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Abstract

Through multiple-scales and symmetry arguments we derive a model set of amplitude equations describing the interaction of
two steady-state pattern-forming instabilities, in the case that the wavelengths of the instabilities are nearly in the ratio 1:2. In the
case of exact 1:2 resonance the amplitude equations are ODEs; here they are PDEs. We discuss the stability of spatially periodic
solutions to long-wavelength disturbances. By including these modulational effects we are able to explore the relevance of the
exact 1:2 results to spatially extended physical systems for parameter values near to this codimension-two bifurcation point.
These new instabilities can be described in terms of reduced ‘normal form’ PDEs near various secondary codimension-two
points. The robust heteroclinic cycle in the ODEs is destabilised by long-wavelength perturbations and a stable periodic orbit
is generated that lies close to the cycle. An analytic expression giving the approximate period of this orbit is derived.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern-forming instabilities occur in many physical problems, for example Rayleigh–Bénard convection, Faraday
wave experiments and directional solidification[8]. In some of these situations well-established governing equations
are available which are sufficiently simple to analyse. In others the situation is not so clear cut, and reductions to model
equations are of great value. The derivation of model equations to describe instabilities in these physical problems
often provides a clear and unified viewpoint, bringing out similarities in the underlying mathematical structure.

In one spatially extended dimension, the study of the stability of spatially periodic patterns that arise from a
steady-state bifurcation with continuous translational symmetry often reduces to the investigation of an evolution
equation, for example the Ginzburg–Landau equation. Such equations, derived by asymptotic methods rather than
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rigorous analysis (though see recent work by Melbourne[17]) can both comprehend uniform spatially periodic
patterns and describe their stability to long-wavelength disturbances.

In the present paper we consider the case when two distinct instability mechanisms are present, for example
in two-layer thermal convection[23]. Here the two instabilities will typically have different preferred horizontal
lengthscales given by the critical wavenumbers corresponding to local minima in the curves of marginal stability.
Each instability separately can be described by a ‘universal’ model equation such as the Ginzburg–Landau equation.
However, the two instability mechanisms interact non-linearly if the instabilities occur for similar values of the
control parameters; this is a codimension-two bifurcation. In such a situation more complicated model equations
are needed to describe the dynamics in the region of parameter space near the codimension-two point. The form
of these model equations will depend on the symmetry of the problem, the steady or oscillatory nature of the
instabilities, and on the ratio of the critical wavenumbers.

When the critical wavenumber ratio is rational (sayp/q, wherep andq are coprime integers) we may restrict
attention to solutions which are periodic in the horizontal direction and derive, in a mathematically rigorous fashion
using a centre manifold reduction, ODEs describing the dynamics on the centre manifold at the point of instability.
The casesp = 1, q = 1,2,3 have been termed ‘strong’ spatial resonances since the non-linear interaction terms
generated appear at third-order, or below, in the resulting amplitude equations.

When the ratio is irrational this centre manifold approach cannot be applied. Any restriction to spatially periodic
solutions will not be able to capture important features of the dynamics. In consequence the periodic solutions
found may be unstable to long-wavelength instabilities, and their subsequent evolution must be described by PDEs
rather than ODEs. In this case, there is currently no rigorous mathematical formulation which leads to PDEs. At
best the equations used represent asymptotic approximations to the true situation. Nonetheless we shall adopt the
PDE approach here, following the work of (among others) Coullet and Repaux[5], since it is natural and has proved
very productive in similar, though simpler, problems.

In this paper we discuss the interaction of two steady-state instabilities with wavenumbers close to, but not exactly
in, the ratio 1:2, using multiple-scales expansions in time and space. The case of exact 1:2 resonance was treated first
by Dangelmayr[9] and later by Jones and Proctor[13] and by Proctor and Jones[23] (hereafter referred to as Part 1) in
the context of two-layer thermal convection. Important results were also obtained by Armbruster et al.[1] and Julien
[12], and more recently by Porter and Knobloch[20]. In particular[12] resolved several contradictions and errors
in the earlier papers mentioned above, and investigated the dynamics of the ODEs away from the codimension-two
point; a full description of the dynamics of the ODEs becomes very involved. Here we extend this work and show
that small deviations from the exact 1:2 situation result in additional long-wavelength instabilities of otherwise
stable spatially periodic patterns (‘spatial quasiperiodicity’).

The most unusual part of the dynamics of the 1:2 resonance problem is the occurrence of a structurally stable
heteroclinic cycle. The local information that we are able compute near the equilibria on the cycle enables analysis
of the stability of the cycle to long-wavelength spatial disturbances.

The equations that we derive to capture these modulational instabilities are non-linear PDEs, and as such, a
full analysis is a daunting task. Indeed, even a complete classification of possible solutions is far beyond the
scope of this paper. This paper considers those parts of the problem that can be treated analytically rather than
presenting a superabundance of numerical results. Our analysis explores the stability of spatially periodic equilibria
and travelling waves, identifying those new instabilities that are due to the inclusion of modulational effects. The
dynamics near these new instabilities can be described by ‘normal form’ equations (simpler PDEs whose structure is
often prescribed by symmetry requirements). Although the algebraic expressions may become lengthy, it is possible
to reduce the original non-linear PDEs to these ‘normal forms’ explicitly via adiabatic elimination. Such a reduction,
although not completely rigorously justified, can be extremely useful, particularly near secondary codimension-two
points (intersections of lines of codimension-one bifurcations away from the initial bifurcation point). The paper
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illustrates this idea with two explicit detailed examples (the pointsL andX in Fig. 1; in neither case is the ‘normal
form’ equation the Ginzburg–Landau equation. The dynamics nearL have been well-studied in the literature, but
those nearX are more novel.

The original study of Part 1 was motivated by a particular two-layer thermal convection problem, and we refer
the interested reader to that paper for detailed discussion of the physical background. Wavenumber interactions
in the ratio 1:2 also occur in two-dimensional thermal convection in a single layer, for example in the asymptotic
long-wavelength equation discussed by Cox[7], and in non-Boussinesq convection as discussed by Mercader
et al. [18,21]. These papers discuss situations that have one instability mechanism; by looking for solutions that
are spatially periodic with a given wavenumberk they locate codimension-two points(Rc, kc) where two periodic
patterns interact, with wavenumbers in the ratio 1:2. Since, in these problems,Rc is always greater than the minimum
value required to drive convection in a formally infinite layer, the results are not directly applicable to the infinite
layer case. In contrast, this paper (formally) attempts to analyse the infinite layer situation in the case where there are
two distinct instability mechanisms occurring for very similar values of the control parameters. The large horizontal
extent of the layer enables periodic patterns to be destabilised by ‘sideband’ instabilities, for example the Eckhaus
instability. We remark that a similar study, for ‘weak’ resonances, has been performed recently by Higuera et al.
[11]. Their results, although very different in detail, have points of similarity to those presented here, for example
the existence of solutions in the form of localised structures.

The paper is organised as follows. InSection 2we derive the model equations and make general remarks about the
dynamics. InSection 3we briefly summarise the dynamics of the model ODEs in the absence of the modulational
terms. Here and throughout the rest of the paper we use a single combination of coefficients that were used in Part 1,
for ease of comparison.Sections 4 and 5discuss in detail the new instabilities of spatially periodic states that occur
when the modulational terms are added to the model. InSection 6we discuss the stability of the robust heteroclinic
cycle. Analytic work shows the existence of a long-period periodic orbit lying close to the cycle, in quantitative
agreement with numerical results.Section 7briefly highlights the coexistence, over a substantial region of the
parameter plane, of stable non-modulated travelling waves and complex spatiotemporal behaviour. We conclude in
Section 8.

2. Model equations near 1:2 resonance

Consider a horizontal two-dimensional layer, or layers, of fluid in the domain(−∞,∞)×[0,1], using co-ordinates
(x, z), i.e. of finite vertical extent but extending to infinity in the horizontal directionx. We suppose that there is an
x-independent state which may become linearly unstable to either of two competing steady-state instabilities, with
wavenumbers nearly in the ratio 1:2. By way of illustration, the analysis of Part 1 was concerned with a two-layer
thermal convection problem where these two instabilities corresponded to the onset of convection predominantly in
either the upper or the lower layer separately. The most interesting dynamics can be captured by the distinguished
limit in which the deviation of the ratio of the critical wavenumbers from the exact value 1/2 is of the order of the
square root of the deviation of the bifurcation parameter (in this case the Rayleigh numberR) from its critical value
Rc. If we setR− Rc = ε2 then we may write the critical wavenumbers (those associated with local minima in the
value of the critical Rayleigh number) ask + εq and 2k. A suitable ansatz for small-amplitude solutions near the
codimension-two point where the conditions for instability coincide is then

u(x, z, t) = ε[A(X, T)f1(z)eix(1+εq) + B(X, T)f2(z)e2ix + c.c.] + O(ε2), (1)

where lengths have been rescaled so thatk = 1; X = εx andT = ε2t are long length and time scales, c.c.
denotes complex conjugate, and the functionsf1,2(z) give the vertical structure of the eigenfunction corresponding
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to each mode of instability. The amplitudesA(X, T), B(X, T) are complex-valued. The initial homogeneous state
is symmetric under the Euclidean groupE(1) generated by the reflectionmx : x → −x and the translations
τδ : x → x+ δ. These symmetries induce the following transformations on the amplitudesA andB:

mx : x → −x : (A,B) → (Ā, B̄), (2)

τδ : x → x+ δ : (A,B) → (Aei(1+εq)δ, B e2iδ). (3)

The combination̄A2B e2iqX is found to be the lowest-order translation-invariant combination that is not a product
of the usual terms|A|2 and|B|2.

The resulting amplitude equations (ignoring terms of order higher than three inA, B and∂X) take the form

Ȧ = A[µ1 − a1|A|2 − b1|B|2] + a3ĀB e2iqX + a4AXX, (4)

Ḃ = B[µ2 − a2|B|2 − b2|A|2] + b3A
2 e−2iqX + cBXX, (5)

where the coefficientsaj, bj andc are forced to be real by the reflection symmetry(2), the dots denote derivatives
with respect to the slow time scaleT andµ1, µ2 are bifurcation parameters. We remark that(4) and (5)contain
both quadratic and cubic terms in the amplitudesA andB. To ensure a rational scheme of approximation in the
limit ε → 0 we should arrange thata3, b3 scale asε. This can be achieved in several ways, for example where a
further symmetry which would leave the equations invariant under the sign change(A,B) → (−A,−B) is weakly
broken.

The form ofEqs. (4) and (5)shows that when|q| becomes large the spatially averaged contribution from the
quadratic terms decreases to zero. In this limit we formally recover the usual ‘Landau’ equations describing two
coupled modes of instability in the absence of spatial resonance. This is in agreement with our ansatz(1); the system
is far from the 1:2 mode interaction point when|q| ∼ O(1/ε).

Subsequent calculations are made considerably easier if we make the change of variableÂ = Ae−iqX to remove
the exponential factors, and rescale the variablesA, B, T andX to seta3 = a4 = 1 andb3 = ±1. Dropping the
carat onÂ we obtain

Ȧ = A[µ1 − q2 − a1|A|2 − b1|B|2] + ĀB + 2iqAX + AXX, (6)

Ḃ = B[µ2 − a2|B|2 − b2|A|2] ± A2 + cBXX, (7)

which is the form of the equations that we will use in what follows. These equations have the same structure as the
ODEs derived in Part 1 with the addition of terms giving modulation on the long lengthscaleX. The term 2iqAX

captures the effect of the departure from exact 1:2 resonance.
Writing A = R(X, T)eiθ(X,T) andB = S(X, T)eiφ(X,T), the evolutionEqs. (6) and (7)become

Ṙ = R[µ1 − q2 − a1R
2 − b1S

2] + RS cosχ− 2qRθX + RXX − R(θX)
2, (8)

Rθ̇ = RS sinχ+ 2qRX + 2RXθX + RθXX, (9)

Ṡ = S[µ2 − a2S
2 − b2R

2] ± R2 cosχ+ c[SXX − S(φX)
2], (10)

Sφ̇ = ∓R2 sinχ+ c[2SXφX + SφXX], (11)

whereχ ≡ φ − 2θ. When the modulational terms are omitted, we can express the dynamics in terms of only the
two moduli and the one phase differenceχ (i.e. a reduction to a third-order system), as was done in Part 1. This
leads to the ODEs

Ṙ = R[µ1 − q2 − a1R
2 − b1S

2] + RS cosχ, (12)
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Ṡ = S[µ2 − a2S
2 − b2R

2] ± R2 cosχ, (13)

χ̇ =
(

∓R2

S
− 2S

)
sinχ. (14)

However, in the presence of modulational terms, each of the individual phase variablesθ andφ is dynamically
independent. Vyshkind and Rabinovich[24] introduced the new variablesu = S cosχ, v = S sinχ (also used by
Porter and Knobloch[20]) to produce a third-order system avoiding the co-ordinate singularity, but this change of
variables offers no simplification in the PDE problem.

The choice of the sign of the±A2 term in(7) has a huge effect on the dynamics. It was shown in Part 1 that in
the ‘+’ case for the non-modulated problem the dynamics are much less interesting than those may occur in the
‘−’ case. Indeed in the ‘+’ case there is a Lyapounov functionalV(R, θ, S, φ) for the dynamics when 2b1 = b2:

V =
〈

1
2a1R

4 + 1
4a2S

4 + b1R
2S2 − 1

2µ2S
2 − µ1R

2 + R2
X + R2(θX + q)2 − R2S cosχ+ 1

2c[S
2
X + S2φ2

X]
〉
,

(15)

where〈· · · 〉 denotes a horizontal average. Then a direct calculation shows that

V̇ = −〈2Ṙ2 + 2R2θ̇2 + Ṡ2 + S2φ̇2〉 ≤ 0,

i.e. the system evolves monotonically towards a steady state. More complicated dynamics, for example temporal
oscillations, are not possible. It follows that, at least when 2b1 andb2 are not widely different, or the amplitudes
are small (equivalently, near to the codimension-two point), we expect solution trajectories to tend asymptotically
to equilibria after long times.

For the remainder of the paper we consider the ‘−’ case, choosing the minus sign in(7). In this case it is not
possible to construct a Lyapounov functional, and even in the absence of modulational terms the related ODE problem
(12)–(14)can indeed display oscillatory dynamics; moreover there is a region of parameter space where a robust
heteroclinic cycle exists and is stable. This cycle was analysed in Part 1 and by Armbruster et al.[1]. The parameter
c in (7) corresponds to differential diffusion rates of the two amplitudes. Varyingc away from unity leads to Turing
instabilities, well-known in the context of reaction–diffusion equations. We remove this complicating consideration
by settingc = 1 in nearly all of what follows. The occurrence of Turing instabilities in mode interactions is common
to all cases of strong spatial resonance and is of a different type to the instabilities we discuss here, since it occurs
in the spatially extended but exactly resonance case. A full discussion of this second class of instabilities is given
in a companion paper[22].

3. Non-modulational dynamics near µ1= µ2=0

In this section we summarise the relevant parts of the bifurcation sequences observed in Part 1 nearµ1 = µ2 = 0
in the analysis of the ODEs(12)–(14), settingq = 0. As remarked on earlier, even in the absence of the modulational
terms, a full analysis of(6) and (7)is extremely complicated.

The trivial equilibriumA = B = 0 is stable in the quadrantµ1 < 0,µ2 < 0. Near the codimension-two point at
µ1 = µ2 = 0, the ODEs(12)–(14)support simple non-trivial equilibrium solutions of three types. The first type
is a pure mode solutionP , of the formA = 0, |B|2 = µ2/a2. The continuous symmetry of the problem implies
the existence of a group orbit of equilibria; that is, the phase ofB is arbitrary due to the underlying translational
symmetry. Within the subspace Fix(mx) whereA,B ∈ R there are two equilibria, denotedP±. The pure mode
solutions bifurcate from the trivial solution and exist whenµ2 > 0. They are stable forµ1 sufficiently negative.
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The other equilibria are mixed-mode equilibria of two kinds,M±, corresponding toχ taking the valuesχ = 0 and
π, respectively. TheM± amplitudesR = R0 andS = S0 are given by solutions of the equations

0 = µ1 ± S0 − a1R
2
0 − b1S

2
0, (16)

0 = µ2S0 ∓ R2
0 − a2S

3
0 − b2R

2
0S0, (17)

where the sign choices select eitherM+ orM−. In fact there is a group orbit of each ofM+ andM− equilibria also,
since althoughχ is fixed at 0 orπ, respectively, there is a free choice of one of the underlying phasesθ or φ. When
µ1 is increased, holdingµ2 > 0 fixed, stableM+ equilibria are created in a bifurcation at which the pure mode
solutions lose stability.

TheM+ solution then loses stability (asµ1 is increased further) either through a symmetry-breaking drift bi-
furcation which produces travelling waves (TW), or through a Hopf bifurcation to standing waves (SW). The TW
solution resembles the mixed-modeM+ in form, but it drifts along the group orbit of mixed-mode solutions as time
evolves. The TW bifurcation is clearly a phase instability rather than an amplitude instability. Because the phase
variablesθ andφ evolve at constant rates such thatχ is constant and sinχ �= 0, the TW solutions appear as equilibria
in the(R, S, χ) variables. In other words, the use of the(R, S, χ) variables identifies all points on the group orbit of
M+ solutions as a single equilibrium, and, in these co-ordinates, information about drift around group orbits is lost.

In contrast, the SW bifurcation is an amplitude-driven instability and produces periodic orbits that lie within
the subspaceχ = 0. Typical curves along whichM+ undergoes bifurcations to TW or SW solutions are shown in
Fig. 1. For a large region of parameter space these two curves intersect at a codimension-two point, labelledA in
Fig. 1. Because the eigenvectors corresponding to the TW and SW bifurcations are orthogonal the codimension-two
bifurcation corresponding to simultaneous instability is a pitchfork-Hopf bifurcation (in the(R, S, χ) co-ordinates).

As we increaseµ1 for small positiveµ2, the SW instability occurs first. Within the subspace Fix(mx) the periodic
orbit created in the SW bifurcation grows until it collides simultaneously with the origin and theP+ equilibrium.
After this global bifurcation the periodic orbit disappears, but now the unstable manifold ofP+ tends asymptotically
to the pure mode solutionP−. By symmetry, within the invariant subspace Fix(mx ◦ τπ) the unstable manifold of
P− tends toP+, and a heteroclinic cycle is formed. The heteroclinic cycle is structurally stable due to the existence
of invariant subspaces, within which each connecting trajectory lies. Hence it exists for an open set of values of the
coefficients and bifurcation parameters. Moreover, this cycle is attracting for an open interval of values ofµ1.

At largerµ1 this cycle ceases to attract nearby trajectories as it undergoes a resonant bifurcation, resulting in a
global loss of stability, and creating modulated waves (MW). MW are destroyed in a Hopf bifurcation from the TW
which themselves cease to exist in a bifurcation with theM− states. Moreover, several other heteroclinic cycles are
possible for other combinations of coefficients, and at larger positiveµ2. These have been investigated in detail by
Porter and Knobloch[20].

4. Modulational instability of the pure mode

Having summarised the behaviour of the system in the absence of spatial modulations, we now allowq to take
non-zero values, and examine the possibility of new modes of instability due to the spatial frequency mismatch. We
first note that the results of Part 1, summarised in the previous section, apply within the subspace of non-modulated
(X-independent) solutions. To examine the stability of the pure mode solutionP+, given byA = 0 andB = B0 ≡√
µ2/a2, we substitute the ansatz

A(X, T) = α1(T)ei*X + ᾱ2(T)e−i*X, B(X, T) = B0(1 + β1(T )eimX + β̄2(T )e−imX),
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Fig. 1. (a) Instability boundaries in the(µ1, µ2) plane for the illustrative coefficient choicesa1 = 1, a2 = 5, b1 = 2, b2 = 0, c = 1, q = 0.2.
Unstable and stable solutions in each region are indicated with and without parentheses. The solid curve containing the pointL denotes the
boundary of existence ofM+. The solid curves TW and SW denote instabilities ofM+ to travelling and standing waves, respectively. The
codimension-two pointsA, X, Y, L, S andT and the various dashed and dash-dotted curves are discussed in the text and (b) is an enlargement
of (a).
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into (6) and (7)and linearise. The linearised dynamics forα1,2 andβ1,2 decouple andP+ is found to be stable to
the perturbationsβ1,2 for all wavenumbersm. The linearised system for the perturbationsα1,2 is(

α̇1

α̇2

)
=
(
µ1 − q2 − b1B

2
0 − 2q*− *2 B0

B0 µ1 − q2 − b1B
2
0 + 2q*− *2

)(
α1

α2

)
. (18)

This matrix has trace tr(*2) and determinantD(*2):

tr(*2) = 2(µ1 − q2 − *2 − b1B
2
0), D(*2) = (µ1 − q2 − *2 − b1B

2
0)

2 − 4q2*2 − B2
0.

No oscillatory bifurcation is possible since tr(*2) = 0 impliesD(*2) < 0. A steady-state instability to perturbations
with wavenumber* occurs whenD(*2) = D′(*2) = 0 sinceD′′(*2) = 2 > 0. These conditions show that the first
instability ofP+ may be to perturbations either with* = 0 or with * non-zero. Whenµ2 > a2(µ1 + q2)/b1 the
first instability is to* = 0 and occurs along the curveµ1 = b1µ2/a2 + q2 − √

µ2/a2. Whenµ2 < a2(µ1 + q2)/b1

the first instability is to finite* = *c > 0 and occurs along the line

µ1 = µ2

a2

(
b1 − 1

4q2

)
.

These two instability curves meet at the point(µL1 , µ
L
2 ) = (4b1q

4 − q2,4a2q
4), markedL onFig. 1. The gradients

of these curves are equal here, so the transition between instabilities is smooth. Along the lineOL (from the origin
to L) the most unstable wavenumber,*c, is given by*2

c = µ1 − b1µ2/a2 + q2, i.e. 0< *c < q, and*c increases
monotonically as the origin is approached.

At any point on the interior of the lineOL we can fully describe this bifurcation by the usual Ginzburg–Landau
equation, since for the PDEs(6) and (7)this is an instability of a uniform state to a non-zero-wavelength perturbation,
and the growth rate of a perturbation with a wavenumber far from*c is negative and bounded away from zero. We have
carried out a weakly non-linear perturbation expansion nearOL to investigate whether this bifurcation is subcritical
or supercritical, details of which are given inAppendix A. The resulting analytic expression is cumbersome, but it
is possible to deduce that the bifurcation is always supercritical whena1 > 0 is large enough. This calculation can
be carried out analytically without assumingc = 1; if c is large compared to unity anda1 is small it is possible for
the bifurcation to be subcritical. For the illustrative set of coefficients used inFig. 1 the bifurcation is supercritical
along the whole ofOL.

The dynamics in a neighbourhood of the codimension-two pointL cannot, though, be described by the Ginzburg–
Landau equation, since the instability wavelength*c tends to zero asL is approached. A codimension-two point
identical in structure toL occurs in the analysis by Coullet and Repaux[5] of a pattern-forming instability subjected
to an external nearly resonant periodic forcing. They termL a ‘Lifschitz point’. Through asymptotic expansions
nearL it is possible to describe the dynamics in terms of a single ‘normal form’ equation

Aτ = ν1A− A3 + ν2Aξξ − Aξξξξ, (19)

which governs the evolution of a small perturbationA(ξ, τ) ∈ R to theP+ solution;ν1 andν2 are new bifurcation
parameters, defined so that the pointL corresponds toν1 = ν2 = 0, τ is a new scaled time variable andξ is a
new long spatial scale associated with the smallness of*c. Eq. (19)is known as the Extended Fisher–Kolmogorov
equation and its properties have been extensively investigated[2,3,19]. It is easily shown that there is a Lyapounov
functional for the dynamics, and so there are only steady-state solutions at long times. However, these states need not
be periodic in space; and in fact the solutions can have very complex spatial structure whenν1 > 0, corresponding
to the regionµ1 > b1B

2
0 − B0 + q2.
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5. Modulational instabilities of the mixed-modes

M+ undergoes a plethora of different bifurcations. In this section we will discuss three new instabilities to
long-wavelength disturbances that occur. We examine a codimension-two bifurcation where two of these curves
meet. We also discuss other codimension-two points that occur where one of these long-wavelength instabilities
meets a bifurcation curve from the non-modulated problem. Our discussion is organised by the sequence in which
these bifurcations appear inFig. 1asµ1 increases.

LetA = R0(1 + α1 ei*X + ᾱ2 e−i*X) andB = S0(1 + β1 ei*X + β̄2 e−i*X), whereR0 andS0 satisfy

0 = µ1 − q2 + S0 − a1R
2
0 − b1S

2
0, (20)

0 = µ2S − R2
0 − a2S

3
0 − b2R

2
0S0. (21)

After substituting into(6) and (7), linearising and changing to the sum and difference variablesα± = α1 ± α2,
β± = β1 ± β2, we obtain the linearisation matrix



R0α̇+
S0β̇+
R0α̇−
S0β̇−


 =




−2a1R
2
0 − *2 R0(1 − 2b1S0) −2q* 0

−2R0(1 + b2S0)
R2

0

S0
− 2a2S

2
0 − c*2 0 0

−2q* 0 −2S0 − *2 R0

0 0 −2R0
R2

0

S0
− c*2






R0α+
S0β+
R0α−
S0β−


 . (22)

The characteristic polynomial of this matrix can be written asP(λ) = λ4 + Â(*2)λ3 + B̂(*2)λ2 + Ĉ(*2)λ+ D̂(*2).
Note thatP(λ) always has a rootλ = 0 when* = 0, hence we may writêD(*2) = *2Ê(*2), whereÊ(*2) is a
cubic polynomial. This is due to the underlying translation symmetry. Steady-state instabilities at* = *∗ > 0 occur
when Ê(*2∗) = Ê′(*2∗) = 0 andÊ′′(*2∗) > 0. Oscillatory instabilities occur whenλ ≡ α(*2) + iω(*2) satisfies
α(*2∗) = α′(*2∗) = 0, α′′(*2∗) > 0 andω2(*2∗) > 0, whereα(*2) andω(*2) are real. These requirements yield the
conditions

Ĉ2 − ÂB̂Ĉ + Â2D̂ = 0, (ÂĈ′ − ĈÂ′)(2Ĉ − ÂB̂)− Â2(B̂′Ĉ − ÂD̂′) = 0, Ĉ/Â > 0,

for an oscillatory bifurcation with*∗ > 0. Both the steady-state and the oscillatory cases give two conditions; in
conjunction with(20) and (21), these conditions enable the determination of bifurcation lines in the(µ1, µ2) plane.
Clearly, a steady-state instability at*∗ = 0 occurs when̂E(0) = 0 andÊ′(0) > 0; similarly an oscillatory instability
occurs whenα(0) = 0 andα′(0) < 0 as long asω2(0) > 0. In terms of the coefficients ofP(λ) these conditions are

Ĉ2 − ÂB̂Ĉ + Â2D̂ = 0,
(B̂Ĉ − ÂD̂− Ĉ2/Â)′

2(4D̂− ÂĈ − B̂2)
< 0,

Ĉ

Â
> 0.

5.1. Instability of M+ near the Lifschitz point L

The first new instability ofM+ that we find is a steady-state bifurcation to spatially modulated solutions, i.e.
the most unstable wavenumber is non-zero. This occurs along the dashed curveLT emanating from the Lifschitz
point L. This instability is part of the generic bifurcation structure near a Lifschitz point and hence the existence
of this curve can be shown by analysis of the normal form(19). We have followed the bifurcation curve to larger
values ofµ1 where it becomes asymptotic to the lineµ1 = q2 asµ2 → ∞. NearL, whena1 is large we expect
the bifurcation to be subcritical by comparison with the results of Coullet and Repaux[5]. This bifurcation curve
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Fig. 2. Codimension-two instability ofM+ at the pointT, (µ1, µ2) = (0.00929,0.0149) for q = 0.2 and the coefficients ofFig. 1. Real parts
of the eigenvaluesλ of the linearisation aboutM+ are plotted against wavenumber*2. Solid lines denote real eigenvalues, dashed lines give the
real part of complex conjugate pairs. Note the mode with zero growth rate at* = 0 due to the translational symmetry ofM+.

meets a second such non-zero-* instability curve (this one starting from the pointS) at the pointT on Fig. 1.
At T there is a Hopf/steady-state mode interaction coupled to a phase mode which has zero growth rate at zero
wavenumber;Fig. 2shows the variation of the real parts of the eigenvaluesλ(*2) at this point. The dynamics near
the codimension-two pointT depend strongly on the ratio of the wavenumbers involved in the instabilities. This
ratio varies considerably withq, as shown inFig. 3. For the illustrative coefficient set used inFig. 1, whenq = 0.097
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Fig. 3. (a) Critical wavenumbers for the steady-state (solid line) and oscillatory (dashed line) instabilities atT (seeFig. 1) as a function of the
wavenumber mismatchq, in the range 0.097< q < 0.55. (b) Ratio of the critical wavenumbers in (a) as a function ofq.
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there is a codimension-three bifurcation asS collides withT. As we approach this collision, the wavenumber of the
oscillatory instability atT goes to zero and so the wavenumber ratio is formally infinite there.

The critical wavenumbers for the steady-state instability can be seen fromFig. 3(a) to be slightly greater than
the mismatch parameterq, in contrast with the modulational instability of the pure mode solutionP+ discussed in
Section 4where the maximum critical wavenumber of instability is exactlyq. It turns out that forM+ the maximum
instability wavenumber is 2q. This can be easily shown by examiningM+ near the lineµ1 = q2, µ2 > 0. When
µ1 − q2 is small and negative the amplitudesR0 andS0 for M+ are, solving(20) and (21)to leading order:

R2
0 = (µ1 − q2)µ2

a1µ2 − 1
, S0 = µ1 − q2

a1µ2 − 1
.

Then, substituting these expressions into the termÊ(*2) from the characteristic polynomialP(λ) we obtain

Ê(*2) = (µ2 − *2)2(*2 − 4q2)+ O(|µ1 − q2|).
The double root at*2 = µ2 comes from the LW instability; it is the root at*2 = 4q2 that comes from the continuation
of the steady-state instability curve throughT towardsµ1 − q2 ≈ 0. From numerical investigations we conjecture
that the wavenumber of the instability evolves monotonically along the curve, but there does not seem to be a
straightforward way to verify this analytically.

5.2. Instability of M+ to standing waves

The dash-dotted lineTS in Fig. 1(b) marks the instability boundary ofM+ to the second new bifurcation involv-
ing spatial modulation; an oscillatory instability to temporal oscillations (standing waves) with non-zero spatial
wavenumber. The dynamics near the pointS is analogous (but time-periodic rather than steady) to that near the
Lifschitz pointL, and can thus be described by a similar extension of the complex Ginzburg–Landau equation:

Aτ = (ν1 + iω0(ν1, ν2))A− (1 + iβ)A|A|2 + (ν2 + iα)Aξξ − (1 + iγ)Aξξξξ, (23)

governing the evolution of a complex-valued perturbationA(ξ, τ) to theM+ solution. As before,ν1 andν2 are new
bifurcation parameters; the pointS corresponds toν1 = ν2 = 0,ω0 is the non-zero frequency of the instability,α,
β andγ are real parameters,τ is a new scaled time variable andξ is a new long spatial scale. Clearly the dynamics
of (23) are at least as complicated as those of(19). The wavenumber of this oscillatory instability increases asµ2

decreases along the curve (fromS to T).

5.3. The long-wavelength phase instability of M+

The third new instability occurs, at largerµ2, along the curve LW inFig. 1(a). This instability is a long-wavelength
steady-state bifurcation; asq is increased from zero, the LW curve splits off from the TW curve along its entire
length. Since, in the absence of modulational terms,M+ are unstable first to SW belowA and unstable first to TW
aboveA, the LW instability (at least for this combination of coefficients) is the instability ofM+ that occurs first in
an intermediate range ofµ2, between the new codimension-two pointsX andY. The LW and SW curves intersect
at Y and the LW and TW curves intersect atX, seeFig. 1(a). Since the LW instability curve coalesces with the
TW instability asq → 0 it is clear that the LW instability must also be a phase instability rather than an amplitude
instability.

It is important to observe that the pointA, where the TW and SW curves cross, is now ‘shielded’ by the LW
curve. The dynamics nearA were investigated in detail in this context by Julien[12], and in greater generality by
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Landsberg and Knobloch[15]. In the presence of modulations the dynamics nearA are expected to be less relevant
to the observed dynamics in a spatially extended physical system. However, it is worth noting that by varying
the diffusivity ratioc away from unity it is possible to make the pointsX andA coincide; this would result in a
codimension-three bifurcation involving the TW, LW and SW instabilities ofM+.

Reduced descriptions of the dynamics nearX and Y can be derived from the PDEs starting either from
(6) and (7)or, more conveniently here, from the modulus/phase representation of the dynamics given in(8)–(11). In
this subsection we will present the reduction nearX in some detail, and comment only briefly on the dynamics nearY.

NearX we strive to eliminate theEqs. (8) and (10)for the evolution of the moduliR andS by adiabatic elimination
to leave a pair of real equations for the phasesθ andφ. It turns out to be more convenient to describe the dynamics
in terms ofχ ≡ φ − 2θ andθ, since the TW instability involves only the combinationχ. From(14) it is clear that
the TW instability occurs when

R2
0 = 2S2

0, (24)

whereR0 andS0 satisfy(20) and (21). The LW instability occurs when̂E(0) = 0, where*2Ê(*2) is the determinant
of the linearisation matrix(22):

Ê(0) = 2R2
0

S0
[(2cS2

0 − R2
0)(2(a1a2 − b1b2)S

3
0 + (b2 − 2b1)S

2
0 − a1R

2
0 + S0)+ 2q2(2a2S

3
0 − R2

0)]. (25)

Note that whenc = 1 andq = 0 this condition reduces to the condition for the TW instability(24). Whenc = 1
the algebra simplifies substantially (and so we setc = 1 for the remainder of this section); solving(24) and (25)
together yields the moduliR0 = √

2/a2, S0 = 1/a2 at the pointX where the LW and TW instabilities coincide.
Substitution into(20) and (21)gives the co-ordinates of the pointX in the(µ1, µ2) plane:

(µX1 , µ
X
2 ) =

(
2a1 + b1 − a2

a2
2

+ q2,
3a2 + 2b2

a2
2

)
.

The adiabatic elimination ofR andS at the pointX proceeds in the usual manner, but the scaling forχ differs from
that which might be expected. Our choices of scalings are determined completely by the requirement to balance
the linear terms in the reduced equations. This balance then introduces two specific non-linear coupling terms at
leading order. We write

R = R0 + ε2r0 + ε4r1 + · · · , X̃ = εX, (26)

S = S0 + ε2s0 + ε4s1 + · · · , T̃ = ε2T, (27)

(θ, φ) = ε(θ̃, φ̃), χ = ε3χ̃, (28)

µ1 = µX1 + ε2µ̂1, µ2 = µX2 + ε2µ̂2. (29)

Substituting into(8) and (10)and dropping the tildes gives, at O(ε2):

2a1R
2
0r0 + (2b1S0 − 1)R0s0 = R0µ̂1 − 2qR0θX, 2R0(1 + b2S0)r0 = S0µ̂2.

Hence

r0 = S0µ̂2

2R0(1 + b2S0)
, (30)

s0 = µ̂1 − 2qθX
2b1S0 − 1

− S0µ̂2

(2b1S0 − 1)(1 + b2S0)
. (31)
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Substituting the scalings(26)–(29)into theθ̇ equation(9), dropping the tildes and cancelling a factor ofε3 yields

R0θ̇ = R0S0χ+ 2qr0X + R0θXX + O(ε2). (32)

From(30)we see thatr0X = 0 and so(32)simplifies to give

θ̇ = S0χ+ θXX + O(ε2), (33)

which is the first of our pair of reduced equations. It turns out that we need to compute the termr1 to determine the
leading order evolution ofχ correctly. From(10)at O(ε4) we find

2R0(1 + b2S0)r1 = s0µ̂2 − 3a2S0s
2
0 − (1 + b2S0)r

2
0 − 2b2R0r0s0 + s0XX − S0(φX)

2 − ṡ0,

which, after substituting(30) and (31), becomes

2R0(1 + b2S0)r1 =
(

12qa2S0[(1 + b2S0)µ̂1 − S0µ̂2]

(2b1S0 − 1)2(1 + b2S0)
− 2qµ̂2

(1 + b2S0)(2b1S0 − 1)

)
θX − 4S0(θX)

2

+ 2q

2b1S0 − 1
(θ̇X − θXXX)+ const, (34)

where const denotes terms independent ofX, and the last term is equal to 2qS0χX/(2b1S0 − 1) at leading order,
using(33).

Now we turn to the (unscaled)χ̇ equation, formed by combining(9) and (11):

χ̇ =
(
R2

S
− 2S

)
χ+ χXX + 2

S
SXφX − 4q

R
RX − 4

R
RXθX.

After substituting the scalings(26)–(29)and dropping the tildes, the terms at O(ε5) are found to be

χ̇ =
[

2R0

S0
r0 −

(
2 + R2

0

S2
0

)
s0

]
χ+ χXX + 4

S0
s0XθX − 4q

R0
r1X, (35)

using the fact thatr0X = 0. After substituting fors0X andr1X using(31) and (34)(noting that the terms in(34)
indicated by ‘const’ do not appear) we obtain

χ̇ = ξ0χ+ (1 + ξ4)χXX + ξ1θXX + ξ2χθX + ξ3θXθXX + O(ε2), (36)

where

ξ0 = µ̂2

[
a2

a2 + b2
+ 4a2

(2b1 − a2)(a2 + b2)

]
− 4a2µ̂1

2b1 − a2
,

ξ1 = −12q2a5
2µ̂1

(a2 + b2)(2b1 − a2)2
+ 2q2a5

2µ̂2(6 + 2b1 − a2)

(a2 + b2)2(2b1 − a2)2
, ξ2 = 8qa2

2b1 − a2
,

ξ3 = 4qa2
2(2b1 − 3a2 − 2b2)

(a2 + b2)(2b1 − a2)
, ξ4 = −2q2a3

2

(a2 + b2)(2b1 − a2)
.

One simple consistency check is that coefficients containing odd powers ofq multiply terms with odd numbers of
X-derivatives (and likewise for even powers ofq). For the illustrative coefficient choicesa1 = 1, a2 = 5, b1 = 2
andb2 = 0 we obtain the leading order reduced equations

χ̇ = (20µ̂1 − 3µ̂2)χ+ (1 + 50q2)χXX − 1250q2(6µ̂1 − µ̂2)θXX − 40qχθX + 220qθXθXX, (37)

θ̇ = 1
5χ+ θXX. (38)
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Fig. 4. Sketch bifurcation lines near the codimension-two pointX where the TW and LW curves meet, for the illustrative coefficient choices
a1 = 1,a2 = 5,b1 = 2,b2 = 0,c = 1,q = 0.2.M+ are stable above and to the left of the LW and TW curves. The TW bifurcation (solid/dotted
line) occurs along the line 20̂µ1 − 3µ̂2 = 0; it is the initial instability ofM+ when 6̂µ1 − µ̂2 > 0 (indicated by the solid line). The dotted
part of the line indicates instability in the absence of long-wavelength modulations. The LW bifurcation (solid/dash-dot-dot-dotted line) occurs
similarly when(20+ 1500q2)µ̂1 = (3 + 250q2)µ̂2 and 20̂µ1 < 3µ̂2. The solid part of the LW line indicates that part of it for which it is the
initial instability ofM+.

Non-modulatedM+ states correspond toχ = 0, θ = θ0 as there is a circle of equivalentM+ states related to each
other by spatial translations. We consider the stateθ0 = 0 without loss of generality. We now use(33) and (36)to
examine the two distinct linear instabilities of the stateχ = θ = 0 that are possible. Substitutingχ = χ̂(T)ei*X and
θ = θ̂(T)ei*X into (33) and (36)and linearising we obtain the Jacobian matrix

Jχ,θ =

 ξ0 − *2(1 + ξ4) −*2ξ1

1

a2
−*2


 ,

which has trace and determinant

trJ (*
2) = ξ0 − *2(2 + ξ4), detJ (*

2) = *4(1 + ξ4)+ *2
(
ξ1

a2
− ξ0

)
.

Hence det′J (0) = ξ1/a2 − ξ0. The bifurcation to TW occurs whenξ0 = 0; it is the initial instability ofM+ when
ξ1/a2 > 0, i.e. (for the illustrative coefficient set) when 20µ̂1 − 3µ̂2 = 0 and 6̂µ1 − µ̂2 > 0. Similarly, the
LW instability occurs whenξ1/a2 = ξ0; it occurs before the TW instability ifξ0 < 0. These conditions become
(20+ 1500q2)µ̂1 = (3+ 250q2)µ̂2 and 20̂µ1 < 3µ̂2 for our coefficient set. These lines are sketched inFig. 4and
clearly correspond to the behaviour of the TW and LW curves nearX in Fig. 1(a).

The form ofEqs. (37) and (38)stems directly from the requirement of invariance underx-reflection(2), which
sends(χ, θ, ∂X) → (−χ,−θ,−∂X). We note that the TW bifurcation is one of the secondary instabilities of spatially
periodic patterns classified on symmetry grounds by Coullet and Iooss[4]; their equation (8)(a) and (b) closely
resemble(37) and (38), although theirs contain only one bifurcation parameter since they are concerned with
classifying codimension-one instabilities. By including a second bifurcation parameter we are able to capture the
codimension-two transition between the TW and LW instabilities.

5.3.1. Eckhaus instability dynamics near the LW bifurcation
At the codimension-one LW bifurcation, instability to modes of arbitrarily long-wavelength occurs; near this

bifurcation we may adiabatically eliminateχ to derive a single real equation describing the dynamics. The relevant
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scalings are

θ = εθ̃, X̃ = εX, χ = ε3χ̃, T̃ = ε4T,

we introduce a bifurcation parameterν by writing ε2ν = 1− ξ1/(a2ξ0). On substituting these scalings into(36)we
obtain

ξ0χ = −ξ1θXX + ε2
[
(1 + ξ4)ξ1

ξ0
θXXXX +

(
ξ1ξ2

ξ0
− ξ3

)
θXθXX

]
+ O(ε4),

and we substitute this expression forχ into theθ̇ equation (33)to obtain

θ̇ = νθXX + (1 + ξ4)ξ1

a2ξ
2
0

θXXXX + ξ1ξ2 − ξ0ξ3

a2ξ
2
0

θXθXX, (39)

to leading order.Eq. (39)is identical in form to that which describes the weakly non-linear behaviour of the Eckhaus
instability. Like the Eckhaus instability, the LW bifurcation is therefore always subcritical.

5.3.2. Instability of travelling waves near the TW bifurcation
In a similar way, the dynamics of travelling waves, near the TW bifurcation, nearX, can be investigated. At

the TW bifurcation,θ can be eliminated (again, adiabatically) from(37) and (38)and the resulting single real
Ginzburg–Landau equation forχ describes the bifurcation leading to TW solutions. The scalings leading to(33)
and (36)cannot be chosen to include a termχ3 in (36) which would be required to capture stable finite-amplitude
TW states near the bifurcation point. In the absence of modulations a different set of scalings can be chosen which
is able to include this term. In this way the sub- or supercriticality of the TW bifurcation can be easily computed.

However, it transpires that spatially periodic TW are unstable to modulational disturbances and this instability is
indeed captured by the reduced equations nearX. To illustrate this, we compute the stability of theX-independent
stateχ = χ0 constant,θ = χ0T/a2 for (33) and (36).

Let

χ = χ0(1 + αei*X + c.c.), θ = χ0

a2
(T + β ei*X + c.c.),

then, on substituting into(33) and (36)and linearising we obtain

α̇ = ξ0 + α[ξ0 − *2(1 + ξ4)] + β

a2
(i*ξ2χ0 − *2ξ1), β̇ = α− *2β.

Eliminatingα yields a single linear, constant coefficient ODE forβ:

β̈ + β̇(*2(1 + ξ4)− ξ0)+ β

(
*2
(

1 − ξ0 + ξ1

a2
+ *2(1 + ξ4)

)
− i*ξ2χ0

a2

)
= ξ0.

Solving the homogeneous equation for the complementary functionsβ = eλ±T we find

λ± = 1
2(ξ0 − *2(1 + ξ4)±

√
(ξ0 − *2(1 + ξ4))2 − 4(*2(1 − ξ0 + ξ1/a2 + *2(1 + ξ4))− i*ξ2χ0/a2)).

Expanding this expression forλ+ up to O(*2) we obtain

Re(λ+) = ξ0 + *2

(
ξ2

2χ
2
0

16a2
2ξ

3
0

− 1

ξ0
− ξ1

a2ξ0
− ξ4

)
+ O(*4).
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For sufficiently smallξ0, the growth rateλ+ is more positive than the growth rateξ0 of the stateχ = χ0, θ =
χ0T/a2 towards a fully non-linear TW equilibrium, hence stable TW are not anticipated to appear close to the
codimension-two pointX.

NearX, numerical results (seeFigs. 5 and 6) showM+ solutions losing stability first to a TW perturbation which
generates a TW-like ‘transient’, and then the occurrence of an instability to spatial modulations. The final state is,
however, steady, and consists of an extremely long-wavelength, but O(1) in amplitude, modulation—seeFig. 6.
Throughout most of the domainθ and φ increase linearly with X, while χ remains close to
zero.

From the form ofEqs. (8)–(11)it is clear that families of solutions withθX andφX constant and non-zero
are possible, corresponding to exactly spatially periodic states with wavenumber close to unity. Some analytic
investigation of these solutions should be possible. It may well be possible also to look analytically at other
classes of solution, for example homoclinic orbits corresponding to spatially localised structures in infinite do-
mains, or solutions whereR andS are spatially periodic, but the possibilities are too numerous to discuss further
here.

5.4. Dynamics near the codimension-two point Y

Below the pointA on Fig. 1 the LW and SW curves intersect at yet another codimension-two point, labelled
Y on Fig. 1(a). A similar analysis to that nearX could be carried out here, leading to a pair of equations for
the SW instability (which leads to time-periodic variations in solution amplitude), and the LW (phase) instability.
Although we have not computed the reduced ‘normal form’ in this case, its structure is simple to derive and we
include it for completeness. The relevant reduced equations describing the dynamics of this bifurcation are coupled
ODEs for two variables(z, θ), wherez ∈ C gives the perturbation in the direction of the SW instability and
θ ∈ R describes the LW instability. On symmetry grounds, the equations will be invariant under the transformation
(z, θ, ∂X) → (z,−θ,−∂X). We also make use of the normal form symmetryz → eiψz which appears naturally in
Hopf bifurcation problems, and we use the fact that only spatial derivatives ofθ will appear because the value ofθ
itself is dynamically unimportant. Under these constraints the reduced equations (including terms up to cubic order
in (z, θ, ∂X)) take the form

ż = (λ1 + iω)z− ξ0z|z|2 + ξ1zθX + ξ2zXX, (40)

θ̇ = −λ2θXX − ξ3θXXXX + iξ4(zXz̄− z̄Xz)+ ξ5|z|2X, (41)

whereξ0, ξ1, ξ2 ∈ C andξ3, ξ4, ξ5 ∈ R are undetermined coefficients,ω > 0 is the frequency of oscillation at the
Hopf bifurcation, andλ1, λ2 are real bifurcation parameters. Due to the large number of undetermined coefficients,
space does not permit a detailed investigation of this bifurcation here. However, since the symmetry does not permit
a linear term inz in the θ̇ equation it is clear that the dynamics of(40) and (41)are not related to those of(33) and
(36). The codimension-one bifurcation that occurs forλ1 = 0 andλ2 < 0 was one of the ‘normal forms’ identified
by Coullet and Iooss[4] and has been explored numerically by Lega[16] and Daviaud et al.[10]. In particular, these
authors identify two distinct regimes of spatiotemporal chaos depending on the choices of the coupling coefficients
in (40) and (41).

5.5. Instability of M− to long-wavelength perturbations

Finally in this section, we briefly discuss the dynamics in the quadrantµ1 > 0,µ2 < 0. The spatially periodic
equilibrium stateM− exists in the whole of this region and is stable whenµ2 is sufficiently negative, for a fixed
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Fig. 5. Time evolution of perturbation from theM+ equilibrium nearX. µ1 = 0.018,µ2 = 0.7; all other coefficients are as inFig. 1. The four
panels show spatial averages of: (a)|A| (solid line) and|B| (dashed line), (b)|AX| (solid line) and|BX| (dashed line), (c)χ (solid line) andθ
(dashed line), (d)|χX| (solid line) and|θX| (dashed line). An initial transient growth of a TW mode (illustrated by the constant rate of evolution
of θ for 900< t < 1500) gives way to a spatially modulated steady-state att = 1600.



18 J.H.P. Dawes et al. / Physica D 191 (2004) 1–30

0 5 10 15 20 25 30
space

0.0

0.1

0.2

0.3

0.4

|A
|, 

|B
|

0 5 10 15 20 25 30
space

-3

-2

-1

0

1

2

3

ch
i, 

th
et

a

(a)

(b)

Fig. 6. Steady spatially modulated state reached at the end of the numerical integration illustrated inFig. 5. µ1 = 0.018,µ2 = 0.7; all other
coefficients are as inFig. 1: (a) |A| (solid line) and|B| (dashed line), (b)χ (solid line ) andθ (dashed line).

µ1 > 0. The amplitudesR = R0 andS = S0 satisfy

0 = µ1 − q2 − S0 − a1R
2
0 − b1S

2
0, (42)

0 = µ2S0 + R2
0 − a2S

3
0 − b2R

2
0S0, (43)

andχ = π. Forq = 0,M− states lose stability to TW solutions asµ2 is increased at fixed positiveµ1. These TW
states haveχ ≈ π near the bifurcation sinceχ = π forM−. As forM+ this phase instability also generates a distinct
long-wavelength instability whenq �= 0.

Following the usual linearisation of(8)–(11)aboutM− we find that a long-wavelength instability occurs when

(2cS2
0 − R2

0)(2S
3
0(b1b2 − a1a2)+ (b2 − 2b1)S

2
0 − S0 − a1R

2
0) = 2q2(R2

0 + 2a2S
3
0). (44)

Since the bifurcation to TW occurs whenR2
0 = 2S2

0 as before, it is clear that in the casec = 1 these bifurcation
curves do not intersect and no further codimension-two bifurcation points appear. In the limit where we keep
µ1 ∼ O(1) fixed and letµ2 → −∞ we see from(42) and (43)thatS0 → 0 andR0 ∼ O(1). Then(44) is satisfied
whena1R

2
0 ≈ 2q2 to leading order. From(42) this gives the asymptotic behaviour of the curve of LW instability:

µ1 ∼ 3q2, illustrated inFig. 7.
In summary, in this section we have identified various codimension-one and two bifurcations involving modu-

lational instabilities. In particular, two codimension-two points,X andY, organise the interaction of the new LW
instability with the previously studied TW and SW bifurcations. Reductions of the original PDEs(6) and (7)to
‘normal form’ equations describing the dynamics near these bifurcations enables us to gain insight into the nature
of these bifurcations, despite the fact that solutions, even of the reduced equations, may have extremely complicated
spatial structure.
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Fig. 7. Region of stability of the mixed-modeM− for the illustrative set of coefficientsa1 = 1, a2 = 5, b1 = 2, b2 = 0, c = 1, q = 0.2. The
region of stableM− is bounded by TW (solid line) and LW (dash-dotted line) instabilities. Note the asymptotic behaviours of the LW curve: at
large negativeµ2 we findµ1 ∼ 3q2 = 0.12 for this set of coefficients; at largeµ1 it closely follows the TW curve.

6. The heteroclinic cycle

One of the most interesting features of the ODE problem(12)–(14)analysed in Part 1 is the existence of a
robust heteroclinic cycle between pure mode solutions related by a half-wavelength spatial translation, for example
P+ andP−. For the coefficient values selected in this paper this heteroclinic cycle exists for an open region of
the (µ1, µ2) plane, abutting the origin. Its formation relies on the existence of pairs of two-dimensional invariant
subspaces for the dynamics, for example within the two-dimensional subspace Fix(mx) = {Im(A) = Im(B) = 0}
the pointP+ is a saddle andP− is a sink and, if various other conditions are met, a connecting trajectory between
them exists. The second connection is then forced to exist by symmetry, and is contained within the subspace
Fix(mx ◦ τπ) = {Re(A) = Im(B) = 0}.

For small positiveµ2 and increasingµ1 the cycle is formed after a global bifurcation that involves the intersection
of the unstable manifold ofP+ and the stable manifold of the origin; this bifurcation also creates or destroys the
SW periodic orbit. At larger values ofµ2 the connecting trajectory appears after a saddle-node bifurcation marking
the boundary of existence of a further twoM+ equilibria. Hence this curve of saddle-node bifurcations also bounds
the region of existence of the cycle. At largerµ1 the cycle ceases to exist where the pure mode equilibriaP±
gain stability in a pitchfork bifurcation withM− equilibria. These bifurcations proscribe the region of existence of
the cycle. Within this region of existence, a further curve separates regions where it is stable or unstable. At this
stability boundary a branch of modulated waves (MW) bifurcate from the cycle in a global (‘resonant’) bifurcation.
Theoretical work by Armbruster et al.[1] and by Proctor and Jones[23] was confirmed by the general stability
results of Krupa and Melbourne[14, Section 6.1]. It turns out that the natural condition (that the ratio of eigenvalues
in the ‘contracting’ and ‘expanding’ directions should be greater than one for stability) is necessary and sufficient.
This yields the conditionµ1 < b1µ2/a2 for the stability boundary of the cycle.
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When modulational terms are included, the instability ofP+ to P− that is necessary for existence of the cycle
implies thatP+ will also be unstable to sufficiently long-wavelength perturbations, so it might be expected that the
cycle also could not be stable to long-wavelength perturbations. Moreover, the subspaces{Im(A) = Im(B) = 0}
and{Re(A) = Im(B) = 0} are no longer invariant for the dynamics; spatial variations of the amplitudeA drive
the evolution of the phaseθ whenq �= 0, seeEq. (9). Of course, the cycle still exists, within the subspace of
solutions with no spatial modulation at all. But, in large domains it cannot be asymptotically stable (that is, points in
a full neighbourhood—in some appropriate sense—of the cycle converge to it) as the equilibriaP± will be unstable
to perturbations of a sufficiently long-wavelength, as well as to each other within the subspaces containing the
heteroclinic connecting orbits.

Numerical simulations show that spatially modulated perturbations eventually grow, whenq �= 0, and the simula-
tion converges to a periodic orbit rather than showing the characteristic increases of time spent near each equilibrium
that would indicate convergence to the robust heteroclinic cycle.

In this section we analyse the behaviour of trajectories close to the cycle using a linearised stability analysis near
the equilibriaP± and under the commonly used assumption that trajectories near the cycle spend very little time
passing between neighbourhoods of the equilibria. Our aim is to determine conditions for existence of periodic
orbits lying close to the cycle. We restrict our attention to periodic orbits that spend equal amounts of time near
each equilibrium since this feature is observed in numerical work.

Recall fromSection 4that the linear stability ofP+ to perturbations∼α1 ei*X + ᾱ2 e−i*X in A(X, T) with
wavenumber* is given by the matrix(18)acting on the amplitudes(α1, α2). For simplicity we write this matrix as

M1 =
(
a0 − q̂ b0

b0 a0 + q̂

)
,

where

a0 = µ1 − q2 − b1B
2
0 − *2, (45)

b0 = B0, (46)

q̂ = 2q*. (47)

Note that a necessary condition for the existence of the cycle is that the eigenvaluesλ± of M1, evaluated when
* = 0, satisfyλ− < 0 < λ+, so thatP+ is a saddle point. The form ofM1 implies that this is equivalent to requiring
a0 < 0 when* = 0, and hence in the rest of this section we assumea0 < 0. The corresponding linearisation around
P− is denotedM2:

M2 =
(
a0 − q̂ −b0

−b0 a0 + q̂

)
.

The form ofM2 is determined entirely fromM1 and the equivariance of the ODEs(6) and (7).
We assume that trajectories close to the heteroclinic cycle spend equal amounts of timeT near each equilibrium,

and that we may ignore the time spent travelling between neighbourhoods of the equilibria. Hence a perturbation
v0 = (α1, α2)

T nearP+ evolves to the point

v1 = Sv0 = exp(M2T)exp(M1T)v0,

where the matrixS is given by

S = 1

2c2
0

(
2b2

0e+e− + q̂e2+(q̂ − c0)+ q̂e2−(q̂ + c0) −b0q̂(e+ − e−)2

b0q̂(e+ − e−)2 2b2
0e+e− + q̂e2+(q̂ + c0)+ q̂e2−(q̂ − c0)

)
,
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andc0 =
√
q̂2 + b2

0 ande± = exp[(a0 ± c0)T ]. The eigenvalues ofS then determine the stability of the cycle. We
are particularly interested in the dependence of these eigenvalues on the travel timeT , the selected wavelength*
and the wavenumber mismatch parameterq.

Whenq = 0, S simplifies enormously: it is diagonal with eigenvaluese+e− = exp(2a0T), wherea0 is defined
in (45). Sincea0 < 0 we have contraction of the perturbation vectorv0 under successive iterates ofS. This
corresponds to trajectories passing repeatedly through neighbourhoods ofP±, and converging to the cycle. This
result is independent of the timeT spent near each equilibrium.

For generalq �= 0 the eigenvalues ofS will, however, depend onT . Moreover, for anyq �= 0, S will have
eigenvalues of modulus greater than unity whenT is taken to be sufficiently large (so thate+ is sufficiently large).
So, in addition to the discussion above, we can conclude directly from the form of the map that for any non-zeroq

the cycle is unstable.
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Fig. 8. Temporal evolution of the first few Fourier modes (writingA(X, T) = ∑N
j=0 Âj e2πij/L andB(X, T) similarly) in a solution starting near

the subspace of non-modulated solutions and converging to the periodic orbit. The top graph shows the time evolution of|Â0| (dashed line) and
|B̂0| (solid line). The other three graphs show|Âj | (dashed line) and|B̂j | (solid line) forj = 1,2,3, respectively. Note the initial decay when
the travel timeT is short, followed by growth of the perturbation asT increases. Parameter values areL = 30,µ1 = 10−6,µ2 = 0.1,q = 10−3,
and the coefficients are as inFig. 1.
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Numerical simulations indicate that trajectories remain close to the cycle, though, so it is natural to ask whether
stable dynamics close to the cycle is possible. One possibility is the existence of a long-period periodic orbit. That
such an orbit might exist is motivated by the observation thatS has an eigenvalue greater than unity forT � 1, i.e.
trajectories very close to the cycle are pushed further away from it, but that forT ∼ 1 the eigenvalues ofSmay lie
within the unit circle, indicating that trajectories that start further away from the cycle move closer on successive
passes near the cycle. This behaviour is confirmed by numerical simulations (seeFig. 8), where we choose an
initial condition lying extremely close to the subspace of non-modulated solutions, but not close to the heteroclinic
cycle. Thus the first few travel timesT between neighbourhoods ofP± occur withT small, and the perturbation
decays. Then, as the trajectory becomes closer to the cycleT increases and the perturbation grows (exponentially
on average) until the trajectory converges to the periodic orbit.

The above argument is unusual in that it suggests that we can extract non-linear information (about the period
of the orbit) from a purely linear calculation (that which leads to the form ofS). This is because we are essentially
usingT as a proxy for the closest distance between the periodic orbit and the heteroclinic cycle. Hence solving for
the position of the orbit and solving forT are really the same thing. By setting up the usual ‘small box’ approach
we could construct a return map, fixed points of which would correspond to periodic orbits. By usingT instead,
we are able to circumvent the need to compute this return map in full in order to extract an estimate for the period.
Essentially we construct the component of the return map in a pair of directions orthogonal to the invariant plane
corresponding to unmodulated solutions. Then the condition for locating a fixed point of this part of the map is
identical to the condition thatS has an eigenvalue of+1.

At least for smallq and large timesT we expect that the behaviour outlined above could be captured by the map
S based on linearisation nearP±. We compute the approximate periodP(q) ≈ 2T(q) of a stable periodic orbit by
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Fig. 9. The dependence onq of the approximate half-periodT(q) of the periodic orbit near the heteroclinic cycle, for two combinations ofL and
µ2. In both cases, the illustrative coefficient values were used, as inFig. 1, andµ1 = q2. Squares (�) are the results of numerical simulations for
L = 30 andµ2 = 0.1, and triangles (�) are numerical results forL = 25,µ2 = 0.05. Diamonds(�) give the exactT–q relationship implied
by the linearised analysis near the cycle using* = *min = 2π/L, in both cases, and the asymptotic result of the linearised analysis is shown by
the dashed and solid lines.
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Fig. 10. The moduli|A| (dashed line) and|B| (solid line) for an instantaneous view of a typical solution of the PDEs(6) and (7). The horizontal
dash-dotted line is at|B| = √

µ2/a2 = 0.2 corresponding to the amplitude of theP+ equilibrium. The parameter values areq = 0.2,µ1 = 0.04
andµ2 = 0.2; the illustrative coefficient values are used and the domain is of lengthL = 200 with periodic boundary conditions.

Fig. 11. Time evolution of|B| at two spatial locations,X = 105 (solid line) andX = 110 (dashed line), for a typical solution of the PDEs(6)
and (7). The parameter values, coefficients and domain size are as inFig. 10.
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Fig. 12. Temporal evolution of the spatial averages of the amplitude and phase variables atµ1 = 0.15,µ2 = 0.7,L = 30; all other coefficients
are as inFig. 1. The four panels show spatial averages of: (a)|A| (solid line) and|B| (dashed line), (b)|AX| (solid line) and|BX| (dashed line),
(c) χ (solid line) andθ (dashed line), (d)|χX| (solid line) and|θX| (dashed line). After an oscillatory transient the solution is attracted towards a
spatially periodic TW state whereθ (andφ, not shown) increase linearly with time while|A|, |B| andχ remain constant.
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imposing the condition that the larger eigenvaluem+ of S is +1 (the other (m−) lies inside the unit circle). Finally
we consider only the minimum wavenumber*min = 2π/L since this is the mode with the highest growth rate for
the points in the(µ1, µ2) plane that we consider. Hence the eigenvalue condition yields a relationship (implicitly)
betweenT andq which can be compared with numerical simulations. This relationship simplifies in the asymptotic
regime whereq is small andT is large.

Substituting fore± = exp[(a0 ± c0)T ] in S and computing its eigenvalues we find

m± = [2b2
0 e2c0T + q̂2 e4c0T + q̂2 ± Y ] e2a0T

2(b2
0 + q̂2)e2c0T

, (48)

where

Y2 = 4q̂2b2
0 e6c0T + 4q̂2b2

0 e2c0T + q̂4 e8c0T − 2q̂4 e4c0T + q̂4 − 8q̂2b2
0 e4c0T .

It might appear that the dominant term for largeT is the first term in the expression forY2, proportional tôq2 e6c0T ,
but this is incorrect. In fact, the dominant terms in the limit of smallq̂ and largeT are those proportional tôq2 e4c0T .
This leads to the asymptotic relationship

T ∼ 1

a0 + b0
log

(
b0

q̂

)
,

asq → 0. For two combinations ofL andµ2, Fig. 9compares this asymptotic relationship with the exact implicit
T–q relationship implied in(48)settingm+ = 1, and with the results of numerical integrations of the PDEs(6) and
(7). In both cases there is clear agreement as long asq is sufficiently small. At smallq the numerical simulations
become more difficult, due to the intermittent nature of the dynamics. Given the several approximations involved

Fig. 13. The spatiotemporal evolution of the amplitudes|A| (upper panel) and|B| (lower panel) for the parameter values ofFig. 12, showing
convergence to TW.
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Fig. 14. Temporal evolution of a persistent complex spatiotemporal state atµ1 = 0.15,µ2 = 0.7,L = 30; all other coefficients are as inFig.
1. The four panels show spatial averages of: (a)|A| (solid line) and|B| (dashed line), (b)|AX| (solid line) and|BX| (dashed line), (c)χ (solid
line) andθ (dashed line), (d)|χX| (solid line) and|θX| (dashed line). This solution coexists stably with the TW state shown inFig. 12.
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in the analytic estimate ofT(q) the results ofFig. 9are encouraging. The major discrepancy in the analysis is the
consideration of only one wavenumber*min = 2π/L in the estimate. Implicitly we assume that the ‘most unstable’
eigenfunction direction nearP+ is aligned exactly with the single Fourier mode ei*minX.

For largerq numerical simulations did not converge to a stable periodic orbit, but instead remained spatiotempo-
rally disordered even after large integration times. Although solutions still often spend considerable amounts of time
near the spatially uniformP+ state these events occur only intermittently. At much largerq, numerical integrations
of the PDEs show that the cycle still plays a role inlocal organisation of the spatiotemporally complicated dynamics.
The spatial structure of solutions often resembles a series of fronts between intervals of points which remain near
eitherP+ or P− for a time, and then switch rapidly to a neighbourhood of the other equilibrium. This is illustrated
in Fig. 10, particularly aroundX = 90 and 140 (where the solution is close toP+), and atX = 120 where the
solution is close toP−. For the parameter values of the figure, the pure mode equilibria have amplitude|B| = 0.2.
Nearby spatial locations are often still well-correlated in time, seeFig. 11.

7. Stable travelling waves and complex spatiotemporal dynamics

At large positiveµ1 andµ2 the TW states are restabilised after a Hopf bifurcation involving a branch of modulated
waves generated by the global bifurcation in which the heteroclinic cycle loses stability. Surprisingly, for the spatially
extended system, these spatially homogeneous TW states are also stable for large enoughµ1 andµ2, as shown in
Figs. 12 and 13. The stable TW coexist with stable complicated spatiotemporal dynamics, illustrated inFigs. 14
and 15. The latter state might be expected to be a more generic solution in this region of the(µ1, µ2) plane, although
no systematic study of the relative sizes of the basins of attraction has been performed.
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Fig. 15. Spatiotemporal evolution of the amplitudes|A| (upper panel) and|B| (lower panel) for the parameter values ofFig. 14, showing
complicated spatiotemporal dynamics.
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8. Discussion and conclusions

In this paper we have examined the robustness of the results of Part 1 on the dynamics near the 1:2 strong spatial
resonance, to modulational instabilities which might be expected to play a role when the spatial resonance is close
to, but not exactly, 1:2. We have derived a pair of coupled amplitude equations using symmetry arguments; these
amplitude equations are PDEs rather than ODEs as is the case for exact resonance.

We have examined the stability of the spatially periodic solutions found in Part 1, looking for instabilities to
finite-wavelength and long-wavelength perturbations. In general, we find that the results of Part 1 still apply when
µ1 andµ2 are large (equivalently when the mismatchq is small), but that new instabilities are present near the
codimension-two pointµ1 = µ2 = 0. Since these lead, in general, to variations with a horizontal wavenumber
O(εq), solutions still resemble those of the non-modulated problem over short lengthscales.

This paper is primarily concerned with identifying the several codimension-two points in the parameter space
which link modulational instabilities and amplitude or phase instabilities which are present in the ODEs dis-
cussed in Part 1. We have presented reduced equations that describe the dynamics near these various points. The
form of these reduced equations (which are still PDEs) may be deduced from symmetry arguments, and can
also be derived through perturbation expansions. This analysis enables us to understand qualitative features of
the dynamics; although analytic solutions are still extremely difficult to derive for the reduced equations, this
process of deriving ‘normal forms’ contributes greatly to an understanding of the interaction of these various
instabilities.

Our three main results are firstly, that the pure modeP and the mixed-modeM+ may undergo steady-state
instabilities to finite-wavelength modes with a maximum critical wavenumber*c = q (for P) and*c = 2q (forM+).
This confirms our intuition; it is natural to think that there are only two important lengthscales in the problem—the
O(1) lengthscale of the spatially periodic patterns and long lengthscales> O(1/εq) introduced by the deviation from
exact resonance.M+ may also undergo an oscillatory bifurcation to a non-zero wavenumber mode, and numerical
investigations suggest this wavenumber is also O(q). Secondly, the reduction of the governing PDEs to a ‘normal
form’ and subsequent analysis of these reduced equations for the codimension-two phase instability at the pointX

is novel and is presented in detail. Thirdly, we have considered the fate of the structurally stable heteroclinic cycle
present in the ODE problem. Although the equilibria on the cycle, and hence the cycle itself, must be unstable
to long-wavelength perturbations, the dynamics for smallq result in a stable periodic orbit that lies close to the
cycle and whose period can be estimated well analytically. At largerq the heteroclinic cycle still organises the
spatial dynamics over short distances, although solutions are spatiotemporally complex as might in general be
expected.

There is, of course, much more work that could be done on this problem. Two obvious directions of inter-
est are the fate of the more complicated heteroclinic cycles examined by Porter and Knobloch[20] to modu-
lational perturbations, and the behaviour for asymptotically largeq (within this scaling ansatz); we have con-
centrated on behaviour forq ≤ 1, where the results may be most easily interpreted with reference to previous
work.
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Appendix A

In this appendix we give the coefficients in the Ginzburg–Landau equation governing the instability of the pure
mode solutionP+ along the interior of the lineOL, discussed inSection 4.

TheP+ equilibrium is given byA = 0,B = √
µ2/a2 = B0. We start from the ansatz

A(X, T) = ε[α(ξ, τ)B0 ei*X + ᾱ(ξ, τ)2q(q + *)e−i*X]

+ε2[γ0(ξ, τ)+ γ1(ξ, τ)e2i*X + γ2(ξ, τ)e−2i*X] + O(ε3), (A.1)

B(X, T) = B0 + ε2[β0(ξ, τ)+ β1(ξ, τ)e2i*X + β2(ξ, τ)e−2i*X] + O(ε3), (A.2)

whereξ = εX is a new, longer, lengthscale andτ = ε2T is a new slower time scale. After a multiple-scales
expansion, substituting this ansatz into the PDEs(6) and (7), the perturbation amplitudesβ0, β1, β2, γ0, γ1, γ2

can be expressed in terms ofα. The usual solvability condition at O(ε2) is satisfied identically, and at O(ε3) the
solvability condition yields the Ginzburg–Landau amplitude equation forα:

ĉ1ατ = ĉ1αξξ − ĉ2α|α|2,
where the real coefficientŝc1 andĉ2 are

ĉ1 = B2
0 + 4q2(q + *)2,

ĉ2 = a1[B4
0 + 16q4(q + *)4 + 16B2

0q
2(q + *)2] + ĉ3B0[2b1B

2
0 + 8q2(q + *)2b1 − 4q(q + *)]

+4b1B
2
0q(q + *)(ĉ4 + ĉ5)− B2

0ĉ4 − 4q2(q + *)2ĉ5,

ĉ3 = −B2
0b2 + 4b2q

2(q + *)2 + 4q(q + *)

2a2B0
,

ĉ4 = 2B2
0q(q + *)[a2q(q + *)− 4b2c*

2] − B2
0(a2B

2
0 + 4c*2)

8c*2(a2B
2
0 + 2c*2)

,

ĉ5 = a2B
4
0 − 2q(q + *)[q(q + *)(a2B

2
0 + c*2)+ 4b2B

2
0c*

2]

8c*2(a2B
2
0 + 2c*2)

.

Hencêc2 > 0 whena1 is sufficiently positive. In the special caseĉ3 = ĉ4 = ĉ5 = 0, the expression for̂c2 agrees with
that derived by Coullet et al.[6]. In fact, the O(ε2) amplitudesγ0, γ1, γ2 in (A.1) do not contribute to the complexity
of the expression for̂c2; the complexity is derived from the third-order contributions from theḂ equation.
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