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a b s t r a c t

This paper generalizes some known solitary solutions of a time-dependent Hamiltonian in twoways: The
time-dependent field can be an elliptic function, and the time evolution is obtained for a complete set
of basis vectors. The latter makes it feasible to consider arbitrary initial conditions. The former makes it
possible to observe a beating caused by the non-harmonicity of the driving field.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The analytic solutions of Allen and Eberly [1] for the Bloch
equations are well known. Similar results for spin-one systems
or three-level atoms do exist [2] and are derived in terms of the
coherence vector of Hioe and Eberly [3]. We consider a three-
level system with time-dependent external fields which enable
transitions between two pairs of levels, between (1) and (3)
and between (2) and (3), respectively. See Fig. 1. This kind of
system has applications in different domains of physics. Analytic
expressions for the time evolution of the density matrix are very
helpful for understanding many of the phenomena observed in
light scattering experiments — see for instance [4]. In the context
of quantum computers the accurate manipulation of the state
of a quantum system – in this case a qutrit – is important. See
for instance in [5] the discussion of the technical difficulties in
manipulating biphotonic qutrits.

In the present work the known solitary solutions of [2]
are generalized in more than one way. The external fields are
modulated with Jacobi’s elliptic functions. By varying the elliptic
modulus k these functions make the bridge between periodic
functions (cos(ωt) and sin(ωt)) and single pulses described by
sech(ωt) and tanh(ωt). In addition, a full set of solutions is
presented instead of just one solution. This makes it possible to
take arbitrary initial conditions at time t = 0.
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Section 2 presents the time-dependent Hamiltonian and the
special solutions. Section 3 discusses a limiting case in order to
make the connection with known results. In Section 4, a specific
setting is chosen. Section 5 discusses the results. Appendix A
contains the explicit expressions which are used for the generators
of SU(3). Appendix B explains the method by which the special
solutions were obtained from known solutions of the non-linear
von Neumann equation (see the Appendix of [6])

ih̄
d
dt
ρt = [H0, ρ

2
t ]. (1)

Next, part of the theoretical framework of [7] is used to obtain
a set of linearly independent solutions. Finally, the results are
transferred to a more general setting.

2. Special solutions

Consider a Hamiltonian of the form

H = H0 + a cn (ωt, k)[S4]t + x dn (ωt, k)[S7]t (2)

where S1, S2, . . . , S8 are the generators of SU(3) and equal half the
Gell-Mann matrices – see Appendix A – and where

[Sj]t ≡ e−(it/h̄)H0Sje(it/h̄)H0 (3)

are the generators written in the interaction picture. This kind of
Hamiltonian is considered in quantumopticswhen studying three-
level systems driven by laser light, neglecting damping effects—see
for instance [4,8].

The functions sn , cn , dn are Jacobi’s elliptic functions. In the
limit k = 0 the function sn (ωt, k) converges to sin(ωt), cn (ωt, k)
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Fig. 1. Ladder (or cascade) configuration (left),3 configuration (center), and V configuration (right).
converges to cos(ωt), and dn (ωt, k) converges to 1. In the limit
k = 1 the function sn (ωt, k) converges to tanh(ωt) and cn (ωt, k)
and dn (ωt, k) both converge to sech(ωt). Inwhat follows,wedrop
the arguments (ωt, k) of Jacobi’s functions when this does not lead
to ambiguities.

Let us assume that the parameters of the Hamiltonian satisfy

4k2(h̄ω)2 = a2 + k2x2. (4)

Then three orthonormal solutions ψ0, ψ+, ψ− of the Schrödinger
equation ih̄ψ̇ = Hψ are given by

ψ0(t) =
1
T
e−(it/h̄)H0

 ia dn
k2x cn
B sn

 , (5)

ψ±(t) =
e∓iφ(t)

R(t)
e−(it/h̄)H0

 k2xT cn ± iaB sn dn

±k2xB sn cn + iaT dn

∓k4x2 cn 2
∓ a2 dn 2

 (6)

with B = 2k2h̄ω and T =
√
a2 + k4x2. Note that by assumption

one has T 2
= B2

+ a2(1 − k2). The functions R(t) and φ(t) are
given by

R(t) =
√
2 T

T 2 − B2 sn 2 =

√
2 T

a2(1 − k2)+ B2 cn 2 (7)

h̄φ(t) =
ax
2
T
∫ t

0
ds

1 − k2

a2(1 − k2)+ B2 cn 2(ωs, k)
. (8)

One verifies the above statements by explicit calculation.

3. Limiting case

The limit k = 0 of solutions (5), (6) is meaningless. The Hamil-
tonian becomes time independent and the conditions imply that
T = B = a = 0. On the other hand, in the limit k = 1 the Hamil-
tonian reads

H(t) = H0 + [aS4 + xS7]t sech(ωt). (9)

The conditions imply that a2 + x2 = T 2
= B2

= 4(h̄ω)2. The solu-
tions become

ψ0(t) =
1

2h̄ω
e−(it/h̄)H0


sech(ωt)

ia
x
0



+ tanh(ωt)

 0
0

2h̄ω


, (10)

ψ±(t) =
1

√
2

1
2h̄ω

e−(it/h̄)H0

×

 x
ia
0


± tanh(ωt)

ia
x
0


∓ sech(ωt)

 0
0

2h̄ω


. (11)

From these solutions one can derive the unitary operator U(t)
which describes the time evolution. One obtains
U(t) =
1

4 h̄2 ω2

x2 −iax 0
iax a2 0
0 0 0


+

1
4 h̄2 ω2

sech(ωt)

a2 iax 0
−iax x2 0
0 0 4 h̄2 ω2


+

1
4 h̄2 ω2

tanh(ωt)

0 0 −2ih̄ωa
0 0 −2h̄ωx
−2ih̄ωa 2h̄ωx 0


. (12)

Finally, the time dependence of a density matrix ρ now follows
from ρ(t) = U(t)ρU(t)Ď. The result can then be compared with
the expressions (3.22) found at the end of [2].

4. Exciting the ground state

Let us consider a wave function ψ(t) which at t = 0 satisfies
ψ(0) = (1, 0, 0)T. In the Ladder or theΛ configuration this means
that the system is in the ground state. It can be decomposed into
the basis of special solutions as

ψ(0) = −i
a
T
ψ0(0)+

k2x
√
2 T
(ψ+(0)+ ψ−(0)). (13)

The time-dependent solution is then

ψ(t) = −i
a
T
ψ0(t)+

k2x
√
2 T
(ψ+(t)+ ψ−(t))

= e−(it/h̄)H0

 a
T 2

 a dn
−ik2x cn
−iB sn


+

√
2

k2x
R(t)

cos(φ(t))

k2x cn
ia dn
0


+ i

√
2

k2x
TR(t)

sin(φ(t))

 −iaB sn dn
−k2xB sn cn

k4x2 cn 2
+ a2 dn 2

 . (14)

Clearly, all the three independent solutions are needed to obtain
the time evolution for the given initial condition. It is also clear that
the phase factor e∓iφ(t) which appears in (6) when k ≠ 1, although
not so relevant for the special solutions, becomes highly relevant
in the above quantum superposition.

As expected, the time-dependent interaction populates the two
other states. See Figs. 2 and 3. Note that level (1) does not go below
half occupation. This can be understood as follows. In each of the
three solutions ψ0(t), ψ±(t) the occupation of level (1) cannot
go much below 1. In other words, for the chosen parameters the
system is in a regime of a weak and inefficient pumping. However,
due to interference effects in the superposition (14), pronounced
dips appear in the population of level (1).

5. Discussion

We obtained solitary solutions for a three-level system with
periodic time-dependent external fields. Two aspects are novel.
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Fig. 2. Occupational probability of level (1) as a function of time for k = 0.25,
h̄ = ω = 1, a = 0.3 and x = 1.6.
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Fig. 3. Occupational probability of level (3) as a function of time for the same
parameter values as in the previous figure.

The external fields are anharmonic in the sense that Jacobi’s
elliptic functions are used as deformations of the usual harmonic
functions. In addition, a full set of special solutions is obtained so
that arbitrary initial conditions can be considered.

Note that the three-level system under consideration is non-
degenerate. The only matrices commuting with both S4 and S7, the
two generators appearing in the Hamiltonian (2), are themultiples
of the identity matrix. Only in the k = 1 limit (see Section 3) there
exists a conserved quantity. In this limit the system reduces to a
two-level problem, and a dark state appears.

The additional phase factor exp(∓iφ(t)) appearing in solutions
(5), (6) is known as a dynamical phase factor. Itwas first considered
in [7]. It is not very relevant for the special solutions themselves,
but has an effect on their superpositions. The function sin(φ(t)) is
plotted in Fig. 4. Its frequency is slightly lower than the frequency
ω/2π of the driving field. As a consequence, a low frequency
beat appears when the special solutions are superimposed. This is
dominantly visible in Figs. 2 and 3. For the chosen set of parameters
the beat period is about 5 times the frequency of the external
field. Note also the frequency doubling by which the exchange of
population occurs between levels (2) and (3).
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Fig. 4. The function sin(φ(t)) for the same parameter values as in the previous
figures.
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Appendix A. Generators

The following expressions are used for the generators of SU(3).

S1 =
1
2

0 1 0
1 0 0
0 0 0


, S2 =

1
2

0 −i 0
i 0 0
0 0 0


,

S3 =
1
2

1 0 0
0 −1 0
0 0 0


, S4 =

1
2

0 0 1
0 0 0
1 0 0


,

S5 =
1
2

0 0 −i
0 0 0
i 0 0


, S6 =

1
2

0 0 0
0 0 1
0 1 0


,

S7 =
1
2

0 0 0
0 0 −i
0 i 0


, S8 =

1

2
√
3

1 0 0
0 1 0
0 0 −2


. (A.1)

Appendix B. Method

Solutions (5), (6) were obtained starting from a known solution
of the non-linear von Neumann equation

ih̄ρ̇t =
3
2
[{H0, ρt}, ρt ], (B.1)

where H0 is given by

H0 =
2
3


−µ 0 0
0 µ 0
0 0 λ


. (B.2)

The three different configurations, V, Ladder, and Lambda, are
obtainedby takingλ < −µ < 0, |λ| < µ,λ > µ > 0, respectively.

Let H(t) be defined by H(t) =
3
2 {H0, ρt}. Then ρ(t) is a solution

of the linear von Neumann equation with time-dependent
Hamiltonian H(t).

A known solution of the non-linear equation (B.1) is of the
form [6,9]

ρ(t) =
1
3

I + A cn (ωt, k)[S4]t + B sn (ωt, k)[S1]t

+ C dn (ωt, k)[S7]t
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= e−(it/h̄)H0


1
3

1
2
B sn

1
2
A cn

1
2
B sn

1
3

−
i
2
C dn

1
2
A cn

i
2
C dn

1
3

 e(it/h̄)H0 , (B.3)

The coefficients A, B, and C , are real. They must satisfy the set of
conditions

h̄ωB = µAC
2h̄ωk2C = (λ+ µ)AB
−2h̄ωA = (λ− µ)BC . (B.4)

This set of equations can be solved in a straightforward manner
when 0 < |λ| < µ.

Next, a unitary matrix V (t), satisfying

ρt = V (t)ρ0V (t)Ď (B.5)

is calculated. The fastest way to find V (t) is by first diagonalizing
ρt . Note that the eigenvalues of ρt do not depend on time. They are
given by

1
3

and
1
3

∓
1
2
T (B.6)

with T =
√
A2 + C2. The result is

V (t) = e−(it/h̄)H0G(t)G(0)Ď (B.7)
with

G(t) =
1

√
2TR(t)

×

i
√
2CR(t) dn −AT cn − iBC sn dn AT cn − iBC sn dn

−
√
2AR(t) cn AB sn cn + iCT dn AB sn cn − iCT dn

√
2BR(t) sn R(t)2 R(t)2

 (B.8)
and

R(t) =


A2 cn 2 + C2 dn 2 =


T 2 − B2 sn 2. (B.9)

However, V (t) does not necessarily describe the unitary time
evolution U(t). But the latter can be related to V (t) by the method
of [7]. The details of the calculation of U(t) are omitted here. The
knowledge of U(t) implies the time evolution of wave functions
ψ(t) for arbitrary initial conditions ψ(t) = U(t)ψ(0). It turns out
that the special solutions (5), (6) are the columns of the matrix
G(t), taken in the interaction picture. Two of the three solutions
are multiplied with the time-dependent phase factor exp(∓iφ(t)).
Finally, note that conditions (B.4) are needed during the above
derivation but are not required for (5), (6) to hold. They rather are
replaced by the single condition (4).
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