 is the ℓ2-norm. Define pi := A−1w̃
i
−1, i = 1, 2.

2. Solve for w̃[0,N] and κ the least squares problem

w̃n+1 = e−Λright
Anw̃n, n = 0, . . . ,N − 1, (15)

w̃0 + κp1 + p2 = 0, such that ∥(w̃0, . . . , w̃N , κ)∥2 is minimized. (16)

Then w̃0 is our approximation ofw2(x) ∈ W2(x).

The unique bounded solutions on Z of these two steps satisfy p1, p2 ∈ R(P3,u
0 ) and these vectors are generically linear independent.

Furthermore w̃0 ∈ R(P2,s
0 ) due to (15) and w̃0 ∈ R(P3,u

0 ) due to (16). Thus w̃0 ∈ R(P3,u
0 ) ∩ R(P2,s

0 ) = W 2
0 .

Note that (14) has the form

Bw̃ = r, with B ∈ M2dN,d(2N+1)(R), r ∈ R2dN ,

where

B =


−e−Λleft

A−N I
. . .

. . .

−e−Λleft
AN I

 , w̃ =

 w̃−N
...

w̃N−1

 ,
and the nth entry of r is the vector δn,−1r i ∈ Rd for i = 1, 2.

The least squares solution can be obtained, using the Moore–Penrose inverse:

w̃ = B+r, where B+
= BT (BBT )−1,

cf. [39]. Numerically, we find w̃ by solving the linear system BBTy = r; then w̃ = BTy.
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Listing 3: Sample MATLAB code for Algorithm 3.1.

1 % step 1
2 B = ZEROS (2∗N∗dim , 2∗ (N+1)∗dim ) ;
3 FOR i = 1:2∗N

4 B (dim∗(i−1)+1:dim∗i , dim∗(i−1)+1:dim∗i )
5 = −EXP(−Lambda_left)∗A ( : , dim∗(i−1)+1:dim∗i ) ;
6 B (dim∗(i−1)+1:dim∗i , dim∗(i )+1:dim∗(i+1))
7 = EYE (dim ) ;
8 END

9 R = ZEROS (2∗dim∗N , 2 ) ;
10 R (dim∗(N−1)+1:dim∗N , : ) = RAND (dim , 2 ) ;
11 y = (B∗B ’ ) \ R ;
12 u = B ’∗y ;
13 p1 = A ( : , dim∗(N−1)+1:dim∗N)∗u (dim∗(N−1)+1:dim∗N , 1 ) ;
14 p2 = A ( : , dim∗(N−1)+1:dim∗N)∗u (dim∗(N−1)+1:dim∗N , 2 ) ;
15 p1 = v1 / NORM (v1 ) ; v2 = v2 / NORM (v2 ) ;
16 % step 2
17 B = ZEROS (dim∗(N+1) ,dim∗(N+1)+1);
18 FOR i = 0:N−1
19 B (dim∗i+1:dim∗(i+1) ,dim∗i+1:dim∗(i+1))
20 = −EXP(−Lambda_right)∗A ( : , dim∗(i+N )+1:dim∗(i+N+1) ) ;
21 B (dim∗i+1:dim∗(i+1) ,dim∗(i+1)+1:dim∗(i+2))
22 = EYE (dim ) ;
23 END

24 B (dim∗N+1:dim∗(N+1) ,1:dim ) = EYE (dim ) ;
25 B (dim∗N+1:dim∗(N+1) ,dim∗(N+1)+1) = p1 ;
26 R = ZEROS (dim∗(N+1) ,1 ) ;
27 R (dim∗N+1:dim∗(N+1) ,1) = −p2 ;
28 y = (B∗B ’ ) \ R ;
29 u = B ’∗y ;
30 w2 = u (dim∗N+1:dim∗(N+1) ) / NORM (u (dim∗N+1:dim∗(N+1 ) ) ) ;

Note that in the unlikely case where p1 ∈ W 2
0 , Algorithm 3.1 fails. An alternative approach for computing vectors inW 2

0 that avoids this
problem is introduced in Algorithm 3.2. The main idea of this algorithm is to take a random vector r , project it first to R(P3,u

0 ) and then
eliminate components in the wrong subspaces, by projecting with P2,s

0 .

Algorithm 3.2 (An Alternate Dichotomy Projector Approach).

1. Again, suppose N ∈ N and consider n ∈ [−N,N] ∩ Z and let An = A(T nx) as above. Solve the least squares problem

w̃n+1 = e−Λleft
Anw̃n + δn,−1r, n = −N, . . . ,N − 1, such that ∥(w̃−N , . . . , w̃N)∥2 is minimized, (17)

where r is chosen at random, and define r ′
= A−1w̃−1.

2. Solve the least squares problem

w̃′

n+1 = e−Λright
Anw̃

′

n + δn,−1r ′, n = −N, . . . ,N − 1, such that ∥(w̃′

−N , . . . , w̃
′

N)∥2 is minimized. (18)

Then w̃′

0 is our approximation ofw2(x) ∈ W2(x).

The solutionw0 on Z of these two steps satisfiesw0 = P2,s
0 P3,u

0 r ∈ R(P2,s
0 ) ∩ R(P3,u

0 ) = W 2
0 .

Listing 4: Sample MATLAB code for the second step of Algorithm 3.2.

1 B = ZEROS (2∗N∗dim , 2∗ (N+1)∗dim ) ;
2 FOR i = 1:2∗N

3 B (dim∗(i−1)+1:dim∗i , dim∗(i−1)+1:dim∗i )
4 = −EXP(−Lambda_right)∗A ( : , dim∗(i−1)+1:dim∗i ) ;
5 B (dim∗(i−1)+1:dim∗i , dim∗i+1:dim∗(i+1)) = EYE (dim ) ;
6 END

7 R = ZEROS (2∗dim∗N , 1 ) ;
8 R (dim∗(N−1)+1:dim∗N , : ) = p1 ;
9 y = (B∗B ’ ) \ R ;

10 u = B ’∗y ;
11 w2 = u (dim∗N+1:dim∗(N+1) ) / NORM (u (dim∗N+1:dim∗(N+1 ) ) ) ;
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3.1. Error estimate

We give an error estimate for the solution of Algorithm 3.2 for a finite choice of N . Details on deriving this estimate are postponed to a
forthcoming publication.

ForΛleft andΛright close to the boundary of the second Sacker–Sell spectral interval, we denote the dichotomy rates of

wn+1 = e−Λleft
Anwn, wn+1 = e−Λright

Anwn, n ∈ Z (19)

by (αℓ,s, αℓ,u) and (αr,s, αr,u), respectively. Letw0 be the solution of Algorithm 3.2 on Z and let w̃0 be its approximation for a finite choice
of N . Careful estimates show that the approximation error in the ‘‘wrong subspace’’ R(Q ), with Q := I − P2,s

0 P3,u
0 is given as

∥Q (w0 − w̃0)∥ ≤ CN(e−αℓ,sN
+ e−αr,uN), (20)

where the constant C > 0 does not depend on N .
The exponential dichotomy rates αℓ,s and αr,u of the difference equations (19) depend on the choice ofΛleft andΛright in the following

way: forΛleft in the resolvent set R3 = [λ+

3 , λ
−

2 ] the difference equation

wn+1 = e−Λleft
Anwn, n ∈ Z

has an exponential dichotomy with stable dichotomy rate αℓ,s for all αℓ,s with

0 < αℓ,s < Λleft
− λ+

3 .

Similarly, forΛright in the resolvent set R2 = [λ+

2 , λ
−

1 ] the difference equation

wn+1 = e−Λright
Anwn, n ∈ Z

has an exponential dichotomy with unstable dichotomy rate αr,u for all αr,u with

0 < αr,u < λ−

1 −Λright.

Note that both of the above inequalities are strict.
Inspecting Eq. (20), we get the best (smallest) maximal error if we choose Λleft

∈ R3 and Λright
∈ R2 so as to maximize αℓ,s and αr,u.

Consequently, we get the best numerical approximations, if Λleft and Λright are chosen close to, but not equal to, the boundary of the
common spectral interval [λ−

2 , λ
+

2 ].

4. The Ginelli and Wolfe schemes

4.1. The Ginelli scheme

The Ginelli Scheme was first presented by Ginelli et al. in [36] as a method for accurately computing the covariant Lyapunov vectors of
an orbit of an invertible differentiable dynamical system where the A(x) = DT (x) are the Jacobian matrices of the flow or map.

Estimates of theWj(x) are found by constructing equivariant subspaces Sj(x) = W1(x)⊕· · ·⊕Wj(x) and filtering the invariant directions
contained therein using a power method on the inverse system restricted to the subspaces Sj(x).

To construct the subspaces Sj(x) we utilize the notion of the stationary Lyapunov basis [24]. Choose j orthonormal vectors
s1(T−nx), s2(T−nx), . . . , sj(T−nx), n ≥ 1, such that si(T−nx) ∉ Vj+1(T−nx) for 1 ≤ i ≤ j and construct

s̃(n)i (x) = A(T−nx, n)si(T−nx), i = 1, . . . , j.

Using the Gram–Schmidt procedure, construct the orthonormal basis {s(n)1 (x), . . . , s
(n)
j (x)} from {s̃(n)1 (x), . . . , s̃

(n)
j (x)}, that is,

s(n)1 (x) =
1s̃(n)1 (x)

 s̃(n)1 (x),

s(n)2 (x) =
1s̃(n)2 (x)−


s̃(n)2 (x) · s(n)1 (x)


s(n)1 (x)



s̃(n)2 (x)−


s̃(n)2 (x) · s(n)1 (x)


s(n)1 (x)


, (21)

....

Then as n → ∞ the basis {s(n)1 (x), . . . , s
(n)
j (x)} converges to a set of orthonormal vectors {s(∞)

1 (x), . . . , s(∞)
j (x)} which span the j fastest

expanding directions of the cocycle A [24], that is, if the multiplicitiesm1 = · · · = mj = 1

Sj(x) := span

s(∞)
1 (x), . . . , s(∞)

j (x)


= W1(x)⊕ · · · ⊕ Wj(x)

= V1(x) \ Vj+1(x). (22)

If the Oseledets subspaces are not all one-dimensional, that is the Lyapunov spectrum is degenerate, then we choose Sj(x) only for those j
which are the sum of the first kmultiplicities, i.e., j = m1 + · · · + mk. Then

Sj(x) = W1(x)⊕ · · · ⊕ Wk(x)
= V1(x) \ Vk+1(x).

In the interest of readability we assume the Oseledets subspaces are one-dimensional but note that the approach may be extended to the
multi-dimensional case.
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Note that the Sj(x) are equivariant by construction:

A(x, n)Sj(x) = Sj(T nx)

provided j ≤ m1 + · · · + mℓ−1 if λℓ = −∞.
We describe the Ginelli approach to finding W2(x). Suppose dimW1(x) = dimW2(x) = 1 and λ1 > λ2 > −∞ and that the basis

{s(∞)
1 (x), s(∞)

2 (x)} is known at x ∈ X . Note first that span

s(∞)
1 (x)


= W1(x). Let c(x) ∈ R2 denote the coefficients ofw2(x) ∈ W2(x) in the

basis {s(∞)
1 (x), s(∞)

2 (x)} (recall that the orthogonal projection ofw2(x) onto s(∞)
i (x) is zero for i = 3, 4, . . . , d) then

w2(x) = c1(x)s
(∞)
1 (x)+ c2(x)s

(∞)
2 (x).

Lemma 4.1. Let Q (x) denote the d × 2 matrix whose ith column is s(∞)
i (x). Then for each n ≥ 0 there exists an upper triangular, 2 × 2 matrix

R(x, n) satisfying

A(x, n)Q (x) = Q (T nx)R(x, n). (23)

Proof. Note that

A(x, n)Q (x) = A(x, n)

 | |

s(∞)
1 (x) s(∞)

2 (x)
| |


=

 | |

A(x, n)s(∞)
1 (x) A(x, n)s(∞)

2 (x)
| |


= Q (T nx)R(x, n),

where

Q (T nx) =

 | |

s(∞)
1 (T nx) s(∞)

2 (T nx)
| |


and

R(x, n) =

A(x, n)s(∞)
1 (x)

 ⟨s(∞)
1 (T nx), A(x, n)s(∞)

2 (x)⟩

0
A(x, n)s(∞)

2 (x)


 , (24)

using the equivariance of S1(x) = span{s(∞)
1 (x)} and S2(x) = span{s(∞)

1 (x), s(∞)
2 (x)}. �

Thus, the QR-decomposition of Lemma 4.1 is equivalent to the Gram–Schmidt orthonormalization that defines the stationary Lyapunov
bases. The columns of Q (T nx) form the stationary Lyapunov basis at T nx.

We have chosen the above notation R(x, n) specifically since, defined in this way, R forms a cocycle which is the restriction of A to the
invariant subspaces Sj.

Lemma 4.2. The matrix R(x, n) defined above forms a cocycle over T .

Proof. Let n,m ≥ 0 then

A(x, n + m)Q (x) = Q (T n+mx)R(x, n + m) (25)

by Lemma 4.1. Since A(x, n + m) = A(T nx,m)A(x, n),

A(x, n + m)Q (x) = A(T nx,m)A(x, n)Q (x)
= A(T nx,m)Q (T nx)R(x, n)

= Q (T n+mx)R(T nx,m)R(x, n). (26)

Equating (25) and (26) gives

R(T nx,m)R(x, n) = R(x, n + m),

as Q (T n+mx) is left-invertible. �

Since c(x) is the vector of coefficients of the second Oseledets vector of the cocycle A, it is the second Oseledets vector of the cocycle R.
To see this, recallw2(x) = Q (x)c(x) ∈ W2(x) so that

λ2 = lim
n→∞

1
n
log ∥A(x, n)Q (x)c(x)∥
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which, due to (23), becomes

λ2 = lim
n→∞

1
n
log

Q (T nx)R(x, n)c(x)


= lim
n→∞

1
n
log ∥R(x, n)c(x)∥

since the columns of Q (T nx) are orthonormal.
We may approximate c(x) numerically using a simple power method on the inverse cocycle R−1 (which exists since λ1 > λ2 > −∞).
The Ginelli method can be summarized by the following steps:

Algorithm 4.3 (Ginelli Method of Approximatingw2(x) ∈ W2(x)).

1. Choose x ∈ X and M > 0 and form {s(M)1 (x), s(M)2 (x)} by first randomly selecting two orthonormal vectors {s1(T−Mx),
s2(T−Mx)} then performing the push-forward/Gram–Schmidt procedure given by (21). That is, define

s̃(M)i (x) = A(T−Mx,M)si(T−Mx), i = 1, 2,

followed by setting

s(M)1 (x) = N

s̃(M)1 (x)


,

s(M)2 (x) = N

s̃(M)2 (x)−


s̃(M)2 (x) · s(M)1 (x)


s(M)1 (x)


,

where N : v → v/ ∥v∥. The vectors {s(M)1 (x), s(M)2 (x)} form an approximation to the stationary Lyapunov basis {s(∞)
1 (x), s(∞)

2 (x)}.
2. Choose N > 0 and using the approximate basis {s(M)1 (x), s(M)2 (x)} in (24), form an approximation to R(x,N), denoted by R(M)(x,N).
3. Choose c ′

∈ R2 either at random, or by some guess at the second Oseledets vector of R at TN(x) ∈ X , in this reviewwe found c ′
= (0, 1)

to work well. Use the inverse iteration method to approximate c(x), that is, define our approximation to c(x) as

c(M,N)(x) = R(M)(x,N)−1c ′

= R(M)(TNx,−N)c ′.

4. Then

w
(M,N)
2 (x) =

 | |

s(M)1 (x) s(M)2 (x)
| |

 c(M,N)(x)

is our approximation tow2(x) ∈ W2(x).

As before, there is some freedom of choice of both M and N as well as of the initial orthonormal basis {s1(T−Mx), s2(T−Mx)}, used
to approximate S2(x), and of the 2-tuple c ′. The larger M and N are chosen, the more accurate w(M,N)2 (x) will be, provided s2(T−Mx) ∉

W1(T−Mx) ∪ V3(T−Mx) and c ′
∉ E1(TMx)where E1 is the Oseledets subspace of R with Lyapunov exponent λ1.

Listing 5: Sample MATLAB code for Algorithm 4.3.

1 [Q , ~ ] = QR ( RAND (dim , j ) , 0 ) ;c = [ ZEROS (1 ,j−1) 1] ;
2 FOR i = 1:N ,
3 QNew = A ( : , ( i−1)∗dim+1:i∗dim)∗Q ;
4 [Q , ~ ] = QR (QNew , 0 ) ;
5 END

6 Q0 = Q ;
7 FOR i = N+1:2∗N+1 ,
8 QNew = A ( : , ( i−1)∗dim +1: i∗dim)∗Q ;
9 [Q , R ] = QR (QNew , 0 ) ;

10 AllR = HORZCAT (R , AllR ) ;
11 END

12 numOfR = SIZE (AllR , 2 ) / j ;
13 FOR i = 1:numOfR
14 R = AllR ( : , ( i−1)∗j+1:i∗j ) ;
15 cNew = R \c ;
16 c = cNew / NORM (cNew ) ;
17 END

18 w = Q0∗c ;

Listing 5 shows an example implementation of Algorithm 4.3 in MATLAB which approximates wj(x) ∈ Wj(x) using M = N
and s1(T−Mx), . . . , sj(T−Mx) are chosen at random and c ′

= (0, . . . , 0  
j−1 entries

, 1). Lines 2 through 6 construct the approximation of the
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stationary Lyapunov basis,

s(M)1 (x), . . . , s(M)j (x)


which is stored as columns of the matrix Q (x) represented as the variable Q0, while

lines 7 through 11 construct the cocycle R stored in AllR as [R(x) | R(Tx)| · · · |R(TNx)]. Lines 12 through 17 perform a simple power
method on R(x,N)−1 to find the coefficient vector c , which represents the approximation of wj(x) in the basis


s(M)1 (x), . . . , s(M)j (x)


.

Thus, the approximation is given by Q (x)c. Although Algorithm 4.3 is specific to the case where j = 2, Listing 5 is applicable to any j for
which R(x,N)−1 exists.

It can be shown that, in this case where the top Lyapunov exponent has multiplicity 1, E1 = span{(1, 0)T }.

Lemma 4.4. If the first Lyapunov exponent has multiplicity 1, the dominant Oseledets subspace of the cocycle R is E1 = span{(1, 0)T }.

Proof. Recall that s(∞)
1 (x) ∈ W1(x) since span


s(∞)
1 (x)


= S1(x) = V1(x) \ V2(x) (from (22)) and for all s ∈ V1(x) \ V2(x)

λ1 = lim
n→∞

1
n
log ∥A(x, n)s∥ .

Wemay write s = Q (x)(a, 0)T for some a ∈ R then

λ1 = lim
n→∞

1
n
log

A(x, n)Q (x)(a, 0)T
= lim

n→∞

1
n
log

Q (T nx)R(x, n)(a, 0)T


and since ∥Q (T nx)s∥ = ∥s∥ (the columns of Q are orthonormal)

λ1 = lim
n→∞

1
n
log

R(x, n)(a, 0)T .
Since S1 is A-invariant, span{(1, 0)T } is R-invariant and the proof is complete. �

4.1.1. Limited data scenario
In the case where convergence is not satisfactory because the amount of cocycle data available is too small (for any M and N to be

small), the approximations from Algorithm 4.3 can be improved by using better guesses at s1(T−Mx), s2(T−Mx) and c ′.
Note that s(∞)

1 (x) and s(∞)
2 (x) are two orthonormal vectors optimized for maximal growth over the time interval [−∞, 0] ∩ Z. In the

situation where the values of M and N are limited, one can choose those two vectors that are optimized for growth over the shorter time
interval [−M, 0] ∩ Z. In [37] this is achieved by computing the left singular vectors of A(T−Mx,M). This approach works well for smallM
but can become inaccurate for very largeM for the reasons in Remark 1.

In practice,wehave observed that a combination of Step 1 inAlgorithm4.3 and the above provides themost robustmethod of accurately
approximating s(∞)

1 (x) and s(∞)
2 (x). As an alternative to Algorithm 4.3 the following may be used: ForM ≥ M ′, compute vectors optimized

for growth from −M to −M + M ′, then push-forward these vectors from −M + M ′ to 0.

Algorithm 4.5 (Improved Algorithm 4.3).

1. Choose x ∈ X and M ≥ M ′ > 0. Compute the two left singular vectors of A(T−Mx,M ′) corresponding to the two largest singular
values and call them s̃1(T−M+M ′

x) and s̃2(T−M+M ′

x). Now define

s(M,M

′)
1 (x), s(M,M

′)
2 (x)


as an approximation to


s(∞)
1 (x), s(∞)

2 (x)

by

the Gram–Schmidt orthonormalization of A(T−M+M ′

x,M − M ′)s1(T−M+M ′

x) and A(T−M+M ′

x,M − M ′)s2(T−M+M ′

x) as in (21).

Steps 2–4 as in Algorithm 4.3.

In practice, one should chooseM ′ large enough so that enough data is sampled, but not so large that A(T−Mx,M ′) is too singular.

4.2. The Wolfe scheme

The approach followedbyWolfe et al. [37] directly computes the subspace splitting as the intersection of two sets of invariant subspaces.
The description of the numerical construction of the subspaces Sj(x) featured below differs slightly from [37], however, the essential
features of the approach are retained. In fact, the constructions featured here improve upon those in [37] in terms of accuracy versus

amount of cocycle data used—in the notation of Algorithm 4.6, ifM1 is made larger,w
(M1,M ′

1,M2)

2 (x) is more accurate, which is not the case
in [37] for the same reasons discussed in Remark 1.

Recall the eigenspace decomposition Uj(x) of the limiting matrix Ψ (x) presented in Section 2 and define Vj(x) = Uj(x)⊕ · · · ⊕ Uℓ(x).
Recall that Vj(x) ⊃ Wj(x),Wj+1(x), . . . ,Wℓ(x). Also recall from the previous section that Sj(x) ⊃ W1(x),W2(x), . . . ,Wj(x). Thus

Wj(x) = Vj(x) ∩ Sj(x).

Again, in the interest of readability we assume the Oseledets subspaces Wj(x), and the eigenspaces Uj(x), are one-dimensional. As in
the case of the previous section, the ideas here may be extended to the case in which the Oseledets subspaces are not one-dimensional.
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Let uj(x) be the singular vector spanning Uj(x) and let sj(x) = s(∞)
j (x) be the jth element of the stationary Lyapunov basis as in the previous

section. Then note

wj(x) =

j
i=1

⟨wj(x), si(x)⟩si(x),

wj(x) =

d
i=j

⟨wj(x), ui(x)⟩ui(x).

Taking inner products with uk(x) and sk(x) respectively gives

⟨wj(x), uk(x)⟩ =

j
i=1

⟨wj(x), si(x)⟩⟨si(x), uk(x)⟩ for k ≥ j, (27)

⟨wj(x), sk(x)⟩ =

d
i=j

⟨wj(x), ui(x)⟩⟨ui(x), sk(x)⟩ for k ≤ j. (28)

Substituting (27) into (28) and rearranging gives

⟨wj(x), sk(x)⟩ =

j
i=1


d

h=j

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩


⟨si(x), wj(x)⟩. (29)

Note that
d

h=1⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩ = δki so

d
h=j

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩ = δki −

j−1
h=1

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩.

Then (29) becomes

⟨wj(x), sk(x)⟩ =

j
i=1

δki⟨si(x), wj(x)⟩ −

j
i=1

j−1
h=1

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩⟨si(x), wj(x)⟩

= ⟨sk(x), wj(x)⟩ −

j
i=1

j−1
h=1

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩⟨si(x), wj(x)⟩,

0 =

j
i=1

j−1
h=1

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩⟨si(x), wj(x)⟩. (30)

Eq. (30) may be considered as a j × j homogeneous linear equation by defining a matrix entry-wise as

Dki =

j−1
h=1

⟨sk(x), uh(x)⟩⟨uh(x), si(x)⟩

and solving

Dy = 0,

where yi = ⟨si(x), wj(x)⟩. The entries of y are then the coefficients ofwj(x)with respect to the basis s1(x) . . . , sj(x).
The Wolfe approach may be implemented as follows:

Algorithm 4.6 (Improved Wolfe Approach to Approximatingwj(x) ∈ Wj(x)).

1. Choose x ∈ X and M1 ≥ M ′

1 > 0 and construct {s
(M1,M ′

1)

1 (x), . . . , s
(M1,M ′

1)

j (x)} as an approximation of the stationary Lyapunov basis
vectors {s(∞)

1 (x), . . . , s(∞)
j (x)} using the methods outlined in Step 1 of Algorithm 4.5, that is, compute the left singular vectors of

A(T−M1x,M ′

1) corresponding to the j−1 largest singular values and call them s̃i(T−M1+M ′
1x), i = 1, . . . , j−1. Then form the s

(M1,M ′
1)

i (x)
by the Gram–Schmidt orthonormalization of A(T−M1+M ′

1x,M1 − M ′

1)s̃i(T
−M1+M ′

1x) for i = 1, . . . , j − 1.

2. Choose M2 > 0 and construct the one-dimensional eigenspaces U (M2)
1 (x), . . . ,U (M2)

j−1 (x) as approximations to the eigenspaces
U1(x), . . . ,Uj−1(x) as in Step 1 of Algorithm 2.1, that is, construct

Ψ (M2)(x) =

A(x,M2)

∗A(x,M2)
1/2M2 ,

and let U (M2)
i (x) be the ith orthonormal eigenspace of Ψ (M2)(x). Define u(M2)

i (x) ∈ U (M2)
i (x), i = 1, . . . , j − 1.



32 G. Froyland et al. / Physica D 247 (2013) 18–39

3. Form the matrix D as above:

Dki =

j−1
h=1

⟨s
(M1,M ′

1)

k (x), u(M2)
h (x)⟩⟨u(M2)

h (x), s
(M1,M ′

1)

i (x)⟩.

4. Solve the homogeneous linear equation Dy = 0. Thenw
(M1,M ′

1,M2)

j =
j

i=1 yisi(x) forms our approximation ofwj(x) ∈ Wj(x).

This approach suffers from the same numerical stability issue of Algorithm 2.2 of Section 2.1. Namely, the vector spaces
U (M)1 (x), . . . ,U (M)j−1 (x)may only poorly approximate U1(x), . . . ,Uj−1(x) forM too large (see the final paragraph of Section 2.1).

A recent paper [40] provides alternative descriptions of both the Ginelli et al. and Wolfe and Samelson methods, well-suited to those
familiar with the QR-decomposition based numerical method for estimating Lyapunov exponents due to Benettin et al. [17,18] and
Shimada and Nagashima [19]. The discussion in [40] is restricted to invertible cocycles generated by the Jacobian matrices of a dynamical
system. Although this assumption allows stable numericalmethods to be constructed, i.e., better convergence obtained for larger data sets,
it means some important examples in which thematrix cocycle is non-invertible are overlooked, for example the case study of Section 5.3.
While thememory footprint of the implementations discussed in [40] is estimated, there is no discussion of convergence rates or accuracy
with respect to the amount of cocycle data available. Finally, while the examples featured in [40] explain the methods presented in the
context of differentiable dynamical systems the case studies of Section 5 in the present paper focus on comparative performance of the
methods presented, via a broad range of possible applications.

5. Numerical comparisons of the four approaches

We present three detailed case studies, comparing the four approaches for calculating Oseledets subspaces. The first case study is a
nontrivial model for which we know the Oseledets subspaces exactly and can therefore precisely measure the accuracy of the methods.
The second case study produces a relatively low-dimensionalmatrix cocycle, while the third case study generates a very high-dimensional
matrix cocycle; in these case studies we use two fundamental properties of Oseledets subspaces to assess the accuracy of the four
approaches.

5.1. Case study 1: an exact model

In general the Oseledets subspaces cannot be found analytically which makes the task of determining the efficacy of the above
approaches difficult. However, the exact model described below allows us to compare the numerical approximations with the exact
solution by building a cocycle in which the subspaces are known a priori.

We generate a system with simple Lyapunov spectrum λ1 > λ2 > · · · > λd > −∞. We form a diagonal matrix

R =


eλ1 0

eλ2
. . .

0 eλd


and generate the cocycle by the sequence of matrices {An} where

An = SnRS−1
n−1

Sn =


I + ϵZ, for n ≠ −1, n ∈ [−N,N] ∩ Z,

I +


0
z2 0

. . .
. . .

zd 0

 , for n = −1. (31)

The entries of Z and the numbers z2, . . . , zd are uniformly randomly generated from the interval [0, 1]. By construction, the columns of
Sn−1 span the Oseledets subspaces at time n ∈ [−N,N] ∩ Z.

We compare the exact result at time n = 0 with the approximations computed by the various algorithms for d = 8, {λ1, . . . , λ8} =

{log 8, log 7, log 6, . . . , log 1} and ϵ = 0.1 for varying amounts of cocycle data

A(T−Nx), . . . , A(TNx)


. The exact model has a well

separated spectrum, is generated using invertible matrices, and is of relatively low dimension.
For this model we use the following choice of parameters to execute the algorithms:

• Algorithm 2.2: M = N and {Nk} = {1, 6, . . . , 5k − 4, . . . , 5K − 4,N} where 5K − 4 < N ≤ 5K + 1.
• Algorithm 3.1: We estimate the three largest Lyapunov exponents λ1 > λ2 > λ3 and set Λright

= λ2 + 0.1(λ1 − λ2) and
Λleft

= λ2 − 0.1(λ2 − λ3).
• Algorithm 3.2: As for Algorithm 3.1.
• Algorithm 4.5: M = N,M ′

= 5, and c ′
= (0, 1).

• Algorithm 4.6: Let M1 = N,M ′

1 = 5 andM2 = N .

Fig. 4 compares the approximations yielded from the various approaches outlined in Sections 2–4 with the known solution of Eq. (31).
Each algorithm exhibits approximately exponential convergence with respect to the length of the sample cocycle up to (almost) machine
accuracy of about 10−16. Algorithm 4.3 is notably erratic whereas the other algorithms converge smoothly, which suggests that in the
limited data scenario (small N) it represents the less satisfactory choice.
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Fig. 4. Comparing the approximations of the secondOseledets subspaceW (N)
2 (x)with the exact solutionW2(x)which is known a priori. Each ‘‘N-approximation’’ is computed

using cocycle data {A(T−Nx), A(T−N+1x), . . . , A(TNx)}. The comparison is simply the Euclidean norm of the separation of the two unit vectors w(N)2 (x) ∈ W (N)
2 (x) and

w2(x) ∈ W2(x).

Fig. 5. Comparing the approximation of the second Oseledets vector with the exact solution for the two SVD based approaches, demonstrating the numerical instability
which is overcome in the adapted SVD approach.

Performing a linear regression on the data shown in Fig. 4 for a sample where each method is still converging (N . 230) yields a
gradient of −0.13342 ≈ log 7− log 8 suggesting that the convergence rate is roughly exponential in the difference of the largest and 2nd
largest Lyapunov exponent.

Algorithm 2.2 is slightly more accurate than the other algorithms for large N , while there is a limit to the accuracy of Algorithms 3.1
and 3.2.

It is worth noting that Algorithms 2.2 and 4.6 do not perform as well when approximating Oseledets subspaces corresponding to
Lyapunov exponents λ3, . . . , λℓ. Whilst they reach machine accuracy with ease for W1 and W2, forming A(x, n) = A(T n−1x) · · · A(x)
via numerical matrix multiplication produces greater inaccuracies for subspaces W3 through Wℓ (see Remark 1). On the other hand,
Algorithms 3.1, 3.2 and 4.5 do not suffer from the same issue because they do not need to form A(x, n) but use only the generatingmatrices
A(x). As such, they still reach machine accuracy, although a greater amount of data (larger N) is required.

Fig. 5 is similar to Fig. 4 except that it compares only Algorithms 2.1 and 2.2. In doing so, it highlights the result of one of the numerical
instabilities of Algorithm 2.1, namely the pushing forward of U (M)j (T−Nx) in Step 3.

Finally, Fig. 6 shows the execution times of Algorithms 2.2, 3.1, 3.2, 4.5 and 4.6, which were timed usingMATLAB’s timing functionality.
The most time-consuming step in Algorithm 4.5 is the SVD performed as part of the alterations from Section 4.1.1. Algorithm 4.6 must
perform two SVDs and Algorithm 2.2 must perform many more, which accounts for their longer execution times.

5.2. Case study 2: particle dynamics—two disks in a quasi-one-dimensional box

We consider the quasi-one-dimensional heat system studied extensively by Morriss et al. [4,3,20–23] which consists of two disks of
diameter σ = 1 in a rectangular box, [0, Lx]×[0, Ly], in which the shorter side, has length Ly < 2σ so that the disks may not change order.
The two disks interact elastically with each other and the short walls, but periodic boundary conditions are enforced in the y-direction.
The phase space of the system is then the set X ⊂ R8

X =


[0, Lx] × [0, Ly]

/ ∼

2
× R2

× R2,
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Fig. 6. Comparing the execution time τ of the various algorithms using MATLAB’s timing functionality. Each algorithm is executed using the cocycle data
A(T−Nx), . . . , A(TNx)


.

where ∼ is the equivalence class associated with periodic boundary conditions, that is, (x1, y1), (x2, y2) ∈ [0, Lx] × [0, Ly] have (x1, y1) ∼

(x2, y2) if y1 = y2modLy and x1 = x2.
The flow φτ : X → X consists of free-flight maps of time τ ,F τ

: X → X , and collision maps C : X → X so that φτ (x) =

C ◦ F τn ◦ · · · ◦ F τ2 ◦ C ◦ F τ1(x) where τ1 + · · · + τn = τ . We consider a discrete-time version of the system by mapping from
the instant after collision to the instant after the next collision, that is x → C ◦ F τ(x)(x) where τ(x) is the free-flight time in the
continuous system. The matrix cocycle is generated by the 8 × 8 Jacobian matrices or the derivative of the flow evaluated instantly
after each collision (i.e. A(x) = D


C ◦ F τ(x)


(x), see [4] for details). Due to a number of dynamic symmetries the system has Lyapunov

exponents λ1 > λ2 > 0 > −λ2 > −λ1 with multiplicities 1, 1, 4, 1 and 1 respectively. This system has some symmetry, a high variation
in expansion rates from iteration to iteration, a well separated spectrum, invertible Jacobian matrices, and relatively low dimension.
Numerical integration of an orbit consisting of 4646 collisions yielded a sequence of Jacobian matrices


A(T−2323x), . . . , A(T 2322x)


which

generate the cocycle A.
For this model we use the same choice of parameters to execute the algorithms as with the previous model:

• Algorithm 2.2:M = N and {Nk} = {1, 6, . . . , 5k − 4, . . . , 5K − 4,N} where 5K − 4 < N ≤ 5K + 1.
• Algorithm 3.1: We estimate the three largest Lyapunov exponents λ1 > λ2 > λ3 and set Λright

= λ2 + 0.1(λ1 − λ2) and
Λleft

= λ2 − 0.1(λ2 − λ3).
• Algorithm 3.2: As for Algorithm 3.1.
• Algorithm 4.5: M = N,M ′

= 5, and c ′
= (0, 1).

• Algorithm 4.6: Let M1 = N,M ′

1 = 5 andM2 = N .

5.2.1. Criteria to assess the accuracy of estimated Oseledets spaces
Since the Oseledets subspaces for this model are unknown, we test the approximations for two properties of Oseledets subspaces,

namely their equivariance and the expansion rate, which defines the corresponding Lyapunov exponent.

Equivariance: To test for equivariance, we approximate the second Oseledets vector, w(N)2 (T nx), at each time n = 0, 1, . . . , 30. We then

compute
N 

A(x, n)w(N)2 (x)


− w
(N)
2 (T nx)

 and plot the result, where v
N
→ v/ ∥v∥. If the approximations are equivariant this value

would be zero.

Expansion rate: To test the expansion rate, each approach is used to compute the second Oseledets vector, w(N)2 (x) ∈ W (N)
2 (x), at time

n = 0 and we plot 1
m log

A(x,m)w(N)2 (x)
 versus m. IfW (N)

2 (x) is accurate, elements ofW (N)
2 (x) should grow at the correct rate: λ2.

Whilst the Oseledets vector w2(x) must satisfy the above two properties, we must be careful when examining the results of these
numerical experiments. For instance, (i) it is possible to choose vectors that are equivariant despite not being contained in any single
Oseledets subspace, and (ii) any element of V2(x) \ V3(x) ! W2(x) (a much larger set thanW2(x)) has Lyapunov exponent λ2.

5.2.2. Numerical results
Fig. 7 shows the results of the equivariance test for the quasi-one-dimensional two disk model. At the lower end of cocycle data length

(N = 75) all Algorithms except 3.2 display reasonable equivariance, although Algorithm 3.1 remains equivariant for only a handful of
steps. For N = 150 and N = 225 all approaches appear to produce close to equivariant results (note the changing scales in the vertical
direction), with Algorithms 3.1 and 3.2 lagging behind when N = 225.

Fig. 8 shows the results of the expansion rate test for the quasi-one-dimensional two disk model for various amounts of cocycle data
A(T−Nx), . . . , A(TNx)


. As expected, when there is a limited amount of data available (N small) the approximations either expand at the

higher rate of λ1 or only expand at the rate of λ2 for a brief time before the error grows too large. As N is increased, the approximations
expand at λ2 for longer periods, suggesting that they more accurately representw2(x).
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Fig. 7. The equivariance test for the various algorithms on the quasi-one-dimensional two disk model. Each approach is used to approximate the second Oseledets vector,
w
(N)
2 (T nx) ∈ W (N)

2 (T nx) using cocycle data {A(T−Nx), . . . , A(TNx)}, at each time n = 0, 1, . . . , 30. We then compute
N A(x, n)w(N)2 (x)− w

(N)
2 (T nx)

 and plot the result.
Note the different scales on each vertical axis. The plots shown are for N = 75 (top left), N = 150 (top right) and N = 225 (bottom).

Most algorithms perform similarly regarding expansion rate. Note that the amount of cocycle data (size of N) needed to perform well
in the expansion rate test is less than that needed to perform well in the Equivariance test—this demonstrates the importance of good
performance in both tests in order to assess whether or not the algorithms are performing well.

5.3. Case study 3: time-dependent fluid flow in a cylinder; a transfer operator description

An important emerging application for Oseledets subspaces is the detection of strange eigenmodes, persistent patterns, and coherent
sets for aperiodic time-dependent fluid flows. In the periodic setting strange eigenmodes have been found as eigenfunctions of a
Perron–Frobenius operator via classical Floquet theory; [41–43]. However, in the aperiodic time-dependent setting, Floquet theory cannot
be applied. An extension to aperiodically driven flows was derived in [6], based on the new multiplicative ergodic theory of [2]. Discrete
approximations of a Perron–Frobenius cocycle representing the aperiodic flow are constructed and in this aperiodic setting the leading
sub-dominant Oseledets subspaces play the role of the leading sub-dominant eigenfunctions in the periodic forcing case.

We review the four methods of approximating Oseledets subspaces with the aperiodically driven cylinder flow from [6]. The flow
domain is Y = [0, 2π ] × [0, π], t ∈ R+ and the flow is defined by the following forced ODE:

ẋ = c − Ã(z̃(t)) sin(x − ν z̃(t)) cos(y)+ εG(g(x, y, z̃(t))) sin(z̃(t)/2) mod2π,

ẏ = Ã(z̃(t)) cos(x − ν z̃(t)) sin(y).
(32)

Here, z̃(t) = 6.6685z1(t), where z1(t) is generated by the standard Lorenz flow, Ã(z̃(t)) = 1 + 0.125 sin(
√
5z̃(t)), G(ψ) := 1/(ψ2

+ 1)2
and the parameter functionψ = g(x, y, z̃(t)) := sin(x − ν z̃(t)) sin(y)+ y/2 − π/4 vanishes at the level set of the stream function of the
unperturbed (ε = 0) flow at instantaneous time t = 0, i.e., s(x, y, 0) = π/4, which divides the phase space in half.

We set ε = 1 as this value is sufficiently large to ensure no KAM tori remain in the jet regime, but sufficiently small to maintain islands
originating from the nested periodic orbits around the elliptic points of the unperturbed system.

We construct the discretized Perron–Frobenius matrices P (τ )x (t) =: A(x) as described in Section 3 of [6], and briefly recapped in
Example 1.2, using a uniform grid of 120 × 60 boxes, τ = 8 and −32 ≤ t ≤ 32. In total, we generate 8 such matrices of dimension
7200×7200. Thus, in this case studywe have a limited amount of data, no symmetry, high dimension, and thematrices are non-invertible
and sparse.
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Fig. 8. The expansion rate test for the various approaches on the quasi-one-dimensional two disk model. The second Oseledets vector,w(N)2 (x) ∈ W (N)
2 (x), is approximated

using cocycle data {A(T−Nx), . . . , A(TNx)} andweplot 1
m log

A(x,m)w(N)2 (x)
 versusm. If the approximation is accurate this quantity should tend to the value ofλ2 ≈ 0.210,

otherwise it would tend to the value of λ1 ≈ 0.325 both of which are shown in blue. The plots shown are for N = 25 (top left), N = 75 (top right) and N = 150 (bottom).

In order to obtain reasonable results we executed Algorithms 2.2, 3.1, 3.2, 4.3 and 4.6 with the following parameters:

• Algorithm 2.2: M = N = 4 and {Nk} = {2, 4}.
• Algorithm 3.1: We estimate the three largest Lyapunov exponents λ1 > λ2 > λ3 and set Λright

= λ2 + 0.1(λ1 − λ2) and
Λleft

= λ2 − 0.1(λ2 − λ3).
• Algorithm 3.2: As for Algorithm 3.1.
• Algorithm 4.5:M ′

= M = 4 (so that only an SVD is used, and no push-forward step), N = 4 and c ′
= (0, 1).

• Algorithm 4.6:M1 = M ′

1 = 4 andM2 = 4.

The results of these numerical experiments are shown in Figs. 9 and 10. Recall that in this setting, the cocycle A(x, n) is a cocycle
of discretized Perron–Frobenius operators acting on piecewise constant functions defined on Y ; we identify these piecewise constant
functions (with 7200 pieces) with vectors in R7200. Fig. 9 first shows the approximations of the second Oseledets vector w2(x) at time
t = 0. In this setting the Oseledets vectors locate coherent structures: Fig. 10 compares the push-forward of the approximations in Fig. 9
with independently computed approximations ofw2(Tx)—the second Oseledets vector at time t = 8.

In this study the data sample is insufficiently long for Algorithm3.2 towork effectively, but the other algorithms produce similar results.
A visual inspection of Fig. 10 shows that the highlighted structures are approximately equivariant/coherent.

6. Conclusion

We introduced two new methods for computing Oseledets subspaces: one based on singular value decompositions and the other
based on dichotomy projectors. We also reviewed recent methods by Ginelli et al. [36] and Wolfe and Samelson [37], and presented an
improvement to both of these approaches that intelligently selected initial bases when only short time series were available to compute
with. Finally, we carried out a comparative numerical investigation involving all four methods.

Generally speaking, we found that Algorithms 2.2, 4.5 and 4.6 outperformed the dichotomy projector methods (Algorithms 3.1 and 3.2)
when limited to moderate amounts of data were available, however, the dichotomy projector methods performed very well when long
time series of matrices were available. The Ginelli approach (in particular the improved Algorithm 4.5) also worked very well with long
time series.

The improvements made to Algorithm 2.1 in Section 2.1 (namely the orthogonalization step in Algorithm 2.2) produced an algorithm
that could take advantage of longer matrix sequences and return very accurate results. Of course, for each Algorithm one must choose the
associated parameters sensibly to ensure good results.
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Fig. 9. The second Oseledets subspace as determined by (a) Algorithm 2.2, (b) Algorithm 3.1, (c) Algorithm 3.2, (d) Algorithm 4.3 and (e) Algorithm 4.6.

When only a short to moderate time series was available, we found mixed results in terms of the best algorithm. The improved
SVD approach (Algorithm 2.2) was best for low to moderate length time series in the exact Toy model, while the improved Ginelli
(Algorithm 4.5) and improved Wolfe (Algorithm 4.6) were marginally best in terms of equivariance and expansion rate, respectively for
the 2-disk model. Each of these three algorithms produced similar results in the fluid-flow system.

Choosing appropriate parameters for a particular application can be difficult. In the present review, good values were chosen by
educated experimentation. On the other hand, the dichotomy projector methods, Algorithms 3.1 and 3.2, use parameters (Λright andΛleft)
which can be chosen in a deterministic manner—by estimating Lyapunov exponents, which is a reasonably robust numerical procedure.
Furthermore, a rigorous error approximation exists for Algorithm 3.2, a feature currently lacking for Algorithms 2.2, 4.5 and 4.6.

The memory footprint of each approach scales quite differently with dimension. In Section 5.3, Algorithms 2.2 and 4.6 could take
advantage of the sparseness of the d × d generating matrices of the cocycle. However, since A(x, n) is formed by matrix multiplication,
for large n the matrix A(x, n) becomes dense and may require memory of the order of d2 floating point numbers. The dichotomy projector
Algorithms 3.1 and 3.2, need to form an Nd× (N + 1)dmatrix, but with sparse generating matrices, this requires memory much less than
of the order of d2 floating point numbers. Algorithm 4.5 has the most conservative memory footprint, but depends on its initialization
parameterM ′ and the Oseledets subspace number j. IfM ′ is large, then A(T−Mx,M ′) in Step 1 can become dense and requireO(d2) floating
point numbers. On the other hand, the stationary Lyapunov basis requires jd floating point numbers to be stored, so if j ≈ d this can
becomes comparable to d2.

Section 5.3 involves non-invertible generating matrices and apart from Algorithm 3.2, each approach succeeded in producing a
reasonable solution, showing that the Algorithms can perform well in the non-invertible setting. Continuing with the non-invertible
situation, if one wishes to approximate Oseledets subspaces corresponding to negative numbers with very large magnitudes (λj ≈ −∞),
then Algorithms 2.2 and 4.6 may struggle as rapidly contracting directions (relative to the dominant direction corresponding to λ1) are
quickly squashed during the matrix multiplication used to approximate A(x, n) leading to inaccurate numerical representation of A(x, n).

The dichotomy projector approaches of Algorithms 3.1 and 3.2 are able to compute Oseledets subspaces corresponding to smaller,
sub-dominant Lyapunov exponents λ3, λ4, . . . provided larger amounts of cocycle data is available. However, if λj ≈ −∞, we are forced
to choose Λright or Λleft

≈ −∞ which means either problem (14) or (15) (in Algorithm 3.1 which also feature in Algorithm 3.2) are
ill-conditioned and fail.

The same problem manifests itself in Algorithm 4.5, even though it is able to compute Oseledets subspaces corresponding to smaller,
sub-dominant Lyapunov exponents. The sum of the logarithm of the diagonal entries of the j× j generating matrices of the cocycle R(x, n)
average to the logarithmic expansion rate of the j-parallelepiped formed at x by the stationary Lyapunov basis s(∞)

1 (x), . . . , s(∞)
j (x) as it

is pushed-forward. Thus, the logarithm of the ith diagonal entry of the generating matrices of R(x, n) has a time average of λi [18] and if
λj ≈ −∞, R(x, n)will feature diagonal entries close to, or equal to zero and R(x, n)−1 will not exist.

In summary, Algorithms 2.2 and 4.6 are best suited to situations with limited cocycle data when one of the most dominant Oseledets
subspaces is desired. Algorithm 4.5 can be applied to both limited and high data situations by choosingM ′ appropriately, and can compute
most Oseledets subspaces provided their Lyapunov exponents are well-conditioned. If ample data is available and information regarding
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Fig. 10. Comparing the approximations of the second Oseledets vector w2(Tx) at time t = 8 with the push-forward of the approximations at time t = 0. Those labeled
(a) are the push-forwards A(x, 1)w(4)2 (x) whilst those labeled (b) are independently computed approximations w(4)2 (Tx) of w2(Tx). The algorithms used are as follows:
(1) Algorithm 2.2, (2) Algorithm 3.1, (3) Algorithm 3.2, (4) Algorithm 4.3 and (5) Algorithm 4.6.
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the system is lacking (making the choice of parameters for the other approaches difficult), the approaches of Algorithms 3.1 and 3.2 may
be preferred for their relatively deterministic parameter selection.
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