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h i g h l i g h t s

• We study bumps in multilayered neural fields with delayed coupling between layers.
• Delayed coupling stabilizes bumps to translating perturbations.
• Delay-induced stabilization of bumps reduces their diffusion, due to stochastic forcing.
• Diffusion reduction due to delays can be approximated using a small delay expansion.
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a b s t r a c t

We study the effects of propagation delays on the stochastic dynamics of bumps in neural fields with
multiple layers. In the absence of noise, each layer supports a stationary bump. Using linear stability
analysis, we show that delayed coupling between layers causes translating perturbations of the bumps to
decay in the noise-free system. Adding noise to the system causes bumps to wander as a random walk.
However, coupling between layers can reduce the variability of this stochastic motion by canceling noise
that perturbs bumps in opposite directions. Delays in interlaminar coupling can further reduce variability,
since they couple bump positions to states from the past. We demonstrate these relationships by deriving
an asymptotic approximation for the effectivemotion of bumps. This yields a stochastic delay-differential
equation where each delayed term arises from an interlaminar coupling. The impact of delays is well
approximated by using a small delay expansion, which allows us to compute the effective diffusion in
bumps’ positions, accurately matching results from numerical simulations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Delays commonly arise in dynamical models of large scale neuronal networks, often accounting for the detailed kinetics of chemical or
electrical activity [1]. The finite-velocity of action potential (AP) propagation can lead to delays on the order of milliseconds between AP
instantiation at the axon hillock and its arrival at the synaptic bouton [2]. Similar propagation delays have been observed in dendritic APs
propagating to the soma [3]. Furthermore, synaptic processing involves several steps including vesicle release, neurotransmitter diffusion,
and uptake, so the chemical signal communicating between cells is effectively delayed [4]. However, computational models of large scale
networks that describe all these processes in detail are unwieldy, not admitting direct analysis, so onemust rely on expensive simulations
to study their behavior [5]. An alternative approach is to develop mean field models of spiking networks that incorporate delay that
accounts for these microscopic processes [6].

Neural field equations are a canonical model of large scale spatiotemporal activity in the brain [7]. Many studies have explored the
impact of delays on the resulting spatiotemporal solutions of these equations [8–10]. One common observation is that the inclusion of
delays can lead to oscillations via a Hopf bifurcation in the linear system describing the local stability of solutions to the delay-free system:
Turing patterns [10], stationary pulses [11,12], and travelingwaves [6,13]. Thus, amajor finding acrossmany studies of delayed neural field
equations is that delaywill tend to contribute to instabilities in stationary states [14]. Recentwork has shown that in stochastic neural field
models, delay can stabilize the system near bifurcations [15]. This distinction has been explored extensively in control theory literature:
delayed negative feedback loops can induce instability while delayed positive feedback can augment stability [16]. In this work, we further
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explore the potential stabilizing impact of delays in neural fieldmodels. Specifically, we focus on the casewhere positive feedback between
two layers of a neural field help stabilize patterns to noise perturbations.

We will focus specifically on a multilayer neural field model that supports bump attractors [17]. Persistent spiking activity with a
‘‘bump’’ shape is an experimentally observed neural substrate of spatial working memory [18,19]. The position of the bump encodes
the remembered location of a cue [20]. Noise degrades memory accuracy over time [21], due to diffusive wandering of bumps across
the neutrally stable landscape of the network [22]. Several mechanisms have been proposed to limit such diffusion-induced error: short
term facilitation [23,24], bistable neural units [25,26], and spatially heterogeneous recurrent excitation [27,28]. Recently, we showed
interlaminar coupling, known to exist between themany brain areas participating in spatial workingmemory [29], can also help to reduce
bump position variability due to noise cancellation. Here, we show that delays in the interlaminar coupling further reduce the long term
variability in bump positions. Essentially, this occurs because each layer is constantly coupled to past states of other layers, states that
have integrated noise for a shorter length of time than the current state.

The paper is organized as follows. In Section 2, we introduce themultilayer neural fieldmodel with delays and noise, showing they take
the form of a delayed stochastic integrodifferential equation. Section 3 then explores how delays impact the local stability of stationary
bumps in a dual layer neural field, in the absence of noise. Essentially, we demonstrate the delay reduces the impact of translating
perturbations to the bump solution, underlying the mechanism of position stabilization. This motivates our findings in Section 4, where
we derive effective stochastic equations for the motion of bump solutions subject to noise, showing they take the form of stochastic delay
differential equations. A small delay expansion allows us to compute an effective variance, which is shown to be reduced by increasing the
delay in coupling between layers. Lastly, we extend our results in Section 5, showing similar results hold in stochastic neural fields with
more than two layers, and the effective variance decreases with the number of layers.

2. Laminar neural fields with delays and noise

2.1. Dual layer neural field with delays between layers

Wemodel a pair of reciprocally coupled stochastic neural fields, accounting for the propagation delay between layers as:

du1(x, t) =


−u1(x, t)+

 π

−π

w(x − y)f (u1(y, t))dy +

 π

−π

w12(x − y)f (u2(y, t − τ12(x, y)))dy

dt + εdW1(x, t), (1a)

du2(x, t) =


−u2(x, t)+

 π

−π

w(x − y)f (u2(y, t))dy +

 π

−π

w21(x − y)f (u1(y, t − τ21(x, y)))dy

dt + εdW2(x, t), (1b)

so uj(x, t) is the total synaptic input at location x ∈ [−π, π] in layer j. The effects of synaptic architecture are given by the convolution
terms, so w(x − y) describes the polarity (sign of w) and strength (amplitude of w) of recurrent connectivity within a layer. Typically,
bump attractor network models assume spatially dependent synaptic connectivity that is lateral inhibitory [22], such as the cosine

w(x − y) = cos(x − y), j = 1, 2, (2)

but our analysis will apply to the general case of any even weight function. Synaptic connections from layer k to j are described by the
kernelswjk(x − y). To compare our analysis with numerical simulations, we will use the cosine coupling

wjk(x − y) = Mj cos(x − y), k ≠ j, (3)

where Mj specifies the strength of coupling projecting to the jth layer.
Another feature of long range coupling is that the activity signals can take a finite amount of time to propagate from one neuron to the

next [30,3,31]. Thus, delay is incorporated into the connectivity between layers through the spatially dependent functions τjk(x, y) [32,
10,9,6], describing the amount of time it takes a signal to propagate from location y in layer k to location x in layer j. Our analysis can be
carried out in the case of general functions τjk(x, y), but we demonstrate our results using specific cases, such as hard delays τjk(x, y) = τ̄jk
(constant) or distance-dependent delays (e.g., τjk(x, y) = τ̃jk(x − y)).

Firing rate functions f (u) are typically nonlinear monotonic functions of the synaptic input u, which we take to be sigmoidal [33]

f (u) =
1

1 + e−γ (u−θ)
,

with threshold θ and gain γ . To compute quantities explicitly, we typically take the high gain limit γ → ∞ to yield the Heaviside firing
rate function [22]

f (u) = H(u − θ) =


0 : u < θ,
1 : u ≥ θ.

(4)

Noise in each layer j is described by a small amplitude (0 ≤ ε ≪ 1) stochastic process dWj(x, t) that is white in time and correlated in
space so that ⟨dWj(x, t)⟩ = 0 and

⟨dWj(x, t)dWj(y, s)⟩ = Cj(x − y)δ(t − s)dtds,
⟨dWj(x, t)dWk(y, s)⟩ = Cc(x − y)δ(t − s)dtds,

describing both local (Cj(x − y), j = 1, 2) and shared (Cc(x − y)) noise correlations as a function of the difference in positions. Notice, in
the case Cc ≡ 0, there are no interlaminar noise correlations, whereas if C1 ≡ C2 ≡ Cc , noise in each layer is drawn from the same process.
In explicit examples, we typically take cosine spatial correlation functions

Cj(x) = cj cos(x), Cc = cc cos(x). (5)
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2.2. Multiple layer neural field with delays between layers

We can extend our neural field model with two delay-coupled layers to an arbitrary number of layers N with any synaptic architecture
in between, as described by the system of stochastic integrodifferential equations

duj(x, t) =


−uj(x, t)+

 π

−π

w(x − y)f (uj(y, t))dy +


k≠j

 π

−π

wjk(x − y)f (uk(y, t − τjk(x, y)))dy


dt + εdWj(x, t), (6)

where uj(x, t) is neural activity in the jth layer (∀j = 1, . . . ,N), and the notation


k≠j ≡
N

k=1,k≠j. Connectivity between layers is
described by the synaptic weight function wjk(x − y) linking position y in layer k to position x in layer j. For comparison with numerical
simulations, we will utilize cosine shaped connectivity (2), (3) and a Heaviside firing rate function (4). As in our model with two layers,
noisesWj(x, t) are white in time and correlated in space so ⟨dWj(x, t)⟩ = 0 and

⟨dWj(x, t)dWk(y, t)⟩ = Cjk(x − y)δ(t − s)dtds,

with ∀j, k = 1, . . . ,N . For comparison with numerics, local (j = k) correlations will use the correlation function Cjj(x) = cos(x) and
interlaminar (j ≠ k) correlations will take Cjk(x) = cc cos(x) for all j ≠ k.

3. Impact of delays on bump stability

We are interested in how delays and coupling impact the stability of the stationary bump solutions (U1(x),U2(x)), as this will
foreshadowhownoisewill impact their perturbativemotion. Rather than carrying out an exhaustive study of the spectrumof the linearized
operator about the bump solution, we will focus on how delays impact the stability of the bump to translating perturbations. Bumps are
well accepted models of persistent working memory, so their position represents a memory of their initial condition [34,20,28]. Our main
goalwill be to demonstrate that bump positions are displaced a shorter distance in neural field layerswith reciprocal delayed coupling. It is
well known that bump solutions in translationally symmetric neural fields have positions that lie upon a line attractor, so they are neutrally
stable to perturbations that change their position [22,25,35]. Previously we showed that weak interlaminar coupling decreases the overall
displacement of bumps by spatiotemporal noise, since perturbations that move bumps in the opposite direction are canceled [17].

We begin by explicitly calculating bump solutions to the dual layermodel (1) with arbitrarily strong coupling. Note, a similar studywas
carried out recently, in the absence of noise on an infinite domain [36]. We begin by considering the noise-free case, so dWj ≡ 0, j = 1, 2.
We can thus determine the form of coupled stationary bump solutions (u1, u2) = (U1(x),U2(x)) self consistently, so they satisfy the
stationary equation

U1(x) =

 π

−π

w(x − y)f (U1(y))dy +

 π

−π

w12(x − y)f (U2(y))dy,

U2(x) =

 π

−π

w(x − y)f (U2(y))dy +

 π

−π

w21(x − y)f (U1(y))dy. (7)

Notice that the delays do not impact the form of the bump solution, since they are determined by a stationary equation. Assuming even
symmetric weight functions and a Heaviside firing rate function (4) allows us to fix the threshold crossing points of bumps, so that
U1(±a) = θ and U2(±b) = θ . In the parlance of [36], we shall only examine syntopic bumps (bump centered at the same location in
each layer). This converts the implicit integral equation system (7) to an explicit expression for both bumps

U1(x) =

 a

−a
w(x − y)dy +

 b

−b
w12(x − y)dy, U2(x) =

 b

−b
w(x − y)dy +

 a

−a
w21(x − y)dy, (8)

wherewenowneed only determine the bumphalf-widths a and b.We cando so, by requiring self-consistency of the expressionsU1(a) = θ
and U2(b) = θ , so

θ =

 2a

0
w(x)dx +

 a+b

a−b
w12(x)dx, θ =

 2b

0
w(x)dx +

 a+b

b−a
w21(x)dx. (9)

Upon considering cosine weight functions (2), (3), we find (9) integrates to

θ = 2 cos(a)[sin(a)+ M1 sin(b)], θ = 2 cos(b)[sin(b)+ M2 sin(a)].

We demonstrate the relationship between the bump half-widths a and b and the threshold θ as well as the coupling amplitudes M1 and
M2 in Fig. 1. Note that in the symmetric caseM1 = M2 ≡ M , we have a = b, so

θ = 2(1 + M) cos(a) sin(a),

which can be solved to yield two solutions, a wide (aw) and narrow (an) bump pair

aw =
π

2
−

1
2
sin−1 θ

1 + M
, an =

1
2
sin−1 θ

1 + M
.

These two solution branches will annihilate one another when θ = 1 + M . Thus, notice that interlaminar coupling expands the region of
parameter space in which bumps exist.



Z.P. Kilpatrick / Physica D 295–296 (2015) 30–45 33

Fig. 1. (A) Profiles of the coupled stable bump solutions (U1(x),U2(x)) are identical (solid curves) when coupling strength is symmetric (w12(x) = w21(x) ≡ cos(x)).
However, when layer 1 receives stronger coupling than layer 2 (w12(x) = 1.4 cos(x), w21(x) = 0.6 cos(x)), the bump in layer 1 (U1(x)) is larger than that in layer 2 (U2(x))
(dashed lines). Threshold (thin line) θ = 0.5. (B) As the threshold θ is increased, thewide (solid) and narrow (dashed) solution branches vary until coalescing in a saddle–node
bifurcation (filled dot). Half-widths a and b are identical when coupling is symmetric (M1 = M2 ≡ 1 and1M = M1−M2 = 0). Notice the stable andwide branch of solutions
increases width when layer 1 receives more input (M1 = 1.4 and M2 = 0.6). Local connectivityw(x) = cos(x).

Now, we analyze linear stability by studying the evolution of small, smooth, and separable perturbations to the bumps given by the
functions εψj(x, t) (ε ≪ 1), j = 1, 2. We derive this linearization by employing the expansion

u1(x, t) = U1(x)+ εψ1(x, t)+ O(ε2),

u2(x, t) = U2(x)+ εψ2(x, t)+ O(ε2). (10)

Plugging this expansion into (1), in the absence of noise (dWj ≡ 0, j = 1, 2), and truncating to O(ε), we find (ψ1(x, t), ψ2(x, t)) satisfy
the system

ψ̇1(x, t) = −ψ1(x, t)+

 π

−π

w(x − y)f ′(U1(y))ψ1(y, t)dy +

 π

−π

w12(x − y)f ′(U2(y))ψ2(y, t − τ12(x, y))dy,

ψ̇2(x, t) = −ψ2(x, t)+

 π

−π

w(x − y)f ′(U2(y))ψ2(y, t)dy +

 π

−π

w21(x − y)f ′(U1(y))ψ1(y, t − τ21(x, y))dy, (11)

where ψ̇j = ∂tψj(x, t) (j = 1, 2). We can immediately identify the neutrally stable solution given by the derivative (ψ1(x, t), ψ2(x, t)) =

(U ′

1(x),U
′

2(x)) by simply plugging this ansatz into (11) to yield

0 = −U ′

1(x)+

 π

−π

w(x − y)f ′(U1(y))U ′

1(y)dy +

 π

−π

w12(x − y)f ′(U2(y))U ′

2(y)dy,

0 = −U ′

2(x)+

 π

−π

w(x − y)f ′(U2(y))U ′

2(y)dy +

 π

−π

w21(x − y)f ′(U1(y))U ′

1(y)dy. (12)

The fact that (12) holds can be seen by differentiating the system (7) and using integration by parts to rearrange the integral terms. Similar
results have been founded in linear stability analyses of non-delayed neural field equations, and they typically imply that perturbations
that translate solutions in precisely this way will neither grow nor decay [37,38,27]. However, we will demonstrate that this result is
misleading in the delayed case. In fact, instantaneous perturbations of this form may decay, and the stabilizing impact of propagation
delays relies on this subtle difference.

To analyze the dynamics of (11) in more detail, we first simplify the system, assuming a Heaviside firing rate function (4). This allows
us to examine the dynamics of the perturbationsψ1 andψ2 at single points x = ±a and x = ±b respectively. In this case, we can compute

f ′(U1) = γa[δ(x − a)+ δ(x + a)], f ′(U2) = γb[δ(x − b)+ δ(x + b)],

where

γ−1
a = |U ′

1(a)| = |U ′(−a)| = w(0)− w(2a)+ w12(b − a)− w12(a + b),

γ−1
b = |U ′

2(b)| = |U ′(−b)| = w(0)− w(2b)+ w21(b − a)− w21(a + b). (13)

The integrals in (11) can then be calculated so that

ψ̇1(x, t) = −ψ1(x, t)+ γa


xa=±a

w(x − xa)ψ1(xa, t)+ γb


xb=±b

w12(x − xb)ψ2(xb, t − τ12(x, xb)),

ψ̇2(x, t) = −ψ2(x, t)+ γb


xb=±b

w(x − xb)ψ2(xb, t)+ γa


xa=±a

w12(x − xa)ψ1(xa, t − τ21(x, xa)). (14)

The essential spectrum of the linearized system (15) is associated with solutions of the form ψ1(±a, t) = ψ2(±b, t) ≡ 0 (∀t) and
ψj(x, t) = e−tψ̄(x), which does not contribute to any instabilities. Perturbations of other forms can be studied by focusing on the values
ψ1(±a, t) and ψ2(±b, t), which satisfy the delayed system of differential equations

ψ̇1(−a, t) = −ψ1(−a, t)+ γa


xa=±a

w(−a − xa)ψ1(xa, t)+ γb


xb=±b

w12(−a − xb)ψ2(xb, t − τ12(−a, xb)),
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Fig. 2. (A) Response of bump solution (8) of the system (1) to an instantaneous shift perturbation (dashed line) α±(0) = β±(0) = 1 (defined in (16)). Delayed coupling
between layers (τ12 = τ21 ≡ τ = 5) reduces the long term impact of the perturbations (thick line) as predicted by theory (thin line) in (21). (B) Theoretical predictions
(solid lines) of the long term shift α(∞) = β(∞) of the bump solution due to an initial shift with magnitude α(0) = β(0)matches numerical simulations (dots) of (1). As
the delay τ12(x, y) = τ21(x, y) ≡ τ in coupling between layers increases, the long term shift is reduced. Threshold θ = 0.5 and couplingsw12(x) = w21(x) = cos(x).

ψ̇1(a, t) = −ψ1(a, t)+ γa


xa=±a

w(a − xa)ψ1(xa, t)+ γb


xb=±b

w12(a − xb)ψ2(xb, t − τ12(a, xb)),

ψ̇2(−b, t) = −ψ2(−b, t)+ γb


xb=±b

w(−b − xb)ψ2(xb, t)+ γa


xa=±a

w21(−b − xa)ψ1(xa, t − τ21(−b, xa)),

ψ̇2(b, t) = −ψ2(b, t)+ γb


xb=±b

w(b − xb)ψ2(xb, t)+ γa


xa=±a

w21(b − xa)ψ1(xa, t − τ21(b, xa)). (15)

Furthermore, we can specifically examine how the width and position of bumps changes by studying the four threshold crossing points
satisfying

u1(±a + εα±(t), t) = θ + O(ε2), u2(±b + εβ±(t), t) = θ + O(ε2), (16)

since perturbations are O(ε). Thus, by Taylor expanding (16) and applying the ansatz (10), we find at O(ε)

α±(t) = ±γaψ1(±a, t), β±(t) = ±γbψ2(±b, t). (17)

Substituting the expressions (17) into the system (15) and considering the case where τ12 and τ21 are distance-dependent so τ12(x, y) =

τ̃12(|x − y|) and τ21(x, y) = τ̃21(|x − y|) [10,9], we find

α̇−(t) = −α−(t)+ γa

w(0)α−(t)− w(2a)α+(t)+ w12(b − a)β−(t − τ̃12(|b − a|))− w12(a + b)β+(t − τ̃12(a + b))


,

α̇+(t) = −α+(t)+ γa

−w(2a)α−(t)+ w(0)α+(t)− w12(a + b)β−(t − τ̃12(a + b))+ w12(b − a)β+(t − τ̃12(|b − a|))


,

β̇−(t) = −β−(t)+ γb

w(0)β−(t)− w(2b)β+(t)+ w21(b − a)α−(t − τ̃21(|b − a|))− w21(a + b)α+(t − τ̃21(a + b))


,

β̇+(t) = −β+(t)+ γb

−w(2b)β−(t)+ w(0)β+(t)− w21(a + b)α−(t − τ̃21(a + b))+ w21(b − a)α+(t − τ̃21(|b − a|))


. (18)

Our main concern is the impact of delays on the stability of the bump solution’s position. Assuming the long termwidth of the bump stays
the same (limt→∞ α+(t) = limt→∞ α−(t) and limt→∞ β+(t) = limt→∞ β−(t)), we can determine the long term position of the bump by
studying the evolution of the summed variables α(t) := (α+(t)+α−(t))/2 and β(t) := (β+(t)+β−(t))/2. By summing equations of the
system (18), we find that

α̇(t) = −(W−1 + W+1)α(t)+ W−1β(t − T−1)+ W+1β(t − T+1),

β̇(t) = −(W−2 + W+2)β(t)+ W−2α(t − T−2)+ W+2α(t − T+2), (19)

whereW±1 := γaw12(b±a),W±2 := γbw21(b±a), T±1 := τ̃12(|b±a|), and T±2 := τ̃21(|b±a|). Instantaneous perturbations of the positions
α(t) and β(t)will always decay slightly in the limit when the effective delays are positive (T±1, T±2 > 0). That is limt→∞ α(t) < α(0) and
limt→∞ β(t) < β(0).

We demonstrate the precise amount by which delays reduce translating perturbations of bump position in the straightforward case
of symmetric coupling (W±1 ≡ W±2) and symmetric and hard delays (T±1 ≡ T±2 ≡ T ). In this case, the four lag system (19) becomes a
symmetric single lag system

α̇(t) = WT [β(t − T )− α(t)] , β̇(t) = WT [α(t − T )− β(t)] , (20)

whereWT := W−1 + W+1 = W−2 + W+2. For initial conditions α(0) = β(0), and α(t) = β(t) = 0 for t ∈ (−∞, 0), it is straightforward
to calculate that α(t) = β(t) = α(0)e−WT t on t ∈ [0, T ]. Subsequently, we can solve α̇ = −WTα(t) + α(0)WTe−WT t on t ∈ [T , 2T ] to
yield α(t) = α(0)e−2WT (t−T )(e−WT T + WT (t − T )) for t ∈ [T , 2T ], as well as an identical result for β . Iterating this process, we find

lim
t→∞

α(t) = lim
t→∞

β(t) = α(0)WTT
∞
n=1

e−nWT T =
α(0)WTT
eWT T − 1

< α(0), (21)

for WTT > 0, so delay reduces the distance the bump will be perturbed compared to the case of no coupling or delay

lim
WT T→0

α(0)WTT
eWT T − 1

= α(0).

We demonstrate this effect in a simulation as well as with plots of the theoretical prediction (21) in Fig. 2.
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Fig. 3. (A) Realization of the stochastic neural field (1) reveals how delayed coupling between layers tends to keep positions of bumps in layers 1 and 2, given by α(t) (thick
line) andβ(t) (thin line), close together. (B) Distance between bumppositions |α(t)−β(t)| (dark line) stays smallwhile displacement of bumppositions |α(t)| (thick line) and
|β(t)| (thin line) grows. Threshold θ = 0.5, couplingw12(x) = w21(x) = cos(x), noise amplitude ε = 0.5, delayed in interlaminar coupling τ12(x, y) = τ21(x, y) ≡ τ̄ = 0.5.

4. Stochastic motion of bumps in dual layer network with delays

4.1. Effective equations for stochastic bump motion

We now derive effective equations for the positions of the pair of stationary bump solutions in the presence of noise and delayed
coupling between layers. As demonstrated in Fig. 3, in a typical realization of the dual layer network (1) with weak noise (0 < ε ≪ 1),
the distance between bump positions (|α(t) − β(t)|) remains quite small while their absolute positions α(t) ≈ β(t) are continually
displaced by Brownian motion. We will therefore focus exclusively on the displacement in bump positions, assuming they move together
(α(t) ≈ β(t) ≈ ∆(t)). For a detailed analysis that allows different displacements (∆1 and∆2) for each bump in twoweakly coupled layers,
see [17]. Thus, for short enough times (t ≪ 1/ε) we can explore the impact of noise using a perturbation expansion, which assumes the
bumps’ positions (∆) and profiles (addingΦ1 andΦ2) change, so that

u1(x, t) = U1(x −∆(t))+ εΦ1(x −∆(t), t)+ · · ·

u2(x, t) = U2(x −∆(t))+ εΦ2(x −∆(t), t)+ · · · . (22)

Such perturbation expansions have been applied to the analysis of stochastic front propagation in nonlinear PDEs [39–41] and more
recently neural field equations [42,27]. Substituting the expansion (22) into (1), expanding in powers of ε, we find the bump solutions (8)
at O(1). At O(ε), we find

dΦ1(x, t)
dΦ2(x, t)


− L


Φ1(x, t)
Φ2(x, t)


dt =


ε−1d1U ′

1(x)+ dW1(x, t)
ε−1d1U ′

2(x)+ dW2(x, t)


+ ε−1K(x, t)dt (23)

where L is the linear operator

L


u1(x)
u2(x)


=

−u1(x)+

 π

−π

w(x − y)f ′(U1(y))u1(y)dy +

 π

−π

w12(x − y)f ′(U2(y))u2(y)dy

−u2(x)+

 π

−π

w(x − y)f ′(U2(y))u2(y)dy +

 π

−π

w21(x − y)f ′(U1(y))u1(y)dy


for any vector u(x) = (u1(x), u2(x)) of L2 integrable functions. Reciprocal coupling between the two layers generates the term

K(x, t) =


 π

−π

w12(x − y)f ′(U2(y))U ′

2(y)(∆(t)−∆(t − τ12(x, y)))dy π

−π

w21(x − y)f ′(U1(y))U ′

1(y)(∆(t)−∆(t − τ21(x, y)))dy

 , (24)

where the delays are inherited by the stochastic variable representing the bump’s position. Note, we have linearized the terms f (Uj(x +

∆(t) − ∆(t − τjk))) = f (Uj(x)) + f ′(Uj(x))U ′

j (x)(∆(t) − ∆(t − τjk)) + O(|∆(t) − ∆(t − τjk)|
2) (j = 1, 2; k ≠ j) under the assumption

that |∆(t)−∆(t − τjk)| remains small. We now enforce a solvability condition for (23), requiring that the right hand side is orthogonal to
the null space of the adjoint linear operator

L∗


p1(x)
p2(x)


=

−p1(x)+ f ′(U1)

 π

−π

w(x − y)p1(y)dy + f ′(U1)

 π

−π

w21(x − y)p2(y)dy

−p2(x)+ f ′(U2)

 π

−π

w(x − y)p2(y)dy + f ′(U2)

 π

−π

w12(x − y)p1(y)dy

 , (25)

for any L2 integrable vector p = (p1(x), p2(x))T which we have derived using the definition π

−π

pT (x)Lu(x)dx =

 π

−π

uT (x)L∗p(x)dx. (26)
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Identifying the nullspace (q1(x), q2(x)) of L∗, we can ensure (23) is solvable by taking the inner product of both sides of the equation with
this vector to yield the equation

q1, ε−1d1U ′

1 + dW1 + ε−1
 π

−π

w12(x − y)f ′(U2(y))U ′

2(y)(∆(t)−∆(t − τ12(x, y)))dydt


+


q2, ε−1d1U ′

2 + dW2 + ε−1
 π

−π

w21(x − y)f ′(U1(y))U ′

1(y)(∆(t)−∆(t − τ21(x, y)))dydt


= 0,

defining the L2 inner product ⟨u, v⟩ =
 π
−π

u(x)v(x)dx for any L2 integrable functions u(x) and v(x). Therefore, the stochastically evolving
bump position∆(t) obeys the delayed stochastic process:

d∆(t) = κ12(∆(t − τ12(x, y)))dt + κ21(∆(t − τ21(x, y)))dt − (κ̄11 + κ̄22)∆(t)dt + dW1 + dW2 (27)

where coupling results in the terms

κ̄jj =


qj,
 π
−π
wjk(x − y)f ′(Uk(y))U ′

k(y)dy


⟨q1,U ′

1⟩ + ⟨q2,U ′

2⟩
, j = 1, 2; k ≠ j, (28)

and

κjk(∆(t − τjk(x, y))) =


qj,
 π
−π
wjk(x − y)f ′(Uk(y))U ′

k(y)∆(t − τjk(x, y))dy


⟨q1,U ′

1⟩ + ⟨q2,U ′

2⟩
, j = 1, 2; k ≠ j, (29)

and noise impacts the bump positions through the white noise processesW(t) = (W1(t),W2(t))T with

Wj(t) = ε


qj(x),Wj(x, t)


⟨q1,U ′

1⟩ + ⟨q2,U ′

2⟩
, j = 1, 2.

Note, the white noise terms have zero mean ⟨Wj(t)⟩ = 0 and diffusive variance so ⟨W2
j (t)⟩ = Djt (j = 1, 2)with

Dj = ε2

 π
−π

 π
−π

qj(x)qj(y)Cj(x − y)dxdy
⟨q1,U ′

1⟩ + ⟨q2,U ′

2⟩
2 , j = 1, 2,

and ⟨W1(t)W2(t)⟩ = Dc t with

Dc = ε2

 π
−π

 π
−π

q1(x)q2(y)Cc(x − y)dxdy
⟨q1,U ′

1⟩ + ⟨q2,U ′

2⟩
2 .

4.2. Small delay expansion for the effective equations: dual layers

We now demonstrate the effectiveness of a small delay expansion in approximating the impact of delays on the stochastic dynamics of
bumps, as described by the system (27). Note, this was originally developed as a perturbative approximation of a stochastic equationswith
a single delay [43], but we show this theory applies well to systems of more than one delay [44]. To begin, we Taylor expand all functions
involving delay, assuming 0 ≤ τjk ≪ 1, so:

κjk(∆(t − τjk(x, y)))dt = κjk(∆(t)dt − τjk(x, y)d∆(t))+ O(τ 2jk), j = 1, 2; k ≠ j, (30)

which means that (29) becomes

κjk(∆(t − τjk(x, y)))dt = κ̄jj∆(t)dt − Tjkd∆(t)+ O(τ 2jk), j = 1, 2; k ≠ j,

where

Tjk =


qj(x),

 π
−π
wjk(x − y)f ′(Uk(y))U ′

k(y)τjk(x, y)dy


q1,U ′

1


+

q2,U ′

2

 , j = 1, 2; k ≠ j. (31)

Keeping only the terms larger than O(τ 2jk), we can approximate (27) using the small delay approximation

d∆(t) = −T12d∆(t)− T21d∆(t)+ dW1 + dW2.

We can identify how the evolution equation for∆(t) has changed by simplifying to find

d∆(t) =
dW1 + dW2

1 + T12 + T21
,

so that the mean ⟨∆(t)⟩ = 0 and the variance

⟨∆(t)2⟩ =
D1 + 2Dc + D2

(1 + T12 + T21)
2 t. (32)

Thus, we see that the main impact of delays is to reduce the long term variance of bumps’ stochastic motion.
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4.3. Calculating nullspace: dual layers

To compute the effective variance (32) of bump position, we must find the nullspace of the adjoint operator L∗ (25), which satisfies
the system

q1(x) = f ′(U1)

 π

−π

w(x − y)q1(y)dy + f ′(U1)

 π

−π

w21(x − y)q2(y)dy,

q2(x) = f ′(U2)

 π

−π

w(x − y)q2(y)dy + f ′(U2)

 π

−π

w12(x − y)q1(y)dy.

For a Heaviside firing rate function (4), we have that the null vector (q1(x), q2(x))T must satisfy

q1(x) = γa


xa=±a

δ(x − xa)
 π

−π

[w(xa − y)q1(y)+ w21(xa − y)q2(y)] dy,

q2(x) = γb


xb=±b

δ(x − xb)
 π

−π

[w(xb − y)q2(y)+ w12(xb − y)q1(y)] dy. (33)

Therefore, null vector components must be of the form q1(x) = δ(x + a) + Aδ(x − a) and q2(x) = Bδ(x + b) + Cδ(x − b), where we
have divided out the degeneracy guaranteed by rescaling (q1, q2)T . Plugging these expressions into the system (33), we generate the linear
system

1 = γa(w(0)+ Aw(2a)+ Bw21(b − a)+ Cw21(a + b))
A = γa(w(2a)+ Aw(0)+ Bw21(a + b)+ Cw21(b − a))
B = γb(w12(b − a)+ Aw12(a + b)+ Bw(0)+ Cw(2b))

C = γb(w12(a + b)+ Aw12(b − a)+ Bw(2b)+ Cw(0)). (34)

We find the linear system (34) can be further simplified by taking A = −1 and C = −B so that

1 = γa [w(0)− w(2a)+ B(w21(b − a)− w21(a + b))]

B = γb [w12(a + b)− w12(b − a)+ B(w(0)− w(2b))] . (35)

Now we use the formulas for γa and γb given by (13) to write (35) as

w12(b − a)− w12(a + b) = B(w21(b − a)− w21(a + b))
B(w21(b − a)− w21(a + b)) = w12(b − a)− w12(a + b),

so we can clearly see that B = [w12(b − a)− w12(a + b)]/[w21(b − a)− w21(a + b)]. Therefore, the null vector of L∗ is
q1(x)
q2(x)


=

 δ(x + a)− δ(x − a)
w12(b − a)− w12(a + b)
w21(b − a)− w21(a + b)

(δ(x + b)− δ(x − b))

 , (36)

and note in the symmetric case (w12 ≡ w21), we have a ≡ b and q1(x) ≡ q2(x) = δ(x + a)− δ(x − a).

4.4. Calculating variances: dual layers

The effective variance (32) can now be explicitly calculated, assuming a Heaviside firing rate function (4) and cosine synaptic weights
(2), (3). We can then compare the resulting explicitly computed formulas to the same quantities calculated from numerical simulations.
Terms arising due to delay T12 and T21 are calculated by first noting the spatial derivative of the bump solutions are U ′

1(x) = −2(sin a +

M1 sin b) sin x and U ′

2(x) = −2(sin b+M2 sin a) sin x. Plugging these formulas alongwith the null vector (36) ofL∗ into (31) and assuming
distance-dependent delays τjk(x, y) = τ̃jk(x − y) = τ̃jk(y − x) for j = 1, 2 and k ≠ j, we find

Tjk =
cos(b − a)τ̃jk(b − a)− cos(a + b)τ̃jk(a + b)

2M−1
1 sin2 a + 2 sin a sin b + 2M−1

2 sin2 b + 2 sin a sin b
. (37)

Now, to compute the effective diffusion coefficients in each layer, we consider cosine spatial correlations (5) and noise that may be
correlated (cc ≥ 0) between layers. This yields

D1 = ε2
c1 sin2 a

4

sin2 a + M1 sin a sin b + sin2 b + M2 sin a sin b

2 ,
D2 = ε2

c2 sin2 b

4

sin2 a + M1 sin a sin b + sin2 b + M2 sin a sin b

2 ,
Dc = ε2

cc sin a sin b

4

sin2 a + M1 sin a sin b + sin2 b + M2 sin a sin b

2 .
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Fig. 4. Effective diffusion D approximated for hard delays τ12 = τ21 ≡ τ̄ and symmetric coupling w12(x) = w21(x) = cos(x). (A) Variance ⟨∆(t)2⟩ = Dt in the position of
coupled bumps in a dual layer network coupled with delays (1) is calculated assuming weak noise and a small delay expansion (38). Both our theoretical prediction (solid
lines) and numerical simulations (dashed lines) reveal that the effective variance increases more slowly for longer propagation delays τ̄ . (B) Effective diffusion D decreases
as a function of hard delay τ̄ in our asymptotic theory (solid line) and numerical simulations (circles). Threshold θ = 0.5, no noise correlations (cc ≡ 0), noise amplitude
ε = 0.5. Variances are computed from numerical simulations using 5000 realizations each.

Fig. 5. (A) The impact of asymmetric hard delays τ̄21 ≠ τ̄12 = 1 on the variance ⟨∆(t)2⟩ is still well characterized by our theoretical prediction (solid lines) given by
(32) as matched by numerical simulations (dashed lines). (B) Our theory (solid lines) predicts variance increases as the amplitude of noise correlations cc between layers
increases (38). Threshold θ = 0.5; noise amplitude ε = 0.5; baseline delay τ̄ = 0; interlaminar connectivityw12(x) = w21(x) = cos(x). Variances are computed from 5000
realizations each.

We consider a few different cases of the distance- and layer-dependent delay function τ̃jk(x, y). We begin by considering the casewhere
delays are homogeneous in space (hard delays), so τjk = τ̄jk, and (37) reduces to

Tjk =
2 sin a sin bτ̄jk

M−1
1 [1 − cos(2a)] + 2 sin a sin b + M−1

2 [1 − cos(2b)] + 2 sin a sin b
.

To compare our theory to numerical simulations, we begin by focusing on the symmetric case where coupling M1 = M2 ≡ M , noise
c1 = c2 = 1, and delays τ̄12 = τ̄21 = τ̄ , so that a = b and T12 = T21 ≡ T with

T =
τ̄M

2(1 + M)
.

In addition, the diffusion coefficients will be identical in each layer D1 = D2 = Dl where

Dl =
ε2

16(1 + M)2 sin2 a
, Dc =

ε2cc
16(1 + M)2 sin2 a

.

The variance will then be

⟨∆(t)2⟩ = Dt =
2(Dl + Dc)t
(1 + 2T )2

=
ε2(1 + cc)t

8 sin2 a (1 + M(1 + τ̄ ))2
. (38)

The formula (38) demonstrates how the variance is reduced by increases in the delay time τ̄ as well as the coupling strength M . We
demonstrate the accuracy of this asymptotic approximation in the absence of noise correlations in Fig. 4. Furthermore, we show that our
asymptotic predictions hold in the case of nonzero noise correlations (cc > 0) as well as asymmetric hard delays (τ̄12 ≠ τ̄21) in Fig. 5. In
all cases, longer propagation delays reduce the variance of stochastic bump motion due to their stabilizing effect on bump perturbations.

Next, we consider the impact of distance-dependent delays on the stochastic motion of the coupled bump solution (8). We model
distance-dependence using the periodic function τ̃12(x) = τ̃21(x) = τ̄ + τd [1 − cos(x)], so when the distance |x − y| = 0 there is a
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Fig. 6. Distance-dependent delays τjk(x, y) = τd [1 − cos(x − y)] between layers, (j, k) = (1, 2) or (2, 1), also can stabilize bumps to noise perturbations. Our theoretical
calculations (solid lines) suggest that increasing the maximal delay τd further reduces the effective diffusion (39), which compares well with numerical simulations (dashed
lines). Threshold θ = 0.5; noise amplitude ε = 0.5; baseline delay τ̄ = 0; interlaminar connectivity w12(x) = w21(x) = cos(x). Variances are computed from 5000
realizations each.

baseline delay τ̄ and delay increases with distance |x − y|. In this case, (37) reduces to

Tjk =
2(τ̄ + τd(1 − cos a cos b)) sin a sin b

M−1
1 [1 − cos(2a)] + 2 sin a sin b + M−1

2 [1 − cos(2b)] + 2 sin a sin b
, j = 1, 2; k ≠ j.

Now, for simplicity, we again focus on the symmetric case (M1 = M2 = M so a = b) to make the effects of distance-dependent delay most
transparent in resulting formulas. In this case T12 = T21 = T , and

T =
M(τ̄ + τd sin2 a)

2(1 + M)
,

so the distance-dependent propagation delay simply adds to the effective hard delay in our asymptotic approximation. The variance is
then given by the formula

⟨∆(t)2⟩ = Dt =
ε2(1 + cc)t

8 sin2 a

1 + M(1 + τ̄ + τd sin2 a)

2 . (39)

We demonstrate how the distance-dependent delay reduces the variance in Fig. 6, matching well with numerical simulations. Thus, we
have shown in several examples that propagation delays between layers help stabilize bumps to noise perturbations.

5. Multiple layered network with delays

5.1. Stationary bumps stabilized by delayed coupling

We now explore how the principles we have derived for dual layer networks extend to networks withmore than two layers. Stationary
bump solutions (u1, . . . , uN) = (U1(x), . . . ,UN(x)) to the neural field with N layers (6) exist in the absence of noise (dWj ≡ 0, ∀j),
satisfying the stationary system

Uj(x) =

 π

−π

w(x − y)f (Uj(y))dy +

N
k=1,k≠j

 π

−π

wjk(x − y)f (Uk(y))dy, j = 1, . . . ,N. (40)

Again, we fix the threshold crossing points of bumps Uj(±aj) in the case of even symmetric weight functions and a Heaviside firing rate
function, converting the implicit integral equation (40) to an explicit expression for the coupled bump solution

Uj(x) =

 aj

−aj
w(x − y)dy +

N
k=1,k≠j

 ak

−ak
wjk(x − y)dy, j = 1, . . . ,N.

To determine the bump half-widths aj, we require self-consistency of Uj(aj) = θ to yield the system

θ =

 2aj

0
w(x)dx +

N
k=j,k≠j

 aj+ak

aj−ak
wjk(x)dx. (41)

Considering cosine weight functions (2), (3), we can integrate (41) to find

θ = 2 cos(aj)


sin(aj)+

N
k=1,k≠j

Mjk sin(ak)


.
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In the symmetric caseMjk ≡ M, ∀j, k, then aj ≡ a, ∀a, and

θ = 2(1 + (N − 1)M) cos(a) sin(a),

which can be solved to yield a wide (aw) and narrow (an) bump pair

aw =
π

2
−

1
2
sin−1 θ

1 + (N − 1)M
,

1
2
sin−1 θ

1 + (N − 1)M
. (42)

Thus, increasing the number of layers N will expand the region of parameter space in which one can expect to find bump solutions, as the
solution branches (42) annihilate at θ = 1 + (N − 1)M .

Now, we show our stability analysis of bumps in the dual layer network (1) extends to analysis within a network with an arbitrary
number of layers N . As before, we employ the expansion

uj(x, t) = Uj(x)+ εψj(x, t)+ O(ε2), ∀j. (43)

Plugging into (6) for dWj ≡ 0, ∀j, and truncating to O(ε), we find

ψ̇j(x, t) = −ψj(x, t)+

 π

−π

w(x − y)f ′(Uj(y))ψj(y, t)dy +


k≠j

 π

−π

wjk(x − y)f ′(Uk(y))ψk(y, t − τjk(x, y))dy, ∀j. (44)

Again, neutrally stable solutions are given by the spatial derivative ψj(x, t) = U ′

j (x), ∀j, as can be shown by plugging into (44) to yield

0 = −U ′

j (x)+

 π

−π

w(x − y)f ′(Uj(y))U ′

j (y)dy +


k≠j

wjk(x − y)f ′(Uk(y))U ′

k(y)dy, ∀j. (45)

Differentiating (40) and integrating by parts, we see that (45) indeed holds. However, this does not shed light on how delays shape bumps’
response to perturbations since there is no explicit timescale attached to the perturbation ψj(x, t) = U ′

j (x), ∀j. To capture the temporal
dynamics of the bump solution uj = Uj(x), ∀j, we will examine the evolution of the threshold crossing points for small but arbitrary
perturbations.

Assuming a Heaviside firing rate function (4), we can compute

f ′(Uj) = γj

δ(x − aj)+ δ(x + aj)


, ∀j,

where

γ−1
j = |U ′

j (aj)| = |U ′(−aj)| = w(0)− w(2aj)+


k≠j


wjk(ak − aj)− wjk(aj + ak)


. (46)

We then calculate the integrals in (44) to find

ψ̇j(x, t) = −ψj(x, t)+ γj


xj=±aj

w(x − xj)ψj(xj, t)+


k≠j

γk


xk=±ak

wjk(x − xk)ψk(xj, t − τjk(x, xk)).

The essential spectrum is associatedwith solutions satisfyingψj(±aj, t) ≡ 0, ∀j, t , andψj(x, t) = e−tψ̄j(x), ∀j, which does not contribute
to any instabilities. Other perturbations can be studied by focusing on the evolution of the valuesψj(±aj, t), satisfying the system of delay
differential equations

ψ̇j(−aj, t) = −ψj(−aj, t)+ γj


xj=±aj

w(−aj − xj)ψj(xj, t)+


k≠j

γk


xk=±ak

wjk(−aj − xk)ψk(xk, t − τjk(−aj, xk)),

ψ̇j(aj, t) = −ψj(aj, t)+ γj


xj=±aj

w(aj − xj)ψj(xj, t)+


k≠j

γk


xk=±ak

wjk(aj − xk)ψk(xk, t − τjk(a, xk)), ∀j. (47)

To examine the evolution in bumps’ position, in response to perturbations, we can study the evolution of the 2N threshold crossing points,
given by the equations

uj(±aj + εα±

j (t), t) = θ + O(ε2), ∀j. (48)

Taylor expanding (48) and applying (43), we find at O(ε) that

α±

j (t) = ±γjψj(±aj, t), ∀j. (49)

Substituting (49) into (47) and focusing on distant-dependent delays τjk(x, y) = τ̃jk(|x − y|), we find

α̇−

j = −α−

j + γj


w(0)α−

j − w(2aj)α+

j +


k≠j


wjk(ak − aj)α−

k (t − τ̃jk(|ak − aj|))− wjk(aj + ak)α+

k (t − τ̃jk(aj + ak))

,

α̇+

j = −α+

j + γj


−w(2aj)α−

j + w(0)α+

j −


k≠j


wjk(aj + ak)α−

k (t − τ̃jk(aj + ak))− wjk(ak − aj)α+

k (t − τ̃jk(|ak − aj|))

, (50)
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∀j. As in the case of two layers, we assume the long term bump widths remain the same (limt→∞ α
+

j (t) = limt→∞ α
−

j (t), ∀j). Thus, the
long term position of bumps can be identified using the summed variables αj(t) := (α+

j (t) + α−

j (t))/2, ∀j. Summing the equations of
(50) associated with each j, we find

α̇j(t) =


k≠j


W−

jk


αk(t − T−

jk )− αj(t)

+ W+

jk


αk(t − T+

jk )− αj(t)

, ∀j, (51)

where W±

jk := γjwjk(ak ± aj) and T±

jk := τ̃jk(|ak ± aj|), ∀j. Instantaneous perturbations of the positions αj(t) will tend to decay slightly
when effective delays are positive (T±

jk > 0), so limt→∞ αj(t) < α(0).
We compute the amount that delays reduce translations of bump position in the case of symmetric coupling (W±

jk ≡ W±, ∀j, k) and
symmetric and hard delays (T±

jk ≡ T , ∀j, k). In this case, the system (51) will be a symmetric single lag system

α̇j(t) = WT


k≠j

[αk(t − T )− α(t)] , ∀j,

whereWT := W+ + W−. Taking initial conditions αj(0) = α0 and αj(t) = 0 for t ∈ (−∞, 0), ∀j, we can calculate αj(T ) = α0e−(N−1)WT T ,
αj(2T )
= α0


e−3(N−1)WT T + (N − 1)WTTe−2(N−1)WT T


, iterating to find

lim
t→∞

αj(t) = α0(N − 1)WTT
∞
n=1

e−n(N−1)WT T =
α0(N − 1)WTT
e(N−1)WT T − 1

< α0, ∀j, (52)

for (N − 1)WTT > 0. Essentially we find that both increasing the number of layers N as well as increasing the delay time T will decrease
the long term impact of a translating perturbation.

5.2. Effective stochastic motion of bumps in multilayer network

We can also extend our analysis of the impact of noise on dual layer networks with delayed coupling to the case of the multilayer
network (6). Our analysis focuses on the stochastic motion of bump position (∆(t)), and we assume the profiles of the bump in each layer
will be perturbed by the noise as well (described byΦj, ∀j). Thus, we consider the perturbative expansion

uj(x, t) = Uj(x −∆j(t))+ εΦj(x −∆(t), t)+ · · · , ∀j. (53)

Substituting (53) into (6), we can expand in powers of ε, finding at O(ε) that

d8(x, t)− L8(x, t)dt = ε−1U′(x)d∆+ d�(x, t)+ ε−1K(x, t)dt, (54)

where L is the linear operator acting on the vector 8(x) = (Φ1(x, t), . . . ,ΦN(x, t))T defined

Lu =



−u1(x)+

 π

−π

w(x − y)f ′(U1(y))u1(y)dy +


k≠1

 π

−π

w1k(x − y)f ′(Uk(y))uk(y)dy

...

−uj(x)+

 π

−π

w(x − y)f ′(Uj(y))uj(y)dy +


k≠j

 π

−π

wjk(x − y)f ′(Uk(y))uk(y)dy

...

−uN(x)+

 π

−π

w(x − y)f ′(UN(y))uN(y)dy +


k≠N

 π

−π

wNk(x − y)f ′(Uk(y))uk(y)dy


,

for any length N , L2-integrable vector of functions u(x) = (u1(x), . . . , uN(x))T . Spatiotemporal noise is described by the vector �(x, t) =

(W1(x, t), . . . ,WN(x, t))T . Delayed coupling between layers is given by the term

K(x, t) =




k≠1

 π

−π

w1k(x − y)f ′(Uk(y))U ′

k(y)(∆(t)−∆(t − τ1k(x, y)))dy

...
k≠j

 π

−π

wjk(x − y)f ′(Uk(y))U ′

k(y)(∆(t)−∆(t − τjk(x, y)))dy

...
k≠N

 π

−π

wNk(x − y)f ′(Uk(y))U ′

k(y)(∆(t)−∆(t − τNk(x, y)))dy


,
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delays are inherited by the stochastic variable∆(t) for the bump’s position. We enforce solvability of (54) by requiring the right hand side
is orthogonal to the null space of the adjoint linear operator

L∗p(x) =



−p1 + f ′(U1)

 π

−π

w(x − y)p1(y)dy +


k≠1

 π

−π

wk1(x − y)pk(y)dy


...

−pj + f ′(Uj)

 π

−π

w(x − y)pj(y)dy +


k≠j

 π

−π

wkj(x − y)pk(y)dy


...

−pN + f ′(UN)

 π

−π

w(x − y)pN(y)dy +


k≠N

 π

−π

wkN(x − y)pk(y)dy





, (55)

for any L2-integrable vector p(x) = (p1(x), . . . , pN(x))T , derived using the inner product definition (26). Upon computing the nullspace
q(x) = (q1(x), . . . , qN(x))T of L∗, we can generate the solvability condition by taking the inner product of both sides of (54) with q(x) to
yield

N
j=1


qj, ε−1d1U ′

j + dWj + ε−1

k≠j

 π

−π

wjk(x − y)f ′(Uk(u))U ′

k(y)(∆(t)−∆(t − τjk(x, y)))dydt


= 0. (56)

The bump’s position will thus evolve according to the delayed stochastic process

d∆(t) =

N
j=1


k≠j

κjk(∆(t − τjk(x, y)))dt − κ̄jj∆(t)dt + dWj


, (57)

where coupling between layers generates the terms

κ̄jj =


qj,

k≠j

 π
−π
wjk(x − y)f ′(Uk(y))U ′

k(y)dy


N
j=1

⟨qj,U ′

j ⟩

, ∀j,

and

κjk(∆(t − τjk(x, y))) =


qj,

k≠j

 π
−π
wjk(x − y)f ′(Uk(y))U ′

k(y)∆(t − τjk(x, y))dy


N
j=1

⟨qj,U ′

j ⟩

, ∀j,

and stochasticity arises due to the white noise processesW(t) = (W1(t), . . . ,WN(t))T with

Wj(t) = ε
⟨qj(x),Wj(x, t)⟩

N
j=1

⟨qj,U ′

j ⟩

, ∀j.

White noise terms have zero mean ⟨Wj(t)⟩ = 0 and covariance ⟨Wj(t)Wk(t)⟩ = Djkt (∀j, k ≠ j)with

Djk = ε2

 π
−π

 π
−π

qj(x)qk(y)Cj(x − y)dxdy
N
j=1

⟨qj,U ′

j ⟩

2 .

5.3. Small delay expansion: multiple layers

To study the impact of delays on the stochastic motion of bumps, we will employ a Taylor expansion, as in (30), that assumes delays
are small (0 ≤ τjk ≪ 1, ∀j, k ≠ j) so [43]

κjk(∆(t − τjk(x, y)))dt = κ̄jj∆(t)dt − Tjkd∆(t)+ O(τ 2jk), ∀j, k ≠ j,

where

Tjk =


qj(x),

 π
−π
wjk(x − y)f ′(Uk(y))U ′

k(y)τjk(x, y)dy


N
j=1

⟨qj,U ′

j ⟩

, ∀j, k ≠ j. (58)
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Keeping only terms larger than O(τ 2jk), we find (57) becomes

d∆(t) = −


N
j=1


k≠j

Tjk


d∆(t)+

N
j=1

dWj.

Simplifying, we find

d∆(t) =

N
j=1

dWj

1 +

N
j=1


k≠j

Tjk

,

so the mean ⟨∆(t)⟩ = 0 and the variance

⟨∆(t)2⟩ =

N
j=1

N
k=1

Djk
1 +

N
j=1


k≠j

Tjk

2 t. (59)

As before, delayswill reduce the long term variance in bumps’ stochasticmotion, and increasing the number of layersN will further reduce
variance.

5.4. Calculating nullspace: multiple layers

Now, to compute the variance (59), we must identify the nullspace of the adjoint operator L∗ (55), which obeys the system

q1(x) = f ′(U1)

 π

−π

w(x − y)q1(y)dy +


k≠1

 π

−π

wk1(x − y)qk(y)dy


,

...

qj(x) = f ′(Uj)

 π

−π

w(x − y)qj(y)dy +


k≠j

 π

−π

wkj(x − y)qk(y)dy


,

...

qN(x) = f ′(UN)

 π

−π

w(x − y)qN(y)dy +


k≠N

 π

−π

wkNw(x − y)qk(y)dy


.

Thus, for a Heaviside firing rate function (4), the null vector q(x) = (q1(x), . . . , qN(x))T satisfies

q1(x) = γ1


x1=±a1

δ(x − x1)
 π

−π


w(x1 − y)q1(y)dy +


k≠1

wk1(x1 − y)qk(y)


dy,

...

qj(x) = γj


xj=±aj

δ(x − xj)
 π

−π


w(xj − y)qj(y)dy +


k≠j

wkj(xj − y)qk(y)


dy,

...

qN(x) = γj


xj=±aN

δ(x − xN)
 π

−π


w(xN − y)qN(y)dy +


k≠N

wkN(xN − y)qk(y)


dy. (60)

Null vector components must be of the form

qj(x) = Aj(δ(x + aj)− δ(x − aj)). (61)

Plugging this ansatz into (60), we can identify an N × N linear system for the coefficients Aj by requiring equality of the coefficients of
δ(x + aj) (or equivalently δ(x − aj)) as

Aj = γj


Aj(w(0)− w(2aj))+


k≠j

Ak(wkj(ak − aj)− wkj(ak + aj))


. (62)
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Fig. 7. Effective variance ⟨∆(t)2⟩ in the stochastic motion of bumps in the multilayer stochastic neural field (6). We demonstrate how the variance decreases with the
number of layers N . Our theory (solid lines) reveals that N reduces variance in a divisive way, also scaling the impact of hard delays τ̄ (64), which matches well with
numerical simulations (dashed lines). Threshold θ = 0.5; noise amplitude ε = 0.5; delay τ̄ = 0.5; interlaminar connectivity wjk = cos(x), ∀j, k ≠ j. Variances are
computed from 5000 realizations.

Utilizing the formula for γj given by (46), we can write (62) as

Aj


k≠j

(wjk(ak − aj)− wjk(ak + aj)) =


k≠j

Ak(wkj(ak − aj)− wkj(ak + aj)). (63)

Formulating the linear system in this way, we can see that if interlaminar connectivity is reciprocally symmetric (wjk(x) = wkj(x), ∀j, k),
then 

k≠j

(Aj − Ak)(wjk(ak − aj)− wjk(ak + aj)) = 0,

so that ifAj ≡ 1, ∀j, the linear system is satisfied.More general connection topologies can be addressed by simply breaking the degeneracy
of the system (63) by setting A1 ≡ 1 and inverting the resulting (N − 1)× (N − 1) linear system. Henceforth, we focus on the symmetric
case (wjk ≡ wc, ∀j, k), so we have aj ≡ a and qj(x) = δ(x + a)− δ(x − a), ∀j.

5.5. Calculating variances: multiple layers

Wecan derive explicit results for the effective variance (59) by assuming aHeaviside firing rate function (4) and cosine synapticweights
(2), (3). We take identical interlaminar connectivity throughout the network (wjk(x) = M cos(x), ∀j, k). Thus, bump half-widths are
identical in each layer aj ≡ a, ∀j, so U ′

j (x) = −2(1 + (N − 1)M) sin a sin x, ∀j. Plugging these expressions along with the null vector (61)
with Aj ≡ 1, ∀j, of L∗ into (58) and focusing on identical hard delays τjk(x, y) = τ̄ , ∀j, k ≠ j, we find

Tjk ≡ T =
M τ̄

N(1 + (N − 1)M)
.

Specifying cosine spatial correlations (5) and assuming noise to each layer is identical (cj ≡ 1, ∀j) and independent (Djk ≡ 0, ∀j, k ≠ j),
we find that

Djj ≡ Dl =
ε2

4N2(1 + (N − 1)M)2 sin2 a
.

The variance will then be

⟨∆(t)2⟩ =
ε2

4N sin2 a [1 + (N − 1)M(1 + τ̄ )]2
. (64)

As in the case of dual layers, the formula (64) demonstrates that increasing the delay τ̄ will decrease the variance of the bump’s stochastic
motion. Increasing the number of layersN will decreases the effective variance, as in [17]. In Fig. 7, we show that our asymptotic prediction
of the variance is well matched to the results computed from numerical simulations of the full system (6).

6. Discussion

We have shown that propagation delays in the synaptic connections between layers of a neural field can stabilize bumps to noise
perturbations. This stabilization utilizes the memory of previous states in other layers provided by delayed coupling. These previous
states will be less corrupted by noise, since past states have experienced stochastic forcing for shorter periods of time than the current
state. Thus, these past representations of bump position will be a more accurate representation of the initial condition of the network.
This provides an additional contribution to the noise reducing mechanism of cancelation, generated by coupling layers together with
non-delayed connectivity, as in [17,45]. Here, we were able to utilize a small delay expansion to analytically approximate the impact of
propagation delays on the effective variance in bump’s stochasticmotion, showing delays essentially have a divisive effect on variance.We
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have also extended our previous work by addressing the impact of strong interlaminar coupling upon the stochastic dynamics of bumps,
rather than utilizing perturbation theory to explore weak coupling [17].

Our work here could be extended in a number of contexts, particularly those concerning the impact of delays on spatial patterns in
stochastic neural field equations. First, we plan to explore how propagation delays impact stability of bumps and other patterns in the
vicinity of bifurcations. As we have shown here, lateral inhibitory deterministic neural fields tend to support two co-existent branches
of stationary bump solutions, a stable wide bump and an unstable narrow bump, which annihilate in a saddle–node bifurcation [22,9].
Delays may extend the region in which a stable stationary bump exists in the deterministic system, lengthening the amount of time it
would take for noise to generate a rare event whereby the bump is extinguished as in [27]. We will likely need to develop a stochastic
amplitude equation approach to study this problem as in [46,47]. In addition, we plan to explore the impact of delays on propagating
patterns, such as traveling waves [45]. It is questionable whether or not delays will make wave propagation more reliable, since it may
lead to instabilities, as in [12,13].
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