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Abstract

A lattice gas cellular automation (LGCA) model is used to simulate rippling and aggregation in myxobacteria. An efficient
way of representing cells of different cell size, shape and orientation is presented that may be easily extended to model later
stages of fruiting body formation. This LGCA model is designed to investigate whether a refractory period, a minimum
response time, a maximum oscillation period and non-linear dependence of reversals of cells on C-factor are necessary
assumptions for rippling. It is shown that a refractory period of 2–3 min, a minimum response time of up to 1 min and no
maximum oscillation period best reproduce rippling in the experiments ofMyxococcus xanthus. Non-linear dependence of
reversals on C-factor is critical at high cell density. Quantitative simulations demonstrate that the increase in wavelength of
ripples when a culture is diluted with non-signaling cells can be explained entirely by the decreased density of C-signaling
cells. This result further supports the hypothesis that levels of C-signaling quantitatively depend on and modulate cell density.
Analysis of the interpenetrating high density waves shows the presence of a phase shift analogous to the phase shift of
interpenetrating solitons. Finally, a model for swarming, aggregation and early fruiting body formation is presented.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Myxobacteria are one of the prime model systems
for studying cell–cell interaction and cell organization
preceding differentiation. Myxobacteria are social
bacteria which swarm, feed and develop cooperatively
[1]. When starved, myxobacteria self-organize into
a three-dimensional fruiting body structure. Fruiting
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body formation is a complex multi-step process of
alignment, rippling, streaming and aggregation that
culminates in the differentiation of highly elongated,
motile cells into round, non-motile spores. A success-
ful model exists for the fruiting body formation of
the eukaryotic slime moldDictyostelium discoideum
[2–4]. Understanding the formation of fruiting bod-
ies in myxobacteria, however, would provide a new
insight since collective myxobacteria motion de-
pends not on chemotaxis as inDictyostelium but on
contact-mediated signaling (see[5] for a review).
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Fig. 1. A field of immature fruiting bodies ofMyxococcus xanthus,
shown as dark patches, with ripples formed by cells outside of
the aggregates. Darker shades correspond to higher cell density.
(From Shimkets and Kaiser[10] with permission.)

During fruiting body formation myxobacteria cells
are elongated, with a 10:1 length to width ratio, and
move along surfaces by gliding. Gliding occurs in the
direction of a cell’s long axis[6] and is controlled by
two distinct motility systems in myxobacteria[7,8].
One of the most interesting patterns that develops dur-
ing myxobacteria morphogenesis is rippling, which of-
ten occurs spontaneously and transiently during the ag-
gregation phase[9–11]. Rippling myxobacteria form
equidistant ridges of high cell density which appear
to advance through the population as rhythmically
traveling waves[9,10] (Fig. 1). Cell movement in
a ripple is approximately one-dimensional since the
majority of cells are aligned and move in parallel
lines with or against the direction of wave propaga-
tion [12]. Tracking individual bacteria within a rip-
ple has shown that cells reverse their traveling di-
rections back and forth and that each travels about
one wavelength between reversals[12]. The ripple
waves propagate with no net transport of cells[12]
and wave overlap causes neither constructive nor de-
structive interference[12]. Although mechanisms for
gliding are not fully understood, they are believed to
account for both alignment[7,13] and reversals[7] in
myxobacteria.

Rippling is related to a membrane-associated sig-
naling protein calledC-factor. C-factor regulates
rippling [10,12,14], cells without the ability to pro-

duce C-factor fail to ripple[10] and the addition
of C-factor (extracted from fruiting body cultures)
causes cell reversal frequencies to increase three-fold
[12]. C-signaling occurs via the direct cell–cell trans-
fer of C-factor when two elongated cells collide head
to head[12,15–18]. Understanding the mechanisms
of the rippling phase may reveal many clues about
the way myxobacteria organize collective motion
since C-factor is also involved in all other stages of
fruiting body formation. For example, cells lacking in
C-factor fail to aggregate or sporulate[19–21] while
high concentrations of exogeneous C-factor induce
aggregation and sporulation[16,20,22,23].

In this paper we use two lattice gas cellular au-
tomation (LGCA) models to simulate rippling and
aggregation during the fruiting body formation of
myxobacteria, to show the potential of cellular au-
tomata as models for biological pattern formation
processes, and to evaluate, in particular, the necessity
of different biological assumptions shown in previous
models for rippling in myxobacteria.

Sager and Kaiser[12] have proposed that precise
reflection explains the lack of interference between
wave-fronts for myxobacteria rippling. Oriented col-
lisions between cells initiate C-signaling that causes
cell reversals. According to this hypothesis of precise
reflection, when two wave-fronts collide, the cells re-
flect one another, pair by pair, in a precise way that
preserves the wave structure in mirror image.Fig. 2
shows a schematic diagram of this reflection.

We present a new LGCA approach for modeling
cells which is computationally efficient yet approx-
imates continuum dynamics more closely than as-
suming point-like cells. As an example of this new
approach, we present a model for myxobacteria rip-
pling based on the hypothesis of precise reflection
and a model for aggregation based on C-signaling.

This paper is organized as follows. The biologi-
cal assumptions for precise reflection and C-signaling
that motivate the models are described in the next sec-
tion. In Section 3we describe specifics of two LGCA
models. InSection 4results of modeling rippling phe-
nomenon are discussed in detail.Section 5provides
a description of a model for aggregation centers. The
paper ends with a summary section.
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Fig. 2. (A) A reflection model for the interaction between individual cells in two counter-migrating ripple waves. Laterally aligned cells in
counter-migrating ripples (labeled R1 and R2) reverse upon end-to-end contact. Arrows represent the directions of cell movement. Relative
cell positions are preserved. (B) Morphology of ripple waves after collision. Thick and thin lines represent rightward and leftward moving
wave-fronts, respectively. Arrows show direction of wave movement. (C) Reflection of the same waves shown in B, with the ripple cell
lineages modified to illustrate the effect of reversal. (From Sager and Kaiser[12] with permission.)

2. Biological background

In this section we describe the biological observa-
tions which motivate our models for rippling and ag-
gregation.

Rippling and aggregation are both controlled by
C-signaling and are characterized by specific high cell
density patterns (in particular, moving high density
ridges in rippling and stationary high density mounds
in aggregation). There is a marked relationship be-
tween cell density, levels of C-signaling and behav-
iors in myxobacteria triggered by C-signaling[24].
C-signaling increases with density since end-to-end
contacts between cells are more likely with increased
density[25,26]and high cell densities favor spatial ar-
rangements in which there are many end-to-end con-
tacts due to the polarity of myxobacterial cells[25,26].
Cell density and C-signaling levels increase together
from rippling to aggregation and from aggregation to
sporulation[25,26]. Further, increased thresholds of
C-factor induce rippling, aggregation and sporulation,
respectively[22,23,27], suggesting C-signaling lev-
els, as a measure of cell density, are checkpoints for
different stages of development. Kim and Kaiser sug-
gest that C-factor may act as a developmental timer
that triggers sporulation only when cell density is as
high as possible[17,22]. A high density aggregate
will culminate in a fruiting body with a large number
of spores ensuring that the next cycle is started by a
population of cells[28]. Sager and Kaiser have also
observed the effect of C-signaling-competent cell den-
sity upon ripple wavelength[12]. They dilute a cell
population of C-signaling-competent cells with cells

that are able to respond to C-factor but are not able
to transmit it. They find that with increased concen-
trations of these csgA-minus cells, ripple wavelength
increases non-linearly.

In addition to cell density, geometries of cell aggre-
gates are important throughout the stages of fruiting
body formation and distinguish different stages. Dur-
ing the fruiting body formation, cells form aligned
patches from a random distribution[29]. For rip-
pling, a large number of cells must be aligned both
parallel and anti-parallel within the same field. For
streaming, cells form long chains which flow coopera-
tively in aggregation centers[30]. In Stigmatella spp.,
cells moving in circles or spirals form microscopic
transient aggregates. These aggregates disappear as
cells also spiral away tangentially[31]. Macroscopic
aggregates form in areas of high density[31] and
may also disappear as cells apparently stream along
chains from one aggregate to the other[32]. The
mature structures of fruiting bodies are diverse and
species-dependent, ranging in size between 10 and
1000�m [28]. In Myxococcus xanthus, the basal re-
gion of the fruiting body is a shell of densely packed
cells which orbit in two directions, both clockwise
and counter-clockwise, around an inner region only
one-third as dense[25,26]. In Stigmatella aggregates,
cells are organized in concentric circles or ellipses
and cells move in a spiral fashion up the aggregate as
the fruiting body develops[31,33].

Current models for rippling[34–36] assume pre-
cise reflection. Key differences among these models
include their biological assumptions regarding the
existence of internal biochemical cell cycles. It is
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still not known if an internal cell timer is involved
in myxobacterial rippling. Several models with com-
pletely different assumptions all qualitatively produce
ripple patterns resembling experiment.

An internal timer is a hypothetical molecular cell
clock which regulates the interval between reversals.
The internal timer may specify a delay, or minimum
period between reversals, which would include the
refractory period, see below,and a minimum re-
sponse time; the minimum period of time required
for a non-refractory cell to become stimulated to turn.
Also, the internal timer may specify a maximum os-
cillation period, in which case the timer may speed
up or slow down depending upon collisions, but the
cell will always turn within a specified period of time
even without collisions. Individual pre-rippling cells
reverse spontaneously every 5–10 min with a variance
in the period much smaller than the mean[35,37,38].
This would suggest that there is a component of the
timer specifying a maximum oscillation period. Also,
observation of rippling bacteria reveals that cells os-
cillate even in ripple troughs where the density is too
low for frequent collisions[12] further supporting the
hypothesis of a maximum oscillation period.

The refractory period is a period of time immedi-
ately following a cell reversal, during which the cell is
insensitive to C-factor. Although there is no evidence
of a refractory period in the C-signaling system[35],
the refractory period is a general feature of bacterial
signaling systems[35] (for a description of the role
the refractory period plays inDictyostelium, see[39]).
The addition of 0.02 units of external C-factor triples
the reversal frequency of single cells from 0.09 to 0.32
reversals per minute[12]. Cells do not reverse more
frequently at still higher levels of C-factor, however,
suggesting the existence of a minimum oscillation pe-
riod of 3 min in response to C-factor. This minimum
oscillation period would be the sum of the refractory
period and the minimum response, so the duration of
the refractory period cannot be guessed from this fact
alone.

To resolve the conflicts of these models for rippling
our first LGCA model is designed to test different as-
sumptions. The results of our model for rippling shows
that rippling is stable for a wide range of parame-

ters, C-signaling plays an important role in modulating
cell density during rippling, and non-C-signaling cells
have no effect on the rippling pattern when mixed with
wild-type cells. Further, by comparing model results
with experiments, we can conclude reversals during
rippling would not be regulated by a built-in maxi-
mum oscillation period.

We then present a second LGCA model for aggre-
gation based on C-signal alignment, which reproduces
the sequence and geometry of the non-rippling stages
of fruiting body formation in detail, showing that a
simple local rule based on C-signaling can account for
many experimental observations.

3. Model and method

LGCA are relatively simple cellular automata mod-
els. They employ a regular, finite lattice and include
a finite set of particle states, an interaction neigh-
borhood and local rules that determine the particles’
movements and transitions between states[40]. LGCA
differ from traditional CA by assuming particle mo-
tion and an exclusion principle. The connectivity of
the lattice fixes the number of allowed non-zero ve-
locities or channels for each particle. For example, a
nearest-neighbor square lattice has four non-zero al-
lowed channels. The channel specifies the direction
and magnitude of movement, which may include zero
velocity (resting). In a simple exclusion rule, only one
particle may have each allowed non-zero velocity at
each lattice site. Thus, a set of Boolean variables de-
scribes the occupation of each allowed particle state:
occupied (1) or empty (0). Each lattice site on a square
lattice can then contain from zero to four particles with
non-zero velocity.

The transition rule of an LGCA has two steps. An
interaction step updates the state of each particle at
each lattice site. Particles may change velocity state,
appear or disappear in any number of ways as long
as they do not violate the exclusion principle. In the
transport step, cells move synchronously in the di-
rection and by the distance specified by their veloc-
ity state. Synchronous transport prevents particle col-
lisions which would violate the exclusion principle



M.S. Alber et al. / Physica D 191 (2004) 343–358 347

(other models define a collision resolution algorithm).
LGCA models are specially constructed to allow par-
allel synchronous movement and updating of a large
number of particles[40].

3.1. Representation of cells

In classical LGCA, biological cells are dimension-
less and represented as a single occupied node on a lat-
tice (e.g., see[34,36]). Interaction neighborhoods are
typically nearest-neighbor or next-nearest-neighbor on
a square lattice. The exclusion principle makes trans-
port unwieldy when a single cell occupies more than
one node since a cell may only advance if all the chan-
nels it would occupy are available. Similarly, it is dif-
ficult to model the overlapping and stacking of cells.
Cells without dimension are untenable for a sophis-
ticated model of myxobacteria fruiting body forma-
tion, however. Cells are very elongated during rippling,
streaming and aggregation and form regular, dense ar-
rays by cell alignment. Also, a realistic model of cell
overlap and cell stacking is needed since interaction
occurs only at specific regions of highly elongated
cells and cell density is a critical parameter through-
out this morphogenesis.

Börner et al.[34] have mediated the problem of
stacking by introducing a semi-three-dimensional lat-
tice where a thirdz-coordinate gives the vertical po-
sition of each cell when it is stacked upon other cells.
Stevens[41] has introduced a model of rod-shaped
cells that occupy many nodes and have variable shape
in her cellular automata model of streaming and aggre-
gation in myxobacteria. Neither of these two models
are LGCA since they do not incorporate synchronous
transport along channels. We devise a novel way
of representing cells which facilitates variable cell
shape, cell stacking and incomplete cell overlap while
preserving the advantages of LGCA; namely, syn-
chronous transport and binary representation of cells
within channels (e.g., a ‘0’ indicating an unoccupied
channel and a ‘1’ indicating an occupied channel).

We represent the cells as (1) a single node which
corresponds to the position of the cell’s center (or
“center of mass”) in thexy plane, (2) the choice of
occupied channel at the cell’s position designating

Fig. 3. The shaded rectangle corresponds to the cell shape of a
right- or left-moving cell in our model for rippling. This cell is
3 × 21 nodes for a 1× 7 aspect ratio. The star in this figure
corresponds to the cell’s center and the nodes of the interaction
neighborhood where C-factor is exchanged are indicated by filled
circles at the cell poles.

the cell’s orientation and (3) a local neighborhood
defining the physical size and shape of the cell with
associated interaction neighborhoods (Fig. 3). The
interaction neighborhoods depend on the dynamics
of the model and need not exactly overlap the cell
shape. In our models for rippling and aggregation,
we define the size and shape of the cell as a 3× �

rectangle, where� is the cell length. As� increases,
the cell shape becomes more elongated. A cell length
of � = 30 corresponds to the 1× 10 proportions of
rippling M. xanthus cells [17]. Representing a cell
as an oriented point with an associated cell shape is
computationally efficient, yet approximates cell dy-
namics more closely than assuming point-like cells,
since elongated cells may overlap in many ways. We
have also solved the cell stacking problem, since over-
lapping cell shapes correspond to cells stacked on top
of each other. This cell representation conveniently
extends to changing cell dimensions and the more
complex interactions of fruiting body formation.

3.2. LGCA model for rippling

We assume precise reflection and investigate the
roles of a cell refractory period, a minimum response
period, a maximum oscillation period and non-linear
dependence of reversals on C-factor independently.

3.2.1. Local rules

(1) Our model employs a square lattice with periodic
boundary conditions imposed at all four edges.
Unit velocities are allowed in the positive and neg-
ativex directions. (A resting channel may be eas-
ily added to model a small percentage of resting
cells as in[34].)
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(2) Cells are initially randomly distributed with den-
sity δ, whereδ is the total cell area divided by total
lattice area.

(3) Every cell is initially equipped with an internal
timer by randomly assigning it a clock value be-
tween 1 and a maximum clock valueτ. We define
a refractory periodR such that 0≤ R < τ (see a
detailed description of the internal timer, below).
If the internal timerφ of a cell is less thanR, the
cell is refractory. Otherwise, the cell is sensitive.

(4) At each time-step, the internal timer of each re-
fractory cell is increased by 1 while the internal
timer of sensitive cells is increased by an amount
proportional to the number of head-on cell–cell
collisionsn occurring at that time-step.

(5) When a cell’s internal timer has increased past
τ, the cell reverses, the internal timer resets to 0,
and the cell becomes refractory. Reversals occur
as a cell’s center switches from a right-directed
channel to a left-directed channel or vice versa.

(6) During the final transport step, all cells move syn-
chronously one node in the direction of their ve-
locity by updating the positions of their centers.
Separate velocity states at each node ensure that
more than one cell never occupies a single chan-
nel.

3.2.2. Internal timer
We model an internal timer with three parameters;

R, t andτ. R is the number of refractory time-steps,
t the minimum number of time-steps until a reversal
andτ the maximum number of time-steps until a re-
versal. The minimum period of time required for a
sensitive cell to become stimulated to turn is the mini-
mum response periodt −R. During the refractory pe-
riod, cells are insensitive to collisions and the internal
timer advances at a uniform rate. After the refractory
period, cells become sensitive and during this phase
the number of head-on cell–cell collisions accelerates
the internal timer so that the interval between rever-
sals shortens. This acceleration is density-dependent,
so that many simultaneous collisions accelerate the in-
ternal timer more than only one collision.

Our internal timer extends the timer in Igoshin et al.
[35]. They used a phase variableφ to model an oscillat-

ing cycle of movement in one direction followed by a
reversal and movement in the opposite direction. Dur-
ing the refractory period the phase variable advances
at a constant rate but during the sensitive period, the
phase variable advance may increase non-linearly with
the number of collisions. Thus, the evolution of our
timer determines reversal rather than a collision as
in the model of Börner et al.[34]. The state of our
internal timer is specified by 0≤ φ(t) ≤ τ. φ pro-
gresses at a fixed rate of one unit per time-step for
R refractory time-steps, and then progresses at a rate
ω that depends non-linearly on the number of colli-
sionsn which have occurred at that time-step to the
powerp:

ω(x, φ, n, q)=1 +
(

τ − t

t − R

) (
[min(n, q)]p

qp

)
F(φ),

(1)

where

F(φ) =




0 for 0 ≤ φ ≤ R,

0 for π ≤ φ ≤ (π + R),

1 otherwise.

(2)

This equation is the simplest that produces a reversal
period ofτ when no collisions occur, a refractory pe-
riod of R time-steps in which the phase velocity is 1,
and a minimum reversal period oft when a thresh-
old (quorum) numberq of collisions occurs at every
sensitive time-step. There is “quorum sensing” in that
the clock velocity is maximal whenever the number
of collisions at a time-step exceeds the quorum value
q. A particle will oscillate with the minimum reversal
period only if it reaches a threshold number of colli-
sions during each non-refractory time-step (for (t−R)
time-steps). If the collision rate is below the threshold,
the clock phase velocity is less than maximal. How-
ever, as the number of collisions increases from 0 to
q, the phase velocity increases non-linearly asq to the
powerp.

While in the model of Börner et al.[34] there is no
minimum response period for a cell to reverse, and in
the model of Igoshin et al.[35] a minimum response
time is an inherent component of the internal clock,
our model incorporates “on–off switches” for a re-
fractory period, minimum response period, maximum
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oscillation period and quorum sensing. Setting the re-
fractory period equal to 0 time-steps in our model is
the off-switch for the refractory period, and setting
t = R+ 1 is the off-switch for the minimum response
time. No maximum oscillation period is modeled by
choosing a maximum oscillation periodτ greater than
the running period of the simulation, so that the au-
tomatic reversal of cells withinτ time-steps has no
effect on the dynamics of the simulation. There is no
quorum sensing ifq is set to 1 so that a single colli-
sion during a time-step has the same effect as many
collisions.

If there is no refractory period, cells are always
sensitive to collisions. If there is no minimum response
time, cells may reverse immediately after becoming
sensitive if there are sufficiently many collisions in one
time-step. Finally, if there is no maximum oscillation
period, cells may never reverse without sufficiently
many collisions.

3.2.3. Head-on cell–cell collisions
We define an interaction neighborhood of eight

nodes for the exchange of C-factor at the poles of a
cell of length l (seeFig. 3). The cell width of three
nodes is larger than 1 to account for coupling in the
y-direction and the interaction neighborhood must
extend at least two nodes along the length of the
cell to compensate for the discretization of the lattice
since cells traveling in opposite directions may pass
without their poles exactly overlapping.

A head-on cell–cellcollision is defined to oc-
cur when the interaction neighborhoods of two
anti-parallel cells overlap. A cell may collide with
multiple cells simultaneously since the interaction
neighborhood is four nodes at each pole. Note that the
specific shape of the cell is not important for rippling
dynamics since the two areas of C-signaling are the
only places where interaction occurs. Nevertheless,
a shape extending over several nodes is necessary to
permit the necessary overlapping and stacking at high
density since the exclusion principle mandates that
each channel has at most one cell center. Thus, the
cell centers of two colliding cells will be separated
by one cell length and do not compete for channels at
the same node. Also, for sufficiently long cell lengths,

the probability of more than one cell center located at
the same node is low even when the local cell density
is high.

We are able to simulate a rippling population with
arbitrary concentrations of both wild-type and non-C-
signaling cells and quantitatively reproduce their ex-
perimental results in detail, as did Igoshin et al. using
their continuum model[35]. Further, we demonstrate
that the change in wavelength may be entirely ex-
plained by the change in density of C-signaling cells.

4. Rippling results and discussion

Our model forms a stable ripple pattern from a ho-
mogeneous initial distribution for a wide range of pa-
rameters, with the ripples apparently differing only in
ripple wavelength, ripple density and ripple width (see
Fig. 4).

Absence of a maximum oscillation period is mod-
eled by choosing a maximum oscillation periodτ
greater than the running period of the simulation, so
that the automatic reversal of cells withinτ time-steps
has no effect on the dynamics of the simulation. We
find that ripples form with or without a maximum os-
cillation period over the full range of densities. When
there is a maximum oscillation period, the maximum
oscillation period must be chosen greater than twice
the refractory period for the development of ripples.
There is no upper bound on the maximum oscillation
time, which is why the maximum reversal period is
unnecessary. Ripples develop most quickly and cell
oscillations are most regularwith an internal timer
when the maximum oscillation period is carefully
chosen with respect to the other parameters of the
model. Nevertheless, it appears that experimental re-
sults are best reproduced when there is no maximum
oscillation period.

A refractory period is required for rippling for cells
of length greater than 2 or 3 nodes, and although there
may exist a minimum response time of more than one
time-step, it is an interesting result of our model that
the minimum response periodt − R must be small
compared to the refractory period. In particular, rip-
pling occurs whenever the minimum oscillation time
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Fig. 4. Typical ripple pattern including both a cell clock and refractory period in the model. (Cell length= 5, δ = 2, R = 10, t = 15,
τ = 25.) Figure shows the density of cells (darker gray indicates higher density) on a 50× 200 lattice after 1000 time-steps, corresponding
to approximately 200 min in real time.

t is greater than�/v time-steps and the refractory pe-
riod R is at least two-thirdst. The first condition is re-
quired because if the minimum oscillation periodt is
less than the period of time it takes a cell to travel one
cell length, two cells or a cluster of cells will stimulate
each other to oscillate in place. The second condition
that the refractory period is at least two-thirds the min-
imum oscillation period indicates that the minimum
response time of a cell cannot be too long compared
to the refractory period.

Experiments suggest that the minimum oscilla-
tion period of a cell in response to C-factor is about
3 min [12]. According to our result that the minimum
response time cannot be more than two-thirds the
refractory period, we can predict the existence of a re-
fractory period in myxobacteria cells, with a duration
of 2–3 min.

The wavelength of the ripples depends on both the
duration of the refractory period and the density of sig-
naling cells.Fig. 5 shows that the ripple wavelength
increases with increasing refractory period (a) and de-
creases with increasing cell density (b). Notice that
the error bars which show standard deviations of the
mean wavelength over five simulations increase with
wavelength. A refractory period of 2–3 min yields a
ripple wavelength of about 60�m (Fig. 5a), which
corresponds well to typical experimental ripple wave-
lengths[12]. The correspondence between refractory
period and wavelength given inFig. 5 is a only rough
estimate, however. We believe the reasons are that in
these simulations the cell density is relatively low,
which decreases the density of C-factor relative to
experimental conditions, and cells are not very elon-

gated, which increases the density of C-factor relative
to experimental conditions.

Note that inFig. 5a, the curve has a wavelength
of approximately 20�m when the refractory period
is less than 1 min. Since cells have a length of 5�m,
this is the smallest wavelength that may be resolved
as there is only one cell length between subsequent
high density waves. At very high density, when the
refractory period is 0, cells may be stimulated to re-
verse every time-step, so that there would be, theo-
retically, a wavelength of only one node. However,
cells will be uniformly distributed in this case and
there will be no well-defined high density waves. In
the simulations described inFig. 5b, density is in-
creased while refractory and minimum oscillation pe-
riods have a constant value. The minimum possible
wavelength in this case is limited by the minimum os-
cillation period. In particular, the minimum possible
wavelength is twice the minimum distance traveled by
a cell between reversals, which is twice the distance
traveled during the minimum oscillation period, 30�m
in this example. Thus, even as density is increased
very high, the curve must have a horizontal asymptote
at wavelength= 30�m.

4.1. Non-linear response of reversals to C-factor

Reversals depend on the number of collisions a cell
encounters which depends on the density of C-factor.
Thus the number of collisions required for a reversal,
the quorum valueq, should be a function of the den-
sity of C-signaling nodes. The density of C-signaling
nodes is a function of both cell density and cell length
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Fig. 5. (a) Average wavelength in micrometers vs. refractory period in minutes. Cell length� = 4, δ = 1. The internal timer is adjusted so
that the fraction of clock time spent in the refractory period is constant:t = 3R/2 andτ = 5(R/2). (b) Average wavelength in micrometers
vs. density (total cell area over total lattice area). Cell length= 4 with an internal timer given byR = 8, t = 12, τ = 20.

since longer cells have a reduced C-signaling area to
non-C-signaling area ratio. Thus, we describe optimal
quorum valuesq as a function of C-signaling node
density rather than cell density.

At a low density of C-signaling nodes, ripples form
even when bothq andp are 1 so that only one col-
lision during the sensitive period is needed to trigger
an reversal. When the density of C-signaling nodes
is greater than or equal to 1, however, the chances
of collisions are so high in the initial homogeneous
population that cells almost always reverse in the min-
imum number of time-steps and, with no differential
behavior among cells, a rippling pattern fails to form.
Ripples will form at arbitrarily large densities of cells
and C-signaling nodes if the number of collisions
needed to trigger a reversal is increased. When the
number of collisions required for a reversal is greater
than 3 (q > 3), ripples develop more quickly if the
non-linear response to densityp is increased greater
than 1. A value ofp = 3 yields optimal rippling for
all quorum values and densities, which is consistent
with the results of Igoshin et al.[35] for their value
of p [35].

4.2. Ripple phase shift

Counter-propagating ripples appear to pass through
each other with no interference, which lead Sager and
Kaiser to propose the hypothesis of precise reflec-

tion [12]. Indeed, tracking of right-propagating ripples
and left-propagating ripples inFig. 8a, shows that the
waves move continuously despite collisions and sub-
sequent reflection. Inspection of the collision and sub-
sequent reversal of two cells, however, shows there
is a jump in phase equal to exactly one cell length if
they reverse immediately upon colliding (seeFig. 6a).
This phase jump occurs because a cell reverses by
changing its orientation rather than by turning: when a
right-moving particle collides with a left-moving par-
ticle and reverses, it is exactly one cell length ahead
of the left-moving cell that it replaces. When all of the
particles within a ripple are in phase, as is often the
case, this jump is also seen in the ripple waves as two
waves interpenetrate. If the cells continuep more steps
before reversing (for example, if their clocks were al-
most nearτ after the collision), then there would be
a phase jump of� − 2p. If 2p > �, there will be a
phase delay (seeFig. 6b). In their continuous model,
Igoshin et al. ([35], Fig. 3b) also showed when ripples
collide a small jump in phase reminiscent of a soliton
jump.

4.3. Effect of dilution with non-signaling cells

Sager and Kaiser [12] diluted C-signaling (wild-
type) cells with non-signaling (csgA-minus) cells that
were able to respond to C-factor but not produce
it themselves. When a collision occurs between a
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Fig. 6. Space-time plot of a wave inter-penetration. Time increases as the vertical axis descends. Right-directed particles are shown in dark
gray, left-directed particles are shown in light gray. (a) Phase jump of one cell length (nine units) as two cells collide and immediately
reverse. (b) Phase delay as two cells collide and travel eight time-steps before reversing.

signaling and a non-signaling cell, the non-signaling
cell perceives C-factor (and the collision), whereas
the C-signaling cell does not receive C-factor and
behaves as though it has not collided. The ripple
wavelength increases with increasing dilution by
non-C-signaling cells. Simulations of this experiment
with and without a maximum oscillation period give
very different results.Fig. 7a shows that the depen-
dence of wavelength on the fraction of wild-type cells
resembles the experimental curve only when there
is no maximum oscillation period assumed in the
model (compared with Fig. 7(G) in[12]). Thus our
model predicts that rippling cells do not ripple with
a maximum oscillation period. Notice that the range
of wavelengths when there is no assumed maximum
oscillation period is in good quantitative agreement
with that of experiment (compareFig. 7a, solid line
with Fig. 7(G) in [12]).

Fig. 7. (a) Wavelength in micrometers vs. the fraction of wild-type cells with (dotted line) and without (solid line) a maximum oscillation
period. (b) Wavelength in micrometers vs. wild-type density with no csgA-minus cells (dotted line) and when the density of csgA-minus
cells is increased so that the total cell density remains 1.6 (solid line). Density is total cell area over total lattice area and there is no
maximum oscillation period. For (a) and (b), cell length= 4, R = 8, t = 12, τ = 20 (maximum oscillation period) orτ = 2000 (no
maximum oscillation period).

Igoshin et al.[35] have previously reproduced the
experimental relationship between wavelength and
dilution with non-signaling cells (see[35], Supple-
mental materials,Fig. 8) by adjusting their original
internal timer. As the density of C-signal decreases,
the phase velocity slows linearly and the maximum
oscillation period of the internal timer increases
continuously. Thus, the maximum oscillation period
varies in their model. We assume a constant maximum
oscillation period, which is either present or absent
(longer than the simulation running time). If the max-
imum oscillation period increases sufficiently with
decreased density of C-factor so that a cell is always
stimulated to turn before the internal timer would reg-
ulate a turn, then the addition of an internal timer is
superfluous. In this case, the two models are similar.

Our simulations show ripple wavelength increases
with increased dilution by non-signaling cells. Since
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Fig. 8. Cell density over a subsection of the third row of a 5× 500 lattice over the first 500 time-steps for different initial conditions.
Time increases as the vertical axis descends. (a) Cells are initially randomly distributed with density 3. Cell length= 5 nodes,R = 10
nodes,t = 15 nodes andτ = 2000. (b) Same as in (a), but with a central stripe of density 15 and width 50 initially added vertically down
the lattice. (c) Same as in (b), but cells are assigned random orientations at every time-step.

wavelength also increases with decreasing density of
signaling cells (Fig. 5b), we ask if the mutant cells
have any effect on the rippling pattern.Fig. 7b shows
the wavelength dependence on the density of signal-
ing cells when only signaling cells are present (dot-
ted line) and for a mixed population of signaling cells
of the same density with non-signaling cells added so
that the total cell density is always 1.6 (solid line).
Apparently, the decrease in C-factor explains the in-
crease in wavelength. The non-signaling mutants do
not affect the pattern at all.

As density increases, wavelength decreases and the
larger number of cells are distributed over a greater
number of ripples. This result is further evidence of
the role C-signaling plays as a density-sensing and
density-modulating mechanism. To test this further,
we run a simulation for initial conditions in which a
high density stripe stretches vertically down a lattice.
As ripples form and propagate, the cells quickly dis-
tribute more evenly over the lattice. The redistribu-
tion of cells occurs much faster than if cells moved
randomly at each time-step (compareFig. 8b and c).
Thus, although there is no net transport of cells larger
than one wavelength when cells are evenly distributed
[12], there is net migration of cells away from high
density regions.

4.4. Discussion

In our simulations, high density waves of cells form
from a homogeneous distribution of cells for a wide
range of parameters and initial cell density. At low cell
density when there is no assumed maximum oscilla-
tion period, the ripple wavelength is large. The expla-
nation for this is that a larger region of the lattice must
be “swept” to collect an aggregate of cells with suf-
ficiently high density to reverse another aggregate. In
the extreme case where density is nearly zero, a single
cell will keep traveling without ever encountering suf-
ficient collisions, and the wavelength is infinite. Thus,
the mechanism of rippling may be viewed as a mecha-
nistic “sweeping” of an arbitrarily large area, in which
cells modulate the area that they span between rever-
sals so as to efficiently collect ripples of a minimum
density.

At very high cell density, by the same argument,
wavelength is small. The number of ripples per area in-
creases so that the number of cells per ripple does not
increase linearly with the increase in density, but less.
Nevertheless, ripples formed from high density initial
conditions do result in ripples which are wider and
more dense than ripples formed from low density ini-
tial conditions. This may not be viewed as a limitation
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in design, but as the foundation of another possible
role for rippling in myxobacteria: the even distribu-
tion of cells over an arbitrarily large area. When there
are both high and low cell density regions (as in the
simulation ofFig. 8b), many high density waves will
form in the region of highest density, and fewer, lower
density waves will form in the regions of lower den-
sity. At the interface between these regions, a high
density wave encounters a lower density wave. The
high density wave will reverse all the cells of the low
density wave such that all the cells from the low den-
sity wave return toward the low density region. The
cells of the low density wave, on the other hand, will
not be able to reverse all the cells of the higher den-
sity wave. Rather, the lower density wave will only
be able to reverse a proportional number of cells in
the high density wave. The surplus cells in the high
density wave will continue without reversing into the
low density region. Thus, the rippling mechanism in
a region of variable cell density creates a “pulse” of
surplus cells within the high density region which is
efficiently directed into lower density regions.

In summary, rippling is an efficient mechanism for
forming both evenly spaced accumulations of high cell
density, and evenly spaced accumulations of nearly
equal cell density. In experiments, cells do not re-
flect by exactly 180◦. However, since most cells move
roughly parallel to each other, models based on re-
flection are reasonable approximations. Modeling the
experimental range of cell orientations would require
a more sophisticated CA since LGCA require a regu-
lar lattice which does not permit many angles. In the
aggregation section below we describe a model on a
triangular lattice which could be adjusted to incorpo-
rate 120◦ reversals. Although a cell is ready to turn
when the internal timerφ is greater thanτ, it may not
be able to turn if the opposite channel is already occu-
pied. This is another limitation of our LGCA model.
We handle this situation by continuing to transport the
cell in its direction of orientation at each time-step
until the opposite channel is available. The effect of
this delay is negligible, even at high densities within
a ripple, when cells are so long that the probability
of two cell centers occupying the same node is very
small.

5. A preliminary model for aggregation

Rippling is an intermediate, transient stage of
fruiting body formation, which is not necessary for
aggregation formation[32]. Fig. 1 shows a field of
aggregation centers surrounded by ripples. In this
section we present a different LGCA model based on
C-signaling alignment. This LGCA model reproduces
the sequence and geometry of the non-rippling stages
of fruiting body formation in detail, demonstrating
how C-signaling-based alignment can account for
these patterns with very few additional assumptions.

The non-rippling stages of fruiting body formation
include alignment, streaming and aggregation. During
alignment, cells form aligned patches from a random
distribution. While streaming, cells form long chains
which move cooperatively into aggregation center
[30]. Aggregation is the phase in which cells form
rounded collections that may either recede or mature
into fruiting bodies. We model aggregation including
only a simple local rule for C-signal-based alignment.
The aggregates formed in our model are not species-
specific and do not include local rules for rippling.

We use a hexagonal lattice since cell motion dur-
ing aggregation is not one-dimensional as in rippling.
In this specialized LGCA model, identical rod-shaped
cells are all modeled as 3×� rectangles with C-signal
interaction neighborhoods as depicted inFig. 9. Cells
move exactly one node per time-step in the direction of
their orientation and there may only be one cell center
per channel per node. In contrast to rippling, we find
that the cell aspect ratio is an important parameter for
streaming and aggregation, the simulations presented
here all have a 7× 1 aspect ratio for cells.

Myxobacteria align when they move. We choose
an alignment based on C-signaling. We use a Monte
Carlo process, in which cells turn 60◦ clockwise, 60◦

counter-clockwise or persist in their original direc-
tion with probability favoring directions that maximize
overlap of C-signaling nodes. Interaction only occurs
when the C-signaling nodes at the head of a cell over-
lap with the C-signaling nodes at the tail of another
cell, and interaction occurs regardless of cell orien-
tation. Head and tail C-signaling neighborhoods are
shown inFig. 9.
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Fig. 9. The cell shapes of (a) a cell oriented 60◦ or 240◦, (b) a cell oriented 0◦ or 180◦ and (c) a cell oriented 120◦ or 300◦. All cells are
3 × 21 for a 1× 7 aspect ratio. Each cell’s “center of mass” is indicated by a star and the nodes of the interaction neighborhood where
C-factor is exchanged are indicated by the larger black disks at the cell poles.

We model C-signal alignment on a 256×256 lattice,
in which our initial conditions are a random distribu-
tion of cells at high density. Within a few time-steps,
cells form aligned patches (seeFig. 10a). This repro-
duces the initial alignment stage of myxobacteria cells
during fruiting body formation in which cells form an
aligned patchwork[29]. Since there are only six direc-
tions permitted on the lattice, the aligned patchwork
appears as a very regular triangular network. Cells

Fig. 10. Cell density development by C-signal alignment on a 256× 256 lattice. Initial cell density is 10. Cell density (a) at 25 time-steps
(64× 64 lattice subsection) and (b) at 100 time-steps (128× 128 lattice subsection). Cell centers (c) at 200 time-steps (150× 150 lattice
subsection), (d) of a 24× 24 lattice subsection with arrows indicating direction (450 time-steps), (e) at 450 time-steps (100× 100 lattice
subsection) and (f) at 2000 time-steps (100× 100 lattice subsection).

are aligned both parallel and anti-parallel within each
patch since the overlap of C-signaling nodes is maxi-
mized when cells are aligned regardless of their orien-
tation. This geometry is significant because cells have
naturally formed the aligned bi-directional arrays nec-
essary for rippling. The local rules for rippling have
been suppressed in this preliminary model, however,
to evaluate the patterns formed by C-signaling-based
alignment alone.
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The homogeneous triangular network is not stable
over time. As cells move, they turn and flow from
one patch to another. Cells moving in a low density
area are likely to turn into a higher density patch, so
the network of cells condense into thick aggregates
(Fig. 10b). In experiments, a myxobacteria stream
will often merge into an adjacent myxobacteria stream
[41,42]. Fig. 10b shows that the cells move into the
aggregates along streams directed into the aggregate,
reproducing the streaming stage in which myxobacte-
ria cells form long aggregates that move cooperatively
[32].

The aggregates continue to condense while ar-
ranging and dividing into many small, circular orbits
about 1.5 cell lengths (about 10–20�m) in diameter
(Fig. 10c). The aggregates often form in clusters of 2
or 3 closed orbits (Fig. 10b), corresponding to fused
aggregates (sporangioles). InStigmatella erecta, sev-
eral fruiting bodies may form in groups and fuse[28].
A magnified picture of the cell centers of a typical
aggregate show that cells are arranged in dense, con-
centric layers tangent to a relatively low density inner
region (Fig. 10d). Thus, they are geometrically equiv-
alent to the basal region of aggregates inM. xanthus.

Cells in our simulation simultaneously move both
clockwise and counter-clockwise around the aggre-
gate, as they do in the fruiting bodies ofM. xanthus
[25]. The microscopic circular or elliptic orbits ofStig-
matella spp. often disappear as cells spiral away from
the aggregate[31]. Similarly most orbits in our sim-
ulation also eventually disappear as cells spiral away
from the aggregate. Nevertheless, orbits typically sur-
vive for several hundred time-steps, which is about
5–10 complete revolutions for each cell.

During myxobacteria aggregate formation, several
aggregation centers will form and, inexplicably, one
aggregation center will grow as an adjacent aggre-
gation center disappears[32]. Our simulations offer
a closer look at this process: a stream may form
that connects two adjacent aggregation centers and,
stochastically, cells stream from one aggregation cen-
ter to another until the largest aggregation center
absorbs the smaller one (Fig. 10e).

Fig. 10f shows several stable aggregates which have
developed at 200 time-steps. Notice that the stable

hollow aggregate has a much thicker annulus of cells
than the non-stable orbits ofFig. 10c, suggesting that
only large hollow aggregates are stable. In our simu-
lation at a threshold density within the aggregate, the
hollow region of an aggregate will fill with cells such
that cells are arranged in six dense overlapping lay-
ers (Fig. 10f). The third aggregate shown is a chain of
cells which span the lattice and thus form an orbit due
to the periodic boundary conditions of the lattice.

It has been proposed in[31] that circular motility
at aggregation sites, trail following and local accumu-
lation of slime account for fruiting body formation in
Stigmatella spp. We hypothesize that once C-signaling
has drawn cells into an aggregate, cell and slime co-
hesivity cause myxobacteria cells to round up into a
mound while constant cell velocity pushes cells toward
the surface of the mound, so that cells form a dense
hemisphere of cells spiraling around a hollow center.
In our model, a closed, circulating orbit of cells is
the only stable configuration of a stationary aggregate
since cells are constantly moving. At low and interme-
diate density, these orbits are hollow and cells are ar-
ranged tangentially within an annulus. At a threshold
density, however, every channel of every node within
the aggregate becomes occupied and there is no hol-
low center. We hypothesize that in a more advanced
three-dimensional model, the addition of a local rule
accounting cell and slime cohesivity will cause cells
to round while maintaining the hollow center.

This model is preliminary because only C-signal-
based alignment is modeled and the aggregates formed
are not species-specific. In this simulation, a 256×
256 lattice size was chosen, which corresponds to an
80�m × 80�m region and about 10,000 cells for an
averaged cell density of 10, much smaller compared
to normal fruiting bodies that may be up to 1000�m
in diameter.

In a more advanced model to be described in a forth-
coming paper[43], the local rules for rippling will be
added to model rippling and aggregation concurrently.
Tracking of rippling cells in experiment (see Fig. 6
in [12] and Fig. 6 in[25]) suggest that reversals are
about 150◦ changes in orientation rather than exactly
180◦, as we have assumed in the model for rippling of
this paper. On a triangular lattice, a reversal of 120◦
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would be an equally good approximation of the 150◦

rotation. C-signaling-based alignment combined with
local rules for rippling would ensure that the majority
of cells still remain parallel. Nevertheless, a regular
shift in orientation by 120◦ or 180◦ may have an in-
teresting effect on the final distribution of cells and,
subsequently, fruiting bodies.

Fruiting bodies among different myxobacteria
species are very diverse (see Fig. 3 in[44]). For exam-
ple, whileMyxococcus fruiting bodies are a relatively
simple, single mound of cells, other species form clus-
ters of mounds called sporangioles that are raised on
a stalk. The interaction of adventurous verses social
motility may account for these different morpholo-
gies[32]. During stalk formation ofStigmatella spp.,
cells are arranged perpendicularly to the mound as
the fruiting body is lifted[31,33]. Also, fruiting body
stalks may be composed of a larger, second cell-type
[31]. Thus, once the stages of fruiting body formation
have been modeled in general, it would be interesting
to determine which parameters need to be varied to
model the fruiting bodies of different species.

6. Summary

In this paper, we present a new LGCA approach
for modeling cells which is computationally efficient
yet approximates continuum dynamics more closely
than assuming point-like cells. As an example of this
new approach, we present a model for myxobacteria
rippling based on the hypothesis of precise reflection.
The results of our model show that rippling is sta-
ble for a wide range of parameters, C-signaling plays
an important role in modulating cell density during
rippling, and non-C-signaling cells have no effect on
the rippling pattern when mixed with wild-type cells.
Further, by comparing model results with those of ex-
periment, we can conclude reversals during rippling
would not be regulated by a built-in maximum oscil-
lation period. We also present a second LGCA model
based on C-signal alignment which reproduces the se-
quence and geometry of the non-rippling stages of
fruiting body formation in detail, showing that a sim-
ple local rule based on C-signaling can account for
many experimental observations.
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