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Abstract

Through multiple-scales and symmetry arguments we derive a model set of amplitude equations describing the interaction of
two steady-state pattern-forming instabilities, in the case that the wavelengths of the instabilities are nearly in the ratio 1:2. In the
case of exact 1:2 resonance the amplitude equations are ODESs; here they are PDEs. We discuss the stability of spatially periodic
solutions to long-wavelength disturbances. By including these modulational effects we are able to explore the relevance of the
exact 1:2 results to spatially extended physical systems for parameter values near to this codimension-two bifurcation point.
These new instabilities can be described in terms of reduced ‘normal form’ PDEs near various secondary codimension-two
points. The robust heteroclinic cycle in the ODEs is destabilised by long-wavelength perturbations and a stable periodic orbit
is generated that lies close to the cycle. An analytic expression giving the approximate period of this orbit is derived.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern-forming instabilities occur in many physical problems, for example Rayleigh—Bénard convection, Faraday
wave experiments and directional solidificat[8h In some of these situations well-established governing equations
are available which are sufficiently simple to analyse. In others the situation is not so clear cut, and reductions to model
equations are of great value. The derivation of model equations to describe instabilities in these physical problems
often provides a clear and unified viewpoint, bringing out similarities in the underlying mathematical structure.

In one spatially extended dimension, the study of the stability of spatially periodic patterns that arise from a
steady-state bifurcation with continuous translational symmetry often reduces to the investigation of an evolution
equation, for example the Ginzburg—Landau equation. Such equations, derived by asymptotic methods rather than
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rigorous analysis (though see recent work by Melbolird) can both comprehend uniform spatially periodic
patterns and describe their stability to long-wavelength disturbances.

In the present paper we consider the case when two distinct instability mechanisms are present, for example
in two-layer thermal convectiof23]. Here the two instabilities will typically have different preferred horizontal
lengthscales given by the critical wavenumbers corresponding to local minima in the curves of marginal stability.
Each instability separately can be described by a ‘universal’ model equation such as the Ginzburg—Landau equation
However, the two instability mechanisms interact non-linearly if the instabilities occur for similar values of the
control parameters; this is a codimension-two bifurcation. In such a situation more complicated model equations
are needed to describe the dynamics in the region of parameter space near the codimension-two point. The forn
of these model equations will depend on the symmetry of the problem, the steady or oscillatory nature of the
instabilities, and on the ratio of the critical wavenumbers.

When the critical wavenumber ratio is rational (§a%, wherep andg are coprime integers) we may restrict
attention to solutions which are periodic in the horizontal direction and derive, in a mathematically rigorous fashion
using a centre manifold reduction, ODEs describing the dynamics on the centre manifold at the point of instability.
The casep = 1,¢g = 1, 2, 3 have been termed ‘strong’ spatial resonances since the non-linear interaction terms
generated appear at third-order, or below, in the resulting amplitude equations.

When the ratio is irrational this centre manifold approach cannot be applied. Any restriction to spatially periodic
solutions will not be able to capture important features of the dynamics. In consequence the periodic solutions
found may be unstable to long-wavelength instabilities, and their subsequent evolution must be described by PDEs
rather than ODEs. In this case, there is currently no rigorous mathematical formulation which leads to PDEs. At
best the equations used represent asymptotic approximations to the true situation. Nonetheless we shall adopt th
PDE approach here, following the work of (among others) Coullet and Rgpgsince it is natural and has proved
very productive in similar, though simpler, problems.

In this paper we discuss the interaction of two steady-state instabilities with wavenumbers close to, but not exactly
in, the ratio 1:2, using multiple-scales expansions in time and space. The case of exact 1:2 resonance was treated fir
by Dangelmay[9] and later by Jones and Procfbd8] and by Proctor and Jong3] (hereafter referredto as Part 1) in
the context of two-layer thermal convection. Important results were also obtained by Armbrustgr]etrad. Julien
[12], and more recently by Porter and Knobld@®]. In particular[12] resolved several contradictions and errors
in the earlier papers mentioned above, and investigated the dynamics of the ODEs away from the codimension-twc
point; a full description of the dynamics of the ODEs becomes very involved. Here we extend this work and show
that small deviations from the exact 1:2 situation result in additional long-wavelength instabilities of otherwise
stable spatially periodic patterns (‘spatial quasiperiodicity’).

The most unusual part of the dynamics of the 1:2 resonance problem is the occurrence of a structurally stable
heteroclinic cycle. The local information that we are able compute near the equilibria on the cycle enables analysis
of the stability of the cycle to long-wavelength spatial disturbances.

The equations that we derive to capture these modulational instabilities are non-linear PDEs, and as such, &
full analysis is a daunting task. Indeed, even a complete classification of possible solutions is far beyond the
scope of this paper. This paper considers those parts of the problem that can be treated analytically rather that
presenting a superabundance of numerical results. Our analysis explores the stability of spatially periodic equilibria
and travelling waves, identifying those new instabilities that are due to the inclusion of modulational effects. The
dynamics near these new instabilities can be described by ‘normal form’ equations (simpler PDEs whose structure is
often prescribed by symmetry requirements). Although the algebraic expressions may become lengthy, itis possible
to reduce the original non-linear PDEs to these ‘normal forms’ explicitly via adiabatic elimination. Such a reduction,
although not completely rigorously justified, can be extremely useful, particularly near secondary codimension-two
points (intersections of lines of codimension-one bifurcations away from the initial bifurcation point). The paper



JH.P. Dawes et al./ Physica D 191 (2004) 1-30 3

illustrates this idea with two explicit detailed examples (the pdingdX in Fig. 1; in neither case is the ‘normal
form’ equation the Ginzburg—Landau equation. The dynamicshémve been well-studied in the literature, but
those neaK are more novel.

The original study of Part 1 was motivated by a particular two-layer thermal convection problem, and we refer
the interested reader to that paper for detailed discussion of the physical background. Wavenumber interactions
in the ratio 1:2 also occur in two-dimensional thermal convection in a single layer, for example in the asymptotic
long-wavelength equation discussed by @k and in non-Boussinesq convection as discussed by Mercader
et al.[18,21] These papers discuss situations that have one instability mechanism; by looking for solutions that
are spatially periodic with a given wavenumbigihey locate codimension-two point&., kc) where two periodic
patterns interact, with wavenumbers in the ratio 1:2. Since, in these prolitgieslways greater than the minimum
value required to drive convection in a formally infinite layer, the results are not directly applicable to the infinite
layer case. In contrast, this paper (formally) attempts to analyse the infinite layer situation in the case where there are
two distinct instability mechanisms occurring for very similar values of the control parameters. The large horizontal
extent of the layer enables periodic patterns to be destabilised by ‘sideband’ instabilities, for example the Eckhaus
instability. We remark that a similar study, for ‘weak’ resonances, has been performed recently by Higuera et al.
[11]. Their results, although very different in detail, have points of similarity to those presented here, for example
the existence of solutions in the form of localised structures.

The paper is organised as follows Saction 2ve derive the model equations and make general remarks about the
dynamics. InSection 3we briefly summarise the dynamics of the model ODEs in the absence of the modulational
terms. Here and throughout the rest of the paper we use a single combination of coefficients that were used in Part 1,
for ease of comparisosections 4 and Biscuss in detail the new instabilities of spatially periodic states that occur
when the modulational terms are added to the mod&eletion Be discuss the stability of the robust heteroclinic
cycle. Analytic work shows the existence of a long-period periodic orbit lying close to the cycle, in quantitative
agreement with numerical resultSection 7briefly highlights the coexistence, over a substantial region of the
parameter plane, of stable non-modulated travelling waves and complex spatiotemporal behaviour. We conclude in
Section 8

2. Model equations near 1:2 resonance

Consider a horizontal two-dimensional layer, or layers, of fluid in the domasa, o) x [0, 1], using co-ordinates
(x, 2), i.e. of finite vertical extent but extending to infinity in the horizontal directiod/e suppose that there is an
x-independent state which may become linearly unstable to either of two competing steady-state instabilities, with
wavenumbers nearly in the ratio 1:2. By way of illustration, the analysis of Part 1 was concerned with a two-layer
thermal convection problem where these two instabilities corresponded to the onset of convection predominantly in
either the upper or the lower layer separately. The most interesting dynamics can be captured by the distinguished
limit in which the deviation of the ratio of the critical wavenumbers from the exact value 1/2 is of the order of the
square root of the deviation of the bifurcation parameter (in this case the Rayleigh nRjrilmen its critical value
Rc. If we setR — R¢ = £2 then we may write the critical wavenumbers (those associated with local minima in the
value of the critical Rayleigh number) &st ¢q and %. A suitable ansatz for small-amplitude solutions near the
codimension-two point where the conditions for instability coincide is then

u(x, z,1) = [ A(X, T) f1(z) "D 1 B(X, T) f2(z) €% + c.c] + O(?), (1)

where lengths have been rescaled so that 1; X = ex andT = &% are long length and time scales, c.c.
denotes complex conjugate, and the functigns(z) give the vertical structure of the eigenfunction corresponding
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to each mode of instability. The amplitudasX, 7), B(X, T) are complex-valued. The initial homogeneous state
is symmetric under the Euclidean groufgl) generated by the reflection, : x — —x and the translations
75 . x = x + 4. These symmetries induce the following transformations on the ampliti@es! B:

my:x — —x: (A, B) — (A, B), (2)
5ix—>x+8: (A, B)—> (Ad1ted peidy (3)

The combinationrA2B €% is found to be the lowest-order translation-invariant combination that is not a product
of the usual term$A |2 and| B|2.
The resulting amplitude equations (ignoring terms of order higher than theeeBranddy) take the form

A = Alp1 — a1]AI? — b1|BI?] + asAB €™ 4 agAxx, 4)
B = Bluz — az|BI? — bp| A|?] + b3A? e 2% 1 cByx, (5)

where the coefficients;, b; andc are forced to be real by the reflection symmegy, the dots denote derivatives
with respect to the slow time scaleand 1, u2 are bifurcation parameters. We remark tt@tand (5)contain
both guadratic and cubic terms in the amplitudeand B. To ensure a rational scheme of approximation in the
limit ¢ — O we should arrange thag, b3 scale ag. This can be achieved in several ways, for example where a
further symmetry which would leave the equations invariant under the sign chan@ — (—A, —B) is weakly
broken.

The form of Egs. (4) and (55hows that wheilg| becomes large the spatially averaged contribution from the
qguadratic terms decreases to zero. In this limit we formally recover the usual ‘Landau’ equations describing two
coupled modes of instability in the absence of spatial resonance. This is in agreement with oyd¥rkatgystem
is far from the 1:2 mode interaction point whgn ~ O(1/¢).

Subsequent calculations are made considerably easier if we make the change of ¥asiable~'® to remove
the exponential factors, and rescale the varialdle, T and X to setaz = a4 = 1 andbz = 1. Dropping the
carat onA we obtain

A = Alp1 — ¢° — a1]A)? — b1|B|?] + AB + 2igAx + Axx, (6)
B = Blus — az|BI? — bp| A|?] £ A 4 cBxx, ©)

which is the form of the equations that we will use in what follows. These equations have the same structure as the
ODEs derived in Part 1 with the addition of terms giving modulation on the long lengthEcdlke term 2§Ax
captures the effect of the departure from exact 1:2 resonance.

Writing A = R(X, T) €°XD andB = S(X, T) €?X:D the evolutiorEgs. (6) and (7pecome

R = R[u1 — ¢° — a1R? — b15%] + RScosy — 20R9x + Rxx — R(6x)?, (8)
RO = RSsinx + 2qRy + 2Rx0x + Réxx, (9)
S = S[uz — a28? — boR?] + R%cosy + c[Sxx — S(éx)], (10)
S = FR*sinx + c[2Sxpx + Spx], (11)

wherey = ¢ — 26. When the modulational terms are omitted, we can express the dynamics in terms of only the
two moduli and the one phase differengéi.e. a reduction to a third-order system), as was done in Part 1. This
leads to the ODEs

R = R[u1 — ¢% — a1R? — b15%] + RScosy, (12)
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S = S[u2 — a2S? — boR?] £+ R?cosy, (13)
RZ
x = (:{:? - 2S> siny. (14)

However, in the presence of modulational terms, each of the individual phase vafiaes is dynamically
independent. Vyshkind and Rabinovif2#] introduced the new variables= S cosy, v = S sinx (also used by
Porter and KnobloclR0]) to produce a third-order system avoiding the co-ordinate singularity, but this change of
variables offers no simplification in the PDE problem.

The choice of the sign of th& A% term in(7) has a huge effect on the dynamics. It was shown in Part 1 that in
the '+’ case for the non-modulated problem the dynamics are much less interesting than those may occur in the
‘—’case. Indeed in thet’ case there is a Lyapounov functioni&lr, 6, S, ¢) for the dynamics whenid = by:

V= <%a1R4 + YapS* + b1R2S? — 11155% — i R? + R + R2(Ox + q)° — R2S cosy + Lc[S% + 52¢§]>,
(15)
where(. - -} denotes a horizontal average. Then a direct calculation shows that
V = —(2R? + 2R%%? + §% + S%¢?) < 0,

i.e. the system evolves monotonically towards a steady state. More complicated dynamics, for example temporal
oscillations, are not possible. It follows that, at least whenanhdb, are not widely different, or the amplitudes

are small (equivalently, near to the codimension-two point), we expect solution trajectories to tend asymptotically
to equilibria after long times.

For the remainder of the paper we consider thecase, choosing the minus sign (@). In this case it is not
possible to construct a Lyapounov functional, and even in the absence of modulational terms the related ODE problem
(12)—(14)can indeed display oscillatory dynamics; moreover there is a region of parameter space where a robust
heteroclinic cycle exists and is stable. This cycle was analysed in Part 1 and by Armbrustdi eThk parameter
¢ in (7) corresponds to differential diffusion rates of the two amplitudes. Varyimgay from unity leads to Turing
instabilities, well-known in the context of reaction—diffusion equations. We remove this complicating consideration
by settinge = 1 in nearly all of what follows. The occurrence of Turing instabilities in mode interactions is common
to all cases of strong spatial resonance and is of a different type to the instabilities we discuss here, since it occurs
in the spatially extended but exactly resonance case. A full discussion of this second class of instabilities is given
in a companion pap42].

3. Non-modulational dynamicsnear pi= pt,=0

In this section we summarise the relevant parts of the bifurcation sequences observed in Pari Engar= 0
in the analysis of the ODH&2)—(14) settingg = 0. As remarked on earlier, even in the absence of the modulational
terms, a full analysis of6) and (7)is extremely complicated.

The trivial equilibriumA = B = 0 is stable in the quadrapt; < 0, u2 < 0. Near the codimension-two point at
u1 = u2 = 0, the ODEg12)—(14)support simple non-trivial equilibrium solutions of three types. The first type
is a pure mode solutio®, of the formA = 0, |B|2 = u2/a». The continuous symmetry of the problem implies
the existence of a group orbit of equilibria; that is, the phasg &f arbitrary due to the underlying translational
symmetry. Within the subspace Fix,) where A, B € R there are two equilibria, denotefl.. The pure mode
solutions bifurcate from the trivial solution and exist whes > 0. They are stable for; sufficiently negative.
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The other equilibria are mixed-mode equilibria of two kingls, , corresponding tg taking the valueg = 0 and
7, respectively. Tha/,. amplitudesR = Rp andS = Sp are given by solutions of the equations

O=pu1+£ S — alR(Z) — b1S§, (16)
_ 2 3 2
0 = w280 F Ry — a285 — b2 Ry So, (17)

where the sign choices select eitldr. or M_. In fact there is a group orbit of each &f; andM_ equilibria also,
since althougly is fixed at 0 orr, respectively, there is a free choice of one of the underlying pltaseg. When

u1 is increased, holding, > O fixed, stableM equilibria are created in a bifurcation at which the pure mode
solutions lose stability.

The M. solution then loses stability (as; is increased further) either through a symmetry-breaking drift bi-
furcation which produces travelling waves (TW), or through a Hopf bifurcation to standing waves (SW). The TW
solution resembles the mixed-modig. in form, but it drifts along the group orbit of mixed-mode solutions as time
evolves. The TW bifurcation is clearly a phase instability rather than an amplitude instability. Because the phase
variable® and¢g evolve at constant rates such thhas constant and sip # 0, the TW solutions appear as equilibria
inthe(R, S, x) variables. In other words, the use of ttf& S, x) variables identifies all points on the group orbit of
M solutions as a single equilibrium, and, in these co-ordinates, information about drift around group orbits is lost.

In contrast, the SW bifurcation is an amplitude-driven instability and produces periodic orbits that lie within
the subspacg = 0. Typical curves along which/ undergoes bifurcations to TW or SW solutions are shown in
Fig. 1 For a large region of parameter space these two curves intersect at a codimension-two point,daibelled
Fig. 1 Because the eigenvectors corresponding to the TW and SW bifurcations are orthogonal the codimension-two
bifurcation corresponding to simultaneous instability is a pitchfork-Hopf bifurcation (itRh&, x) co-ordinates).

As we increase; for small positivew,, the SW instability occurs first. Within the subspace(kix) the periodic
orbit created in the SW bifurcation grows until it collides simultaneously with the origin ané thequilibrium.

After this global bifurcation the periodic orbit disappears, but now the unstable manifsldtehds asymptotically

to the pure mode solutioR_. By symmetry, within the invariant subspace @i o ;) the unstable manifold of

P_ tends toP, and a heteroclinic cycle is formed. The heteroclinic cycle is structurally stable due to the existence
of invariant subspaces, within which each connecting trajectory lies. Hence it exists for an open set of values of the
coefficients and bifurcation parameters. Moreover, this cycle is attracting for an open interval of valyes of

At larger 11 this cycle ceases to attract nearby trajectories as it undergoes a resonant bifurcation, resulting in a
global loss of stability, and creating modulated waves (MW). MW are destroyed in a Hopf bifurcation from the TW
which themselves cease to exist in a bifurcation withkhestates. Moreover, several other heteroclinic cycles are
possible for other combinations of coefficients, and at larger pogitivd hese have been investigated in detail by
Porter and KnoblocR0].

4. Modulational instability of the pure mode

Having summarised the behaviour of the system in the absence of spatial modulations, we naytaltake
non-zero values, and examine the possibility of new modes of instability due to the spatial frequency mismatch. We
first note that the results of Part 1, summarised in the previous section, apply within the subspace of non-modulatec
(X-independent) solutions. To examine the stability of the pure mode solBtipgiven byA = 0 andB = Bg =
J2/az, we substitute the ansatz

AX, D =a1(DEX +axDe ™, BX,T) = Bo(l+ pa(T) €™ + Bo(T) &™),
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Fig. 1. (a) Instability boundaries in th@1, u2) plane for the illustrative coefficient choices = 1,a2 = 5,b1 = 2,0 =0,c =1,4 = 0.2.

Unstable and stable solutions in each region are indicated with and without parentheses. The solid curve containindLthiepoies the
boundary of existence a¥f,. The solid curves TW and SW denote instabilitiesMf to travelling and standing waves, respectively. The
codimension-two pointd, X, Y, L, S andT and the various dashed and dash-dotted curves are discussed in the text and (b) is an enlargement
of (a).
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into (6) and (7)and linearise. The linearised dynamics &ar» and 81,2 decouple and;. is found to be stable to
the perturbationgs o for all wavenumbers:. The linearised system for the perturbations is

a1\ m1— q2 — blB(z) —2q0 — 02 Bo o1
. = > > 5 . (18)
a2 Bo u1—q°—b1Bg+2gt — £ )

This matrix has trace ¢f2) and determinanb(¢2):
tr(6%) = 2(u1 — q* — 2 — b1BY),  D(?) = (u1 — q° — €2 — b1BY)? — 44°* — B},

No oscillatory bifurcation is possible sincétf) = 0 impliesD(¢?) < 0. A steady-state instability to perturbations
with wavenumbef occurs whenD(¢2) = D' (¢2) = 0 sinceD” (¢2) = 2 > 0. These conditions show that the first
instability of P, may be to perturbations either with= 0 or with £ non-zero. Whenuz > ax(u1 + ¢%) /by the
first instability is to¢ = 0 and occurs along the curyg = biua/az + g% — /jn2/az. Whenus < as(u1 + ¢2) /b1
the first instability is to finite. = ¢c > 0 and occurs along the line

_Maf, 1
Ml_az 1 4q2 .

These two instability curves meet at the pdint’, 115) = (4b1g* — ¢, 4azq®), markedL onFig. 1 The gradients
of these curves are equal here, so the transition between instabilities is smooth. Along@ie (fnem the origin
to L) the most unstable wavenumbéy, is given byzg = u1 — biuz/az + ¢2, i.e. 0< ¢ < g, and. increases
monotonically as the origin is approached.

At any point on the interior of the lin@IL we can fully describe this bifurcation by the usual Ginzburg—Landau
equation, since for the PDES) and (7his is an instability of a uniform state to a non-zero-wavelength perturbation,
and the growth rate of a perturbation with a wavenumber far figisinegative and bounded away from zero. We have
carried out a weakly non-linear perturbation expansion @dato investigate whether this bifurcation is subcritical
or supercritical, details of which are givenAppendix A The resulting analytic expression is cumbersome, but it
is possible to deduce that the bifurcation is always supercritical whenO is large enough. This calculation can
be carried out analytically without assuming= 1; if ¢ is large compared to unity ard is small it is possible for
the bifurcation to be subcritical. For the illustrative set of coefficients us&tbinl the bifurcation is supercritical
along the whole oOL.

The dynamics in a neighbourhood of the codimension-two doa#nnot, though, be described by the Ginzburg—
Landau equation, since the instability wavelengghends to zero ak is approached. A codimension-two point
identical in structure té. occurs in the analysis by Coullet and Repghpof a pattern-forming instability subjected
to an external nearly resonant periodic forcing. They t&rim ‘Lifschitz point’. Through asymptotic expansions
nearl it is possible to describe the dynamics in terms of a single ‘normal form’ equation

Ar =v1A — A3 + vagg — Ag;gs, (19)

which governs the evolution of a small perturbatié(g, r) € R to the P;. solution;v; andv, are new bifurcation
parameters, defined so that the pdintorresponds te; = v» = 0, T is a new scaled time variable agds a

new long spatial scale associated with the smallnegg. &q. (19)is known as the Extended Fisher—Kolmogorov
equation and its properties have been extensively investifat®d9] It is easily shown that there is a Lyapounov
functional for the dynamics, and so there are only steady-state solutions at long times. However, these states need n
be periodic in space; and in fact the solutions can have very complex spatial structure;whén corresponding

to the regiorus > b1B2 — Bo + ¢°.
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5. Modulational instabilities of the mixed-modes

M undergoes a plethora of different bifurcations. In this section we will discuss three new instabilities to
long-wavelength disturbances that occur. We examine a codimension-two bifurcation where two of these curves
meet. We also discuss other codimension-two points that occur where one of these long-wavelength instabilities
meets a bifurcation curve from the non-modulated problem. Our discussion is organised by the sequence in which
these bifurcations appearkig. 1asu, increases.

Let A = Ro(1+ a1 €X + are %) andB = So(1 + B1€X + Bo e 'tX), whereRg and Sy satisfy

0=pu1 — q2 + So — alR(Z) — bng, (20)
0= pu2S — RS — azsg — bzR(z)So. (22)

After substituting into(6) and (7) linearising and changing to the sum and difference variables= o1 + a>,
B+ = B1 £ B2, we obtain the linearisation matrix

—2a1R3 — €2 Ro(1— 2b1S0) —2q¢ 0
Roo R(Z) , ) Roo 4
SO,B+ B —2Ro(1 + b2Sp) S_o — 2a250 —cl 0 0 SoB+ 22
Rod_ —2q¢ 0 —280 — £2 Ro Roo_ |-
SoB- 0 0 2Ry L2 —ct? Sop-
0

The characteristic polynomial of this matrix can be writterP@s) = A% + A(¢2)A3 + B(t2)a2 + C(tA)A + D(£?).
Note thatP()) always has a roat = 0 when¢ = 0, hence we may writd(¢2) = ¢2E(¢2), whereE(¢?) is a
cubic polynomial. This is due to the underlying translation symmetry. Steady-state instabilitieséat> 0 occur
when E(£2) = E'(¢%) = 0 andE"(¢2) > 0. Oscillatory instabilities occur wheh = «(£2) + io(¢?) satisfies
a(t?) = o' (£2) = 0,”(£?) > 0 andw?(¢2) > 0, wherex(¢£?) andw(¢?) are real. These requirements yield the
conditions

C?— ABC + A%D =0, (AC' — CA")(2C — AB) — A2(B'C — AD') =0, C/A >0,
for an oscillatory bifurcation witl,, > 0. Both the steady-state and the oscillatory cases give two conditions; in
conjunction with(20) and (21)these conditions enable the determination of bifurcation lines itfuthew2) plane.
Clearly, a steady-state instabilityfat = 0 occurs wher(0) = 0 andE’(0) > 0; similarly an oscillatory instability
occurs whem(0) = 0 ande’ (0) < 0 as long as?(0) > 0. In terms of the coefficients @#(1) these conditions are
U BC — AD — C?/A)
C? - ABC+ A’D =0, (BC —AD —C7/AY
2(4D — AC — B?)

0, > 0.

ol

5.1. Instability of M near the Lifschitz point L.

The first new instability ofM . that we find is a steady-state bifurcation to spatially modulated solutions, i.e.
the most unstable wavenumber is non-zero. This occurs along the dashed.Gueweanating from the Lifschitz
point L. This instability is part of the generic bifurcation structure near a Lifschitz point and hence the existence
of this curve can be shown by analysis of the normal f¢i®). We have followed the bifurcation curve to larger
values ofu1 where it becomes asymptotic to the line = ¢% asu» — oo. NearL, whena; is large we expect
the bifurcation to be subcritical by comparison with the results of Coullet and Rg¢phukhis bifurcation curve
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Fig. 2. Codimension-two instability af/.. at the pointT, (1, u2) = (0.00929 0.0149 for ¢ = 0.2 and the coefficients dfig. 1 Real parts
of the eigenvalues of the linearisation about, are plotted against wavenumb&t Solid lines denote real eigenvalues, dashed lines give the
real part of complex conjugate pairs. Note the mode with zero growth réte-&t due to the translational symmetry &f, .

meets a second such non-zérmmstability curve (this one starting from the poif} at the pointT on Fig. 1

At T there is a Hopf/steady-state mode interaction coupled to a phase mode which has zero growth rate at zerc
wavenumberFig. 2 shows the variation of the real parts of the eigenvalui@$) at this point. The dynamics near

the codimension-two poirif depend strongly on the ratio of the wavenumbers involved in the instabilities. This
ratio varies considerably witfy as shown irFig. 3. For the illustrative coefficient set usedhiyg. 1, wheng = 0.097

0.7E """" LRI T T LRI T E| 20 e T LR T T LARRRRRR
06k (@) ; t (b)
2 05f ER ]
o) E 3
E | ERC)
g 0 -0 ]
g8 i Bio .
= 03k i E f 1
g E E| > L
S % I
5 02 i 55l ]
01 T
OOE ““““ {“’:‘j““l “““““ | | | E 0' ““““ | | R | | |
0.0 0.1 0.2 0.3 0.4 05 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
q q

Fig. 3. (a) Critical wavenumbers for the steady-state (solid line) and oscillatory (dashed line) instabilitiseaFig. 1) as a function of the
wavenumber mismatch in the range @97 < ¢ < 0.55. (b) Ratio of the critical wavenumbers in (a) as a functiog.of
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there is a codimension-three bifurcatiorSasollides withT. As we approach this collision, the wavenumber of the
oscillatory instability afl’ goes to zero and so the wavenumber ratio is formally infinite there.

The critical wavenumbers for the steady-state instability can be seenFigan3(a) to be slightly greater than
the mismatch parameter in contrast with the modulational instability of the pure mode soluftardiscussed in
Section Avhere the maximum critical wavenumber of instability is exagtlit turns out that for/ ;. the maximum
instability wavenumber is@ This can be easily shown by examining, near the linqu; = ¢%, 2 > 0. When
u1 — g2 is small and negative the amplitud®s andSo for M, are, solving20) and (21}o leading order:

(11— ¢®)u2 S — 11— g2

R2 = 0
ajpz — 1 aipz —1

Then, substituting these expressions into the t&x#f) from the characteristic polynomi#i(1) we obtain
E(6?) = (n2 — £9%(¢% — 4¢°) + O(lp1 — ¢°D.

The double root at? = ;> comes from the LW instability; itis the root & = 442 that comes from the continuation

of the steady-state instability curve throufjiowardsu1 — g2 ~ 0. From numerical investigations we conjecture

that the wavenumber of the instability evolves monotonically along the curve, but there does not seem to be a
straightforward way to verify this analytically.

5.2. Instability of M to standing waves

The dash-dotted [in&S in Fig. 1(b) marks the instability boundary @f_, to the second new bifurcation involv-
ing spatial modulation; an oscillatory instability to temporal oscillations (standing waves) with non-zero spatial
wavenumber. The dynamics near the pdris analogous (but time-periodic rather than steady) to that near the
Lifschitz pointLL, and can thus be described by a similar extension of the complex Ginzburg—Landau equation:

Ar = (1 +iwo(1, 12))A — (L+IB)AIAIZ + (v2 + i) Age — (14 iy) Agzee, (23)

governing the evolution of a complex-valued perturbatia#, t) to the M. solution. As beforey; andv; are new
bifurcation parameters; the poifittcorresponds te; = v = 0, wo is the non-zero frequency of the instabilidy,

B andy are real parameters,is a new scaled time variable a@ds a new long spatial scale. Clearly the dynamics
of (23) are at least as complicated as thosél®). The wavenumber of this oscillatory instability increaseg.as
decreases along the curve (frého T).

5.3. Thelong-wavelength phase instability of M.

The third new instability occurs, at largep, along the curve LW ifrig. 1(a). This instability is a long-wavelength
steady-state bifurcation; asis increased from zero, the LW curve splits off from the TW curve along its entire
length. Since, in the absence of modulational terifis,are unstable first to SW belogv and unstable first to TW
aboveA, the LW instability (at least for this combination of coefficients) is the instability/qf that occurs first in
an intermediate range of>, between the new codimension-two poilitandY. The LW and SW curves intersect
atY and the LW and TW curves intersect¥t seeFig. 1(a). Since the LW instability curve coalesces with the
TW instability asg — 0 it is clear that the LW instability must also be a phase instability rather than an amplitude
instability.

It is important to observe that the poiAt where the TW and SW curves cross, is now ‘shielded’ by the LW
curve. The dynamics nedr were investigated in detail in this context by Jul{@g], and in greater generality by
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Landsberg and Knoblodii5]. In the presence of modulations the dynamics deare expected to be less relevant
to the observed dynamics in a spatially extended physical system. However, it is worth noting that by varying
the diffusivity ratioc away from unity it is possible to make the poirisand A coincide; this would result in a
codimension-three bifurcation involving the TW, LW and SW instabilities/f.
Reduced descriptions of the dynamics n&amland Y can be derived from the PDEs starting either from
(6) and (7)or, more conveniently here, from the modulus/phase representation of the dynamics ¢Bjeflih) In
this subsection we will present the reduction riéar some detail, and comment only briefly on the dynamics Wear
NearX we strive to eliminate thEgs. (8) and (10for the evolution of the modulR andS by adiabatic elimination
to leave a pair of real equations for the phagasde. It turns out to be more convenient to describe the dynamics
in terms ofy = ¢ — 26 andé, since the TW instability involves only the combinatignFrom(14)it is clear that
the TW instability occurs when

R3 = 282, (24)
whereRg andSy satisfy(20) and (21) The LW instability occurs wheR (0) = 0, wheret2E(¢2) is the determinant
of the linearisation matri22):

. 2R2
E©) = S—;’[(2cs% — R2)(2(a1a2 — b1b2)Sg + (b — 2b1)S3 — a1R3 + So) + 24%(2a2S3 — R)]. (25)

Note that wherr = 1 andg = 0 this condition reduces to the condition for the TW instabii?¢). Whenc = 1
the algebra simplifies substantially (and so wecset 1 for the remainder of this section); solvii@4) and (25)
together yields the moduRy = +/2/as, So = 1/a> at the pointX where the LW and TW instabilities coincide.
Substitution inta20) and (21)gives the co-ordinates of the poiiitin the (11, u2) plane:

(Mig Mzg): <2a1+b1—a2 +q2 3a2+2b2>.

a3 C o ab
The adiabatic elimination ak andS at the poinfX proceeds in the usual manner, but the scalingfdiffers from
that which might be expected. Our choices of scalings are determined completely by the requirement to balance
the linear terms in the reduced equations. This balance then introduces two specific non-linear coupling terms at
leading order. We write

R=Ro+&rg+e%ri+--, X=¢eX, (26)
S=So+e%s0+e*s1+---, T=¢T, (27)
0.¢) =e0.0). x=¢% (28)
p1=pui 4+ e, po =y + %o (29)

Substituting intg8) and (10)and dropping the tildes gives, a(£):

2alR%”O + (2b1So — 1) Roso = Roji1 — 20Rpfy, 2Ro(1 + b2So)ro = Sofiz.

Hence
Soft2
o — , 30
7 2Ro(1+ b250) (30)
200 oy
0= 4 290x 0ft2 (31)

T 20So—1  (2h1So — 1)(L+ b2So)
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Substituting the scaling®6)—(29)into thed equation(9), dropping the tildes and cancelling a factordfyields
Rof = RoSox + 20rox + Robxx + O(£?). (32)
From(30) we see thatpy = 0 and sd32) simplifies to give
0 = Sox + Oxx + O(e?), (33)

which is the first of our pair of reduced equations. It turns out that we need to compute the terdetermine the
leading order evolution of correctly. From(10) at O(s*) we find

2Ro(1 + b2So)r1 = softz — 3a2S0s3 — (1 + b2S0)rg — 2b2Roroso + soxx — So(dx)? — so,

which, after substituting30) and (31)becomes

12qapSo[ (1 + b2So)it1 — Soit2] 2qf12 ) 5
2Ro(1 4+ b S = - Oy — 450(6
o+ b2Sorm < (2b150 — D2(1 + b2S0) A+ baSo)2b1So— 1 ) X ~ 4500
2q .

——(Ox — 0 cons 34
t ohse — 10X ~ %000 + const (34)

where const denotes terms independent plnd the last term is equal t@% xx/(2b1S0 — 1) at leading order,
using(33).
Now we turn to the (unscaleg) equation, formed by combinin@) and (11)

Y = R® 28 + +25¢ 4qR 4R9
X—S X T XXX SxxRxRxx-

After substituting the scaling®6)—(29)and dropping the tildes, the terms ats®) are found to be

, 2Ry R3 4 4q
=222+ 22 — soxfx — —r1x, 35
X |: 55 ( + 2 50 | x4 xxx + 55 0x0x — 27X (35)

using the fact thatgpy = 0. After substituting fosgx andrix using(31) and (34)noting that the terms i(34)
indicated by ‘const’ do not appear) we obtain

% = Eox + (L4 &a) xxx + E10xx + E2x0x + E30xOxx + O(£?), (36)
where
. [ az day } 4azfiq
o= (2 + — ,
az+by  (2by1 —ax)(az + b) 2b1 —az
- —124%a3f11 2q2a3fi2(6 + 2b1 — az) _ 8ga
YT @t b @b —a2? | (aa+b2)22b1 — a2’ P 2bi—ap’
_ 4983(2b1 — 3az — 2by) —2¢243

(a2 + b2)(2b1 — ap) T a2+ bo)(2b1 —az)

One simple consistency check is that coefficients containing odd powgmnokiply terms with odd numbers of
X-derivatives (and likewise for even powersgf For the illustrative coefficient choiceg = 1,a2 = 5,b1 = 2
andb2 = 0 we obtain the leading order reduced equations

X = (2001 — 302)x + (14 50¢%) xxx — 125Q/%(611 — f12)0xx — 40gx0x + 220g0xOxx. (37)
0= Lx+ Oxx. (38)
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LW

Fig. 4. Sketch bifurcation lines near the codimension-two pHinthere the TW and LW curves meet, for the illustrative coefficient choices

a1 =1,ap =5,b1 =2,bp =0,c = 1,9 = 0.2. M, are stable above and to the left of the LW and TW curves. The TW bifurcation (solid/dotted
line) occurs along the line 20 — 3/t = 0; it is the initial instability ofM when Gi; — 2 > 0 (indicated by the solid line). The dotted

part of the line indicates instability in the absence of long-wavelength modulations. The LW bifurcation (solid/dash-dot-dot-dotted line) occurs
similarly when(20+ 1500;2)/11 = (34 250)/i2 and 2Qi1 < 3fi2. The solid part of the LW line indicates that part of it for which it is the

initial instability of M.

Non-modulatedV/ states correspond tp= 0,6 = 6 as there is a circle of equivaleM . states related to each
other by spatial translations. We consider the sigte: 0 without loss of generality. We now u$g3) and (36)o
examine the two distinct linear instabilities of the state: & = 0 that are possible. Substituting= x(7) €X and

6 = 6(T) €*X into (33) and (36)and linearising we obtain the Jacobian matrix

g0 — 02148y —025
1 2 ,
a

Jyo =

which has trace and determinant
try(6%) = &0 — 22+ 0,  det(t) = 41+ &) + €2 (i—l — 50> :
2

Hence d€f(0) = &1/a> — &o. The bifurcation to TW occurs whejp = 0; it is the initial instability ofM when
&1/az > 0, i.e. (for the illustrative coefficient set) when 20— 312 = 0 and G117 — 12 > 0. Similarly, the
LW instability occurs wher§1/a; = &o; it occurs before the TW instability 5 < 0. These conditions become
(20+ 1500211 = (3+ 250%)/10 and 2Qi1 < 32 for our coefficient set. These lines are sketcheBiign 4and
clearly correspond to the behaviour of the TW and LW curves KdarFig. 1(a).

The form ofEgs. (37) and (383tems directly from the requirement of invariance undeeflection(2), which
sendgy, 0, dx) — (—x, —0, —dx). We note that the TW bifurcation is one of the secondary instabilities of spatially
periodic patterns classified on symmetry grounds by Coullet and [ddstheir equation (8)(a) and (b) closely
resemble(37) and (38) although theirs contain only one bifurcation parameter since they are concerned with
classifying codimension-one instabilities. By including a second bifurcation parameter we are able to capture the
codimension-two transition between the TW and LW instabilities.

5.3.1. Eckhausinstability dynamics near the LW bifurcation
At the codimension-one LW bifurcation, instability to modes of arbitrarily long-wavelength occurs; near this
bifurcation we may adiabatically eliminajeto derive a single real equation describing the dynamics. The relevant
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scalings are

0=2eb, X=c¢eX, x=¢&%, T=2¢T

we introduce a bifurcation parameteby writing e2v = 1 — &1/ (a2£0). On substituting these scalings irf@6) we
obtain

Eox = —E10xx + 2 [%QXXXX + (% - 53) 9x9xx:| +0(e"),

and we substitute this expression jointo thed equation (33}o obtain

b = vy & “Jr_éf%xxxx n 5152;250539)(9)0(, (39)
az&j axsg

to leading orderEq. (39)is identical in form to that which describes the weakly non-linear behaviour of the Eckhaus
instability. Like the Eckhaus instability, the LW bifurcation is therefore always subcritical.

5.3.2. Ingtability of travelling waves near the TW bifurcation
In a similar way, the dynamics of travelling waves, near the TW bifurcation, Keaan be investigated. At
the TW bifurcation,® can be eliminated (again, adiabatically) frdBv) and (38)and the resulting single real
Ginzburg—-Landau equation for describes the bifurcation leading to TW solutions. The scalings leadi(@B)o
and (36)cannot be chosen to include a tegfin (36) which would be required to capture stable finite-amplitude
TW states near the bifurcation point. In the absence of modulations a different set of scalings can be chosen which
is able to include this term. In this way the sub- or supercriticality of the TW bifurcation can be easily computed.
However, it transpires that spatially periodic TW are unstable to modulational disturbances and this instability is
indeed captured by the reduced equations Kedo illustrate this, we compute the stability of tileindependent
statey = xo constantf) = xoT/az for (33) and (36)
Let

x=xol+adX tcc), 6=227+p% 1c0),
az
then, on substituting int(33) and (36)and linearising we obtain
- 2 B 2 a2
@ =& + affo — £7(1+ &1)] + p (ils2x0 — £4€1), B=oa—Lp.

Eliminating« yields a single linear, constant coefficient ODE jfor

o ,
B+ B+ &) — o) + B (zz <1— g+ 5 +ez<1+s4)) - ZXO) — &

az

Solving the homogeneous equation for the complementary funggieng*=” we find

hi = 360 — 21+ E0) £ /(b0 — 2+ £0)? — AL — o+ b1/az + (L + &) — iLE2x0/a2)).

Expanding this expression far, up to O(¢?) we obtain

x5 1 &
Re(L.) = 2 =220 - 5% o).
e(ry) = &0+ (1&553 5 " anko €| + 0O
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For sufficiently smalko, the growth rate. is more positive than the growth rate of the statex = o, 6 =
xoT/az towards a fully non-linear TW equilibrium, hence stable TW are not anticipated to appear close to the
codimension-two poink.

NearX, numerical results (sd€igs. 5 and HshowM . solutions losing stability first to a TW perturbation which
generates a TW-like ‘transient’, and then the occurrence of an instability to spatial modulations. The final state is,
however, steady, and consists of an extremely long-wavelength, @uti©amplitude, modulation—sel€ig. 6.
Throughout most of the domair® and ¢ increase linearly with X, while x remains close to
zero.

From the form ofEgs. (8)—(11)it is clear that families of solutions withy and ¢y constant and non-zero
are possible, corresponding to exactly spatially periodic states with wavenumber close to unity. Some analytic
investigation of these solutions should be possible. It may well be possible also to look analytically at other
classes of solution, for example homoclinic orbits corresponding to spatially localised structures in infinite do-
mains, or solutions wherg andS are spatially periodic, but the possibilities are too numerous to discuss further
here.

5.4. Dynamics near the codimension-two point Y

Below the pointA on Fig. 1the LW and SW curves intersect at yet another codimension-two point, labelled
Y on Fig. 1(a). A similar analysis to that nedt could be carried out here, leading to a pair of equations for
the SW instability (which leads to time-periodic variations in solution amplitude), and the LW (phase) instability.
Although we have not computed the reduced ‘normal form’ in this case, its structure is simple to derive and we
include it for completeness. The relevant reduced equations describing the dynamics of this bifurcation are coupled
ODEs for two variablegz, 6), wherez € C gives the perturbation in the direction of the SW instability and
0 € R describes the LW instability. On symmetry grounds, the equations will be invariant under the transformation
(z,6,3x) — (z, —6, —dx). We also make use of the normal form symmetry €¥z which appears naturally in
Hopf bifurcation problems, and we use the fact that only spatial derivativesvdf appear because the value®f
itself is dynamically unimportant. Under these constraints the reduced equations (including terms up to cubic order
in (z, 6, 0x)) take the form

7= (1 +iw)z — Eozlz|® + E120x + E2zxx, (40)
0 = —habxx — E30xoxx + 16a(zxZ — Zx2) + &sl2/%, (41)

where&o, &1, &2 € C andés, &4, &5 € R are undetermined coefficients,> 0 is the frequency of oscillation at the

Hopf bifurcation, and.1, A, are real bifurcation parameters. Due to the large number of undetermined coefficients,
space does not permit a detailed investigation of this bifurcation here. However, since the symmetry does not permit
a linear term in in thed equation it is clear that the dynamics(dD) and (41)are not related to those (83) and

(36). The codimension-one bifurcation that occursXgr= 0 andi> < 0 was one of the ‘normal forms’ identified

by Coullet and loosp!l] and has been explored numerically by L&b@] and Daviaud et a[10]. In particular, these
authors identify two distinct regimes of spatiotemporal chaos depending on the choices of the coupling coefficients
in (40) and (41)

5.5. Instability of M_ to long-wavelength perturbations

Finally in this section, we briefly discuss the dynamics in the quadrant 0, u2 < 0. The spatially periodic
equilibrium stateM_ exists in the whole of this region and is stable whenis sufficiently negative, for a fixed
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Fig. 6. Steady spatially modulated state reached at the end of the numerical integration illustFaged.ip1 = 0.018, 1> = 0.7; all other
coefficients are as iRig. 1 (a) |A| (solid line) and B| (dashed line), (b (solid line ) and (dashed line).

wn1 > 0. The amplitude® = Rp andS = Sp satisfy
0= 1 —g® — So— a1 RS — b153, (42)
0= uaSo + R3 — a2S3 — baR3 S0, (43)

andy = n. Forg = 0, M_ states lose stability to TW solutions as is increased at fixed positiye;. These TW
states havg ~ 7 near the bifurcation since = = for M_. As for M. this phase instability also generates a distinct
long-wavelength instability wheaq # 0.

Following the usual linearisation ¢8)—(11)aboutM_ we find that a long-wavelength instability occurs when

(2cS — R3)(283(b1b2 — araz) + (b2 — 2b1)SZ — So — a1R3) = 2¢*(R3 + 2a2S3). (44)

Since the bifurcation to TW occurs WhER% = ZSS as before, it is clear that in the case= 1 these bifurcation
curves do not intersect and no further codimension-two bifurcation points appear. In the limit where we keep
w1~ O(1) fixed and letup — —oo we see from(42) and (43}hatSo — 0 andRp ~ O(1). Then(44)is satisfied
whenale ~ 24 to leading order. Fron42) this gives the asymptotic behaviour of the curve of LW instability:

u1 ~ 342, illustrated inFig. 7.

In summary, in this section we have identified various codimension-one and two bifurcations involving modu-
lational instabilities. In particular, two codimension-two poirsandY, organise the interaction of the new LW
instability with the previously studied TW and SW bifurcations. Reductions of the original R®Eesnd (7)to
‘normal form’ equations describing the dynamics near these bifurcations enables us to gain insight into the nature
of these bifurcations, despite the fact that solutions, even of the reduced equations, may have extremely complicate
spatial structure.
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Fig. 7. Region of stability of the mixed-mode_ for the illustrative set of coefficientsy = 1,a2 = 5,b1 = 2,b = 0,c = 1,q = 0.2. The
region of stableV/_ is bounded by TW (solid line) and LW (dash-dotted line) instabilities. Note the asymptotic behaviours of the LW curve: at
large negativer, we find 1 ~ 3¢2 = 0.12 for this set of coefficients; at larga it closely follows the TW curve.

6. Theheteroclinic cycle

One of the most interesting features of the ODE prob{@2)—(14)analysed in Part 1 is the existence of a
robust heteroclinic cycle between pure mode solutions related by a half-wavelength spatial translation, for example
P, and P_. For the coefficient values selected in this paper this heteroclinic cycle exists for an open region of
the (1, n2) plane, abutting the origin. Its formation relies on the existence of pairs of two-dimensional invariant
subspaces for the dynamics, for example within the two-dimensional subsp&eg Fix {Im(A) = Im(B) = 0}
the pointP; is a saddle an@_ is a sink and, if various other conditions are met, a connecting trajectory between
them exists. The second connection is then forced to exist by symmetry, and is contained within the subspace
Fix(my o 77) = {Re(A) = Im(B) = 0}.

For small positivexo and increasing.1 the cycle is formed after a global bifurcation that involves the intersection
of the unstable manifold of; and the stable manifold of the origin; this bifurcation also creates or destroys the
SW periodic orbit. At larger values @f, the connecting trajectory appears after a saddle-node bifurcation marking
the boundary of existence of a further twh, equilibria. Hence this curve of saddle-node bifurcations also bounds
the region of existence of the cycle. At larget the cycle ceases to exist where the pure mode equiliPria
gain stability in a pitchfork bifurcation wit/_ equilibria. These bifurcations proscribe the region of existence of
the cycle. Within this region of existence, a further curve separates regions where it is stable or unstable. At this
stability boundary a branch of modulated waves (MW) bifurcate from the cycle in a global (‘resonant’) bifurcation.
Theoretical work by Armbruster et dll] and by Proctor and Jong83] was confirmed by the general stability
results of Krupa and Melbourrjg4, Section 6.1]It turns out that the natural condition (that the ratio of eigenvalues
in the ‘contracting’ and ‘expanding’ directions should be greater than one for stability) is necessary and sufficient.
This yields the conditiom1 < b1u2/ap for the stability boundary of the cycle.
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When modulational terms are included, the instabilityPefto P_ that is necessary for existence of the cycle
implies thatP, will also be unstable to sufficiently long-wavelength perturbations, so it might be expected that the
cycle also could not be stable to long-wavelength perturbations. Moreover, the subgpaggs= Im(B) = 0}
and{Re(A) = Im(B) = 0} are no longer invariant for the dynamics; spatial variations of the amplitudeve
the evolution of the phase wheng # 0, seeEq. (9) Of course, the cycle still exists, within the subspace of
solutions with no spatial modulation at all. But, in large domains it cannot be asymptotically stable (that is, points in
a full neighbourhood—in some appropriate sense—of the cycle converge to it) as the egBilibrihbe unstable
to perturbations of a sufficiently long-wavelength, as well as to each other within the subspaces containing the
heteroclinic connecting orbits.

Numerical simulations show that spatially modulated perturbations eventually growgwhé@nand the simula-
tion converges to a periodic orbit rather than showing the characteristic increases of time spent near each equilibriurr
that would indicate convergence to the robust heteroclinic cycle.

In this section we analyse the behaviour of trajectories close to the cycle using a linearised stability analysis near
the equilibriaP+ and under the commonly used assumption that trajectories near the cycle spend very little time
passing between neighbourhoods of the equilibria. Our aim is to determine conditions for existence of periodic
orbits lying close to the cycle. We restrict our attention to periodic orbits that spend equal amounts of time near
each equilibrium since this feature is observed in numerical work.

Recall from Section 4that the linear stability ofP, to perturbations~a1 €¢X + @ e X in A(X, T) with
wavenumbet is given by the matriX18) acting on the amplitude®:1, «2). For simplicity we write this matrix as

My = ap— g bo
bo ao+q)’

where
ao = p1 — ¢° — b1B§ — %, (45)
bo = Bo, (46)
G =2qt. (47)

Note that a necessary condition for the existence of the cycle is that the eigervalogds;, evaluated when

¢ =0, satisfyA_ < 0 < A4, so thatP, is a saddle point. The form aff; implies that this is equivalent to requiring
ap < 0when¢ = 0, and hence in the rest of this section we assugne 0. The corresponding linearisation around
P_ is denotedV/>:

My—= (4 —boA _
—bo ao+gq
The form of M> is determined entirely fromM; and the equivariance of the ODE) and (7)
We assume that trajectories close to the heteroclinic cycle spend equal amountsiohiareeach equilibrium,

and that we may ignore the time spent travelling between neighbourhoods of the equilibria. Hence a perturbation
vo = (a1, a2)T nearP, evolves to the point

v1 = Svg = exp(M2T) exp(M1T)vo,
where the matrixS is given by
1 (2h5e+e_ + 38§ — co) + §e2 (G + co) —bog(es — e-)? )

2§ bog(ey —e_)? 2b2eye_ + Ge2 (§ + co) + e (§ — co)
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andco = ,/§% + bg andet = expl(ao £ co)T]. The eigenvalues af then determine the stability of the cycle. We
are particularly interested in the dependence of these eigenvalues on the travE] thmeselected wavelength
and the wavenumber mismatch parameter

Wheng = 0, § simplifies enormously: it is diagonal with eigenvaluas_ = exp(2agT), whereag is defined
in (45). Sinceag < 0 we have contraction of the perturbation vecigrunder successive iterates 8f This
corresponds to trajectories passing repeatedly through neighbourho#ds and converging to the cycle. This
result is independent of the tinfespent near each equilibrium.

For generaly # 0 the eigenvalues aof will, however, depend of". Moreover, for anyg # 0, S will have
eigenvalues of modulus greater than unity wiieis taken to be sufficiently large (so that is sufficiently large).
So, in addition to the discussion above, we can conclude directly from the form of the map that for any ngn-zero
the cycle is unstable.

===
s--

IIII|IIII|IIII|IIII| 1AM

N

500

500 1000 1500 2000

0 500 1000 . 1500 2000 2500
time

Fig. 8. Temporal evolution of the first few Fourier modes (writia@X, 7) = Z;V:O AJ- e?"i/L andB(X, T) similarly) in a solution starting near
the subspace of non-modulated solutions aqd converging to the periodic orbit. The top graph shows the time evilgtictteshed line) and
| Bol (solid line). The other three graphs shody;| (dashed line) and§j| (solid line) for j = 1, 2, 3, respectively. Note the initial decay when

the travel timel is short, followed by growth of the perturbationBéncreases. Parameter values Are 30,1 = 1076, i = 0.1,9 = 1073,
and the coefficients are ashig. 1L



22 JH.P. Dawes et al./ Physica D 191 (2004) 1-30

Numerical simulations indicate that trajectories remain close to the cycle, though, so it is natural to ask whether
stable dynamics close to the cycle is possible. One possibility is the existence of a long-period periodic orbit. That
such an orbit might exist is motivated by the observation fias an eigenvalue greater than unityfop> 1, i.e.
trajectories very close to the cycle are pushed further away from it, but thatfol the eigenvalues & may lie
within the unit circle, indicating that trajectories that start further away from the cycle move closer on successive
passes near the cycle. This behaviour is confirmed by numerical simulationsigse3, where we choose an
initial condition lying extremely close to the subspace of non-modulated solutions, but not close to the heteroclinic
cycle. Thus the first few travel time® between neighbourhoods &f. occur withT small, and the perturbation
decays. Then, as the trajectory becomes closer to the Eyiclereases and the perturbation grows (exponentially
on average) until the trajectory converges to the periodic orbit.

The above argument is unusual in that it suggests that we can extract non-linear information (about the period
of the orbit) from a purely linear calculation (that which leads to the fori)ofT his is because we are essentially
usingT as a proxy for the closest distance between the periodic orbit and the heteroclinic cycle. Hence solving for
the position of the orbit and solving @t are really the same thing. By setting up the usual ‘small box’ approach
we could construct a return map, fixed points of which would correspond to periodic orbits. ByTusistgad,
we are able to circumvent the need to compute this return map in full in order to extract an estimate for the period.
Essentially we construct the component of the return map in a pair of directions orthogonal to the invariant plane
corresponding to unmodulated solutions. Then the condition for locating a fixed point of this part of the map is
identical to the condition tha$ has an eigenvalue ef1l.

At least for smally and large time§” we expect that the behaviour outlined above could be captured by the map
S based on linearisation ne&r.. We compute the approximate peri®ty) ~ 27(q) of a stable periodic orbit by
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Fig. 9. The dependence grof the approximate half-periofig) of the periodic orbit near the heteroclinic cycle, for two combinations ahd

wa2. In both cases, the illustrative coefficient values were used,Rigin, andu1 = ¢2. Squaresl(l) are the results of numerical simulations for

L = 30 andu = 0.1, and triangles4) are numerical results fdt = 25, u» = 0.05. Diamondg<>) give the exact—; relationship implied

by the linearised analysis near the cycle uding ¢min = 27/L, in both cases, and the asymptotic result of the linearised analysis is shown by
the dashed and solid lines.
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Fig. 10. The moduljA| (dashed line) angB| (solid line) for an instantaneous view of a typical solution of the P(Esnd (7) The horizontal

J1w2/az = 0.2 corresponding to the amplitude of tie equilibrium. The parameter values are- 0.2, u1 = 0.04

andu, = 0.2; the illustrative coefficient values are used and the domain is of lehgt200 with periodic boundary conditions.
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Fig. 11. Time evolution of B| at two spatial locationsY = 105 (solid line) and{ = 110 (dashed line), for a typical solution of the PD[B$

and (7) The parameter values, coefficients and domain size arerag.iaQ
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Fig. 12. Temporal evolution of the spatial averages of the amplitude and phase variables 8t15, u, = 0.7, L = 30; all other coefficients
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imposing the condition that the larger eigenvaiue of Sis +1 (the other £:_) lies inside the unit circle). Finally
we consider only the minimum wavenumbfgti, = 27/L since this is the mode with the highest growth rate for
the points in theu1, 12) plane that we consider. Hence the eigenvalue condition yields a relationship (implicitly)
betweer? andg which can be compared with numerical simulations. This relationship simplifies in the asymptotic
regime wherey is small andr is large.

Substituting fore.. = expl(ap £ co)7] in S and computing its eigenvalues we find

[0 e20T 4 7 0T + g2 + y]e2oT
- 2(b3 + §?) ol

m4 5 (48)

where
Y2 — 42121% choT + 4@217% eZC()T + 6}4 e&‘oT _ 22]4 e4coT + 2;4 _ 8@217% e4coT.

It might appear that the dominant term for lafés the first term in the expression f&#, proportional taj? €57,
but this is incorrect. In fact, the dominant terms in the limit of srhahd larger” are those proportional §7 e*o7 .
This leads to the asymptotic relationship

i09(7)
T ~ log{ — ),
ag + bo q

asqg — 0. For two combinations of anduz, Fig. 9compares this asymptotic relationship with the exact implicit
T—q relationship implied ir(48) settingm . = 1, and with the results of numerical integrations of the P& sind

(7). In both cases there is clear agreement as longiasufficiently small. At smally the numerical simulations
become more difficult, due to the intermittent nature of the dynamics. Given the several approximations involved
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Fig. 13. The spatiotemporal evolution of the amplituglés(upper panel) an¢lB| (lower panel) for the parameter valueskif. 12 showing
convergence to TW.
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Fig. 14. Temporal evolution of a persistent complex spatiotemporal state2t0.15, 1o = 0.7, L = 30; all other coefficients are as kfg.
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in the analytic estimate df(q) the results ofig. 9 are encouraging. The major discrepancy in the analysis is the
consideration of only one wavenumlfgti, = 27/L in the estimate. Implicitly we assume that the ‘most unstable’
eigenfunction direction nea?, is aligned exactly with the single Fourier modéneX.

For largerg numerical simulations did not converge to a stable periodic orbit, but instead remained spatiotempo-
rally disordered even after large integration times. Although solutions still often spend considerable amounts of time
near the spatially uniforn®,. state these events occur only intermittently. At much lagg@umerical integrations
of the PDEs show that the cycle still plays a rolédcal organisation of the spatiotemporally complicated dynamics.
The spatial structure of solutions often resembles a series of fronts between intervals of points which remain near
either Py or P_ for a time, and then switch rapidly to a neighbourhood of the other equilibrium. This is illustrated
in Fig. 10 particularly aroundX = 90 and 140 (where the solution is closeRg), and atX = 120 where the
solution is close taP_. For the parameter values of the figure, the pure mode equilibria have ampBtuee0.2.

Nearby spatial locations are often still well-correlated in time,ligell

7. Stabletravelling waves and complex spatiotemporal dynamics

At large positivew; andu, the TW states are restabilised after a Hopf bifurcation involving a branch of modulated
waves generated by the global bifurcation in which the heteroclinic cycle loses stability. Surprisingly, for the spatially
extended system, these spatially homogeneous TW states are also stable for largeugrandyl,, as shown in
Figs. 12 and 13The stable TW coexist with stable complicated spatiotemporal dynamics, illustrakégisin14
and 15 The latter state might be expected to be a more generic solution in this region(@ithe) plane, although
no systematic study of the relative sizes of the basins of attraction has been performed.
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Fig. 15. Spatiotemporal evolution of the amplitudes (upper panel) andB| (lower panel) for the parameter valuesf. 14, showing
complicated spatiotemporal dynamics.
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8. Discussion and conclusions

In this paper we have examined the robustness of the results of Part 1 on the dynamics near the 1:2 strong spatic
resonance, to modulational instabilities which might be expected to play a role when the spatial resonance is close
to, but not exactly, 1:2. We have derived a pair of coupled amplitude equations using symmetry arguments; these
amplitude equations are PDEs rather than ODEs as is the case for exact resonance.

We have examined the stability of the spatially periodic solutions found in Part 1, looking for instabilities to
finite-wavelength and long-wavelength perturbations. In general, we find that the results of Part 1 still apply when
wn1 andu are large (equivalently when the mismaitglis small), but that new instabilities are present near the
codimension-two poini; = u2 = 0. Since these lead, in general, to variations with a horizontal wavenumber
O(eq), solutions still resemble those of the non-modulated problem over short lengthscales.

This paper is primarily concerned with identifying the several codimension-two points in the parameter space
which link modulational instabilities and amplitude or phase instabilities which are present in the ODEs dis-
cussed in Part 1. We have presented reduced equations that describe the dynamics near these various points. T
form of these reduced equations (which are still PDEs) may be deduced from symmetry arguments, and can
also be derived through perturbation expansions. This analysis enables us to understand qualitative features ¢
the dynamics; although analytic solutions are still extremely difficult to derive for the reduced equations, this
process of deriving ‘normal forms’ contributes greatly to an understanding of the interaction of these various
instabilities.

Our three main results are firstly, that the pure médand the mixed-mod@/, may undergo steady-state
instabilities to finite-wavelength modes with a maximum critical wavenurbber g (for P) andé. = 2q (for M..).

This confirms our intuition; it is natural to think that there are only two important lengthscales in the problem—the
O(1) lengthscale of the spatially periodic patterns and long lengthssal@d /q) introduced by the deviation from

exact resonancé/, may also undergo an oscillatory bifurcation to a non-zero wavenumber mode, and numerical
investigations suggest this wavenumber is al$g)O5econdly, the reduction of the governing PDEs to a ‘normal
form’ and subsequent analysis of these reduced equations for the codimension-two phase instability atXhe point
is novel and is presented in detail. Thirdly, we have considered the fate of the structurally stable heteroclinic cycle
present in the ODE problem. Although the equilibria on the cycle, and hence the cycle itself, must be unstable
to long-wavelength perturbations, the dynamics for smabsult in a stable periodic orbit that lies close to the
cycle and whose period can be estimated well analytically. At lagyg&e heteroclinic cycle still organises the
spatial dynamics over short distances, although solutions are spatiotemporally complex as might in general be
expected.

There is, of course, much more work that could be done on this problem. Two obvious directions of inter-
est are the fate of the more complicated heteroclinic cycles examined by Porter and Kn@dlptt modu-
lational perturbations, and the behaviour for asymptotically lardevithin this scaling ansatz); we have con-
centrated on behaviour fgr < 1, where the results may be most easily interpreted with reference to previous
work.
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Appendix A

In this appendix we give the coefficients in the Ginzburg—Landau equation governing the instability of the pure
mode solutionP;. along the interior of the lin@L, discussed ifsection 4
The P, equilibrium is given byA = 0, B = \/uu2/a2 = Bg. We start from the ansatz

AX, T) = e[a(E, D) Bo €% + (€, 12g(q + £) e7¥]
+&2[Yo(E, D) + y1(E, D 2K + o€, 1) € 2] + O(eD), A1)

B(X, T) = Bo + £2[Bo(&, 1) + B1(&, 1) X + Ba(&, 1) €7 2X] 4 O(e®), (A2)

where& = ¢X is a new, longer, lengthscale amd= £2T is a new slower time scale. After a multiple-scales
expansion, substituting this ansatz into the Pgsand (7) the perturbation amplitudegy, 81, B2, 10, Y1, V2
can be expressed in termsaf The usual solvability condition at @?) is satisfied identically, and at(@) the
solvability condition yields the Ginzburg—Landau amplitude equatiorfor

A A A 2
C1o; = Crage — C20tfa|”,
where the real coefficienfg andc, are

¢1 = B3 +44%(q + 02,
¢2 = a1[ B§ + 16g%(q + €)* 4 16B5¢°(q + £)%] + ¢3Bo[2b1B5 + 8¢%(q + £)°b1 — 4q(q + 0)]
+4b1B3q(q + £)(Ca + &5) — B3ea — 4q%(q + 0)Cs,
by o B3by + 4boq?(q + 0% + 4q(q + 0) ’
2a3B9

by o 2B3q(q + O)[azq(q + £) — 4bct?] — B(ap B3 + 4ct?)

8cl2(a B + 2ct?) ’
a azB§ — 2q(q + ©)[q(q + €)(a2BS + ct?) + 4by B3ct?]

8ct2(az B + 2c(?) '

Hencer, > 0 wheng; is sufficiently positive. In the special ca&e= ¢4 = ¢5 = 0, the expression f@r agrees with
that derived by Coullet et 6]. In fact, the @e?) amplitudesy, y1, y2 in (A.1) do not contribute to the complexity
of the expression fof»; the complexity is derived from the third-order contributions from Ehequation.
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