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Abstract

Quasipatterns have been found in dissipative systems ranging from Faraday waves in vertically vibrated fluid layers to
nonlinear optics. We describe the dynamics of octagonal, decagonal and dodecagonal quasipatterns by means of coupled
Ginzburg–Landau equations and study their stability to sideband perturbations analytically using long-wave equations as well
as by direct numerical simulation. Of particular interest is the influence of the phason modes, which are associated with the
quasiperiodicity, on the stability of the patterns. In the dodecagonal case, in contrast to the octagonal and the decagonal case, the
phase modes and the phason modes decouple and there are parameter regimes in which the quasipattern first becomes unstable
with respect to phason modes rather than phase modes. We also discuss the different types of defects that can arise in each
kind of quasipattern as well as their dynamics and interactions. Particularly interesting is the decagonal quasipattern, which
allows two different types of defects. Their mutual interaction can be extremely weak even at small distances. © 2001 Elsevier
Science B.V. All rights reserved.

PACS: 47.54·+r; 47.20.Ky; 47.35·+i; 61.44.Br
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1. Introduction

Since the discovery of quasicrystals in 1984 [1], much attention has been paid to the properties of these materials.
In contrast to perfect crystals they lack periodicity, but preserve long-range orientational order. Due to this lack of
periodicity quasicrystals may have noncrystallographic rotational symmetry and, in fact, materials have been found
with 5-, 8-, 10- or 12-fold rotational axes.

In dissipative systems, the possibility of quasiperiodic structures, or quasipatterns, was also suggested some time
ago [2]. Since then they have been observed in Faraday waves with one- and two-frequency forcing [3,4] and in
nonlinear optics [5]. Marangoni convection with a deformable interface has been suggested to support quasipatterns
[6], although they have not been observed so far. They have also been predicted in a model for the deformation of
thin films subjected to laser irradiation [7].
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In Faraday waves, a great variety of patterns has been observed. They include superlattices, rhombic states,
oscillons, as well as quasipatterns [8–10]. While quasipatterns are nonperiodic structures, superlattices are periodic
in a scale larger than the critical wavelength of the system. In order for superlattices and quasipatterns to be stable,
the mutual suppression of plane-wave modes of different orientation has to be sufficiently weak. This can be due to
a few, somewhat different mechanisms. When forced with two frequencies, the system can exhibit simultaneously
instabilities at two different wavelengths and the quasipatterns and superlattices appear near this bicritical point. The
angle between the wavevectors of the destabilizing modes depends on the ratio of the two wavelengths. It determines
whether the resulting patterns corresponds to a superlattice or a quasipattern. A mechanism involving two length
scales was suggested sometime ago for quasicrystals [11] and studied in dissipative systems by means of a modified
Swift–Hohenberg equation with two marginal modes [12]. The second length scale need not be associated with
a proper instability. It can be sufficient that one of the modes is weakly damped. The interaction of the unstable
mode with this damped mode can then lead to a reduction in the mutual suppression of modes subtending a certain
angle [13]. Alternatively, the interaction with the damped mode can strongly enhance the saturating self-coupling
term which then effectively leads to a reduction of the competition over a wide range of angles [14,15]. This favors
patterns with a large number of modes. Calculations of the coefficients of the amplitude equations for Faraday waves
suggest that this is indeed the case [16,17].

In nonlinear optics, the optical field in a nonlinear cavity can be rotated in order to obtain a structure with the
desired number of modes [5]. In these systems, it is also possible to arrange patterns with two different spatial scales,
leading to complex quasicrystalline structures [18–20]. However, dodecagonal quasipatterns have been observed in
optical systems even with continuous rotational symmetry [21].

The relative stability of perfect quasipatterns has already been addressed [2]. In the present paper, we are interested
in the stability of n-fold quasipatterns to sideband perturbations, in particular to slowly varying modulations. We
will assume that the physical fields can be expanded as a sum of Fourier modes rotated by 2π/n relative to each
other (similar to the density wave picture of quasicrystals), with slowly varying amplitudes in space and time. Using
symmetry arguments, we determine a set of coupled Ginzburg–Landau equations for these amplitudes. Due to the
lack of periodicity, a rigorous derivation from the basic equations using a center manifold reduction has not been
possible so far. Thus, we consider the Ginzburg–Landau equations as phenomenological models and obtain general,
analytical expressions for the stability of quasipatterns that can be applied to specific problems and compared with
experiments.

As is well known in the study of quasicrystals, the long-wave dynamics of the system is governed by two types
of modes: phonons and phasons. The former ones are marginal modes arising from spatial translation symmetries.
The phasons, on the other hand, are additional marginal modes characteristic of quasicrystals and appear because of
the quasiperiodic nature of these structures. Similarly, in the case of two-dimensional quasipatterns, the phases can
be split into two subsets, according to their transformation properties. There are the two usual phase modes related
to translations in space and, in addition, phason modes, corresponding to internal rearrangements in the pattern.
As we will see later, in octagonal and dodecagonal quasipatterns the latter modes have a very simple geometrical
interpretation. Since these quasipatterns can be viewed as two superimposed square (hexagonal) lattices rotated by
2π/8 (2π/12), the phason modes correspond to relative translations between the two lattices. It is worth mentioning
that when the angle between the two lattices satisfies certain conditions, the whole structure becomes periodic with
a wavelength larger than that of the individual lattices. The resulting patterns are known as superlattices [22]. In
this case, extra resonance conditions among the modes are satisfied [23], and the phason modes become damped
and can, in principle, be eliminated in a long-wave analysis.

This paper is organized as follows. In the next three sections, we study octagonal, decagonal and dodecagonal
quasipatterns arising from steady bifurcations. In each case, we start with the amplitude equations and study
various simple solutions and their relative stability. Our main focus is the long-wave dynamics of the quasiperiodic
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solutions. We derive coupled equations for the phase and phason modes, obtaining the diffusive counterpart to the
elastic equations for a quasicrystal [24]. We then calculate the long-wave stability limits for sideband perturbations
and investigate numerically the behavior arising from the instabilities. In Section 5, we discuss the different types
of defects that appear in each kind of quasipattern and their dynamics and interactions. Conclusions are presented
in Section 6.

2. Octagonal quasipatterns

2.1. Ginzburg–Landau equations

We consider a quasipattern composed of four modes, ψ = η
∑4

n=1An(x, t) eikn·x̂ + c.c. + h.o.t., where η � 1
and the amplitudes Ai(x, t) satisfy the equations (after rescaling):

∂tAi = µAi + (n̂i · ∇)2Ai − Ai[|Ai |2 + ν|Ai+2|2 + γ (|Ai+1|2 + |Ai+3|2)] (1)

with µ the control parameter and n̂i the unit vector in the direction of the wavenumber ki (see Fig. 1a). The
amplitudes Ai depend on slow scales x = ηx̂ and t = η2 t̂ . Here and in the following, the indices are repeated
cyclically with period 4. Thus, A5 corresponds to A1, etc. The coefficients ν and γ measure the interaction between
modes that subtend an angle of π/2 and π/4, respectively.

Eq. (1) has gradient structure

∂tAi = − ∂F

∂Āi

, (2)

and can be derived from the Lyapunov functional

F ≡
∫∫

dx dy F=
∫∫

dx dy
4∑

i=1

[
−µ|Ai |2 + |(n̂i · ∇)2Ai |2 + 1

2
|Ai |4+γ |Ai |2|Ai+1|2 + ν

2
|Ai |2|Ai+2|2

]
.

(3)

Therefore, the dynamics of the system are relaxational.
In order to calculate the different solutions, we write Aj = aj eiφj , with aj real. Splitting into real and imaginary

parts yields

∂tai = µai − ai[a
2
i + νa2

i+2 + γ (a2
i+1 + a2

i+3)], (4)

∂tφi = 0. (5)

Fig. 1. Fourier modes composing the (a) octagonal, (b) decagonal, and (c) dodecagonal quasipatterns. Solid vectors denote the modes described
by Eqs. (1), (41), (87) and (88), respectively.
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Fig. 2. Octagonal case. Different types of solutions of Eq. (1) obtained by reconstructing the physical field ψ from the amplitudes Ai : (a)
rectangles, (b) squares, (c) 1D quasipattern, and (d) octagonal quasipattern.

The amplitudes can be considered to be real (φ1 = · · · = φ4 = 0). There are five different kinds of simple solutions
[2] (see Fig. 2):

1. Rolls: a2 = a3 = a4 = 0 and a1 = √
µ. The value of the Lyapunov functional for rolls is: FR = − 1

2µ
2.

2. Squares: a2 = a4 = 0 and a1 = a3 = √
µ/(ν + 1), FSq = −µ2/(ν + 1).

3. Rectangles: a3 = a4 = 0 and a1 = a2 = √
µ/(γ + 1), FRect = −µ2/(γ + 1).

4. One-dimensional quasipattern: a4 = 0 and

a2 =
√
µ(1 + ν − 2γ )

1 + ν − 2γ 2
, a1 = a3 =

√
µ(1 − γ )

1 + ν − 2γ 2
, (6)

⇒ F1DQ = −µ2

2

3 + ν − 4γ

1 + ν − 2γ 2
. (7)

It is quasiperiodic in the direction of k2 and periodic along k4. As is typical for solutions with sub-maximal
isotropy, this solution exists only over a limited range of the nonlinear coefficients (1 + ν − 2γ )(1 − γ ) > 0. It
is always unstable [2].

5. Quasipattern: a1 = · · · = a4 = R, with R satisfying

R =
√

µ

1 + ν + 2γ
⇒ FQ = − 2µ2

1 + ν + 2γ
. (8)

The conditions for linear stability of these solutions are given by:

1. Rolls: ν > 1, γ > 1.
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2. Squares: γ > 1
2 (1 + ν), −1 < ν < 1.

3. Rectangles: ν > 1, −1 < γ < 1.
4. Quasipattern: − 1

2 (1 + ν) < γ < 1
2 (1 + ν), −1 < ν < 1.

2.2. Long-wave analysis

We assume that the conditions for the two-dimensional quasipattern to be stable with respect to homogeneous
perturbations are satisfied and study its stability to sideband perturbations. In particular, we study the stability of
the pattern as a function of its wavenumber. We will restrict the analysis to perfect quasipatterns, in which the
wavenumber is the same in all the modes. This will allow us to obtain analytical expressions for the stability
boundaries. A perfect quasipattern with wavenumber k slightly different from critical is given by Ai = R eiqn̂i ·x,
with R = |A1| = |A2| = |A3| = |A4| =

√
(µ− q2)/(1 + ν + 2γ ) and ηq = |k − kc|. We expand around this

solution, Ai = (R+ ri) ei(qn̂i ·x+φi). Considering first only homogeneous perturbations (ri = ri(t), φi = φi(t)) and
separating real and imaginary parts, the linearized equations for the perturbations are:

∂t ri = −2R2ri − 2νR2ri+2 − 2γR2(ri+1 + ri+3), (9)

∂tφi = 0. (10)

For the amplitude perturbations there are three eigenvalues, two corresponding to one-dimensional eigenspaces,
σr̂1 = −2R2(1 + ν + 2γ ) for vr̂1 = 1

2 [r1 = 1, r2 = 1, r3 = 1, r4 = 1], and σr̂2 = −2R2(1 + ν − 2γ ) for
vr̂2 = 1

2 [−1, 1,−1, 1]. The other eigenvalue σr̂3,r̂4 = −2R2(1 − ν) corresponds to a two-dimensional eigenspace
spanned by vr̂3 = 1

2 [−1,−1, 1, 1], vr̂4 = 1
2 [−1, 1, 1,−1].

The four phases are marginal modes. Physically, it is more convenient to rearrange them into phase and phason
modes. The first two are related to translations in space and can be written as

uT
φx

=
[
φ1 = 1√

2
, φ2 = 1√

2
cos

(
2π

8

)
, φ3 = 0, φ4 = 1√

2
cos

(
6π

8

)]
, (11)

uT
φy

= 1√
2

[
0, sin

(
2π

8

)
, sin

(
4π

8

)
, sin

(
6π

8

)]
. (12)

There still remains a two-dimensional subspace orthogonal to this one. An orthonormal basis for it is given by

uT
ϕ1

= 1√
2

[
1,− cos

(
2π

8

)
, cos

(
4π

8

)
,− cos

(
6π

8

)]
, (13)

uT
ϕ2

= 1√
2

[
0,− sin

(
2π

8

)
, sin

(
4π

8

)
,− sin

(
6π

8

)]
. (14)

This choice of the phason modes corresponds to relative translations (in the x- and y-directions, respectively)
between the two square lattices that compose the quasipattern. It is worth mentioning that the phason modes do not
transform as a vector. In fact, under rotations by an angle θ , the transformation of the phason field ϕ̃ = (ϕ1, ϕ2)

corresponds to that of a regular vector for a rotation by an angle 5θ (cf. Eqs. (30), (31)).
When spatial modulations are included, the perturbation equations become

∂t ri = −2qR(n̂i · ∇)φi + (n̂i · ∇)2ri − 2R2ri − 2νR2ri+2 − 2γR2(ri+1 + ri+3), (15)

∂tφi = (n̂i · ∇)2φi + 2q

R
(n̂i · ∇)ri . (16)
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Now the phase modes are no longer marginal, but exhibit diffusive dynamics. In order to study these long-wave
dynamics, we define a small parameter ε and introduce slow time and space scales: εt , ε1/2x. The amplitude and
phase perturbations are expanded as

ri(ε
1/2x, εt) = ε

4∑
j=1

r̂ ij (ε
1/2x, εt)vi

r̂j
, (17)

φi(ε
1/2x, εt) = ε1/2[φx(ε

1/2x, εt)uiφx + φy(ε
1/2x, εt)uiφy + ϕ1(ε

1/2x, εt)uiϕ1
+ ϕ2(ε

1/2x, εt)uiϕ2
]. (18)

Inserting the expansion into Eqs. (15) and (16), we obtain at order ε1/2 the eigenvalues for the homogeneous
perturbations, at order ε a relation between the stable and marginal modes of the type r̂i = fi(∇φx,∇φy,∇ϕ1,∇ϕ2),
and at order ε3/2 a solvability condition for the marginal modes. This gives us the slow, long-wave dynamics. In
component form the final equations are

∂tφx = D1∇2φx + (D2 −D1)∂x(∇ · �φ)+D3(∂
2
xϕ1 − 2∂2

xyϕ2 − ∂2
yϕ1), (19)

∂tφy = D1∇2φy + (D2 −D1)∂y(∇ · �φ)+D3(−∂2
xϕ2 − 2∂2

xyϕ1 + ∂2
yϕ2), (20)

∂tϕ1 = D4∇2ϕ1 + (D5 −D4)∂x(∂xϕ1 + ∂yϕ2)+D3(∂
2
xφx − 2∂2

xyφy − ∂2
yφx), (21)

∂tϕ2 = D4∇2ϕ2 + (D5 −D4)∂y(∂xϕ1 + ∂yϕ2)+D3(−∂2
xφy − 2∂2

xyφx + ∂2
yφy), (22)

where the values of the coefficients are given by

D1 = 1

4
− q2

u
, (23)

D2 = 3

4
− q2

u
− 2q2

v1
= D1 +D′

2, (24)

D3 = D1, (25)

D4 = D1, (26)

D5 = 3

4
− q2

u
− 2q2

v2
= D1 +D′

5 (27)

with v1 = 2R2(1 + ν + 2γ ), v2 = 2R2(1 + ν − 2γ ), u = 2R2(1 − ν), and R given by Eq. (8) with µ replaced by
µ − q2. Eqs. (19)–(22) are the diffusive analog of the elastic equations for octagonal quasicrystals, and their form
can be deduced directly by means of symmetry arguments (see, for instance [24], in the case of quasicrystals).

A more compact notation, in which the symmetries become more evident, can be achieved by writing the phase
and phason modes as complex fields. Let φ = φx + iφy , ϕ = ϕ1 + iϕ2 and ∇ = ∂X + i∂Y . Then the former
expressions become

∂tφ = D1|∇|2φ + 1
2 (D2 −D1)∇(∇̄φ + ∇φ̄)+D3 eiξ ∇̄2ϕ̄, (28)

∂tϕ = D4|∇|2ϕ + 1
2 (D5 −D4)∇(∇̄ϕ + ∇ϕ̄)+D3 eiξ ∇̄2φ̄. (29)

The angle ξ depends on the basis that is chosen for the phase and phason modes. Since the specific choice does not
have any physical relevance, α does not appear in the dispersion relation. In our case, ξ = 0. Now it is easy to see
that these equations are invariant under rotations of nπ/4. In fact, under such a rotation φ → enπ i/4φ, ∇ → enπ i/4∇,



B. Echebarria, H. Riecke / Physica D 158 (2001) 45–68 51

ϕ → e5nπ i/4ϕ, and consequently

∇̄2φ̄ → e−2nπ i/4∇̄2 e−nπ i/4φ̄ = e−3nπ i/4∇̄2φ̄, (30)

∇̄2ϕ̄ → e−2nπ i/4∇̄2 e−5nπ i/4ϕ̄ = enπ i/4∇̄2ϕ̄. (31)

Thus, while ∇̄2φ̄ transforms as ϕ, ∇̄2ϕ̄ transforms as φ.
In order to calculate the stability boundaries, normal modes must be considered: φ = φ0 eiQ·x, ϕ = ϕ0 eiQ·x.

From Eqs. (19)–(22), it can be shown that the stability curves are given by the expression:

2D1D2D4D5 = D2
3[(D1 +D2)(D4 +D5)+ (D1 −D2)(D4 −D5) cos(8θ)− 2D2

3], (32)

or, using Eqs. (23)–(27):

D2
1D

′
2D

′
5 sin2(4θ) = 0, (33)

where θ = arctan(Qy/Qx). When θ = nπ/4, this condition is always satisfied. In this case, the eigenvalues are

σ1 = 0, σ2 = −2D1Q
2, (34)

σ3,4 = 1

2

(
−2D1 −D′

2 −D′
5 ±

√
4D2

1 + (D′
2 −D′

5)
2

)
Q2, (35)

and one of the eigenvalues is always marginal. (From Eqs. (15) and (16), it is easy to see that the growth rate
of a perturbation to the phase φi in a direction perpendicular to n̂i is zero.) This means that the perturbations
perpendicular to each set of rolls evolve on a still slower time scale that is not captured with Eq. (1). This situation
is equivalent to that of the zig-zag instability of rolls or squares [25,26], and we will consider it separately.

When θ �= nπ/4, the expression for the eigenvalues becomes very complicated, but the stability limits are given
by the condition D2

1D
′
2D

′
5 = 0. Thus, two eigenvalues become zero when D1 = 0 and the other two when D′

2 = 0
and D′

5 = 0, respectively. From this, the stability curves are given by

D1 = 0 ⇒ µ1 = 3 + ν + 4γ

1 − ν
q2, (36)

D′
2 = 0 ⇒ µ2 = 3q2, (37)

D′
5 = 0 ⇒ µ5 = 3 + 3ν + 2γ

1 + ν − 2γ
q2. (38)

When γ = 0, the former equations reduce to the long-wave stability limits found in the case of square patterns
[26]. It is interesting to note that the instability corresponding to D′

2 = 0 is given by the usual value for the Eckhaus
curve. Typical stability diagrams are shown in Fig. 3. When ν = γ , the problem is degenerate and µ1 = µ5

(Fig. 3a). Which instability occurs first depends on the values of the coefficients ν and γ . For γ > 0, ν < γ ;
ν+ γ < 0, γ < 0; and ν+ γ > 0, ν > γ , the first instability is that corresponding to D′

5, D′
2, and D1, respectively.

The third case is shown in Fig. 3b. The symbols denote the results obtained linearizing Eq. (1) and solving the
eigenvalue problem associated with the 8 × 8 matrix. These results agree perfectly with those obtained with the
long-wave approximation, showing that the relevant instabilities are long wave.

The stability of the zig-zag mode cannot be studied within Eq. (1). In order to resolve the degeneracy when
θ = nπ/4, it is necessary to go to higher order in the gradient expansion, to include derivative terms in the direction
perpendicular to each set of rolls. Then, in Eq. (1), we use the replacement

(n̂i · ∇)2 → [(n̂i · ∇)− iδ∇2]2, (39)

where δ is a small coefficient, whose size depends on the distance from threshold, δ = O(η).



52 B. Echebarria, H. Riecke / Physica D 158 (2001) 45–68

Fig. 3. Stability diagrams for: (a) ν = γ = 0.5, and (b) ν = 0.7, γ = 0.4. The short-dashed, dashed and dot-dashed lines correspond to D′
2 = 0,

D′
5 = 0 and D1 = 0, respectively. In (a) and (b), the dotted line gives the zig-zag instability. The circles are obtained solving the full dispersion

relation associated with Eqs. (15) and (16).

This is equivalent to the Newell–Whitehead–Segel operator (NWS) (∂x + i∂2
y /kc)

2 in the case of rolls. However,
the intrinsic anisotropy of the rolls makes the modulations in the x- and y-directions scale differently, so the ∂x and
∂2
y terms in the NWS operator appear at the same order in the perturbation expansion. In our case, on the other hand,

this distinction between normal and perpendicular directions is no longer possible, and the term ∇2 is formally of
higher order. As a result, the zig-zag instability evolves in a much longer time scale than the rest of the instabilities.

On this time scale, the perturbations associated with the other instabilities will decay, and we can assume that
the phase of each of the modes only depends on the direction perpendicular to that mode. Then it is easy to see that
the equations decouple. On a super-slow time, ε4t , and taking q to be small, q = ε2q̃, the usual nonlinear phase
equation for the zig-zag instability is obtained

∂tφi = 2q̃δ(τ̂i · ∇)2φi − δ2(τ̂i · ∇)4φi + 6δ2[(τ̂i · ∇)φi]2(τ̂i · ∇)2φi, (40)

where τ̂i is the unit vector perpendicular to n̂i . When q̃ < 0, the pattern is unstable. As the coefficient in front
of the cubic term is positive, the instability is supercritical. In order to confirm this, we have performed nu-
merical simulations of the amplitude equations (1) using a fourth-order Runge–Kutta method with an integrat-
ing factor that computes the linear derivative terms exactly in Fourier space. In Fig. 4, the evolution of this
zig-zag instability is shown, starting with a perturbation of the quasipattern in the direction perpendicular to

Fig. 4. Reconstruction of the octagonal quasipattern from the amplitudes Ai for the zig-zag instability at the times: (a) t = 0, (b) t = 1000, and
(c) t = 3000. The simulations are done with 64 × 64 Fourier modes and the values of the coefficients: µ = 5, ν = 0.7, γ = 0.4, q = −0.05,
L = 25, kc = 10kmin and δ = 0.1.
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n̂i : A1 = R eiqx(1 + 0.1i cos(4πy/L)), Aj = R eiqn̂i ·x, j �= 1. As expected, the instability saturates, resulting
in a distorted quasipattern.

3. Decagonal quasipatterns

3.1. Ginzburg–Landau equations

For the decagonal quasipattern, we consider the expansion (cf. Fig. 1b),ψ = η
∑5

n=1An(x, t) eikn·x +c.c.+h.o.t.
The amplitudes Ai(x, t) now satisfy the equations

∂tAi =µAi + (n̂i · ∇)2Ai − Ai[|Ai |2 + ν(|Ai+1|2 + |Ai+4|2)+ γ (|Ai+2|2 + |Ai+3|2)]
+αAi+1Ai+2Ai+3Ai+4, (41)

where µ is the control parameter and ν and γ measure the interaction between modes subtending an angle of
2π/5 and 4π/5, respectively. The indices are repeated cyclically with period 5. Although the quartic term is
higher order than the others, we have included it in Eq. (41) to account for the resonant interaction among the
five wavevectors,

∑5
j=1k̂j = 0 (see Fig. 1b). Without this term there would be a spurious one-parameter class of

solutions, parameterized by the global phase, Φ = ∑5
j=1φj , all with the same energy. The resonance term lifts this

degeneracy by rendering the global phase (slightly) damped.
The Lyapunov functional for the decagonal case is given by

F =
∫∫

dx dy
5∑

i=1

[−µ|Ai |2 + |(n̂i · ∇)2Ai |2 + 1
2 |Ai |4 + ν|Ai |2|Ai+1|2 + γ |Ai |2|Ai+2|2]

−α(A1A2A3A4A5 + c.c.). (42)

Writing again Aj = aj eiφj , we now have

∂tai = µai − ai[a
2
i + ν(a2

i+1 + a2
i+4)+ γ (a2

i+2 + a2
i+3)] + αai+1ai+2ai+3ai+4 cos(Φ), (43)

ai∂tφi = −αai+1ai+2ai+3ai+4 sin(Φ) (44)

with Φ = ∑5
j=1φj , the global phase. For a quasiperiodic solution, a1 = · · · = a5 = R and Eq. (44) becomes

∂tΦ = −5αR3 sin(Φ). (45)

There are two stationary solutions: one stable (Φ = 0), the other unstable (Φ = π). We will consider the former
one.

Because the resonant term involving α is quartic, it cannot appear in systems with the reflection symmetry
Ai → −Ai which arises, for instance, in Boussinesq convection or in Faraday waves with one-frequency forcing.
In that case (α = 0), Φ is arbitrary to the order considered in Eq. (41) and, for Φ �= 0, π , solutions with pentagonal
rather than decagonal symmetry can bifurcate from the trivial state. The situation is analogous to that of the triangle
solutions in the case of hexagonal symmetry [27]. The global phase gets fixed by the higher-order resonance term
Āi |Ai+1|2|Ai+2|2|Ai+3|2|Ai+4|2, which leads to ∂tΦ ∼ sin(2Φ), implying Φ = nπ/2 for the regular pentagonal
solution. We will not consider these solutions in the following and take φ1 = · · · = φ5 = 0.

There are six different kinds of simple solutions (see Fig. 5): rolls, two types of rectangles, two types of
one-dimensional quasipatterns and the decagonal quasipattern. They are given by:

1. Rolls: a2 = · · · = a5 = 0 and a1 = √
µ, FR = − 1

2µ
2.
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Fig. 5. Decagonal case. Different types of solutions of Eq. (41): (a) rolls, (b) rectangles (R1), (c) rectangles (R2), (d) and (e) 1D quasipatterns
(H1) and (H2), and (f) decagonal quasipattern.

2. Rectangles (R1): a1 = a2 = a5 = 0 and a3 = a4 = √
µ/(ν + 1), FR1 = −µ2/(ν + 1).

3. Rectangles (R2): a2 = a3 = a5 = 0 and a1 = a4 = √
µ/(γ + 1), FR2 = −µ2/(γ + 1).

4. One-dimensional quasipatterns (H1): a2 = a5 = 0 and

a1 =
√
µ(1 + ν − 2γ )

1 + ν − 2γ 2
, a3 = a4 =

√
µ(1 − γ )

1 + ν − 2γ 2
, (46)

FH1 = −µ2

2

ν + 3 − 4γ

ν − 2γ 2 + 1
. (47)

They exist provided (1 − γ )(1 + ν − 2γ ) > 0.
5. One-dimensional quasipatterns (H2): a3 = a4 = 0 and

a1 =
√
µ(1 + γ − 2ν)

1 + γ − 2ν2
, a2 = a5 =

√
µ(1 − ν)

1 + γ − 2ν2
, (48)

FH2 = −µ2

2

3 + γ − 4ν

1 + γ − 2ν2
. (49)

They exist provided (1 − ν)(1 + γ − 2ν) > 0. Both H1 and H2 are quasiperiodic in one dimension and periodic
in the other.

6. Quasipattern: a1 = · · · = a5 = R, with R satisfying

0 = µ− (1 + 2ν + 2γ )R2 + αR3. (50)
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The analytic solution is quite complicated. For α = 0, it simplifies to

R =
√

µ

1 + 2ν + 2γ
⇒ FQ = −5

2

µ2

1 + 2ν + 2γ
. (51)

7. In addition, when α = 0, there is another solution, with a5 = 0 and

a1 = a4 =
√

µ(1 − ν)

1 + γ + ν + γ ν − ν2 − γ 2
, (52)

a2 = a3 =
√

µ(1 − γ )

1 + γ + ν + γ ν − ν2 − γ 2
. (53)

It is also quasiperiodic in the two spatial dimensions and exists if (1 − ν)(1 − γ ) > 0.

The conditions for linear stability are:

1. Rolls: ν > 1, γ > 1.
2. Rectangles (R1): −1 < ν < 1, γ > 1.
3. Rectangles (R2): ν > 1,−1 < γ < 1.
4. 1D quasipattern (H1):

2γ − 1 < ν < 1, (54)

1 − ν 1
2 (1 +

√
5)− γ 1

2 (1 −
√

5) < 0. (55)

5. 1D quasipattern (H2):

2ν − 1 < γ < 1, (56)

1 − ν 1
2 (1 −

√
5)− γ 1

2 (1 +
√

5) < 0. (57)

6. The quasiperiodic solution given by Eqs. (52) and (53) is always unstable.
7. Decagonal quasipattern:

1 − ν 1
2 (1 +

√
5)− γ 1

2 (1 −
√

5)+ Rα > 0, (58)

1 − ν 1
2 (1 −

√
5)− γ 1

2 (1 +
√

5)+ Rα > 0, (59)

2(1 + 2ν + 2γ )− 3αR > 0. (60)

When (60) is violated, the quasipattern undergoes a saddle-node bifurcation that generates an unstable branch
with larger amplitude (see Fig. 6). For these amplitudes, the quartic term is of the same order as the other terms
in Eq. (41), which is inconsistent with the amplitude expansion. We restrict ourselves therefore to the range
3αR � 2(1 + 2ν + 2γ ).

For R = 0, Eqs. (58) and (59) are complementary to the stability conditions (55) and (57) for the one-
dimensional quasipatterns. Thus, at onset one of the one-dimensional quasipatterns can be stable, while the
two-dimensional quasipattern is unstable (or vice versa). For α > 0, the two-dimensional quasipattern can gain
stability with increasing µ, while the one-dimensional quasipattern is still stable. This bistability is expected
to persist even if higher-order terms were included in the Ginzburg–Landau equations (41), since they would
contribute only terms of the order R2 to the stability conditions. For a small range of parameters ν and γ , the
stabilization of the two-dimensional quasipattern can occur for amplitudes for which these higher-order terms
would still be negligible.
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Fig. 6. Sketch of the bifurcation diagram for the decagonal quasipattern, as given by Eq. (50) (solid and dotted lines representing stable and
unstable branches, respectively). The saddle-node bifurcation occurs at amplitudes for which (41) is not valid any more.

3.2. Long-wave analysis

Proceeding as in the case of the octagonal quasipattern, we obtain for the linearized perturbation equations

∂t ri = −2qR(n̂i · ∇)φi + (n̂i · ∇)2ri + R3α


 5∑
j=1

rj − 2ri


 − 2R2ri

−2νR2(ri+1 + ri−1)− 2γR2(ri+2 + ri−2), (61)

∂tφi = (n̂i · ∇)2φi + 2q

R
(n̂i · ∇)ri − αR3

5∑
j=1

φj (62)

with R satisfying

0 = (µ− q2)− (1 + 2ν + 2γ )R2 + αR3. (63)

For the amplitude perturbations there are three eigenvalues. One eigenvalue, σR = R2(3αR − 2 − 4ν − 4γ ),
corresponds to a one-dimensional eigenspace spanned by

vT
H = 1√

5
[r1 = 1, r2 = 1, r3 = 1, r4 = 1, r5 = 1]. (64)

The other two eigenvalues are given by σT2,3 = R2(−2 − 2αR + ν(1 ± √
5) + γ (1 ∓ √

5)) and each corresponds
to 2 two-dimensional eigenspaces. Four orthonormal vectors spanning these spaces are

vT
T1

= 1√
5 + √

5

[
−1 + √

5

2
,

1 + √
5

2
,−1, 0, 1

]
, (65)

vT
T3

=
√

1
40 [−(1 −

√
5),−(1 −

√
5),−(1 +

√
5), 4,−(1 +

√
5)], (66)

corresponding to σT2 and

vT
T2

= 1√
5 − √

5

[
−1,

1 − √
5

2
,−1 − √

5

2
, 1, 0

]
, (67)

vT
T4

=
√

1
40 [−(1 −

√
5),−(1 +

√
5),−(1 +

√
5),−(1 −

√
5), 4] (68)

to σT3 .
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The global phase is a stable mode with a one-dimensional subspace spanned by uT
Φ = [φ1 = 1, . . . , φ5 = 1]/

√
5.

As with the octagonal quasipattern, there are four marginal phase modes. The two corresponding to translations in
space can be written as

uT
φx

=
√

2

5

[
1, cos

(
2π

5

)
, cos

(
4π

5

)
, cos

(
6π

5

)
, cos

(
8π

5

)]
, (69)

uT
φy

=
√

2

5

[
0, sin

(
2π

5

)
, sin

(
4π

5

)
, sin

(
6π

5

)
, sin

(
8π

5

)]
. (70)

The two phason modes can be written as

uT
ϕ1

=
√

2

5

[
1, cos

(
6π

5

)
, cos

(
12π

5

)
, cos

(
18π

5

)
, cos

(
24π

5

)]
, (71)

uT
ϕ2

=
√

2

5

[
0, sin

(
6π

5

)
, sin

(
12π

5

)
, sin

(
18π

5

)
, sin

(
24π

5

)]
. (72)

Under rotations, the phason mode ϕ̃ = (ϕ1, ϕ2) changes with twice the rotation angle.
The expansion of the perturbations includes now the global phase:

ri(x, t) = ε

4∑
j=1

r̂ ij (ε
1/2x, εt)vi

r̂j
, (73)

φi(x, t)= ε1/2[φx(ε
1/2x, εt)uiφx + φy(ε

1/2x, εt)uiφy + ϕ1(ε
1/2x, εt)uiϕ1

+ ϕ2(ε
1/2x, εt)uiϕ2

]

+εΦ(ε1/2x, εt)uiΦ, (74)

and the long-wave equations can be written as

∂tφx = D1∇2φx +D2∂x(∇ · �φ)+D3(∂
2
x2ϕ1 + 2∂2

xyϕ2 − ∂2
y2ϕ1), (75)

∂tφy = D1∇2φy +D2∂y(∇ · �φ)+D3(∂
2
x2ϕ1 − 2∂2

xyϕ1 − ∂2
y2ϕ2), (76)

∂tϕ1 = D4∇2ϕ1 +D3(∂
2
x2φx − 2∂2

xyφy − ∂2
y2φx), (77)

∂tϕ2 = D4∇2ϕ2 +D3(∂
2
x2φy + 2∂2

xyφx − ∂2
y2φy). (78)

The values of the coefficients are given by

D1 = 1

4
− q2

u1
, (79)

D2 = 1

2
− 2q2

v
, (80)

D3 = D1, (81)

D4 = 1

2
− q2

u1
− q2

u2
= D1 + D̃4 with D̃4 = 1

4
− q2

u2
(82)

with u1 = R2(2(Rα + 1) − ν(1 + √
5) − γ (1 − √

5)), u2 = R2(2(Rα + 1) − ν(1 − √
5) − γ (1 + √

5)),
v = R2(2(1 + 2ν + 2γ )− 3Rα), and R a solution of Eq. (63).
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Fig. 7. Stability diagrams for α = 1 and (a) ν = γ = 0.7, and (b) ν = 0.5, γ = 0.9. The dash-dotted line represents the line at which the 2D
quasipattern becomes stable. Below this line, the 1D quasipattern H2 is the only stable solution.

In complex form (φ = φx + iφy, ϕ = ϕ1 + iϕ2,∇ = ∂x + i∂y), the phase equations read

∂tφ = D1|∇|2φ + 1
2D2∇(∇̄φ + ∇φ̄)+D3 eiξ ∇̄2ϕ̄, (83)

∂tϕ = D4|∇|2ϕ +D3 eiξ ∇̄2φ̄. (84)

Again, the angle ξ depends on the relative orientation between the phase and phason modes. For the basis chosen,
ξ = 0.

Considering normal modes, φ = φ0 eiQ·x, ϕ = ϕ0 eiQ·x, the eigenvalues now become

σ1,2 = −1

2

[
D1 +D4 ±

√
(D1 −D4)2 + 4D2

3

]
Q2, (85)

σ3,4 = −1

2

[
D1 +D2 +D4 ±

√
(D1 +D2 −D4)2 + 4D2

3

]
Q2. (86)

Typical stability diagrams are shown in Fig. 7. When ν = γ , the eigenvalues become degenerate (D4 = 2D1

and three eigenvalues go through zero at the curve u1 = u2 = 4q2). In Fig. 7b, the one-dimensional quasipattern
persists amplitude-stable beyond the dash-dotted lines (cf. (57)). We have not investigated its stability with respect
to sideband perturbations.

4. Dodecagonal quasipatterns

4.1. Ginzburg–Landau equations

Dodecagonal quasipatterns can be thought of as a combination of two rotated hexagon patterns. The amplitudes
Ai(x, t) corresponding to the modes indicated in Fig. 1c satisfy the equations:

∂tAi =µAi + (n̂i · ∇)2Ai + αAi+2Ai+4

−Ai[|Ai |2 + ν(|Ai+2|2 + |Ai+4|2)+ γ (|Ai−1|2 + |Ai−3|2)+ 2β|Ai+1|2], i = 1, 3, 5, (87)

∂tAi =µAi + (n̂i · ∇)2Ai + αAi+2Ai+4

−Ai[|Ai |2 + ν(|Ai+2|2 + |Ai+4|2)+ γ (|Ai+1|2 + |Ai+3|2)+ 2β|Ai−1|2], i = 2, 4, 6. (88)
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Here the indices are cyclic with period 6,µ is the control parameter and ν, γ , and β measure the interaction between
modes subtending angles of 2π/3, π/6 and π/2, respectively. The two hexagonal sub-lattices imply two resonance
conditions: k1+k3+k5 = 0 and k2+k4+k6 = 0. Correspondingly, there are two global phases:Φ1 = φ1+φ3+φ5

and Φ2 = φ2 + φ4 + φ6.
The Lyapunov functional can be written as

F =
∫∫

dx dy
6∑

i=1

[
−µ|Ai |2 + |(n̂i · ∇)2Ai |2 + 1

2
|Ai |4 + ν|Ai |2|Ai+2|2 + γ

2
|Ai |2|Ai+3|2

+γ + 2β

2
|Ai |2|Ai+1|2 + (−1)i+1(γ − 2β)

2
|Ai |2|Ai−1|2

]
− α(A1A3A5 + A2A4A6 + c.c.). (89)

In terms of the magnitudes ai and phases φi , Eqs. (87) and (88) can be written as

∂tai = µai + αai+2ai+4 cos(Φ)− ai[a
2
i + ν(a2

i+2 + a2
i+4)+ γ (a2

i±1 + a2
i±3)+ 2β|ai±1|2], (90)

ai∂tφi = −αai+2ai+4 sin(Φ), (91)

where Φ = Φ1 or Φ = Φ2 for i odd and i even, respectively. For hexagonal or dodecagonal patterns in which the
nonzero amplitudes are fixed, ai = R, Eq. (91) becomes

∂tΦ1,2 = −3αR sin(Φ1,2). (92)

Among the four solutions Φ1,2 = 0 and Φ1,2 = π only the one with Φ1 = Φ2 = 0 is stable. In the following,
we assume the amplitudes Aj to be real and take φ1 = · · · = φ6 = 0. Now the simple solutions include rolls,
rectangles, squares, hexagons, mixed modes, one-dimensional quasipatterns and the dodecagonal quasipattern (see
Fig. 8). They are given by:

1. Rolls: a2 = · · · = a6 = 0 and a1 = √
µ, FR = − 1

2µ
2.

2. Rectangles (R): a2 = · · · = a5 = 0 and a1 = a6 = √
µ/(γ + 1), FR1 = −µ2/(γ + 1).

3. Squares (S): a3 = · · · = a6 = 0 and a1 = a2 = √
µ/(2β + 1), FR2 = −µ2/(2β + 1).

4. Hexagons (H): a2 = a4 = a6 = 0 and

a1 = a3 = a5 = α ±
√
α2 + 4µ(1 + 2ν)

2(1 + 2ν)
, (93)

FH = − 3
2R

2[2µ− R2(1 + 2ν)] − αR3. (94)

Fig. 8. Dodecagonal case. Several of the solutions of Eqs. (87) and (88): (a) rectangles, (b) hexagons, and (c) dodecagonal quasipattern.
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5. Mixed mode: a2 = a4 = a6 = 0, a1 = a3 �= a5. It is always unstable.
6. One-dimensional quasipattern: a2 = a4 = 0, a1,3,5,6 �= 0.
7. Two-dimensional quasipattern: a1 = · · · = a6 = R, with R given by

R = α ±
√
α2 + 4µ(1 + 2ν + 2γ + 2β)

2(1 + 2ν + 2γ + 2β)
, (95)

FQ = −3R2[2µ− R2(1 + 2ν + 2γ + 2β)] − 2αR3. (96)

The relative stability of the former solutions is as follows:

1. Rolls are always unstable at onset. Provided ν > 1, β > 1
2 and γ > 1, they become stable at a larger value of

µ, given by

µ = α2

(ν − 1)2
. (97)

2. Rectangles are unstable at onset and become stable at

µ = α2(1 + γ )

(ν − 1)(ν + 2β − γ − 1)
(98)

if ν > 1 and ν + 2β > γ + 1 > 0.
3. Squares are also unstable at onset. If ν + γ > 1 + 2β > 0, they become stable at

µ = α2(1 + 2β)

(1 + 2β − ν − γ )2
. (99)

4. Hexagons appear in a saddle-node bifurcation at

µ = − α2

4(1 + 2ν)
, (100)

but when 2(γ + β) < −(1 + 2ν), they are always unstable with respect to the dodecagonal quasipattern. If
2(γ + β) > −(1 + 2ν), they are stable at the saddle-node but can become unstable as a result of a secondary
bifurcation. In particular, if ν > 1, they can become unstable to rolls at

µ = α2(2 + ν)

(ν − 1)2
, (101)

and, when 1 + 2ν > 2(γ + β), to the dodecagonal quasipattern for

µ >
2α2(γ + β)

(1 + 2ν − 2γ − 2β)2
. (102)

5. Dodecagonal quasipatterns appear in a saddle-node bifurcation at

µ = −1

4

α2

(1 + 2ν + 2γ + 2β)2
. (103)

When 2|γ + β| < 1 + 2ν, they are unstable at onset with respect to hexagons, but become stable through a
secondary bifurcation, at

µ = α2

4

6γ + 6β − 2ν − 1

(1 + 2ν − 2γ − 2β)2
. (104)
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Therefore, there is hysteresis between hexagons and the dodecagonal quasipattern. A similar situation is found
in the case of superlattices [23].

Besides, if 1 + γ < ν + 2β or 1 + 2β < γ + ν, the quasipattern becomes again unstable to rectangles or
squares, respectively. The values of the control parameter for these transitions are

µRec = α2(3γ + ν + 2)

(1 + γ − ν − 2β)2
, (105)

µSq = α2(2 + γ + ν + 4β)

(1 + 2β − γ − ν)2
. (106)

4.2. Long-wave analysis

The long-wave analysis proceeds analogous to that of the previous cases. The linearized perturbation equations
are given by

∂t ri = −2qR(n̂i · ∇)φi + (n̂i · ∇)2ri + Rα(ri+2 + ri+4 − ri)− 2R2ri − 2νR2(ri+2 + ri+4)

−2γR2(ri±1 + ri±3)− 4βR2ri∓1, (107)

∂tφi = (n̂i · ∇)2φi + 2q

R
(n̂i · ∇)ri − αR(φi + φi+2 + φi+4) (108)

with

R = α +
√
α2 + 4(µ− q2)(1 + 2ν + 2γ + 2β)

2(1 + 2ν + 2γ + 2β)
. (109)

For the amplitude perturbations there are four eigenvalues. Two correspond to one-dimensional eigenspaces, σT1 =
−R[2R(1 + 2ν + 2γ + 2β)− α], with eigenvector vT

H = [1, 1, 1, 1, 1, 1]/
√

6 and σT2 = −R[2R(1 + 2ν − 2γ −
2β)− α], with vT1 = [−1, 1,−1, 1,−1, 1]/

√
6. The other four eigenvalues σT3,4 = −2R[R(1 + γ − 2β − ν)+ α]

and σT5,6 = −2R[R(1 + 2β − γ − ν) + α] are associated with 2 two-dimensional eigenspaces. Four orthonormal
vectors spanning these spaces are

vT
T3

= [− 1
2 ,

1
2 ,

1
2 ,− 1

2 , 0, 0], vT
T4

= [− 1
2 ,

1
2 , 0, 0, 1

2 ,− 1
2 ], (110)

corresponding to σT3,4 and

vT
T5

= [ 1
2 ,

1
2 , 0, 0,− 1

2 ,− 1
2 ], vT

T6
= [0, 0, 1

2 ,
1
2 ,− 1

2 ,− 1
2 ], (111)

to σT4,5 .
The global phases are again stable modes with one-dimensional subspaces spanned by uT

Φ1
= [1, 0, 1, 0, 1, 0]/

√
3

and uT
Φ2

= [0, 1, 0, 1, 0, 1]/
√

3. There are four marginal modes. The two phase modes corresponding to translations
in space can be written as

uT
φx

= [1, 0,− 1
2 ,− 1

2

√
3,− 1

2 ,
1
2

√
3]√

3
, (112)

uT
φy

= [0, 1, 1
2

√
3,− 1

2 ,− 1
2

√
3,− 1

2 ]√
3

. (113)
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An orthonormal base for the phason modes, which corresponds to a relative translation of the two hexagonal lattices,
is given by

uT
ϕ1

= [1, 0,− 1
2 ,

1
2

√
3,− 1

2 ,− 1
2

√
3]√

3
, (114)

uT
ϕ2

= [0, 1,− 1
2

√
3,− 1

2 ,
1
2

√
3,− 1

2 ]√
3

. (115)

As in the case of the octagonal quasipattern, under rotations the phason field ϕ̃ = (ϕ1, ϕ2) changes with five times
the rotation angle.

An expansion very similar to that in the decagonal case leads to the long-wave equations

∂t �φ = D1∇2 �φ + (D2 −D1)∇(∇ · �φ), (116)

∂tϕ1 = D3∇2ϕ1 + (D4 −D3)∂y(∂yϕ1 + ∂xϕ2), (117)

∂tϕ2 = D3∇2ϕ2 + (D4 −D3)∂x(∂xϕ1 + ∂yϕ2) (118)

with �φ = (φx, φy). Note that to this order the equation for the phase modes of the dodecagonal pattern is the same
as that for an isotropic medium. The values of the coefficients are

D1 = 1

4
− q2

u1
, (119)

D2 = 3

4
− 2q2

v1
− q2

u1
, (120)

D3 = 1

4
− q2

u2
, (121)

D4 = 3

4
− 2q2

v2
− q2

u2
(122)

with v1 = −R[α−2R(2β+2ν+2γ +1)], v2 = −R[α+2R(2β+2γ −2ν−1)], u1 = 2R[α+R(1+γ −2β−ν)],
u2 = 2R[α + R(1 + 2β − γ − ν)] and R given by Eq. (95).

In complex form the long-wave equations become

∂tφ = D1|∇|2φ + 1
2 (D2 −D1)∇(∇̄φ + ∇φ̄), (123)

∂tϕ = 1
2 (D3 +D4)|∇|2ϕ + 1

2 (D3 −D4)∇̄2ϕ̄. (124)

One feature that distinguishes the dodecagonal quasipattern from the octagonal and the decagonal quasipattern is the
fact that its long-wave dynamics decouple into pure phase and pure phason modes. This is due to the symmetry of
the dodecagonal quasipattern as has been pointed out earlier for the case of quasicrystals [28]. Thus, the eigenvalues
are simply given by

σ1 = −D1Q
2, σ2 = −D2Q

2, σ3 = −D3Q
2, σ4 = −D4Q

2, (125)

and one obtains separate phase and phason instabilities when D1,2 or D3,4 change sign, respectively. Typical
stability diagrams are shown in Fig. 9. The stability limits due to phase and phason modes are indicated by dashed
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Fig. 9. Stability diagrams for α = 1 and (a) ν = 0.7, γ = 0.3 and β = 0.5, (b) ν = 0.9, γ = 0.8 and β = 0.4, and (c) ν = 0.9, γ = 0.9 and
β = 0.2. The lower solid line corresponds to the saddle-node bifurcation of the quasipattern. In all the figures, the quasipattern is unstable at
onset and becomes stable above the dotted line (cf. Eq. (104)). In (a) and (c) there is a further transition to rectangles and squares, respectively,
above the upper solid line. The stable region of the quasipattern is limited by long-wave instabilities corresponding to the phase (long dashed
lines) and phason modes (dash-dotted lines). The diamond and square in (c) correspond to the simulations in Figs. 10 and 11, respectively.

and dash-dotted lines, respectively. Over wide ranges of parameters the stable wavenumber band is limited by
phason modes.

For the phase modes, the eigenvectors correspond to the usual irrotational and divergence free modes (equivalent
to transversal and longitudinal waves in an elastic medium). They satisfy

∇ · �φl = 0, ∇ × �φt = 0. (126)

For the phason modes, on the other hand, the eigenvectors are

ϕ̃σ3 =
[ −Qx

Qy

]
eiQ·x, ϕ̃σ4 =

[
Qy

Qx

]
eiQ·x. (127)

These modes satisfy the equations:

∂yϕ
σ3
1 + ∂xϕ

σ3
2 = 0, ∂xϕ

σ4
1 − ∂yϕ

σ4
2 = 0. (128)

In order to study the behavior arising from these instabilities, we have simulated numerically Eqs. (87) and (88).
We start with a perfect dodecagonal quasipattern and add a perturbation in the form of ϕ̃σ3 (Fig. 10a) or ϕ̃σ4

(Fig. 11a), with Q = (4π/L, 4π/L). Since the perturbation is along the diagonal, the evolution of the system will
be quasi-one-dimensional. This will allow us to study the sub- or supercritical nature of the bifurcation. In Fig. 10,
we show the evolution of the instability corresponding to σ3 > 0. The perturbation grows until it creates phase slips
at time t = 380 (Fig. 10b) on a line perpendicular to the direction of the perturbation. Along that line four of the
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Fig. 10. Instability corresponding to σ3 > 0 (diamond in Fig. 9c) for: (a) t = 0, (b) t = 380, and (c) t = 450 (µ = 5, ν = 0.9,
γ = 0.9, β = 0.2, q = 0.4, L = 50, kc = 16kmin).

amplitudes vanish and change their wavenumber. Thus, the phase perturbation does not saturate and the instability is
sub-critical. In Fig. 10c, the final state is shown, after the defects have annihilated each other in pairs. It corresponds
to a slightly distorted quasipattern, with different wavenumbers in the various modes.

The instability corresponding to σ4 > 0 is also sub-critical, generating phase slips (Fig. 11b). But for the values
of the parameters in the simulation the square pattern minimizes the Lyapunov functional and it nucleates around
the defects. The patches of squares grow (Fig. 11c) until they occupy the whole cell, resulting in a slightly distorted
square pattern (Fig. 11d).

5. Defects

The properties of defects in the quasipatterns differ noticeably in the three cases investigated in this paper. Due to
the absence of resonance terms in (1) (also to higher orders), the octagonal quasipattern can be considered as made
up of four sub-lattices corresponding to the four basic wavevectors. Each of the sub-lattices has its own defects.
Thus, taking into account the two possible ‘charges’ of the defects there are 2×4 = 8 different defects. They interact
strongly with defects of the same sub-lattice via the phase. The interaction with the defects in the other sub-lattices
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Fig. 11. Instability corresponding to σ4 > 0 (square in Fig. 9c) for: (a) t = 0, (b) t = 440, (c) t = 445, and (d) t = 600 (µ = 20, ν = 0.9,
γ = 0.9, β = 0.2, q = 0.5, L = 25, kc = 16kmin).

is only through the variations in the magnitude and is much weaker. Overall, we expect the dynamics to be quite
similar to that of defects in square patterns, which are made of two rather than four sub-lattices. Topologically, two
defects of different sub-lattices could bind to form a vectorial defect (cf. [29]). However, in our simulations we
have not observed such kind of defects in the octagonal quasipattern. This seems to be consistent with simulations
of the vector complex Ginzburg–Landau equation, where vectorial defects were never observed in the potential
limit [30].

For the dodecagonal quasipatterns, the Ginzburg–Landau equations (87) and (88) have (quadratic) resonance
terms coupling the three modes in each of the two hexagonal sub-lattices. At the defects, therefore, two amplitudes
in the same sub-lattice must vanish leading to penta–hepta defects very similar to those in the usual hexagonal
patterns. However, while in the core of penta–hepta defects of hexagons the pattern corresponds to the roll pattern, it
corresponds in the dodecagonal case to the one-dimensional quasipattern. As in the hexagonal case, each penta–hepta
defect carries two opposite charges corresponding to the two vanishing amplitudes. This leads to a total of 2 × (3 ×
2) = 12 different defects. While in the octagonal case collisions between defects can only annihilate them or leave
them unchanged, collisions between penta–hepta defects can change their type. An example of such a collision is
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given by the process

(+,−, 0; 0, 0, 0)+ (−, 0,+; 0, 0, 0) → (0,−,+; 0, 0, 0). (129)

Here +/− in the ith entry stands for a defect with positive/negative charge in the mode Ai , while 0 indicates that
the corresponding amplitude has no defect. The semicolon separates the two hexagonal sub-lattices. While there are
a number of different such type-changing collisions, a penta–hepta defect in one sub-lattice can never change into
one in the other sub-lattice, since there is no resonance term in (87) and (88) involving modes of both hexagonal
sub-lattices. In other words, there is no penta–hepta defect that has one vanishing amplitude in one sub-lattice and
one vanishing amplitude in the other sub-lattice.

Penta–hepta defects within the same sub-lattice interact with each other strongly through the phase. The strength
of the interaction (attraction vs. repulsion) is expected to be related to the sum N of the products of the charges of
the individual defects [31]

N =
n∑

j=1

δ1
j δ

2
j . (130)

Here δ1,2
j is the topological charge of the first and second defect, respectively, in the modeAj . For hexagons (n = 3),

N can only take on the values −2, −1, 1, and 2, since for any defect pair there is always a mode that vanishes in both
of them. Thus, within each sub-lattice all penta–hepta defects interact strongly. Penta–hepta defects of different
sub-lattice will interact only weakly (through the magnitude). Considering that collisions do not change defect
type across the sub-lattices, one may expect the ordering dynamics that leads from disordered patterns to ordered
quasipatterns to occur in the two sub-lattices essentially independently.

The decagonal case appears to be the most interesting one in terms of the defect dynamics. As in the case of
defects in hexagon patterns, the (quartic) resonance term requires that in a defect two amplitudes vanish. In contrast
to the hexagonal or dodecagonal case there are, however, two qualitatively different defect types. In one of them,
the vanishing Fourier modes are rotated by 2π/5 with respect to each other, while in the other they are rotated by
2×2π/5. While in the former case the core exhibits the quasipatternH2, it is the quasipatternH1 that appears in the
latter case (cf. Fig. 5d and e). Examples of the two cases are shown in Fig. 12a and b. Overall, there are 5 × 4 = 20
different defects.

The same arguments employed in the hexagonal case [31] suggest that the interaction between defects is richer
in the decagonal quasipattern than in hexagons or in the other quasipatterns investigated in the present paper. In
hexagonal or dodecagonal patterns two penta–hepta defect pairs always share a mode that vanishes in both pairs and
the charge product N given by (130) never vanishes, implying that the defects always interact strongly through the
phase. In the decagonal quasipattern, however, the analogously defined N (with n = 5) can also take the value 0,
since two pairs of defects need not share a mode with vanishing amplitude. The above argument therefore suggests
that in this case the interaction is very weak. We have confirmed this expectation by numerical simulations of the
Ginzburg–Landau equations (41). While defect pairs that share a vanishing amplitude (N �= 0) attract or repel each
other quite strongly, those with N = 0 move so slowly that our preliminary simulations were not able to identify
even whether their interaction is attractive or repulsive.

A separation into weak and strong interaction also arises in the dodecagonal quasipattern. There, however, the
division between strong and weak is parallel to the division into the two sub-lattices. In the decagonal case, however,
the resonance term involves all modes and the quasipattern cannot be viewed as the combination of two separate
sub-lattices. Correspondingly, a defect of one type can change into a defect of any other type through collisions
with suitable other defects. We expect that the exceedingly weak interaction of defect pairs with N = 0 may slow
down the evolution from disordered or random initial conditions towards an ordered quasipattern.
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Fig. 12. Decagonal quasipattern with a defect of type (a) H1, and (b) H2 in the center. The top panels show a cross-section of the five amplitudes
in the x-direction. Two of them vanish at the core of the defect. Of the remaining three, two are equal, as expected from Eqs. (46) and (48). In
the bottom panels, a reconstruction of the physical field ψ is shown. At the core of the defects, the one-dimensional quasipatterns H1 and H2

can be observed (compare with Fig. 5d and e).

6. Conclusions

In this paper, we have addressed the stability of various types of quasipatterns with respect to long-wave sideband
instabilities. For quasipatterns with octagonal, decagonal, and dodecagonal rotational symmetry, we have derived
from the corresponding Ginzburg–Landau equations long-wave equations for the two phase and the two phason
modes. Their stability analysis yields the long-wave stability properties of these patterns.

For the octagonal and the decagonal quasipatterns the phase and the phason modes are coupled and one cannot
clearly separate the instabilities in those of the phases and those of the phasons. In these cases our numerical
simulations suggest that the nonlinear behavior arising from the instabilities is the same as that observed in the usual
Eckhaus instability. Thus, the instabilities do not saturate within the long-wave equations and lead to the creation
of defect pairs which subsequently annihilate each other yielding a stable quasipattern with slightly modified
wavevectors. Interestingly, however, in the dodecagonal quasipatterns the phase and phason equations decouple and
there are parameter regimes in which the quasipatterns first becomes unstable with respect to phason modes rather
than phase modes. The ensuing dynamics appear to be somewhat different than for the usual phase modes. This
question has, however, not been pursued in detail in this paper.

The interaction between defects of the decagonal quasipattern can be extremely weak for certain combinations
of defects. We expect that this will have a strong influence on the evolution from disordered initial conditions to the
regular quasipattern. The investigation of the evolution can most likely not be addressed within the Ginzburg–Landau
equations (41) since the ordering dynamics will also entail a spreading of the modes in Fourier space along the
critical circle (cf. the dynamics found in hexagon patterns with rotation [32]). This will necessitate the use of suitable
equations of the Swift–Hohenberg type.
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There are other questions, such as the far-field phase configuration associated with the defects, as well as analytical
expressions for their mobility and interactions, that have not been addressed in the current paper. It should be noted
that the deformations associated with dislocations and disclinations, as well as their interaction energy, have already
been calculated in the case of quasicrystals [33,34]. How these results apply to the current case of quasipatterns is
beyond the scope of the present work.
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