
Physica D 291 (2015) 8–16
Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Magnetisation oscillations by vortex–antivortex dipoles
Stavros Komineas ∗

Department of Applied Mathematics, University of Crete, 71409 Heraklion, Crete, Greece

h i g h l i g h t s

• The rotational dynamics of a magnetic vortex–antivortex dipole is studied.
• We produce a phase diagram by systematic numerical simulations.
• Three kinds of vortex–antivortex dipoles are identified, including merons.
• A virial relation and an asymptotic analysis give rotation frequency and stability.
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a b s t r a c t

A vortex–antivortex dipole can be generated due to current with in-plane spin-polarisation, flowing into
a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analysed using
the Landau–Lifshitz equation including a Slonczewski spin-torque term. We establish that the vortex
dipole is set in steady state rotational motion due to the interaction between the vortices, while an
external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to
the nonzero skyrmion number of the dipole. The spin-torque acts to stabilise the vortex dipole at a
definite vortex–antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under
spin-polarised current is an attractor of the motion, therefore a stable state. The details of the rotating
magnetisation configurations are analysed theoretically and numerically. The asymptotic behaviour of
the rotating configurations provide results on their expected stability. Extensive numerical simulations
reveal three types of vortex–antivortex pairs which are obtained as we vary the external field and spin-
torque strength. We give a guide for the frequency of rotation based on analytical relations.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The injection of a dc spin-polarised current through a magnetic
element can induce magnetisation oscillations and thus turn a na-
noelement into a spin-transfer-torque oscillator [1]. This property
can be exploited for the design of, possibly, the smallest available
frequency generators. The magnetisation configuration which is
set in periodic motion may be a robust nonlinear magnetic exci-
tation, such as a magnetic vortex, producing stable oscillations.

Magnetic vortices are typically seen to be created and annihi-
lated in pairs in numerical simulations due to spin-polarised cur-
rent [2–4]. In the experiments in Ref. [5] spin-polarised currentwas
injected through an aperture into an elliptic-shaped magnetic el-
ement and magnetic oscillations were measured. Accompanying
simulations showed a spontaneously nucleated vortex–antivortex
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(VA) pair, where vortex and antivortex have opposite polarities, in
rotational motion.

The dynamics of vortex pairs has been previously studied in the
context of the conservative Landau–Lifshitz (LL) equation [6–8].
Experimental andnumerical results show that the creation and sta-
bilisation of such VA pairs can occur under spin-polarised current,
that is, in a non-conservative system driven by an external probe.
The robustness of VA pairs in the excitable system is our motiva-
tion in order to study those in detail theoretically and numerically.

Magnetic solitons, in general, have already been studied for a
long time, and awell-known class derives from thework of Belavin
and Polyakov [9]. Their model is isotropic and allows for symmet-
ric soliton configurations which are characterised by a topologi-
cal charge, and also for configurations which possess one half unit
of topological change, called merons [10]. A VA pair with opposite
polarities, the object studied in this paper, can be viewed, topo-
logically, as a two-meron configuration. However, we will use this
termmostly for solutionswith similar features to those of the orig-
inal isotropicmodel. Earlier extensivework onmagnetic solitons is
reviewed in [11,12]where topological solitons andnon-topological

http://dx.doi.org/10.1016/j.physd.2014.10.001
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2014.10.001&domain=pdf
mailto:komineas@tem.uoc.gr
http://dx.doi.org/10.1016/j.physd.2014.10.001


S. Komineas / Physica D 291 (2015) 8–16 9
magnetic droplets were studied. Some of these are dynamically
stabilised. Recently, there is intensive activity on skyrmions which
are observed in ferromagnets with an antisymmetric Dzyaloshin-
skii–Moriya interaction [13]. These are magnetic solitons with
skyrmion number equal to unity. The VA dipoles studied in this
paper possess the latter feature of skyrmions. We will call in the
following a skyrmion any configuration with a nonzero skyrmion
number.

Most of previous work on magnetic solitons was on a conser-
vative system, with the possible addition of small damping. Un-
like thatworkwe study a non-conservative systemwith a damping
mechanism and external driving. As a result we havemany param-
eters (strength of spin-torque, external field, damping, etc.) and the
system can be tuned to manifest multiple dynamical phenomena.
On the other hand this complexity allows little space for an intu-
itive understanding of the phenomena based on existing lore. This
difficulty is stressed by the number of experiments conducted, un-
der different conditions, which have measured signals attributed
to nonuniform or nonlinear magnetic states [14–16]. In the exper-
iments in Ref. [5] it is counterintuitive that the VA pair performs
a circular motion in the plane, while the polarisation of the spin
current and the applied field point along a fixed in-plane direction,
apparently breaking circular symmetry.

We will give a systematic theoretical and an extensive numer-
ical study for vortex–antivortex dipoles in a current with in-plane
spin-polarisation. This follows ideas already presented in Ref. [17].
We give a resolution of the mechanism for VA pair rotation which
is necessary in order to understand the features of this system.We
further give analytical formulae for the frequency of rotationwhich
is then used as a guide to explore the behaviour of this system in
its parameter space. Such a transparent qualitative and quantita-
tive analysis of this multi-parameter system places previous re-
sults under a general framework and can be a guide for further
experimental manipulation of the system and for the production
of robust magnetisation oscillations.

The outline of the paper is as follows. In Section 2 we give the
equation of motion. In Section 3 we give a general description of
vortex–antivortex pairs and some analytical results. In Section 4
we give the results of numerical simulations. In Section 5 we give
an asymptotic analysis of the rotatingmagnetisation configuration
for large distances. In Section 6 we present rotating VA pairs for
the special case of uniform spin-torque. Section 7 contains our
concluding remarks. In Appendices A–C we give some background
theoretical results and details of the numerical methods.

2. The Landau–Lifshitz–Gilbert–Slonczewski equation

The standard dynamics of the magnetisation vector m = (m1,
m2,m3) is given by the Landau–Lifshitz–Gilbert (LLG) equation. A
spin-polarised current is assumed to flow through an ultrathin film
inducing excitation of themagnetisationwhich canbedescribedby
an additional, so called, Slonczewski spin-torque term in the LLG
equation [18] (see [19] for a review). Themodel whichwill be used
throughout this paper is the Landau–Lifshitz–Gilbert–Slonczewski
(LLGS) equation, in rationalised form,

ṁ = −m × (α1f − α2β p) − m × [m × (α2 f + α1β p)]

f ≡ 1m − m3ê3 + hext. (1)

Damping is accounted for by the coefficients α1 = 1/(1 + α2),
α2 = α/(1 + α2), where α is the Gilbert dissipation constant. We
have taken into account three terms in the effective field f : the ex-
change interaction, an easy-plane anisotropy term perpendicular
to the thirdmagnetisation direction ê3 = (0, 0, 1), and an external
field hext. The spin-polarisation of the current is along the direction
pwhich is taken to be a constant vector.We further assume that the
coefficient of the spin-torque term β is a constant, thus we confine
ourselves to studying a simple form of the spin-torque term.

We consider Eq. (1) as a two-dimensional model, that is, the
magnetisation is a function of two spatial variables and time,m =

m(x, y, t). This is assumed to be the limit of an ultrathin film,
and the easy-plane anisotropy term is considered mainly as an
approximation to the magnetostatic energy.

The magnetisationm and the field hext are measured in units of
the saturation magnetisation Ms, so m2

= 1. The units of length
and time are, respectively,

ℓex ≡


2A

µ0M2
s
, τ0 = (γµ0Ms)

−1, (2)

where A is the exchange constant, γ is the gyromagnetic ratio, and
ℓex is the exchange length. The spin-torque parameter β is defined
as

β =
Je
Jp

, Jp =
µ0M2

s |e|df
h̄

, (3)

where Je is the current density and df is the thickness of the film.
For permalloy we have ℓex ≈ 7 nm, and τ0 ≈ 7 ps which
corresponds to a frequency f0 = 1/(2π τ0) ≈ 23GHz, and typically
Jp ≈ 3 × 1012 A/m2.

We consider a ferromagnetic state m0 = (1, 0, 0). Such a mag-
netisation orientationmay be due to the shape of the film, as in the
case of the elliptic samples in Ref. [5], or itmay be imposed through
the application of an external magnetic field. The polarisation p of
the current is assumed

β p = β (1, 0, 0), β < 0, (4)

that is, it forces the magnetisation antiparallel to m0. Following
experimental setups we mostly assume that the current flows
through a nano-aperture with a diameter of tens of nanometres.
However, we also study the case of uniform spin current in Sec-
tion 6. Whenever an external magnetic field is present this is con-
sidered uniform and has the form

hext = (hext, 0, 0), hext > 0, (5)

that is, it favours the ferromagnetic statem0.

3. Steady-state rotating dipoles

3.1. Vortex–antivortex pair

Vortices are magnetisation configurations where the magneti-
sation vector rotates a full 2π angle when a circle is traced around
a point called the vortex centre. They are thus characterised by a
winding number κ = ±1. The positive value corresponds to the
vortex typically observed in magnetic elements, which minimises
the magnetostatic energy. A vortex with a negative winding num-
ber is called an antivortex. Easy-plane anisotropy supports vor-
tices with their polarity along the third axis taking the two values
λ = ±1.

A configuration of a VApair has been conjectured to formduring
dynamical processes in experiments, and the process has been
demonstrated numerically. We will study only the case where
the vortex and the antivortex have opposite polarities. Such a VA
dipole has a nonzero skyrmion number. The latter is defined as

N =
1
4π


n d2x, n =

1
2
ϵµν(∂νm × ∂µm) · m, (6)

where n is a local topological density and ϵµν is the totally anti-
symmetric tensor with µ, ν = 1, 2 [20]. A VA dipole has N = ±1.
We conventionally take the vortex with negative polarity and the
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antivortex with positive polarity, so the pair has N = 1. Changing
the polarities of both vortices would change the sign of N .

Due to the interaction between the two vortices the pair cannot
be static. The vortices rotate clockwise or anticlockwise depending
on the sign of N . The situation is clear within the conservative
LL equation, i.e., Eq. (1) for α = 0, β = 0 and no external field
hext = 0. The pair is pinned at the position where it is created
and their dynamics is rotational [6]. This can be linked to the
nonzero skyrmion number [8] and the vortices rotate clockwise or
anticlockwise depending on the sign of N . It is seen numerically
that their motion can be close to a steady state rotation, however,
this appears to be unstable. If we add dissipation α ≠ 0 to the
model then the vortices go on a spiralling orbit towards each
other.

The rotational motion is stable in the case of a VA dipole
under the influence of a spin-polarised current flowing through a
thin magnetic element, as shown in experiments and simulations
[5,17]. The extensive numerical simulations in Section 4 show
that the rotational motion is a stable steady state for a range of
parameter values. We stress that both the current polarisation (4)
and the external field (5) will be considered to be in-plane, along
the x-axis. In such a case one would, in general, expect precession
of the magnetisation around the x axis. So, the observed rotation
is not easily interpreted as a straightforward consequence of the
precessional dynamics of the Landau–Lifshitz equation.

A simple ansatz for a VA dipole can be written through the
stereographic variable discussed in Appendix A. The form (A.5)
represents a VA configuration which is an exact solution of the
LL equation when only the exchange interaction is considered.
The roles of the external magnetic field and the spin-torque term
manifest themselves explicitly in this case [17]. The spin-torque
acts to stabilise the radius of rotation while the external field
gives the angular frequency of rotation. The rotation frequency is
inversely proportional to the skyrmion number, which shows that
it is crucial that N ≠ 0 for these results to be valid.

3.2. Virial relation

Based on the evidence from numerics we conjecture the
existence of a magnetic configuration in steady-state rotation, in
the sense of Eq. (B.1). The approximation of a steady-state allows
for the derivation of explicit results. Appendix B details a virial
relation of Derrick type given in Eq. (B.2) which is exact in the
case of steady-state rotation. According to the results of numerical
simulations a simplified form of the Derrick relation (B.2) holds to
a very good approximation for most of the VA dipoles presented in
this paper. This gives the angular velocity of rotation as

ω
.
= −


Ea
ℓ

+ hext
µ1

ℓ


, (7)

where the symbol .
= indicates an approximation. The quantity

ℓ =
1
2


ρ2 n d2x, ρ2

≡ x21 + x22, (8)

defined through the topological density n, is identifiedwith the an-
gular momentum [21]. For a VA pair with well-separated vortex
and antivortex at a distance dVA, we can readily write the approx-
imate formula ℓ ≈ (π/2)N d2VA. We will actually define the vor-
tex–antivortex distance (for N = 1) as

dVA ≡


2ℓ
π

. (9)

The quantity

Ea =
1
2


(m3)

2 d2x (10)
is the anisotropy energy, which takes the value Ea = π/2 for a
single isolated vortex [22]. We have also defined

µ1 = −
1
2


xµ∂µm1 d2x =


(1 − m1) d2x, (11)

where the last equation derives from a partial integration assum-
ing vanishing boundary terms, and the final quantity gives the total
magnetisation (spin reversals) in the x axis.

Eq. (7) is derived from Eq. (B.2) if we neglect two terms. The
term proportional to the dissipation constant α is neglected be-
cause the dissipation constant itself is small. The termproportional
to β is neglected because the corresponding integral is small. For
example, one could use the configuration (A.4), which gives a VA
pair perfectly symmetric around an in-plane axis, to find that the
last integral in the Derrick relation (7) vanishes. The small values
for the integral actually found in the simulations are due to small
asymmetries of the rotating VApairs. Finally,we note that these ar-
guments do not fully justify the approximation in Eq. (7), but this is
rather supported by the numerical results, given later in the paper.

Relation (7) establishes that the angular frequency of a rotating
VA pair has contributions from two separate sources. The first term
on the right hand side is due to the interaction between the vortex
and the antivortex. This decreases as the distance between the
vortices increases (ℓ increases). The second term on the right hand
side of (7) is due to the external field and it includes a factor which
depends on the details of the magnetisation configuration. It is
crucial for both terms that N ≠ 0, since otherwise the quantity
ℓ could vanish and change completely the meaning of the Derrick
relation.

4. Numerical simulations

4.1. Magnetisation configurations

We have performed a series of numerical simulations based on
Eq. (1). They are performed in two dimensions using stretched co-
ordinates for the infinite plane. The details of themethod are given
inAppendix C. Following experimentswe assume that the spin cur-
rent is injected in the nanoelement through an aperture.Wemodel
the flow of the current through a nano-aperture by assuming a
spin-torque parameter β ≠ 0 in a disc with diameter da ≈ 40 nm
while we set β = 0 outside it. For spin polarisation as in Eq. (4)
numerical simulations [5] have shown that the spin-torque causes
the magnetisation to switch at the central area of the element and
finally induces the generation of a VA dipole in rotational motion
around the centre of the spin current. Mechanisms for the gen-
eration of a VA dipole are presented by numerical simulations in
Ref. [4]. In the present paper we assume the existence of a vortex
dipole and study its subsequent dynamics.

As the number of parameters in the present problem is largewe
will not explore all possibilities but we will rather fix the values

α = 0.02, da = 6ℓex, (12)

for the dissipation constant and the aperture diameter respec-
tively. Numerical simulations performed with similar values for
α have given quantitatively similar results. Other values for da
(e.g., da = 4ℓex and 12ℓex) did not give qualitatively different re-
sults. However, more extensive simulations would be needed in
order to explore the dependence of results on da.

We evolve in time an initial ansatz for a VA pair configuration
according to the LLGS equation (1) and this typically converges to
a steady-state rotating VA pair. As the same result is obtained for
any initial condition that we used (see Appendix C), we conclude
that these are stable dynamical magnetic configurations.

We study the features of our system by systematically varying
the parameters which can be tuned experimentally: the externally
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Fig. 1. Magnetisation configuration of type I (long VA pair) for vortex–antivortex
pair in steady-state rotation around a nano-aperture (delimited by a dashed line).
The vector plot shows (m1,m2) and the contour plot is for the perpendicular mag-
netisation component.Weplot contour levelsm3 = ±0.1, ±0.3, ±0.5, ±0.7, ±0.9
(red: up, blue: down). Parameter values used are β = −0.10, hext = 0.40 and (12).
The angular frequency of rotation is ω = 0.255. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Magnetisation configuration of type II (short VA pair) in steady-state
rotation. We plot as in Fig. 1. Parameter values used are β = −0.10, hext = 0.40
(the same as in Fig. 1). The angular frequency of rotation is ω = 0.539.

applied field hext and the strength of the spin currentβ . We start by
choosing a typical value for the current β = −0.1. We then vary
the external field and find a series of rotating VA pairs. Varying hext
from the value hext = 0 up to hext = 0.44 we find configurations
similar in form to that shown in Fig. 1 for the specific value hext =

0.4. We label these VA pairs of type I (or long VA pairs) and note
that the vortex and antivortex are well separated.

Varyinghext from larger to smaller valueswe find configurations
similar in form to that shown in Fig. 2 for the value hext = 0.4. We
label these VA pairs of type II (or short VA pairs). Note that the two
VA pairs shown in Figs. 1, 2 are obtained for the same parameter
values, but they are different and they have significantly different
rotation frequencies.

Increasing the spin current to β = −0.2 and choosing large
external field values we find still onemore kind of VA pairs, shown
in Fig. 3 for the value hext = 0.6. We label these VA pairs of type III
(or wide VA pairs).
Fig. 3. Magnetisation configuration of type III (wide VA pair) in steady-state
rotation. We plot as in Fig. 1. Parameter values used are β = −0.20, hext = 0.60.
The angular frequency of rotation is ω = 0.820.

Fig. 4. Numerical simulations have given three types of rotating VA pairs. In the
β–hext plane we plot blue stars for type I (long) pairs, red circles for type II (short)
VA pairs, and green crosses for type III (wide) VA pairs. No steady-states were found
in the regions where no symbols are plotted: (i) for very small β values and (ii) for
large β and intermediate hext . Other parameters are as in Eq. (12).

We have explored systematically the range of parameters 0 ≤

|β| ≤ 0.7 and 0 ≤ hext ≤ 0.7. We find the three types of
VA pairs in steady-state rotation on the β–hext plane as shown in
Fig. 4. Each symbol corresponds to a numerical simulation which
has successfully converged to a VA pair rotating in a steady-state.
Stars correspond to long VA pairs, circles to short pairs and crosses
to wide pairs. There are small regions in the parameter space
where more than one type of VA pairs has been found. We obtain
one or the other configuration depending on the initial condition
used or on the direction of sweeping the parameter space. For the
parameter values where we have both a long and a short VA pair,
the choice of Eq. (A.5) as an initial condition gives a short VA pair
while well separated vortex and antivortex as an initial condition
gives a long VA pair.

In a significantword of cautionwemention that our simulations
do not prove that the calculated states represent exact steady-
states. While most of these seem to be exact within our numerical
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Fig. 5. Angular frequency ω of rotation (absolute value) as a function of external
field hext for three fixed values of the current density β = −0.05 (solid-red line),
β = −0.1 (dashed-green line), and β = −0.3 (dashed–dotted-blue line). Symbols
correspond to actual simulation results. Stars denote long VA pairs, circles denote
short pairs, and crosses denote wide pairs. The frequencyω goes to a nonzero value
for hext = 0. There is a jump in the frequency when we change from long to short
or wide pairs. For β = −0.1 two types of VA pairs coexist for a range of hext values.
The dotted line shows ω = hext for comparison purposes.

accuracy, in some others wemeasure small fluctuations. Especially
thewide pairs for smaller hext show fluctuations∼1%–3% in various
quantities calculated numerically.

A test for our theoretical and numerical results is provided by
comparing the Derrick relation (B.2) against numerical results. The
Derrick relation is used to find the angular frequencyω andwe find
that this agrees to an accuracy better than 1% with the measured
angular frequency for most of our simulations. The discrepancy is
larger (up to 4%) in the cases that fluctuations are observed in the
rotation.

In the areas in Fig. 4 where no symbols are plotted we have
found no steady-state rotating VA pairs. Instead, the simulations
give dynamical states which do include a VA dipole in rotation,
but the motion is accompanied by a continuous creation and
annihilation of more VA pairs with same polarities. We will not
refer any further to these dynamical states in the present paper.
Simulations and studies of similar states in a related system have
been given in Refs. [4,3].

Finally, we refer to recentwork [23]where non-symmetric soli-
tons are stabilised due to conservation of orbital moment, while
the possibility of existence of different stable solitons simulta-
neously has been demonstrated. Of course, the models here and
in [23] are different, but both have an integral of motion.

4.2. Frequency of rotation

For a more detailed presentation of results we fix the spin-
torque parameter β and vary the field hext. In Fig. 5 we present the
angular frequencyω of VA pair rotation for three fixed values of the
spin-torque and for external field values in the range 0 ≤ hext ≤

0.7. For β = −0.1 and 0 ≤ hext ≤ 0.44 we find long VA pairs
while for 0.38 ≤ hext ≤ 0.7 we find short VA pairs. The transition
between the two kind of VA pairs is not smooth, the magnetic
configuration and the angular frequency change significantly.
Furthermore, the two types of VA pairs coexist for the range 0.38 ≤

hext ≤ 0.44. For β = −0.05 there is a small gap in the range of hext
where no steady-state rotating VA pairs are found. For β = −0.3
we have long pairs for small hext, wide pairs for large hext and no
steady states for a range of hext in between. VA pairs are certainly
stable also for hext = 0 and they are rotating at a nonzero ω.

We continue by fixing hext = 0.1 and varying β . In Fig. 6
we present the angular frequency ω of rotation for three values
Fig. 6. Angular frequency ω of rotation as a function of spin-torque β for three
fixed values of the external field hext = 0.1 (solid-red line), hext = 0.4 (dashed-
green line), and hext = 0.7 (dashed–dotted-blue line). Stars denote long VA pairs,
circles denote short pairs, and crosses denote wide pairs. There is a jump in the
frequency when we change from long to short or to wide pairs in all case, but it is
much more pronounced for hext = 0.4. No VA pairs are sustained for very small
values of |β|. The frequency ω increases sharply for small β and is nearly saturated
for large spin-torque values.

of hext and for spin-torque in the range 0 ≤ |β| ≤ 0.7. For
hext = 0.1 we find long VA pairs for 0.022 ≤ |β| ≤ 0.7 and
short VA pairs for 0.016 ≤ |β| ≤ 0.21. The transition between
the two kinds of VA pairs is not smooth, and the angular frequency
jumps. This becomes completely obvious for hext = 0.4 where we
have a significant jump to higher frequencies for short VA pairs at
|β| ≈ 0.1. For the values 0.08 ≤ |β| ≤ 0.1 both long and short
pairs are found. For hext = 0.7 we have short VA pairs for smaller
|β| values and wide pairs for larger values of the spin-torque.

It appears straightforward to understand the long VA pairs
as a combination of a vortex and an antivortex which are well-
separated but still interacting. This is in accordancewith the overall
configuration but also with the detailed features obtained in the
simulations. For example, the anisotropy energy of long VA pairs
is roughly twice that of a single isolated vortex, i.e., Ea ≈ π .
The short as well as the wide VA pairs are characterised by the
fact that their magnetisation is roughly similar to their angular
momentum, i.e., µ1 ≈ ℓ. This is a feature present in two-meron
configurations of the pure exchange model [10,17]. The short and
the wide VA pairs thus appear to be related to those two-meron
configurations, except that, unlike merons such as in Eq. (A.5), the
VA dipole configuration decays exponentially to the ground state
at large distances and is thuswell-localised. ThewideVApairs have
a large anisotropy energy Ea ∼ 15–20, which is many times larger
than the anisotropy energy of two isolated vortices. Short VA pairs
have anisotropy energy in the range Ea ∼ 3–6. Short and wide VA
pair seem to have some similarities, however, based on the results
presented here they cannot be considered as the same type. For
example, for hext = 0.6, β = −0.2 we find both types.

In some cases we can have approximations for ω directly
derived from the virial relation (7). For the case of very small
external field the vortex and antivortex are well separated, so we
can use the approximation Ea ≈ π and Eq. (9). Then, the virial
relation for long VA pairs, in the case hext ≪ 1, gives

ω ≈
2
d2VA

. (13)

In Fig. 7 we show ω vs. β for hext = 0 and compare numerical
results against the approximation in Eq. (13). In the latter formula,
we substitute for dVA the distance between the points wherem3 =

±1 (centres of vortices), as this formula is only considered as an
intuitive rough guide for ω.
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Fig. 7. Angular frequency of rotation ω (absolute value) as a function of |β| for
hext = 0. The simulation results (solid-red line, symbols correspond to actual
simulation results) are comparedwith the approximation (dashed-green line) given
in Eq. (7).

Fig. 8. Angular frequency ω of rotation (absolute value) as a function of external
field hext for β = −0.1 (solid-green line), is compared to the result from
the approximate virial relation (7) (dashed-red line). Also, the result from the
approximation in Eq. (14) is plotted for short VA pairs (dash-dotted blue line).

For long VA pairs at external fields hext > 0.1we find in simula-
tions ℓ > µ1. Therefore, the virial relation (7) indicates an angular
frequency ω < 2/d2VA + hext.

Short VA pairs appear for larger external fields. Since µ1 ≈ ℓ
the Derrick relation gives

ω ≈
Ea
ℓ

+ hext. (14)

The first term on the right hand side depends on the precise form
of themagnetic configuration. The approximations given before Eq.
(13) are not very good anymore, however, one could still use them
as a rough guide obtaining a contribution ∼ 2/d2VA to the angular
frequency. Approximation (14) is valid for wide VA pairs, too, for
which we also have µ1 ≈ ℓ. These VA pairs have large anisotropy
energy Ea ∼ 15–20 and also larger angular momentum ℓ. Their
angular frequency ω tends to be similar to that for short VA pairs
at similar hext values as seen in Fig. 6.

Fig. 8 shows ω vs. hext for a specific value of spin-torque β =

−0.1 and gives a comparison with the Derrick relation (7). The
approximation is excellent for long VA pairs. The discrepancy
observed for short VA pairs is mostly due to the term proportional
to the dissipation constant α in the full Derick relation (B.2) which
was neglected in the approximation (7). The same figure compares
Fig. 9. Separation distance between vortex and antivortex defined in Eq. (9)
as a function of external field hext for three fixed values of the current density
β = −0.05 (solid-red line), β = −0.1 (dashed-green line), and β = −0.3
(dashed–dotted-blue line). Stars denote long VA pairs, circles denote short VA pairs,
and crosses denotewide pairs. Themagnetic field favours the ground state so it acts
to shrink the VA pairs, i.e., decrease dVA . The sharp change for dVA for very small
hext < 0.01 is discussed in Section 5.

Fig. 10. Separation distance between vortex and antivortex defined in Eq. (9) as
a function of spin-torque β for three fixed values of the external field hext = 0.1
(solid-red line), hext = 0.4 (dashed-green line), and hext = 0.7 (dashed–dotted-blue
line). Stars denote long VA pairs, circles denote short VA pairs, and crosses denote
wide pairs. For very small |β| no VA pairs are sustained. The vortex and antivortex
come closer for small |β|, and dVA saturates for large |β|.

numerical results of short VA pairs with the approximation (14).
We would expect that Eq. (7) is a better approximation than Eq.
(14). Fig. 8 shows that the opposite happens, but this is apparently
a coincidence.

A quantity of potential interest for experimental work and
applications is the distance dVA between vortex and antivortex
defined in Eq. (9). Fig. 9 shows dVA as a function of hext for three
values of β . Larger values of hext tend tomake the VA pair shrink, as
hext favours the ground state. Fig. 10 shows dVA as a function ofβ for
three values of external field hext. Themain features are that (i) dVA
saturates for strong spin torque and (ii) the vortex and antivortex
come very close together for small β values or for large hext.

VA dipoles are sustained even for quite small values of β .
Smaller |β| gives smaller VA pairs and larger ω. For very small
values of |β| below a certain threshold (which depends on hext, as
can be seen in Fig. 4) the simulations show collapse of any initial
configuration to the ground state. An estimation for the maximum
possible ω is given in Section 5.
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5. Asymptotics for large distances

Some features of the profiles of the magnetisation for rotating
VA pairs can be found by looking into their asymptotic behaviour
at large distances from the pair. Conclusions will be drawn
which elucidate some elements of the picture found by numerical
simulations in Section 4. In particular,we can study the decay of the
magnetisation profile to the ferromagnetic state at large distances
from the VA pair as we expect that localisation properties of the
configuration could play a significant role in its stability.

All calculations are conveniently performed using the stereo-
graphic variable defined in Eq. (A.1). We are interested in configu-
rations for which X(ρ → ∞) → 0, so we linearise (A.3) and we
use polar coordinates (ρ, φ).We are interested in steady rotational
motion, so we assume Ẋ = −ω∂φX . The linearised form of (A.3),
with the latter substitution, is

∂2
ρX +

∂ρX
ρ

+
∂2
φX

ρ2


−

1
2

(X − X)

− (hext + iβ) X + ω(i + α) ∂φX = 0. (15)

Solutions can be found by writing X as a Fourier series:

X(ρ, φ) =

∞
n=−∞

Xn(ρ) einφ, (16)

where Xn are complex functions of ρ. Substituting (16) in (15) we
obtain a linear system of differential equations for the Xn’s. In order
to find solutions we assume that Xn satisfies Bessel equation

∂2
ρ +

∂ρ

ρ
−

n2

ρ2


Xn = −(κ1 + iκ2)Xn, (17)

where we have introduced a complex eigenvalue κ1 + iκ2. So we
write

Xn(ρ) ∼ X0
n Hn


κ1 + iκ2 ρ


, (18)

where X0
n are complex constants and Hn are Hankel functions

[24,25].
Substituting the form (18) in the system of differential equa-

tions for Xn we obtain an algebraic system which is closed for ev-
ery pair of unknowns X0

n , X0
−n. The characteristic equation for the

system is
−(K1 + nω) − iK2

1
2

1
2

−(K1 − nω) − iK2

 = 0, (19)

where K1 ≡ κ1 + hext + 1/2 and K2 ≡ κ2 − nαω. Note that β does
not appear in this condition as we consider here the case where
the spin-torque term is localised around the origin and is therefore
zero at large distances. We find

κ1 = κ± ≡ −


1
2

+ hext


±


1
4

+ (nω)2

κ2 = nαω.

(20)

We focus on the behaviour of the Hankel functions at large
distances (ρ → ∞), which is given by

Hn(z) ∼


2
πz

e±i(z− nπ
2 −

π
4 ), (21)

where z ≡ (λ1 + iλ2) ρ with λ1 + iλ2 =
√

κ1 + iκ2. For a
decaying profile we should choose the sign for which the exponent
is negative. The component for n = 1 corresponds to a VA pair,
and such an example is given in Eq. (A.5). In view of the solutions
studied in this paper we assume that the component for n = 1 is
prevailing at ρ → ∞ over components with n > 1, which would
give multiple VA pair configurations. So, we require that the decay
in Eq. (21) should be slowest for n = 1, in view of the solutions
we study in this paper: these are skyrmion solutions, e.g., as in
Eq. (A.5).

We set n = 1 in Eq. (20) and obtain

λ1 =
1
2

αω

λ2

λ2 =

−κ1 +


κ2
1 + (αω)2

2
.

(22)

The main features of the asymptotic solutions and, consequently,
some properties of the full magnetisation profiles depend on
the eigenvalues, λ1,2 in Eq. (22). The values of these quantities
are found provided the angular frequency ω is known from the
simulations.

The case κ1 = κ+ is the most interesting because it gives a
smaller value for λ2 and thus slower decay in Eq. (21). A case of
special interest occurs when κ1 ≥ 0 because this gives a very small
value for λ2 via Eq. (22). In the case of no damping (α = 0) we have
λ2 = 0, so Eq. (21) gives Hn ∼ 1/

√
ρ for large ρ and thus a non-

exponential decay of the magnetic configuration to the uniform
state. If dissipation is present (α > 0) then λ2 is positive but the
exponential decay would be slow so instabilities are expected.

The above described situation occurs when hext = 0, in which
case we have κ+ ≈ ω2 > 0. For values of the external field
hext & 0.01 the numerical data show that the eigenvalue κ1 = κ+

turns negative and thus λ2 acquires significantly larger values,
that is, the decay of the magnetic configuration to the uniform
state becomes fast. This behaviour of the eigenvalue κ1 explains
the great sensitivity, shown in Fig. 9, of dVA on hext for very small
fields hext < 0.01. The angular frequency, shown in Fig. 5, is
correspondingly very sensitive for small hext, although this is not
revealed in the scale of the figure.

We turn to study the instability indicated in Fig. 6 which shows
fast rotation for smaller values of |β| at a fixed hext and no steady
states for small enough |β|. For the data shown in Fig. 6, the
numerical results give κ+ < 0. So, an increased ω, for any fixed
hext, leads to values for κ1 = κ+ closer to zero according to Eq.
(20). This gives κ+ = 0 for angular frequency equal to

ωmax =


hext(1 + hext), (23)

and we would thus expect the magnetic configuration to tend to
delocalise for ω & ωmax. Indeed, Eq. (23) gives a fair approxima-
tion to the numerical results regarding the maximum angular fre-
quency obtained for fixed hext & 0.1 and no rotation faster than in
Eq. (23) was obtained in numerical simulations. We conclude that
the slow decay of the configuration is responsible for the unsus-
tainability of VA dipoles at small spin torque strength.

An important lesson from the results of the asymptotic analysis
is that the rate of energy dissipation for rotating VA pairs may
depend greatly on the features of the magnetisation configuration.
For example, a slowdecaying configurationwould dissipate energy
much faster than awell-localised configuration. Put it anotherway,
the rate of energy dissipation may not be proportional to the value
of the dissipation constant α.

6. Uniform spin-current

The results of the previous sections showed that when the spin-
torque is localised under a nano-aperture we have a favourable
situation for the stabilisation of a VApair. In this sectionwepresent
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Fig. 11. (a) Angular frequency of rotation ω as a function of the applied field
hext . The solid blue lines show numerical results for an uniform spin current and
parameter set (24). We have two separate branches of rotating VA pairs. The lower
frequency branch (long VA pairs) for hext ≤ 0.132 and the upper branch (short VA
pairs) for 0.130 ≤ hext ≤ 0.156. The dotted line shows ω = hext for comparison.
(b) The separation distance between vortex and antivortex as a function of applied
field hext . The lower frequency branch corresponds to larger VA separation, while
the upper frequency branch corresponds to smaller VA separation.

simulations and show that there are steady-state rotating VA pairs
also in the case that the current flows through a large area.

We assume in this section an uniform external field (5) and an
uniform spin current polarisation (4). We will present results for
the parameter values

α = 0.1, β = −0.05. (24)

Simulations converge to a steady state rotating VA pair for external
fields hext ≤ 0.156.

Fig. 11 shows the rotation frequency ω and the distance dVA
between the vortices for parameter set (24) and for the range
of values of hext where a steady state was reached. We find two
separate branches of VA pairs. For hext ≤ 0.132 we have a branch
of low frequencies and large VA pair separation, which correspond
to long VA pairs. The branch apparently persists for low values of
hext, however,wedonot present results for hext < 0.03 because the
VA separation dVA becomes very large and our numerical results
are then not reliable, since the accuracy of the simulations (spatial
resolution) for vortices far from the origin is inadequate. A separate
branch of short VA pairs with higher frequencies and smaller VA
pair separation exists for 0.130 ≤ hext ≤ 0.156. For hext > 0.156
we find no steady state rotation (the VA pair is annihilated). For a
narrow range of external fields, 0.130 ≤ hext ≤ 0.132, we have
two different steady states and the simulation converges to either
a long or a short pair depending on the initial condition.

The Derrick relation (7) is valid here and it is indeed satisfied
with an accuracy better than 1% in all our numerical simulations.
It provides a guide for the expected frequencies. For short VA
pairs we find ℓ ≈ µ1, so the angular frequency has a significant
contribution from the first term on the rhs in Eq. (7) while it is
linearly increasing with hext due to the second term. For long VA
pairs we have µ1 < ℓ, and the main contribution to ω is due to the
second term which it is approximately proportional to hext.

7. Conclusions

Magnetic vortex–antivortex pairs where the vortex and an-
tivortex have opposite polarities have skyrmion number unity, and
the configuration can actually be obtained from the usual axially
symmetric skyrmions by a transformation. We have studied their
dynamics under the influence of spin-polarised current and exter-
nal magnetic field using the Landau–Lifshitz–Gilbert–Slonczewski
equation. Both the polarisation of the spin current and the mag-
netic field are in-plane along the same direction. Their motion is
rotational and it is stabilised by the presence of a spin-torque with
in-plane polarisation. The external field contributes directly to the
rotation frequency and also indirectly by bringing the vortex and
antivortex closer together so that they interact stronger. The ro-
tational dynamics due to both the interaction between vortex and
antivortex and the external field is linked to the skyrmion number.

When an external field is present in the Landau–Lifshitz equa-
tionwewould typically expect precession ofmagnetisation around
the field. In the case of the VA dipole we rather have rotation of
themagnetisation configuration. This surprising result is due to the
nonzero skyrmion number of the VA dipole.

We have studied details of the configurations which led to the
identification of three types of rotating VA pairs by numerical sim-
ulations. Analytical results on the asymptotic behaviour of the ro-
tating configurations away from the centre of the VA pair elucidate
some features of the configurations and of their stability. Our ex-
tensive numerical and detailed analytical results may prove to be a
necessary guide for any further observations of magnetisation os-
cillations due to nonlinear excitations.

An important point on the techniques employed is that the
derivation of most analytical results is based on the use of the
stereographic projection variable (A.1). This allows description of
a VA dipole configuration via an axially symmetric ansatz, and in
special cases it leads to an exact description of the dynamics.

The framework developed in the present paper can be applied
to spin-transfer oscillators where the magnetisation oscillations
are produced due to various external probes, i.e., due to external
magnetic field and spin-torques with various combinations of
polarisations. One possible direction is the oscillations of magnetic
bubbles in perpendicular anisotropy materials, in an analogy to
precessing droplets [26,27]. Also, the effect of perpendicularly
oriented polarisers could be analysed [28].

Our main results rely upon the form of Eq. (1) but they do not
depend on the specific interactions which we included. In fact,
rotating VA dynamics has already been observed in full micromag-
netic simulations in Ref. [5], so themagnetostatic field is not chang-
ing the general picture developed in this work.
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Appendix A. Stereographic projection variable

A representation of the magnetisation vector m can be given
by its stereographic projection on a plane. We define the complex
variable

X =
m2 + im3

1 + m1
, (A.1)

which is the stereographic projection of m from the point m =

(1, 0, 0). The components ofm are given as

m1 =
1 − XX

1 + XX
, m2 =

X + X

1 + XX
, m3 =

1
i

X − X

1 + XX
, (A.2)

where X is the complex conjugate of X . This variable turns out to be
particularly useful for studying many properties of the VA dipole.

For the usual conventions adopted in the present paper, we
have m(ρ → ∞) = (1, 0, 0) ⇒ X(ρ → ∞) = 0 while
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m(ρ = 0) = (−1, 0, 0) ⇒ X(ρ = 0) → ∞. At the centres of
the vortices we havem = (0, 0, ±1) ⇒ X = ±i.

The Landau–Lifshitz–Gilbert–Slonczewski equation of motion,
when we assume external field (5) and spin polarisation (4), takes
the following form

(i + α) Ẋ = ∂µ∂µX −
2X

1 + XX
∂µX∂µX

−
1
2

X − X

1 + XX
(1 + X2) − (hext + iβ) X, (A.3)

where µ = 1, 2 and summation is implied.
We can further use the complex position z = x + iy on the

xy-plane, denote its complex conjugate by z̄, so we consider X =

X(z, z̄, t). The skyrmion number is given by

N =
1
4π


n d2x, n = 4

|∂zX |
2
− |∂z̄X |

2

(1 + XX)2
. (A.4)

Of particular interest here is the form

X =
ā
z̄
, (A.5)

where a is a complex constant and ā its complex conjugate. This
represents a skyrmion with N = 1 as can be calculated using
(A.5). Configuration (A.5) consists of two merons at a distance 2|a|
apart, while each of the merons has core size |a| [10]. Note that, at
z = ±ia we have m3 = ±1, so the two-meron configuration can
also be viewed as a VA dipolewhere a vortexwith negative polarity
is centred at z = −ia and an antivortex with positive polarity at
z = ia. The constant |a| gives the vortex core size and the distance
between the vortex and the antivortex is dVA = 2|a|. More general
skyrmion configurations have been studied in Ref. [10].

Appendix B. A virial relation

Motivated by the numerical results let us assume the existence
of exact steady states in the model (1). More precisely, we assume
a configuration rigidly rotating at an angular frequency ω, so we
have
ṁ = −ω ϵλν xλ∂νm. (B.1)
This is inserted in Eq. (1) to obtain virial (integral) relations. The
procedure is developed in Ref. [21] and it is applied for the LLG
equation. For an uniformmagnetic field (5) and a spin-torque term
with polarisation (4) a generalisation of this procedure gives a, so-
called, Derrick relation [17]:

ω


ℓ +

α

2


ϵλν xλxµdµν d2x


= −


Ea + hext µ1 +

1
2


xµτµ d2x


, (B.2)

where
dµν ≡ ∂µm · ∂νm,

τµ ≡ −β(m × ∂µm) · p (B.3)
and all other symbols are explained in the main body of the paper.
All the integrals are understood to extend over the whole plane.
The Derrick relation (B.2) is valid for all steady-state rotating
solutions.

Results concerning the connection between the frequency,
energy and the orbital momentum particularly for non-topological
solitons for magnets with axial symmetry ware obtained in earlier
works reviewed in [11,12].

Appendix C. Numerics

We simulate numerically the dynamics of the magnetisation
vector m using Eq. (1). The time integration is performed by a
4th order Runge–Kutta method. Themethod does not preserve the
length ofm so we enforce unit length form after every iteration by
appropriately normalising it. We use finite differences in a lattice
251 × 251 and we simulate the infinite plane using stretched
coordinates ξ, η [7], such that the Cartesian coordinates are given
by

x =
1
a

tan(ξ), y =
1
a

tan(η). (C.1)

The stretched coordinates take values in the interval −π/2 ≤

ξ, η ≤ π/2 with a uniform spacing, so that x, y extend from −∞

to ∞. The coefficient a is chosen such that the spacing for x and y
at the lattice centre is 1x = 1y = 0.15.

We typically start the simulations using one of the two
following configurations. The first is the configuration in Eq. (A.5).
The second is a configuration for a vortex and an antivortex, at
some distance form each other, each of which is a static solution
of the conservative Landau–Lifshitz equation, i.e., Eq. (1) with no
dissipation, spin-torque and external field term. In the second case,
we employ the stereographic variable Ω = (m1 + im2)/m3 and
compute this for the static vortex ΩV (x, y) and the antivortex
ΩAV (x, y) configuration as functions of x, y. We finally produce the
vortex–antivortex ansatz Ω(x, y) = ΩV (x − a, y) ΩAV (x + a, y),
where the vortex is at position (a, 0) and the antivortex at (−a, 0).
From Ω we can computemwhich is used as an initial condition in
the numerical code.

The initial distance between the vortex and the antivortex is
chosen in a wide range of values and we observe that this does not
affect the convergence to a rotating VA pair.

We typically perform a sequence of numerical simulations
sweeping a range of values for the parameters hext or β . The
first simulation in the sequence uses the above described initial
conditions while subsequent simulations use the previously found
configuration as an initial condition.
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