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Abstract

In this article, we discuss the problem of finding large amplitude asymptotic expansions for monophase oscillating solutions of the following
multidimensional (d > 1) Burger’s type system:

(♦) ∂t u + (V ◦ u · ∇x )u = 0, u ∈ Rd , (t, x) ∈ R× Rd , V ∈ C1(Rd
;Rd ).

More precisely, we are concerned with families {uε}ε∈]0,1] made of solutions to (♦) and having a development of the form uε(t, x) =

H
(

t, x, Φ(t,x)
ε

)
+ O(ε) where the function θ 7−→ H(t, x, θ) is periodic. In general, due to the formation of shocks, such a construction is

not possible on a domain Ω which does not depend on ε ∈]0, 1]. In this article, we perform a detailed analysis of the restrictions to impose on
the profile H and on the phase Φ in order to remedy this. Among these compatibility conditions, we can isolate some new interesting system of
nonlinear partial differential equations. We explain how to solve them and we describe how the underlying structure is propagated through the
evolution equation.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let x = (x1, . . . , xd) ∈ Rd and

|x | :=

(
d∑

j=1

x2
j

) 1
2

, ∂ j :=
∂

∂x j
, ∂θ :=

∂

∂θ
.

Let (T,V, r) ∈ (R∗
+)

3. Work on the domain

ΩT
:=

{
(t, x) ∈ [0, T ] × Rd

; |x | + Vt ≤ r
}
, d ∈ N \ {0, 1}.

Select a function V ∈ C1(Rd
; Rd) and consider the Burger’s type system

∂t u + (V ◦ u · ∇x )u = 0, u ∈ Rd , (t, x) ∈ ΩT. (1)
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Associate (1) with a family of initial data

uε(0, x) = hε(x) = H

(
x,
ϕ(x)

ε

)
+ O(ε), ε ∈]0, 1] (2)

defined on the ball B(0, r ] := {x ∈ Rd
; |x | ≤ r}, built with

H(x, θ) ∈ C1(B(0, r ] × T; Rd), ϕ(x) ∈ C1(B(0, r ]; R), T := R/Z

and consisting of large amplitude high frequency monophase oscillating waves, which implies a nontrivial (main) profile

∃(x, θ) ∈ B(0, r ] × T; ∂θW (x, θ) 6= 0, W := V ◦ H (3)

and a non stationary phase

∇xϕ(x) 6= 0, ∀x ∈ B(0, r ]. (4)

To describe more precisely the expressions involved in (2), select a function

H : [0, 1] × B(0, r ] × T −→ Rd

(ε, x, θ) 7−→ H ε(x, θ)

which is smooth with respect to the parameter ε ∈ [0, 1]

H ∈ C∞

(
[0, 1]; C1(B(0, r ] × T; Rd)

)
and whose Taylor expansion near ε = 0 is noted as

H ε(x, θ) := H(x, θ)+

m∑
j=1

ε j H j (x, θ)+ O(εm+1), m ∈ N∗. (5)

Define:

hε(x) := H ε

(
x,
ϕ(x)

ε

)
, W ε(x, θ) := V ◦ H ε(x, θ). (6)

Associate (1) with the family of initial data {hε}ε∈]0,1]. The evolution equation (1) is a quasilinear (diagonal) system of hyperbolic
equations. The speed of propagation is finite. More precisely, it can be uniformly controlled by

R 3 V :=
{
sup |V ◦ H ε(x, θ)|; (ε, x, θ) ∈ [0, 1] × B(0, r ] × T

}
.

Standard results [7] guarantee the existence of T ε > 0 such that the Cauchy problem (1) and (2) has a local C1 solution uε(t, x)
on the truncated cone ΩTε . In the context of (1), the limitations on T ε are due to the formation of shocks. The size of T ε can be
estimated very precisely [1,3,8] in terms of hε. In general, this yields

lim sup
ε−→0

T ε = 0. (7)

In this article, we exhibit solutions uε on a fixed domain ΩT (with T > 0) having the asymptotic description

uε(t, x) = H
(

t, x,
Φ(t, x)

ε

)
+ O(ε), ε ∈]0, 1]. (8)

The main novelty in comparison with usual works [5] in WKB analysis is the size of the involved oscillations. Indeed, in a
quasilinear context such as (1), the standard regime is given by weakly nonlinear geometric optics [4], which means to consider
expansions of the following form

uε(t, x) = u(t, x)+ εH1
(

t, x,
Φ(t, x)

ε

)
+ O(ε), ε ∈]0, 1]. (9)

Of course, to deal with (8) in place of (9) requires to manage much stronger nonlinear phenomena. In particular, the interplay
between the phase Φ and the profile H is reinforced.

In fact, the construction can be faced only if the expressions ϕ := Φ|t=0 and H := H|t=0 satisfy very special restrictions. The
corresponding constraints in the case of the dimension d = 2 are brought out in the recent contribution [3]. The aim of the present
paper is precisely to generalize the discussion when d > 2 and to study more deeply the structure to impose on ϕ and H .



C. Cheverry, M. Houbad / Physica D 237 (2008) 1429–1443 1431

• In the Section 2, we exhibit (Proposition 5) necessary and sufficient compatibility conditions on ϕ(x) and W (x, θ) :=

V ◦ H(x, θ) in order to guarantee that

lim inf
ε−→0

T ε = T̃ > 0. (10)

From these compatibility conditions, we can isolate some interesting system of nonlinear partial differential equations, which we
introduce below. Let u =

t (u1, . . . ,ud) ∈ Rd . Note u⊥ or t u⊥ the hyperplane of Rd composed with the directions orthogonal to
the vector u, that is

u⊥
≡

t u⊥
:=

{
v =

t (v1, . . . , vd) ∈ Rd
;

t v · u =

d∑
j=1

v j u j = 0

}
.

Consider the orthogonal projector ΠF from Rd onto the vector space F , that is the operator ΠF defined by the conditions

u = ΠF u + (I − ΠF )u, ΠF u ∈ F, (I − ΠF )u ∈ F⊥.

Select W ∈ C1(B(0, r ] × T; Rd). The symbol Dx W (x, θ) is for the Jacobian matrix

Dx W (x, θ) =
(
∂ j Wi (x, θ)

)
1≤i, j≤d , W (x, θ) =

t (W1, . . . ,Wd).

Definition 1. The couple

(ϕ,W ) ∈ C2(B(0, r ]; R)× C2(B(0, r ] × T; Rd)

is said to be well prepared if it satisfies the following system{
∂θW (x, θ) ⊂ ∇ϕ(x)⊥

Π∂θW (x,θ)⊥ Dx W (x, θ)Π∇ϕ(x)⊥ = 0
, ∀(x, θ) ∈ B(0, r ] × T. (11)

As explained before, the study of (11) is the main motivation for the present article. Indeed, the structure of (11) is new and
interesting. It is not a usual quasilinear system because it is made of fully nonlinear constraints on the derivatives ∂ j Wi , ∂θWi
and ∂ jϕ. It extends to the case d ≥ 3 preliminary conditions which have been emphasized (only when d = 2) in the recent
contribution [3].

• In the Section 3, we work under natural assumptions on ϕ and W . In this framework, we succeed in classifying all the solutions
of (11). The fact that such a complete discussion is available is very surprising. At all events, this confirms the coherence of (11).

The first observation is that any phase ϕ involved in (11) inherits some affine structure. Its level surfaces must be spanned by
pieces of vector spaces (see Lemmas 9 and 10). This geometrical particularity seems to always play an important part when dealing
with phase involved in a supercritical WKB calculus, as here. Once ϕ is determined, it becomes possible to identify all the profiles
W (x, θ) which are subjected to (11). This is done in Proposition 11. Quite a lot freedom is available in the construction of W (x, θ).

The function W (x, θ) can be put in the form

W (x, θ) = W‖ (ϕ(x), ψ(x, θ))+ W⊥ (ϕ(x))

where W‖ ∈ C1(R2
; Rd) and W⊥ ∈ C1(R; Rd) are conveniently well-polarized vector fields whereas ψ ∈ C1(B(0, r ] × T; R) is

any scalar function. Define

〈W 〉(x) ≡ W̄ (x) :=

∫
T

W (x, θ)dθ, W ∗(x, θ) := W (x, θ)− W̄ (x).

The construction of large amplitude oscillating solutions to system (1) – or to variants of system (1) – is a delicate problem which
has recently attracted some attention. The article [6] and the related contributions are mainly concerned with time oscillations. In
the continuity of the works [1–3], we are faced here with the case of spatial oscillations.

According to Section 2, any family {hε}ε ∈ C1
(
B(0, r ]; Rd

)]0,1]
issued from a well prepared couple (ϕ,W ) leads to a family

{uε}ε which is composed of C1 solutions uε of (1) on Ω T̃ . Now, the question is to determine the asymptotic behaviour of {uε}ε
when ε goes to 0. In particular, we want to understand how the constraint (11) is propagated through the evolution equation (1).

• Explanations are given in the Section 4. They can be obtained just by looking at the simple wave solutions of (1).

Theorem 2. Suppose that the couple

(ϕ,W ) ∈ C2(B(0, r ]; R)× C1(B(0, r ] × T; Rd), W := V ◦ H
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is well prepared. Then, the Cauchy problem consisting in the (apparently overdetermined) system∂t H + V ◦ H · ∇x H = 0,
∂tΦ + 〈V ◦ H〉 · ∇xΦ = 0,
(V ◦ H)∗ · ∇xΦ = 0,

(12)

associated with the initial data

H(0, x, θ) = H(x, θ), Φ(0, x) = ϕ(x) (13)

has a unique solution on ΩT
× T for some T > 0. For all ε ∈]0, 1], the simple wave uε(t, x) := H

(
t, x, Φ(t,x)

ε

)
is a solution of

(1) on ΩT. Moreover, for all t ∈ [0, T ], the trace (Φ(t, ·),H(t, ·)) is still subjected to (11).

At the time t = 0, it is also possible to take into account (small) perturbations of H
(

x, ϕ(x)
ε

)
. For instance, we can select

hε(x) = H ε

(
x,
ϕ(x)

ε

)
, ε ∈]0, 1]

where H ε(x, θ) is like in (5). Again, the discussion of the Section 2 indicates that corresponding C1 solutions uε(t, x) of (1) are still

available on ΩT. When ε goes to 0, the expression uε(t, x) remains close (in a convenient sense) to the simple wave H
(

t, x, Φ(t,x)
ε

)
.

This result can be proved by adapting and extending the method presented in [3]. The related analysis will not be developed here.

2. Analysis of the compatibility conditions

Introduce the curves t 7−→ (X (t; x, λ),Λ(t; x, λ)) associated with the integration of (1) along the relevant characteristics. They
are defined by the ordinary differential equations

d
dt

X = V (Λ), X (0; x, λ) = x,

d
dt

Λ = 0, Λ(0; x, λ) = λ.

(14)

The corresponding solutions are

X (t; x, λ) = x + tV (λ), Λ(t; x, λ) = λ. (15)

Define

Xε(t, x) := X
(
t; x, hε(x)

)
= x + tW ε

(
x,
ϕ(x)

ε

)
, W ε

:= V ◦ H ε. (16)

Any smooth C1 solution of (1)–(2) must be subjected to the relation

uε
(
t,Xε(t, x)

)
= uε

(
t, x + tV ◦ hε(x)

)
= hε(x). (17)

Fix ε ∈]0, 1]. For t small enough, say for t ∈ [0, T̃ ε] with T̃ ε > 0, the implicit theorem guarantees that the application

Xεt : B(0, r ] −→ Xε (t, B(0, r ])

x 7−→ Xε(t, x)

is a C1 diffeomorphism. Then, due to the definition of the maximal speed of propagation V, any point (t, x) contained in Ω T̃ ε is
sure to be realized as (t, x) = (t,Xε(t, y)) for some unique y ∈ B(0, r ]. We can define

uε(t, x) := hε ◦ (Xεt )
−1(x), (t, x) ∈ Ω T̃ ε (18)

which yields a C1 solution on Ω T̃ ε of the Cauchy problem (1) and (2). The relation (18) implies that

Dx uε(t, x) := Dx hε ◦ (Xεt )
−1(x)Co

[
DxXε(t, x)

]
/ det DxXε(t, x) (19)

where Co[M] stands for the co-matrix of M . We have

DxXε(t, x) = ε−1t∂θW ε

(
x,
ϕ(x)

ε

)
⊗

t
∇ ϕ(x)+ I + t Dx W ε

(
x,
ϕ(x)

ε

)
, W ε

:= V ◦ H ε (20)
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where we adopt the following convention

u ⊗ v = (uiv j )1≤i, j≤d , u =
t (u1, . . . , ud), v =

t (v1, . . . , vd).

Classical results – see for instance [7] – assert that a C1 solution uε(t, x) on ΩT can be extended in time as long as the matrix
Dx uε(t, x) is bounded. In view of the formula (19), to recover a C1 solution uε(t, x) on ΩT, it is necessary and sufficient to have

det DxXε(t, x) > 0, ∀(t, x) ∈ ΩT.

Therefore, the life span of a C1 solution on a domain of propagation is bounded below by

T ε := sup
{
T > 0; det DxXε(t, x) > 0,∀(t, x) ∈ [0, T ] × B(0, r [

}
.

In general, due to the presence in (20) of the (singular) term with ε−1 in factor, only (7) can be asserted. Now, the opposite situation
is still possible providing that the family {hε}ε is conveniently adjusted. This situation is distinguished below.

Definition 3 (See (6) and (16) for the Definitions of hε and Xε). The family {hε}ε is said to be compatible if there exists T > 0 and
c > 0 such that

det DxXε(t, x) ≥ c > 0, ∀(t, x, ε) ∈ [0, T ] × B(0, r ]×]0, 1]. (21)

The preceding discussion can be summarized by the following statement.

Proposition 4 (See (6) for the Definition of hε). Suppose that the family {hε}ε is compatible. Then, for all ε ∈]0, 1], the expression
uε(t, x) defined through (18) is a C1 solution on ΩT of the Cauchy problem (1) and (2).

Our aim now is to transcribe (21) in terms of constraints to impose on ϕ(x) and W (x, θ). To this end, introduce

V := {(x, θ) ∈ B(0, r ] × T; ∂θW (x, θ) 6= 0} , W := V ◦ H. (22)

We assume (3), that is V 6= ∅.

Proposition 5 (See (6) for the Definitions of hε and W ε). The family {hε}ε can be compatible only if:

t
∇ϕ(x) · ∂θW (x, θ) = 0, ∀(x, θ) ∈ B(0, r ] × T (23)

where we recall that

W (x, θ) = W 0(x, θ) = V ◦ H(x, θ).

Proof. The reasoning is based on the identity (20) which can be formulated as

εDxXε(t, x) = M0
(

t, x,
ϕ(x)

ε

)
+ εM1

(
t, x,

ϕ(x)

ε

)
+ ε2t Rε

(
t, x,

ϕ(x)

ε

)
where

M0(t, x, θ) := t∂θW (x, θ)⊗
t
∇ ϕ(x),

M1(t, x, θ) := I + t Dx W (x, θ)+ t∂θ
[

DuV
(

H0(x, θ)
)

H1(x, θ)
]

⊗
t
∇ ϕ(x),

whereas the matrix Rε(t, x, θ) is a continuous function of all the variables (ε, t, x, θ) ∈ [0, 1] × R × B(0, r ] × T. Assume that the
restriction (21) is satisfied for some T > 0 and some c > 0. We start by showing

t
∇ ϕ(x) · ∂θW (x, θ) ≥ 0, ∀(x, θ) ∈ V. (24)

To this end, we argue by contradiction. We suppose that we can find a point (x̄, θ̄ ) ∈ V such that

t
∇ ϕ(x̄) · ∂θW (x̄, θ̄ ) < 0. (25)

This information allows us to express the matrices M0(t, x̄, θ̄ ) and M1(t, x̄, θ̄ ) in a basis of Rd having the form (e1, e2, . . . , ed)

where e1 := ∂θW (x̄, θ̄ ) and where (e2, . . . , ed) is a basis of ∇ϕ(x̄)⊥.
In this special basis, the matrices M0 and M1 look like

M0
=


t t

∇ ϕ · ∂θW 0 . . . 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 , M1
=


m1

11 . . . m1
1d

m1
21 . . . m1

2d
...

...

m1
d1 . . . m1

dd

 .
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It follows that

det DxXε(t, x̄) = ε−d det
[

M0
(

t, x̄,
ϕ(x̄)

ε

)
+ εM1

(
t, x̄,

ϕ(x̄)

ε

)
+ O(ε2)

]
= ε−1t t

∇ ϕ(x̄) · ∂θW

(
x̄,
ϕ(x̄)

ε

)
det M[

(
t, x̄,

ϕ(x̄)

ε

)
+ O(1)

with

M[
= M[(t, x̄, θ̄ ) =

m1
22 . . . m1

2d
...

...

m1
d2 . . . m1

dd

 .
When t = 0, we have M1(0, x̄, θ̄ ) = I so that M[

= IRd−1 and det M[
= 1. By continuity, for t small enough (say t ∈ [0, T̃ ] with

T̃ > 0), it remains

det M[

(
t, x̄,

ϕ(x̄)

ε

)
≥

1
2
, ∀(t, ε) ∈ [0, T̃ ]×]0, 1].

Choose t ∈]0, T̃ ] and a sequence {εn}n ∈ ]0, 1]
N tending to 0 and such that

∀n ∈ N, ∃kn ∈ Z; ϕ(x̄) = εn(θ̄ + 2knπ).

Then, by construction, we have

∃C ∈ R; det DxXεn (t, x̄) ≤
t

2εn

t
∇ ϕ(x̄) · ∂θW (x̄, θ̄ )+ C, ∀n ∈ N.

For n large enough, the right hand side becomes negative. This is not compatible with (21). This means that the case (25) must be
excluded. Now, because the function θ 7−→ W (x, θ) is periodic, we have∫ 1

0

t
∇ ϕ(x) · ∂θW (x, θ)dθ =

t
∇ ϕ(x) · W (x, 1)−

t
∇ ϕ(x) · W (x, 0) = 0.

Combining this with (24), we see that the restriction (23) is necessary. �

Below, up to the end of the proof of Proposition 6, we select (x, θ) ∈ V such that t
∇ ϕ(x) · ∂θW (x, θ) = 0. Introduce the

notations

ẽ1 := ∂θW (x, θ), ẽd :=
t
∇ ϕ(x), t ẽ1 · ẽd = 0.

We can complete ẽ1 and ẽd into some orthonormal basis (ẽ1, ẽ2, . . . , ẽd−1, ẽd) of Rd . In this special basis, the matrix I+t Dx W (x, θ)
looks like:

I + t Dx W (x, θ) =


m̃1

11 . . . m̃1
1(d−1) m̃1

1d

m̃1
21 . . . m̃1

2(d−1) m̃1
2d

...
...

m̃1
d1 . . . m̃1

d(d−1) m̃1
dd

 .
We can extract the (d − 1)× (d − 1) matrix:

L(t, x, θ) =

m̃1
21 . . . m̃1

2(d−1)
...

...

m̃1
d1 . . . m̃1

d(d−1)

 .
Observe that L is the realisation (in some specific basis) of the linear application:

L : ∇ϕ(x)⊥ −→ ∂θW (x, θ)⊥

u 7−→ Π∂θW (x,θ)⊥ (I + t Dx W (x, θ))u.

Proposition 6. The family {hε}ε can be compatible only if there is T > 0 such that for all t ∈ [0, T ], we have:

(−1)d detL(t, x, θ) ≥ 0. (26)
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Proof. Assume again that the restriction (21) is satisfied for some T > 0 and some c > 0. We already know that (23) is verified. In
the basis (ẽ1, . . . , ẽd) of Rd , the matrices M0 and M1 take the form

M0
=


0 · · · 0 t |∇ϕ|

2

0 · · · 0 0
...

...
...

0 · · · 0 0

 , M1
=


m1

11 . . . m1
1d

m1
21 . . . m1

2d
...

...

m1
d1 . . . m1

dd

 .
It follows that

det DxXε(t, x) = ε−1(−1)d t |∇ϕ(x)|2 det M]

(
t, x,

ϕ(x)

ε

)
+ 1 + tgε

(
t, x,

ϕ(x)

ε

)
with

M](t, x, θ) =

m1
21 . . . m1

2(d−1)
...

...

m1
d1 . . . m1

d(d−1)

 ≡ Π∂θW (x,θ)⊥ M1Π∇ϕ(x)⊥

whereas the scalar application gε(t, x, θ) is a continuous function of all the variables (ε, t, x, θ) ∈ [0, 1]×R× B(0, r ]×T. Observe
that [

u ⊗
t
∇ ϕ(x)

]
v = 0, ∀(u, v) ∈ Rd

× ∇ϕ(x)⊥.

Therefore, the expression of M] can be simplified according to

M](t, x, θ) = L(t, x, θ) ≡ Π∂θW (x,θ)⊥ (I + t Dx W (x, θ))Π∇ϕ(x)⊥ .

Follow the argument of the preceding proof, using a well adjusted sequence {εn}n , in order to extract the necessary condition

(−1)d det M](t, x, θ) ≥ 0, ∀(t, x, θ) ∈ [0, T ] × B(0, r ] × T

which is exactly (26). �

Remark 2.1. In the basis (ẽ1, . . . , ẽd), we can get the decomposition

L(t, x, θ) = L0 + tL̃(x, θ), L0 :=


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0


with L̃(x, θ) ≡ Π∂θW (x,θ)⊥ Dx W (x, θ)Π∇ϕ(x)⊥ . This special structure implies the existence of coefficients α j (x, θ) such that

(−1)d detL(t, x, θ) =

d−1∑
j=1

α j (x, θ)t
j .

Noting

J (x, θ) :=

{
minJ if J :=

{
j;α j (x, θ) 6= 0

}
6= ∅,

d − 1 if J = ∅,

the condition (26) is equivalent to the restriction

αJ (x,θ)(x, θ) ≥ 0, ∀(x, θ) ∈ B(0, r ] × T. (27)

On the one hand, especially when d � 1, the conditions (27) can be technically difficult to deal with. On the other hand, nothing
guarantees that they are intrinsic. Instead of looking at (27), we will consider

Π∂θW (x,θ)⊥ Dx W (x, θ)Π∇ϕ(x)⊥ = 0, ∀(x, θ) ∈ V. (28)

This relation is clearly intrinsic and, if it is satisfied, we are sure that

detL(t, x, θ) = detL0 = 0. M

We can summarize the preceding discussion by:

Proposition 7. Suppose that the relations (23) and (28) are verified. Then, the family {hε}ε is compatible.
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Proof. Under conditions (23) and (28), it remains the case that

det DxXε(t, x) = 1 + tgε
(

t, x,
ϕ(x)

ε

)
, gε ∈ C0 ([0, 1] × R × B(0, r ] × T; R) .

In particular, we get:

det DxXε(t, x) ≥ 1 − C(T )t, ∀(t, x, ε) ∈ [0, T ] × B(0, r ]×]0, 1]

where the function T 7−→ C(T ) is increasing. Now, it suffices to choose T > 0 small enough to recover (21). �

Remark 2.2. Suppose that V : Rd
−→ Rd is a C1 diffeomorphism. Then, it is equivalent to solve (1) or

∂t w + (w · ∇x )w = 0, w := V ◦ u (29)

completed with the initial data

w(0, x) = W

(
x,
ϕ(x)

ε

)
, ε ∈]0, 1]. (30)

The system (11) can also be interpreted as a compatibility condition in order to solve the Cauchy problem (29) and (30) in the class
of C1 solutions, locally in time, on some domain ΩT with T > 0 independent of ε ∈]0, 1]. This interpretation explains why the
relevant constraint is concerned with V ◦ H instead of dealing separately with V and H . M

From now on, we consider functions ϕ and W satisfying (23) and (28). In other words, we will concentrate on well prepared
couples (ϕ,W ).

3. Existence of compatible families

The goal of this subsection is to show through a constructive proof that the system (11) actually admits nontrivial solutions. We
want also to understand the structure of its generic solutions.

Of course, to face (11), preliminary assumptions are needed. We select some phase ϕ ∈ C2 (B(0, r ]; R) with no critical point in
B(0, r ]. Without loss of generality (relabelling the coordinates and diminishing r if necessary) we can adjust ϕ so that

∂dϕ(x) 6= 0, ∀x ∈ B(0, r ], r > 0. (31)

We take W = V ◦ H ∈ C2
(
B(0, r ] × T,Rd

)
. Introduce the linear subspace of Rd spanned by the vectors ∂θW (x, θ) with θ ∈ T,

that is

E(x) :=

{
N∑

j=1

µ j∂θW (x, θ j ); (µ1, . . . , µN ) ∈ RN , (θ1, . . . , θN ) ∈ TN , N ∈ N

}
. (32)

Choose N = 1, µ1 = 1 and θ1 = θ in this definition to see that

∂θW (x, θ) ∈ E(x) ⊂ Rd , ∀(x, θ) ∈ B(0, r ] × T.

Because E(x) is of finite dimension, we can find J x numbers θ x
1 , . . . , θ

x
J x such that

E(x) =

{
Jx∑

j=1

µ j∂θW (x, θ x
j ); (µ1, . . . , µJ x ) ∈ RJ x

}
, J x

:= dim E(x).

Then, in view of the first line of (11), we must have

E(x) ⊂ ∇ϕ(x)⊥, ∀(x, θ) ∈ B(0, r ] × T.

On the one hand, the case J x
= dim E(x) = 0 is not interesting because this situation corresponds to the absence of oscillations.

On the other hand, we have, necessarily,

J x
≤ dim ∇ϕ(x)⊥ = d − 1, ∀x ∈ B(0, r ].

Due to the continuity of ∂θW , the application x 7−→ dim E(x) is lower semi-continuous. In particular, the set{
x ∈ B(0, r [; J x > d −

3
2

}
=
{

x ∈ B(0, r [; J x
= d − 1

}
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is open. Now, suppose that J 0
= d − 1. By restricting r > 0 if necessary, we can always suppose that J x

= d − 1 for all
x ∈ B(0, r [. More generally, in what follows, we will retain the generic case where the application x 7−→ J x

= dim E(x) is
constant (not necessarily equal to d − 1) on B(0, r ]:

∃J ∈ {1, . . . , d − 1}; dim E(x) = J, ∀x ∈ B(0, r ]. (33)

Denote by the symbol G J
d the Grassmanian manifold of linear subspaces of Rd with dimension J .

Lemma 8. Assume W ∈ C2
(
B(0, r [×T,Rd

)
and (33). Then E ∈ C1

(
B(0, r [,G J

d

)
.

Proof. Let x0 ∈ B(0, r ]. By hypothesis, we can find θ x0
1 , . . ., θ x0

J in T such that
(
∂θW (x0, θ

x0
1 ), . . . , ∂θW (x0, θ

x0
J )
)

is a basis of
E(x0). Hence, we can extract a J × J determinant

δ(x0) := det
(
∂θWi j (x0, θ

x0
k )
)

1≤ j,k≤J
, i j ∈ [[1, d]]

such that δ(x0) 6= 0. Since ∂θW is continuous, the function x 7−→ δ(x) is continuous. Therefore, we can isolate some small open
neighborhood Ω of x0 such that

δ(x) 6= 0, ∀x ∈ Ω , x0 ∈ Ω .

For x ∈ Ω , the family
(
∂θW (x, θ x0

1 ), . . . , ∂θW (x, θ x0
J )
)

is still linearly independent, and it is built with J vectors of E(x). Since by
hypothesis E(x) is of dimension J , this is in fact a basis of E(x). Obviously, the application

x 7−→
(
∂θW (x, θ x0

1 ), . . . , ∂θW (x, θ x0
J )
)

is of class C1 in Ω . This remark gives the expected local regularity of E. Finally, since x0 ∈ B(0, r ] can be chosen arbitrarily, the
Lemma 8 is proved. �

Recall that

∂θW (x, θ) ∈ E(x) ⊂ ∇ϕ(x)⊥, ∀(x, θ) ∈ B(0, r ] × T. (34)

The second line of (11) implies that

ΠE(x)⊥ Dx W (x, θ)Π∇ϕ(x)⊥ = 0, ∀(x, θ) ∈ B(0, r ] × T.

Observe that, in this formulation, the two projectors (on the left and on the right) do not depend any more on the variable θ ∈ T.
This allows us to extract the mean value to get

ΠE(x)⊥ Dx W ∗(x, θ)Π∇ϕ(x)⊥ = 0, ∀(x, θ) ∈ B(0, r ] × T. (35)

Lemma 9. Let ϕ ∈ C2 (B(0, r ],R) and W ∈ C1(B(0, r ]×T,Rd), satisfying respectively the conditions (31) and (33). Suppose that
the relations (34) and (35) are satisfied. Then, the application x 7−→ E(x) is constant on the level surfaces of ϕ. More precisely

∃E ∈ C1(R,G J
d ); E(x) = E ◦ ϕ(x), ∀x ∈ B(0, r ]. (36)

Proof. Let us denote by δi j the usual Dirichlet symbol, and by δ(k) the vector of Rd whose components are (δik)1≤i≤d . The d − 1
vectors

vk(x) = −δ(k) + ∂kϕ(x)/∂dϕ(x)δ
(d), 1 ≤ k ≤ d − 1

form a C1 basis of ∇ϕ(x)⊥. By permuting the components of Rd and by diminishing r if necessary, we can always arrange the
datas so that

E(x)⊕ 〈v1(x), . . . , vd−J−1(x)〉 = ∇ϕ(x)⊥, ∀x ∈ B(0, r ].

Therefore, for all j ∈ [[1, J ]], the vector vd− j (x) ∈ ∇ϕ(x)⊥ can be decomposed according to

vd− j (x) = e j (x)−

d−J−1∑
k=1

αk
j (x)vk(x), e j (x) ∈ E(x)

where, due to the assumptions related to the regularity of ϕ and E, we have

e j = (e1
j , . . . , ed

j ) ∈ C1(B(0, r ]; Rd), αk
j ∈ C1(B(0, r ]; R).
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The vectors e j with j ∈ [[1, J ]] are necessarily independent. They form a basis of E(x). Besides, we have the general formula

W (x, θ) = W̄ (x)+

∫ θ

0
∂θW (x, θ̃ )dθ̃ −

∫
T

(∫ θ

0
∂θW (x, θ̃ )dθ̃

)
dθ

that, in view of (34), implies

W (x, θ) = W̄ (x)+

J∑
j=1

w∗

j (x, θ)e j (x), w∗

j ∈ C1(B(0, r ] × T; R).

Now, the relation (35) reads

J∑
j=1

w∗

j (x, θ)ΠE(x)⊥ Dx e j (x)Π∇ϕ(x)⊥ = 0, ∀(x, θ) ∈ B(0, r ] × T.

Recall that the dimension of E(x) is J . This implies that

∃(θ x
1 , . . . , θ

x
J ) ∈ TJ

; det
[
w∗

i (x, θ
x
j )
]

1≤i, j≤J
6= 0.

Combining the preceding informations, we see that (35) is equivalent to

ΠE(x)⊥ Dx e j (x)Π∇ϕ(x)⊥ = 0, ∀( j, x) ∈ [[1, J ]] × B(0, r ]. (37)

The vector space E(x)⊥ is of dimension d − J . It is generated by the vector ed(x) := ∇ϕ(x) and the d − J − 1 vectors

e j (x) = −δ( j−J )
+

J∑
k=1

α
j−J
k (x)δ(d−k), j ∈ [[J + 1, d − 1]].

Therefore (37) is exactly the same as

t el(x)Dx e j (x)Π∇ϕ(x)⊥ = 0, ∀(l, j, x) ∈ [[J + 1, d]] × [[1, J ]] × B(0, r ]. (38)

For j ∈ [[1, J ]], compute

Dx e j (x) =

d−J−1∑
k=1

∇xα
k
j (x)vk(x)+

[
d−J−1∑

k=1

αk
j (x)∇x (∂kϕ(x)/∂dϕ(x))+ ∇x

(
∂d− jϕ(x)/∂dϕ(x)

)]
δ(d).

Applying on the left t el(x) with l ∈ [[J + 1, d − 1]], yields

t el(x)Dx e j (x) = ∇xα
l−J
j (x), 1 ≤ j ≤ J < l ≤ d − 1.

We can extract from (38) that

∇xα
l−J
j (x)Π∇ϕ(x)⊥ = 0, ∀(l, j, x) ∈ [[J + 1, d − 1]] × [[1, J ]] × B(0, r ]. (39)

Independent statement. Let ϕ ∈ C1 (B(0, r ],R) satisfying (31). Let α ∈ C1 (B(0, r ],R) be a function which is subjected to the
relation (39). Then, restricting r > 0 if necessary, we can always find some function Z ∈ C1(R,R) such that

α(x) = Z ◦ ϕ(x), ∀x ∈ B(0, r ]. (40)

Proof of the independent statement. The geometric reason for (40) is the following. The relation (39) means that either the vectors
∇xα(x) and ∇ϕ(x) are parallel or that the tangent spaces at x to the level surfaces associated with the scalar functions α and ϕ
coincide. Since the level surfaces associated with α and ϕ are spanned by these tangent spaces, we can deduce that α and ϕ
have common level surfaces. Moreover, the relation (31) allows us to characterize (locally near 0) these level surfaces through the
different values of ϕ. This is why we have (40).

Now, we can also proceed as follows. Due to (31), the functions x1, x2, . . . , xd−1 and ϕ(x) form locally (near 0) a system of
coordinates. Therefore, we can find Z ∈ C1(Rd ,R) such that

α(x) = Z
(
x̂, ϕ(x)

)
, x̂ := (x1, x2, . . . , xd−1), ∀x ∈ B(0, r ].

Decompose ∇ϕ(x) according to

∇ϕ(x) = (∇x̂ϕ(x), ∂dϕ(x)) , ∇x̂ϕ(x) = (∂1ϕ(x), . . . , ∂d−1ϕ(x)) ∈ Rd−1.
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Given ĥ ∈ Rd−1, define

hd(x, ĥ) := −∂dϕ(x)
−1

∇x̂ϕ(x) · ĥ.

Observe that(
ĥ, hd(x, ĥ)

)
∈ ∇ϕ(x)⊥, ∀ĥ ∈ Rd−1.

Testing (39) with such choices gives rise to

∇x̂ Z (x1, x2, . . . , xd−1, ϕ(x)) · ĥ = 0, ∀ĥ ∈ Rd−1.

This information clearly implies that the function Z does not depend on its d − 1 first variables. We have (40). �

Applying the independent statement to the functions αl−J
j , we see that we can exhibit functions

Z k
j ∈ C1(R,R), (k, j) ∈ [[1, d − J − 1]] × [[1, J ]]

such that, for all (k, j) ∈ [[1, d − J − 1]] × [[1, J ]], we have

ek
j (x) = −αk

j (x) = Z k
j ◦ ϕ(x), ∀x ∈ B(0, r ]. (41)

This construction of the Z k
j is not classical and it is one of the main difficulties in the proof of Lemma 9. Finally, the remaining

conditions to consider are obtained by taking j ∈ [[1, J ]] and l = d. Specifically

∇ϕ(x)Dx e j (x)Π∇ϕ(x)⊥ = 0, ∀( j, x) ∈ [[1, J ]] × B(0, r ].

Use (31) and (41) to simplify this into

∇x ed
j (x)Π∇ϕ(x)⊥ = 0, ∀( j, x) ∈ [[1, J ]] × B(0, r ]

where we recall that

ed
j (x) = −

d−J−1∑
k=1

Z k
j ◦ ϕ(x)∂kϕ(x)/∂dϕ(x)+ ∂d− jϕ(x)/∂dϕ(x).

Again, this means the existence of Zd
j ∈ C1(R,R) such that

ed
j (x) = Zd

j ◦ ϕ(x), ∀( j, x) ∈ [[1, J ]] × B(0, r ].

Briefly, we have obtained, for all j ∈ [[1, J ]], that

e j (x) = Z j ◦ ϕ(x), Z j =
t (Z1

j , . . . , Zd−J−1
j , 0, . . . , 0,−1, 0, . . . , 0, Zd

j ).

The vector space E is spanned by the e j with j ∈ [[1, J ]]. Therefore, it depends only on ϕ, in a C1 way. This gives rise to (36). In
particular, E is constant on the level surfaces of ϕ. �

Combining (34) and (36), we can produce the necessary condition

∇ϕ(x) ∈ E ◦ ϕ(x)⊥ = E(x)⊥, ∀x ∈ B(0, r ]. (42)

The condition (42) is a geometrical constraint on ϕ underlying the resolution of (11). We explain below how to solve it.

Lemma 10. Select:

- a curve E ∈ C2(R,G J
d ) of J -dimensional vector spaces of Rd ,

- a C2 submanifold S ⊂ Rd of dimension d − J , containing 0 ∈ Rd ,
- a C2 scalar function χ : S −→ R.

Note T0S the tangent space of S at the point 0 ∈ Rd . We suppose that

T0S + E (χ(0)) = Rd . (43)

Then, we can find r > 0 such that the nonlinear equation (42) completed with ϕ|S∩B(0,r ] ≡ χ has a unique C2 solution on B(0, r ].
We will say that the phase ϕ is generated by (E,S, χ).
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Proof. Select δ > 0 and J functions

Z j ∈ C2 (]χ(0)− δ, χ(0)+ δ[; R) , j ∈ [[1, J ]]

adjusted such that, for all t ∈]χ(0)− δ, χ(0)+ δ[, (Z1(t), . . . , Z J (t)) is a basis of E(t). Note that

Ω δ
S := χ−1 (]χ(0)− δ, χ(0)+ δ[) ⊂ S, z =

t (z1, . . . , z J ) ∈ RJ .

Consider the C2 application

Ξ : Ω δ
S × RJ

−→ Rd

(y, z) 7−→ Ξ (y, z) := y +

J∑
j=1

z j Z j ◦ χ(y).

Because of (43), the linear operator

DxΞ (0, 0) : T0S × RJ
−→ Rd

(h, k) 7−→ h +

J∑
j=1

k j Z j ◦ χ(y)

is invertible. The inverse mapping Theorem can be applied at the point (0, 0) ∈ S × RJ . It guarantees the existence of an r > 0
such that Ξ is a C2 diffeomorphism from a neighbourhood of (0, 0) ∈ S × RJ onto B(0, r ]. Introduce the projection

Γ : S × RJ
−→ S

(y, z) 7−→ Γ (y, z) := y.

Now, we can define

ϕ := χ ◦ Γ ◦ Ξ −1
∈ C2 (B(0, r ]; R) .

Since (Γ ◦ Ξ −1)|S∩B(0,r ] = Id, we have ϕ|S∩B(0,r ] ≡ χ|S∩B(0,r ]. Moreover, the function ϕ is constant on the set

Fy := (y + 〈Z1 ◦ χ(y), . . . , Z J ◦ χ(y)〉) ∩ B(0, r ], y ∈ S ∩ B(0, r ].

More precisely, Fy is a piece of an affine manifold with direction E ◦ χ(y), on which ϕ takes the value χ(y). In particular

∇ϕ(x) ∈ (TxFy)
⊥

= E ◦ χ(y)⊥ = E ◦ ϕ(x)⊥, ∀x ∈ Fy .

Since the Fy with y ∈ S ∩ B(0, r ] form a foliation of B(0, r ], we have obtained the expected relation (42). �

Proposition 11. Let ϕ be generated by (E,S, χ). The couple (ϕ,W ) is well prepared if and only if there exist two functions
W‖ ∈ C1(R2,Rd) and W⊥ ∈ C1(R,Rd) satisfying

W‖(t, s) ∈ E(t), W⊥(t) ∈ E(t)⊥, ∀(t, s) ∈ R2 (44)

and a scalar function ψ ∈ C1 (B(0, r ] × T; R) such that

W (x, θ) = W‖ (ϕ(x), ψ(x, θ))+ W⊥ (ϕ(x)) , ∀(x, θ) ∈ B(0, r ] × T. (45)

Proof. Let (Z1(t), . . . , Z J (t)) be some orthonormal basis of E(t) with a C1 regularity with respect to t ∈ R. Complete it with some
C1 orthonormal basis (eJ+1(t), . . . , ed(t)) of E(t)⊥, again of class C1. In view of (34), the definition of E(x) and Lemma 9, the
profile W (x, θ) can be decomposed according to

W (x, θ) =

J∑
k=1

w j (x, θ)Z j ◦ ϕ(x)+

d∑
k=J+1

w j (x)e j ◦ ϕ(x)

with

w j ∈ C1 (B(0, r ] × T; R) , ∀ j ∈ [[1, J ]],

w j ∈ C1 (B(0, r ]; R) , ∀ j ∈ [[J + 1, d]].

Compute the derivative of W (x, θ) with respect to the variable x and compose on the right with Π∇ϕ(x)⊥ . It remains

Dx W (x, θ)Π∇ϕ(x)⊥ =

J∑
k=1

∇xw j (x, θ) · Π∇ϕ(x)⊥ × Z j ◦ ϕ(x)+

d∑
k=J+1

∇xw j (x) · Π∇ϕ(x)⊥ × e j ◦ ϕ(x).
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Select a point (x, θ) ∈ V which means that ∂θW (x, θ) 6= 0. Without loss of generality, we can suppose that ∂θWJ (x, θ) 6= 0.
Otherwise, just permute the components of Rd to obtain this condition. By construction, the hyperplane ∂θW (x, θ)⊥ is generated
by the d − J vectors e j ◦ ϕ(x) with j ∈ [[J + 1, d]] and the J − 1 vectors

∂θwJ (x, θ)Z j ◦ ϕ(x)− ∂θw j (x, θ)Z J ◦ ϕ(x), j ∈ [[1, J − 1]].

The requirement (28) is equivalent to the conditions

∇xw j (x) · Π∇ϕ(x)⊥ = 0, ∀ j ∈ [[J + 1, d]], (46)(
∂θwJ ∇xw j − ∂θw j∇xwJ

)
(x, θ) = 0, ∀ j ∈ [[1, J − 1]]. (47)

On the one hand, from (46), we deduce that

∃w̃ j ∈ C1(R,R); w j (x) = w̃ j ◦ ϕ(x), ∀ j ∈ [[J + 1, d]].

On the other hand, it follows from the relations (47) that the mappings Υt parameterized by t ∈ R and defined on the level sets

Gt := {x ∈ B(0, r ];ϕ(x) = t}

by the formulas

Υt : Gt × T −→ RJ

(x, θ) 7−→
t (w1, . . . , wJ )

have rank one. Thus, to each Υt corresponds a foliation of Gt ×T by submanifolds of dimension d −1. Each such foliation depends
on the parameter t . It can be described by using a function ψ ∈ C1 (B(0, r ] × T,R), so that

w j (x, θ) = w̃ j (ϕ(x), ψ(x, θ)) , ∀ j ∈ [[1, J ]].

Define

W⊥(t) :=

d∑
j=J+1

w̃ j (t)e j (t), W‖(t, s) :=

J∑
j=1

w̃ j (t, s)Z j (t).

By construction, we have both (44) and (45).
Conversely, suppose that W (x, θ) has the form (45) with W‖(x, θ) and W⊥(x, θ) as in (44). Then

∂θW (x, θ) = ∂θψ(x, θ)× ∂s W‖ (ϕ(x), ψ(x, θ)) ∈ E (ϕ(x)) ≡ E(x)

which is (34) and gives rise to the first part of (11). Moreover

Dx W (x, θ)Π∇ϕ(x)⊥ = ∇xψ(x, θ) · Π∇ϕ(x)⊥ × ∂s W‖ (ϕ(x), ψ(x, θ)) .

Since ∂θW and ∂s W‖ are collinear, we get the second equation of (11). �

4. Simple wave solutions

The aim of this last part is to explain how the initial oscillating data hε(x) is transformed through the evolution equation (1).
Below, we consider this question in a simplified context, by looking only at simple wave solutions.

Definition 12. Let ε ∈]0, 1]. We say that uε ∈ C1(ΩT
; R) is a simple wave if it can be put in the following form

uε(t, x) = H
(

t, x,
Φ(t, x)

ε

)
, H ∈ C1(ΩT

× T; Rd), Φ ∈ C1(ΩT
; R).

The Theorem 2 explains how to associate with a well prepared couple (ϕ,W ) a simple wave uε(t, x) which is a solution on ΩT of
the Burger’s type system (1). It remains to show this statement Theorem 2.

Proof of Theorem 2. Compose the first equation of (12) with DuV ◦ H in order to extract
∂t W + (W · ∇x )W = 0,
∂tΦ + (W̄ · ∇x )Φ = 0,
W∗

· ∇xΦ = 0,
W := V ◦ H. (48)

This must be associated with the initial data

W(0, x, θ) = W (x, θ), Φ(0, x) = ϕ(x). (49)
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First, we discuss (48) and (49). From Proposition 11, we can write

W (x, θ) = W‖ (ϕ(x), ψ(x, θ))+ W⊥ (ϕ(x)) .

Solve locally in time, say on ΩT for some T > 0, the scalar conservation law

∂tΦ + W⊥(Φ) · ∇xΦ = 0, Φ(0, x) = ϕ(x). (50)

Recall that E(x) = E ◦ ϕ(x) is spanned by the J vectors e j (x) = Z j ◦ ϕ(x) where the Z j are defined at the end of the proof of
Lemma 9. Now, fix any j ∈ [[1, J ]] and compute

[∂t + W⊥(Φ) · ∇x ] (Z j ◦ Φ · ∇xΦ) = −(∇xΦ · W ′

⊥
◦ Φ)× (Z j ◦ Φ · ∇xΦ).

Combining (13) and (42), we can extract

(Z j ◦ Φ · ∇xΦ)(0, x) = 0, ∀( j, x) ∈ [[1, J ]] × B(0, r ].

In view of the preceding equation, this polarization identity is propagated in time, which means that

Z j ◦ Φ(t, x) · ∇xΦ(t, x) = 0, ∀(t, x) ∈ [0, T ] × B(0, r ]

or equivalently that

∇xΦ(t, x) ⊂ E ◦ Φ(t, x)⊥, ∀(t, x) ∈ [0, T ] × B(0, r ]. (51)

Now, introduce the function

W̃ (t, s) := W‖(t, s)+ W⊥(t), (t, s) ∈ R2

and the scalar conservation law

∂tΨ + W̃ (Φ(t, x),Ψ) · ∇xΨ = 0. (52)

Complete (52) with the initial data

Ψ(0, x, θ) = ψ(x, θ), ψ ∈ C1 (B(0, r ] × T; R) . (53)

In (52), the variable θ ∈ T plays the part of a parameter. For T > 0 small enough, the Cauchy problem (52) and (53) has a local
solution on ΩT. Finally, define the profile W through

W(t, x, θ) := W̃ (Φ(t, x),Ψ(t, x, θ)) , W(0, x, θ) = W (x, θ).

By construction, we have

W∗(t, x, θ) = W‖ (Φ(t, x),Ψ(t, x, θ))∗ .

The information from (44) and (51) implies that

W∗(t, x, θ) · ∇xΦ(t, x) = 0, ∀(t, x) ∈ ΩT.

Taking into account (44) and (50), we have also

∂tΦ + W · ∇xΦ = ∂tΦ + W⊥ ◦ Φ · ∇xΦ = 0.

Then, with (52), we can deduce that

∂t W + W · ∇x W = ∂s W̃ (∂tΨ + W · ∇xΨ) = 0, W(0, x, θ) = W (x, θ). (54)

To sum up, we have constructed functions Φ and W satisfying (48).
Now, we concentrate on (12). First, solve separately (on some domain ΩT with T > 0) the Cauchy problem

∂t H + V ◦ H · ∇x H = 0, H(0, x, θ) = H(x, θ). (55)

Observe that the expression W̃ := V ◦ H is, by Construction, subjected to

∂t W̃ + W̃ · ∇x W̃ = 0, W̃(0, x, θ) = W (x, θ). (56)

The Cauchy problems (54) and (56) are made of the same quasilinear constraints and the same initial data. Since the corresponding
C1 solutions must coincide, we have necessarily that W̃ = V ◦ H ≡ W on ΩT.

Briefly, the first equation of (12) is verified because this is precisely (55), whereas the two other conditions of (12) are satisfied
because they correspond exactly to the two last conditions in (48). This explains why the apparently overdetermined system (12)
and (13) has a unique solution on ΩT

× T for some T > 0.
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Finally, define the simple wave uε(t, x) := H
(

t, x, Φ(t,x)
ε

)
. Compute

∂t uε + V (uε) · ∇x uε = (∂t H + V ◦ H · ∇x H)
(

t, x,
ϕ(x)

ε

)
+

1
ε

[(∂tΦ + V ◦ H · ∇xΦ)∂θH]
(

t, x,
ϕ(x)

ε

)
.

The fact that uε(t, x) is a solution of (1) becomes a direct consequence of the equations inside (12). Moreover, the definition of W
indicates clearly that the structure (45) is conserved for t ∈ [0, T ]. Therefore (see the end of the proof of Proposition 11), for all
t ∈ [0, T ], the trace (Φ(t, ·),W(t, ·)) is still well prepared. This last remark concludes the proof of Theorem 2. �
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