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Abstract

The structure of flame filaments resulting from chaotic mixing within a combustion reaction is considered. The transverse
profile of the filaments is investigated numerically and analytically based on a one-dimensional model that represents the
effect of stirring as a convergent flow. The dependence of the steady solutions on the Damkéhler number and Lewis number is
treated in detail. It is found that, below a critical Damkohler nuribay;i;, the flame is quenched by the flow. The quenching
transition appears as a result of a saddle-node bifurcation where the stable steady filament solution collides with an unstable
one. The shape of the steady solutions for the concentration and temperature profiles changes with the Lewis number and the
value ofDagi; increases monotonically with the Lewis number. Properties of the solutions are studied analytically in the limit
of large Damkodhler number and for small and large Lewis number.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many chemical and biological processes take place within an imperfectly mixed environment, examples include
the mixing of reactants within continuously fed or batch readtbfsnd in the spread of plankton blooms within
oceanic current®,3]. In these situations the time-dependent fluid flow, within which the reactions are taking place,
can lead to the chaotic transport of fluid elemd#ats/], which become stretched into thin elongated filaments. This
behaviour has been observed both experimentally by inserting dye droplets into thg-k®yand in numerical
simulationg11,13]

In a two-dimensional system, a convergent and a divergent direction can be assigned to any point in the flow
associated with the eigenvectors corresponding to the negative and positive Lyapunov exparemis. of the
chaotic advectiorl4,15] These directions are, respectively, tangent to the stable and unstable foliations of the
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advection dynamics. Any advected material line tends to align along the unstable foliation in forward time, or along
the stable foliation in backward time. Thus, the stirring process smoothes out the concentration of any advected
tracer along the stretching direction, whilst enhancing concentration gradients in the convergent direction, producing
a quasi-one-dimensional ‘lamellar’ structure.

This allows us to separate the original reaction—advection—diffusion problem along the (Lagrangian) stretching
and converging directions. In the stretching direction any perturbation is spread by the advective transport. This is
the dominant process in this case and is much faster than diffusion. In the convergent direction, however, all three
processes of reaction, advection and diffusion are of equal importance and need to be considered together. Chemic
reactions of the typd + B — P taking place in one-dimensional lamellar systems were first studied numerically
by Muzzio and Otting16—18]and analytically by Sokolov and Bluméh9]. More recently, Clifford et al[20,21]
investigated the evolution of a two-step (competitive—consecutive) chemical reaction in lamellar systems.

For a spatially smooth velocity field the relative motion of nearby fluid elements can be approximated by linearising
the velocity field along the path of a fluid particle. Thus, in the convergent direction fluid elements approach each
other with arelative velocity proportional to their separatian;~ —a(z)dr, where the rate of convergence generally
fluctuates in time along the trajectory. The average behaviour can be approximated by replgaivith its long
time average given by, the Lyapunov exponent of the chaotic advection. In the context of autocatalytic type
reactions it has been shown, that the resulting one-dimensional ‘Lagrangian filament model’ can be used to describe
the mean transverse profiles of filaments that propagate along the divergent direction following the unstable foliation
[22,23]

Fluid mixing has an important role in combusti@4—28] Our main aim is to consider the effect of chaotic mixing
within a combustion reaction, which we model as a first-order process converting @ faedn inert product
through the reaction

C — P, rate=ck(T) Q)

with exothermicityq. T is the (absolute) temperature andhe concentration of reactagt. The temperature
dependence of the reaction rate is given by an Arrhenius law with an ignition tempefatuaenely

koexp<—£) if T>T,
k(T) = RT )

0 if T <T,

whereE and R are the activation energy and the universal gas constant@isdthe (constant) pre-exponential
factor. Our reason for choosing this form for the rate law is to avoid the difficulties associated with the cold boundary
problem. An alternative approach is, rather artificially, to set the ambient temperature to 0. The form ¢i2gn by
allows for a nonzero ambient temperature and the discontinuity7in does not lead to any problems providgd

is kept small.

Here we are concerned with the structures of filaments that arise within the chaotic mixing and so, for present
purposes, the nature of the time-dependent fluid flow is not important. This aspect will be described in a future
papelf29] along with details of the resulting chaotic transport and reaction processes. This leads us to consider the
equations for the filament structure

aT T 92T

— e x— | =k —— K(T
pC”(at xax) “oxz Tk, ®)
ac ac 92c
— —Ax— = D— — ck(T) 4)

ot 0x dx2
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on—oo < x < oo, t > 0. Herex measures distance transverse to the filametitye andp the densityC), the
specific heaty and D are the thermal conductivity and diffusion coefficient, respectively.

The convective terms iBgs. (3) and (43an be interpreted as advection by a pure strain flow at a constant stretching
rate—A (A > 0) along the convergent direction. We can associatéth the Lyapunov exponent of the chaotic
advection. Equations similar {8) and (4)were first proposed by Rafi20] and have been considered previously for
somewhat simpler chemical systeft9,20]including autocatalytic reactiotig3] and excitable medig2], where
their significance in determining the nature of the chaotic mixing is brought out. These previous studies considered
only chemical systems with identical diffusivities for all species. An important new aspect investigated in this paper
is the possibility of different diffusivities for heat and reactant, characteristic to the combustion process.

We apply the boundary conditions

T — T, c—cg as|x|]— oo (r>0), (5)

whereT, is the ambient temperature (we are assumingZhat 7;). For the time-dependent problem we initiate
the reaction by applying a local temperature input (aliGye
To makeEgs. (3) and (4§limensionless, we introduce the variables
T -T, - A
2 i=<, f=At, X =x—=, (6)
Th — T3 co D
whereT}, is the burnt temperaturé, = T, + (gco/pC,). This leads to the equations, on dropping the bars for
convenience,

’f:

aT  aT 3°T
— —x— = Le— 4+ DacK(T), 7
ot * ax 9x2 + (1) 0
dc ac 92
— —x— = — — DacK(7), 8
at * ax  9x2 1) ®)
where
k
Da= —0, Le= K
A pCpD
are the Damkaohler and Lewis numbers, respectively. The temperature dependence of the(®dmtimymes
1 . -
exp(——) if T>T,
K(T) = e(1-BT +B) 9)
0 if T<T,
where
RT, T, - Ti — T,
e=— p=o Ti=——F
E Tp To — Ta

The boundary conditions to be applied are that
T — 0, c—1 as|x| —> oo. (10)

The Damkéhler numbdbda characterises the ratio between the advective and the chemical time-scaleD&arge
corresponds to slow stirring or equivalently fast chemical reaction and vice versa. This, together with the Lewis
numberLe, are our main bifurcation parameters.

We start by considering the possible steady-state solutiofs|$o (7) and (8satisfying boundary conditions
(20).



70 I.Z. Kisset al./ Physica D 176 (2003) 67-81

2. Steady states

Here we consider the steady equations
LeT” 4+ XT’' + DacK(T) =0, ¢’ +xc —DacK(T) =0, (11)

where K (T) is given by(9) and where primes denote differentiation with respect.tdVe look for symmetric
solutions, applying the boundary conditions

T'(0) = ¢/ (0) =0, T — 0, c— 1 asx —» oo. (12)

WhenLe = 1 we can combin&gs. (11)to eliminate the reaction terms. Integrating the resulting equation and
applying(12) givesT + ¢ = 1 and then

T" +XT'+Da(l-T)K(T)=0 (13)

again subject t¢12).

Egs. (11)or (13) were solved numerically using a standard NAG library routine for integrating boundary-value
problems. The outer boundary conditions were applied at a large valuelkdwing them to be satisfied with
sufficient accuracy. This value depended on the width of the filament which, in turn, depended on both the Lewis
and Damkohler numbers. The numerical integrations were found to be insensitive to point where the outer conditions
were taken. The results are presenteéio 1, where we plotT" profiles forLe = 1 (Fig. 1a) and bothl" andc¢
profiles forLe = 0.1 (Fig. 1b) andLe = 10 (Fig. 1c) for representative valuesba (e = 1.0, 8 = 0.1,7; = 0.001).

In these figures the broken lines represent temporally unstable solutions (see bel@e)isAmcreased for the

stable solutions (full lines) the width of the filament increases with the temperature reaching a constant value within
the central part of the filament. This central temperature quickly reaches a value of uhigy=ct.0, whereas, for

Le = 10.0, it slowly approaches this value from below@a increases. The reactafitis fully consumed in this
central region of the filament. Fae = 0.1, the reaction zone is much thinner than for the other two cases. Much
higher temperatures can be achieved within the filament, though these reduce to unity, now from abaus, as
increased. In all cases the unstable solutions (broken lines) reduce in both magnitude and Bdemtr@ases.

To see how the solutions change as a given parameter is varied, we need some measure of the solution. Th
profiles shown irFig. 1suggest that the integrated quantity

It = /OO T (x)dx (14)
0

is a suitable measure. Note that, if we d&lgh. (11) integrate the resulting equation and apply boundary conditions
(12), we find thatl; = [;°T(x)dx = [;~(1 — c(x))dx. Graphs of/; againstDa are shown inFig. 2 (for

Le= 0.1, 1, 10). The figure shows that there is a critical value of the Damkdhler nubdgg, with a saddle-node
bifurcation atDagyit giving two solutions foiDa > Dagit and no solutions foDa < Dagjt, apart from the trivial

uniform solution,C(x) = 1, T (x) = 0, corresponding to the extinction of the flame. Thus, the transiti@agt;

can be interpreted as a quenching transition when the burning of the fuel is not sufficiently fast to compensate for
the diluting effect of the stirring, which tends to reduce the temperature of the filafeincreases witlba on

the upper solution branch and decreases on the lower branch. This effect can also be seen in the profiles shown i

>

Fig. 1. (a) Temperatur@ profiles forLe = 1 (Da takes values from 6.965 to 100 for the stable solutions and from 7 to 75 for the unstable
solutions). TemperaturE and concentration profiles for (b)Le = 0.1 (Da takes values from 5 to 70 for the stable solutions and from 6 to 20
for the unstable solutions) and (c@ = 10 (Datakes values from 8.5 to 50 for the stable solutions and from 8.7 to 50 for the unstable solutions)
(e = 1.0, = 0.1, T, = 0.001). The broken lines represent temporally unstable solutions.
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Fig. 2. Graphs ofr (defined by(14)) againsDafor Le=0.1,1, 10 ¢ = 1.0, 8 = 0.1, 7, = 0.001). The lower branch solutions are temporally
unstable.

Fig. 1 Note that the value dDaci; appears to increase witle. We also note, that the possibility of quenching a
flame by a sufficiently strong shear flow has been shown recently in a rigorous mathematical study by Constantin
et al.[28].

We can comput®agi; as a function of the other parameters through looking for a nontrivial solution to the
homogeneous linear equations that are obtained by making a small perturbation to the soktgigr{bi)or (13)).
This point will be made clearer when we discuss the stability of the steady states in the next section. ADegph of
against_Le computed in this way is shown Fig. 3(for e = 1.0, 8 = 0.1, 7, = 0.001). The figure shows th&aci
approaches a finite value (approximately 8.5 for this caskgas oo and approaches a nonzero valué.as 0.

The graphs shown ifigs. 1-3show different forms of behaviour depending on whetheis small or large.
There is also a distinctive structure of the reaction zone videis large and it is this limit that we now consider.

2.1. Solution for large Da

Here we describe how the upper branch (stable) solutions behabafarge. The form of the graphs shown in
Fig. 1suggest that, foDa > 1, the profiles have two regions of constant temperature and concentration. There is a
central (fully reacted) region whefé = T, ¢ = 0 and an outer (unreacted region) wh&re- 0,c = 1. There then
must be a reaction zone which joins these two regions and which smoothes out the discontinuities in temperature an
concentration. To determine the structure of this reaction zone we assume that it is centredkg(Da). We then
put

X = Da1/2(x — Xx0) (15)

and look for a solution by expanding
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Fig. 3. A plot of Dagyit againstLe (e = 1.0, 8 = 0.1, 7} = 0.001).

T(X;Da) = To(X) + Da 17Ty (X) + - - -, ¢(X; Da) = co(X) + Da tey(X) + -+,

Te(Da) =79 + Da 27 ® + ... . (16)
A consideration of the resulting equations suggestsahit of O(Dal/2). This suggests that we put

xo(Da) = DaY?(ag + aiDa L +---), Da>> 1, (17)

where thes; are constants to be determined.
The equations at leading order are then

LeTé’ + aoTé + coK (Tp) = 0, Cg + aocé —coK(Tp) =0 (18)
subject to the matching conditions
To — O, cg—>1 asX — oo, To — TC(O), cgc—> 0 asX — —oo. (29)

Primes now denote differentiation with respecktdf we addEgs. (18)integrate and apply the boundary conditions
asX — oo we obtain the equation

LeTé + aoTp + 66 ~+ apco = ap. (20)
If we now letX — —oc in EqQ. (20) we find, on usind19), that
o _1 @)

This result shows, fron(6), that the central temperature within a filament is the burnt temperdtufer large
Damkdhler numbers.

It is the solution to the first equation ¢£8) and (20)subject to(19) and using(21) that determinegg. This
boundary-value problem was solved numerically in a way similar to that used for determining the general filament
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Fig. 4. The solution foDa > 1; ag, the thickness of the central, fully reacted region, plotted aghimgt = 1.0, 8 = 0.1, 7; = 0.001).

solutions. A graph ofig against_e is shown inFig. 4for e = 1.0, 8 = 0.1, T, = 0.001. The figure shows thas,
the position of the reaction front for lard®a, increases witl.e, in line with the profiles shown ifig. 1

We now consider the equations atix—1). We find, as before, that we can add these equations to eliminate the
reaction terms to obtain

LeTy + aoT] + (X + a1)Ty + ¢} + aocy + (X + a1)cy = 0. (22)
The boundary conditions to be applied are that
T1—>TC(1) c1—>0 asX — —oo, T1 — 0 c1—>0 asX — oo. (23)

If we integrateEq. (22)and apply boundary conditior§&9) and (23)we obtain, on using21)

o0
aoTY = / (1—cg — Tp) dX. (24)
—0oQ
The integral in(24) can then be evaluated 65— Le)/ag by integratingequation (20) Thus we have
1-L 1-L
Tcﬂ):—ze with 7o ~ 1+ Da—1< . e)... as Da — oo. (25)
) )

Expression(25) gives Tc(l) = 0 whenLe = 1 and shows why, in the central region, the burnt temperature is
approached from below fdre > 1 and from above foke < 1.

2.2. Solution for small Le

Here we obtain a solution tBgs. (11)valid for Le « 1. We assume thd@a is of O(1) and start by making the
transformatiort = Le~Y/2x. This leads to the equations
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T" + €T’ + DacK(T) =0, "+ Le(td’ —DacK(T)) =0 (26)

still subject to(12), where primes now denote differentiation with respect t&q. (26)suggest looking for a
solution by expanding in powers bé. However, we find that this is not sufficient and we need to expand in powers
of Le¥/?, namely

T=T0+Le1/2T1+LeT2+-~-, c=c0+Lel/261+Lec2+~-~. (27)

At leading order; = 0 from which it follows that

co=1 (28)
and then
Ty + £T5 + DaK (Tp) = 0. (29)

The numerical solution oEq. (29) subject to(12), shows that it has a similar structure to the results shown in
Figs. 1 and 2From the co-ordinate transformatidn = Le'/2 Iy wherely = [5° To(¢) d¢. A graph of/7 against
Da is shown inFig. 5. The main point to note about this figure is the existence of a critical Damkohler number
Dagrit = 3.0136 with two solution branches féxa > Dagyit. This is the limiting value oDagjt atLe = 0 in Fig. 3.
Note that the value of; atDagit decreases withe with 777 ~ 1.530Le2 asLe — 0.

At O(Le!/?) we havec = 0. Hencer; = b1, whereb; is a constant to be determined. Al®) we then have

¢y = DaK (Tp), c5(0) = 0. (30)
We can integrat&q. (30)and using the result obtained frdag. (29)thatDaf0Oo K (Tp) d¢ = I, we have that

co~IrE+by aséE— oo (31)

0 I I T T I T I
2 3 4 5 6 7 g Da ¢

Fig. 5. The solution fot.e « 1; I, obtained from the numerical solution Bf. (29) plotted againsba (¢ = 1.0, 8 = 0.1, 7} = 0.001).
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for some further constamb. A consideration of the equations for tiie (j > 1) in expansior{27) shows that they
can be solved so as to satisfy the outer boundary condition.

Expressior{31)shows that we require an outer region in whitlk= 0, in whichx is now the independent variable
andc = 1+ Le/?¢. At leading order we obtain

"+ xé =0, c~bi+Irx+--- asx— 0, c—0 asx — oo. (32)

The required solution is

c= bl\/gfoo exp(—%) ds = bq [1 —erf <%2>] . (33)

Using the matching condition farsmall then give#, = —Ir+/7/2. The concentration at the centre of the filament
is then
c(0)=1-— Lel/zl_r(Da)\/ng --- aslLe— 0. (34)

We can now see why the termsla#/? are required in the expansi@®7). Without these termis; would effectively

be zero, the solution t&qg. (30)at O(Le) would be the same and again would not satisfy the outer boundary condition
((31) still holds). An outer region would still be needed and be give§32) though withb; = 0. A solution to this
problem cannot be obtained along the lines giveri3s).

2.3. Solution for large Le

The structure of the solution fdre >> 1 is illustrated inFig. 6for Le = 10 andDa = 12.0 (¢ = 1.0, 8 = 0.1,
T; = 0.001). The graph shows that there is an inner region areuad wherer is very small and’ is approximately

1.0

0.8 T

0.6

0.4

0.2

0.0 | T | T T |
0 20 40 60 80 100 120

Fig. 6. The solution for largke; concentratior and temperatur@ profiles forLe = 10%, Da = 12.0 (¢ = 1.0, 8 = 0.1, 7, = 0.001).
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a constant. We start our solution fbe large in this inner region. We leaweunscaled and look for a solution of
Eqg. (11)by expanding

T(x;Le) = Te + Le ™ (x). .., c(x;Le) = Le e (x) + ..., (35)

wherem (> 0) andT¢ (£ 0) are to be determined. The equation fg@iis

¢] +x¢] —acy =0, c1(0) =0, (36)

wherea = Da K (Tg) is a constant=q. (36)can be solved in terms of confluent hypergeometric functjhkas
x2 a+1 1 x2

=A —— 1| —; = = 7

c1(x) oeXD< 2)1 1( L 2) (37)

for some constamg. From(37)it follows that

Ao/

—((a — 1)/2)!2a/2xa(1+ ...) asx — oo. (38)

c1(x) ~

The equation foff1(x) is T} (x) = —ac1(x) which can be integrated to give

aAp x2 a+3 1 x2
T =— —— 1| —: = —= B 39
1(x) (a+2)eXD< x)l 1( 55 2>+ 1 (39)
for some further constamt;. From(39)
A
T1(x) ~ 0oy x4 .. -) asx — oo. (40)

 2(a + 2)((a + 1)/2)122/2

Anouter regionis required to satisfy the outer boundary conditions. The fdEa. ¢1 1)suggests that the appropriate
scaling for this outer region is = Le~/%x with ¢ andT both of O(1). Applying this scaling in expressiort38)
and (40)shows that we should take = «/2. With this, the problem for the outer region is, at leading order

T +&T' +Dak(T) =0, £’ —DaK(T)=0 (41)
(primes denote differentiation with respecttpsubject to

__ Ao
(@ +2)(a+1)

whereAdg = Aoy/7/2%%((a — 1)/2)\.

The problem given by 1) and (42has to be solved numerically and it is this solution that deternfipéndAo).
The results are shown fig. 7a, where we ploi; = f0°° T (¢£) d¢ againstDa (for e = 1.0, 8 = 0.1, 7} = 0.001).
Note that/; = LeY/2 I;. The graph shows that there is a critical Damkohler nunibey;; = 8.503, with two
solutions forDa > Dagjt. This value forDag; is the limiting value for largd.e seen inFig. 3. The numerical
solution givesT; and hence the exponemt = (1/2) Daexp(—(1/e((1 — B)Tc + B))) for expansion(35) in the
inner region. Graphs of andT¢ are shown irFig. 7.

c~AE¥+ -, T ~Tg Et24 ... asE >0, c—>1 T—0asé— oo, (42)

3. Stability of the steady states

To determine the stability of the steady states, we make a perturbation of the form

T(x,t) = Ts(x) + €' T1(x), c(x, 1) = cs(x) + € cr(x), (43)
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Fig. 7. The solution for largke; (a) I, (b) the central temperatuf®g (full line) and the exponent (broken line) for the inner region expansion
(35) plotted againsba (¢ = 1.0, 8 = 0.1, T, = 0.001).

whereTs andcs are the steady states (solutiondmmfs. (11) and (13)and 77 andcy are small. We must allow for
the possibility thato andT1, ¢1 could be complex. Substituting3) into Egs. (7) and (8and linearizing gives

LeTy + XT} + Da(c1K (Ts) + TicsK'(Ts)) — wT1 = 0,
] +xc; — Da(c1K (Ts) + TicsK' (Ts)) — wer = 0 (44)



.Z. Kisset al./ Physica D 176 (2003) 6781 79

Dacrit

150

100

50

0 T T T T |
0.0 0.2 0.4 0.6 0.8 e 10

Fig. 8. A plot of Dagit against (Dacit = € /¢ Dait) for Le = 1.0, 8 = 0.1 (7, = 0.001).

subject to
T{(0) = ¢1(0) = 0, Ty — 0, c1— 0 asx — oo. (45)

Egs. (44) and (45re a homogeneous problem for the eigenvalaad to force a nontrivial solution in the numerical
integrations we also apply the conditi@n(0) = 1.

The turning points in théy—Da curves (se€igs. 2, 5 and Ycorrespond to saddle-node bifurcations, i.e. to points
wherew has a real zero. Thus solvigs. (44) and (45)ith » = 0 (and regardinda as an unknown parameter)
determines the value @a at the saddle-node bifurcation, i.e. determiBag,i;. This was the procedure that was
used to determine the values D&i; shown inFig. 3. We can use this procedure to examine Hoay; varies
with the other parameters. We considered t2ay,i; varied withe. To do so we needed to think about the way in
which we defined our Damkdéhler number. Our form ukgfor the reaction rate, perhaps a more suitable form is
to use the reaction rate at the burnt gas temperaiite define a Damkohler numb®a, related to our choice by
Da = e~Y¢Da. This change is not particularly significant for the larger values thfat we usedd ~ 1) but can
be significant for smaller values ef In Fig. 8we plotDacit againste for Le = 1.0, 8 = 0.1 (and7j = 0.001).
The graph shows that we can have nontrivial solutions even for small valegbaiigh relatively large values ef
are required to have reasonable valueXagi;. For smaller values of (¢ less than about 0.3) the valuesdcrit
increase very rapidly.

We solvedEgs. (44) and (45humerically for a range of values &k, varyingDa. In all cases we found that
the lower solution branch was unstable, in fact on this bramefas real withw > 0. The upper branch solutions
were found to be stable in all the cases considered. Generally, we éotmbe real and negative, though for high
values ofLe (Le ~ 10%) we found thatw could become complex though always Relw) < 0. We were unable
to locate any parameter values at which the solution became unstable (and oscillatory) through a Hopf bifurcation
at Re(w) = 0. These conclusions were confirmed by numerical integrations of the initial-value préble(8)
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and (10) These showed that a threshold temperature input was necessary to generate a nontrivial solution and that
when this was applied, the corresponding upper branch solution was approachkddernwherDa > Dagji. For
Da < Dagit the numerical solution returned to the initial state and the reaction ceasé@ttasased for all inputs.

4. Conclusion

The main feature to emerge from our discussion is the existence of a critical Damkoéhler riDagherAn
important aspect of our kinetic modgl) and (2)in the reaction—diffusion context is that any localized temperature
input has to be above some threshold value if spatial or statiotemporal structures are to be sustained at large times
The effect of the mixing by the flow, seen in our mod@) and (4)through the steady converging flowt, is to
remove the heat from where it is generated by the exothermic reaction. This has the effect of increasing the thresholc
input needed for steady structures to form at large times. Thus, for small values of the Damké&hler number, mixing is
too strong, the heat generated by the reaction is dissipated, the reaction cannot be sustained and the system retur
to its original state. This means that relatively large values of the Damkéhler number are required for nontrivial
states to form within the filaments. This appears at a critical vBlg; of the Damkdhler number where there is
a jump from the totally quenched stgf@a < Dagit) to a fully developed statéDa > Dagyit). Thus the values of
Dagit found in the present study are an important guide in determining where sustained combustion will arise in
the more general flow problefg9].

We found thatDag,j; is not particularly sensitive to the Lewis number (for the values of the other parameters
considered), seEig. 3, increasing from about 3 ife is put to 0 and approaching a limit of about 8.5 for large
values ofLe. However, the resulting temperature and concentration profiles are strongly dependenta &ath
Le. For large values oba a central, fully reacted core develops which is separated from the outer conditions by
a relatively thin reaction zone. In this case combustion effects are spread out over a wide area of the filament. A
similar situation arises for large values of the Lewis number. Here the influence of heat conduction is very much
stronger than the diffusion of the reactant. The effect is to increase the spread of the reaction regi@/f,0
with a thinner inner region of constant temperatligesomewhat less than the burnt gas temperaturel-igge 6
and b. For small values of the Lewis number the reaction region becomes much thinner, large temperatures can be
achieved (relative to the burnt gas temperature) and only small amounts of fuel are consumed.

Criticality is an inherent part of the system and appears to be present for all values of the parameters associate
with the Arrhenius kinetics. To get ‘reasonable’ valueddagi; requires that be relatively largeKig. 8), which can
be regarded as corresponding to smaller activation energies. This is in contrast to other combustion problems wher:
criticality is seen only for the higher activation energies and disappears (sometimes through a hysteresis bifurcation)
at a given activation energy. Finally, we note that we found only stable steady structure®wahermagi;. We
found no further bifurcations to oscillatory behaviour.

Finally, we note that the simple one-dimensional md@gand (4)onsidered here is a somewhat idealised model
of the full advection—reaction—diffusion problem in which the effects of fluctuations of the stretching rate, curvature
of the filaments, interactions between filaments etc. are neglected. Such effects, however, may play an importan
role in certain situations and deserve further investigations.
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