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a b s t r a c t

We study the dynamics of a circadian oscillator model proposed by Tyson, Hong, Thron and Novak. This
model describes a molecular mechanism for the circadian rhythm in Drosophila. After giving a detailed
study of its equilibria, we investigate the dynamics in the cases that the rate of mRNA degradation is
sufficiently high or low. When the rate is sufficiently high, we prove that there are no periodic orbits
in the region with biological meaning. When the rate is sufficiently low, this model is transformed into
a slow–fast system. Then based on the geometric singular perturbation theory, we prove the existence
of relaxation oscillations, canard explosion, saddle–node bifurcations, and the coexistence of two limit
cycles in this model. These results are helpful to understand the effects of biophysical parameters on
circadian oscillations. Finally, we give the biological interpretation of the results and point out that
this model can be transformed into a Liénard-like equation, which could be helpful to investigate the
dynamics of the general case.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Circadian rhythms of physiology and behavior with a period
bout 24 h have been found in many organisms, for example, in
ruit flies, plants and vertebrate animals. These circadian clocks
llow us to adapt to the alternation of day and night. In order to
rasp the mechanisms for the generation of circadian rhythms,
umerous theoretical models ranging from generic autonomous
scillators to molecular-based models have been proposed in the
ast tens of years. See, for example, [1–5] and references therein.
Drosophila has a molecular circadian oscillation which has

een modeled to understand the mechanisms for circadian
hythms. The classical mechanism is that the clock proteins (PER
nd TIM) dimerize and then inhibit the transcription of their clock
enes. Thus many models are based on a negative feedback loop.
n order to describe the multiple states of clock proteins and
lock genes, these models are always high-dimensional systems
f ordinary differential equations [1,4,5]. The complexity of these
ystems causes a major obstacle to analyzing the underlying
echanisms for circadian oscillations.
Motivated by the experimental discoveries on PER phosphory-

ation and proteolysis in [6,7], Tyson, Hong, Thron and Novak [8]
roposed a positive feedback loop to the circadian oscillator in
rosophila, which was based on the stabilization of PER upon its
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dimerization with TIM. See [8, Figure 1, p.2412] for the molecular
mechanism. To grasp the importance of positive feedback and
keep the model as simple as possible, Tyson, Hong, Thron and No-
vak in [8] set up a three-dimensional circadian oscillator model
dM
dt

=
νm

1 + (P2/Pc)2
− kmM,

dP1
dt

= νpM −
k1P1

Jp + P1 + rP2
− k3P1 − 2kaP2

1 + 2kdP2,

dP2
dt

= kaP2
1 − kdP2 −

k2P2
Jp + P1 + rP2

− k3P2,

(1.1)

here the system states M , P1 and P2 denote the concentration
f mRNA, protein monomer and protein dimer, respectively. The
iological descriptions of the model parameters are shown in
able 1 (see also in [8, Table 1]). Let the ratio r = 2 and k1 > k2.
onsider the change of the total protein P = P1 + 2P2. Then (1.1)
s converted into
dM
dt

=
4νmP2

c

4P2
c + (P − P1)2

− kmM,

dP
dt

= νpM −
(k1 − k2)P1 + k2P

Jp + P
− k3P,

dP1
dt

= νpM −
k1P1
Jp + P

− k3P1 − 2kaP2
1 − kdP1 + kdP .

(1.2)

ssume that the dimerization reactions ka and kd are sufficiently
arge compared to other rate parameters, Tyson, Hong, Thron and
ovak [8] applied the quasi-steady-state approximation (see, for
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Table 1
The biological descriptions of the model parameters.
Parameter Biological description

vm The maximum rate of mRNA synthesis
km The first-order rate of mRNA degradation
Pc The value of dimer at the half-maximum transcription rate
vp The rate for translation of mRNA into the monomer
k1 The maximum rate for monomer phosphorylation
k2 The maximum rate for dimer phosphorylation
k3 The first-order degradation rate of the monomer and dimer
JP The Michaelis constant for protein kinase DBT
ka The rate of dimerization
kd The rate of dissociation of the dimer
r The ratio of enzyme–substrate dissociation constants for the monomer and dimer
instance, [9,10]) to reduce the three-dimensional system (1.2)
into a simpler two-dimensional system

dM
dt

=
4νmP2

c

4P2
c + (P − h(P))2

− kmM,

dP
dt

= νpM −
(k1 − k2)h(P) + k2P

Jp + P
− k3P,

(1.3)

here the constant K = ka/kd and the function h is given by

(P) =

√
1 + 8KP − 1

4K
, P ≥ 0.

Here system (1.3) is called the two-dimensional Tyson–Hong–
Thron–Novak circadian oscillator model (the THTN model for
short). Indeed, under the same assumptions as in [8], our re-
cent work [11] proved that the three-dimensional system (1.2)
possesses a two-dimensional invariant manifold, which is also
a global attractor in the region with biological meaning. Fur-
thermore, the vector field on this invariant manifold has an
expansion with respect to a small parameter and its zero-order
approximation is the THTN model. So the dynamics of (1.2) can
be effectively approximated by the THTN model.

The THTN model is a simplified two-dimensional system,
but [8] found that it also generates oscillations and naturally
illustrates several properties of circadian rhythms, such as tem-
perature compensation. On the other hand, the THTN model has
an advantage in theoretical analysis over high-dimensional mod-
els: the phase plane analysis is applicable to detect its oscillations.
However, there are still two obstacles in analyzing its dynamics,
that is, it possesses multiple parameters and is topologically
equivalent to a high-order polynomial system. In order to explore
the properties of the THTN model, Tyson et al. [8] numerically
studied the periods of limit cycles by varying (K , k1) and fixing
ther parameters, and found that it has a limit cycle with a period
f about 24 h in a large parameters domain of (K , k1). Simon and
olford [12] used the parametric representation method to study
he properties of equilibria and bifurcation curves by varying
vp, k1). Goussis and Najm [13] numerically compared the differ-
nces of periodic solutions in the original system (1.1) and the
HTN model. Jiang et al. [14] numerically studied the effects of
everal model parameters on the periods of circadian oscillations,
nd pointed out that it is reasonable to apply the THTN model to
tudy the periodic behaviors in the original system (1.1).
We are interested in the effects of the biophysical parame-

ers on the periodic behaviors in the THTN model. These results
re determined by the dynamics of the THTN model, and allow
s to understand the roles of proteolysis and dimerization of
lock proteins in generating circadian rhythms. Noting that mRNA
egradation plays a pivotal role in eukaryotic gene expression,
e then focus on the cases that the rate of mRNA degradation

s sufficiently high or low. The dynamics of the THTN model
ith general km is a more complicated problem, and will be

tudied in future work. In the final section, we point out that the

2

THTNmodel is topologically equivalent to a Liénard-like equation.
This structure is helpful to study the global dynamics of the
THTN model with general km and the effects of the biophysical
parameters on the periods of circadian oscillators.

When the rate of mRNA degradation is sufficiently high, this
case is called the high degradation rate case for simplicity. We
first obtain the existence of a bounded attractor by applying
Gronwall’s Inequality. Then we further prove that there are no
periodic orbits in the THTN model and all orbits starting from the
initial values in the domain with biological meaning are attracted
to locally stable foci or nodes, except for the stable manifolds of
saddles. See Theorem 4.1. This indicates that circadian oscillations
require the rate of mRNA degradation to be bounded, and could
disappear when this rate is high.

Relaxation oscillations and canard explosions were found in
many circadian models [2,4] and have not yet been considered in
the THTN model. These phenomena typically appear in a planar
slow–fast system. We give a detailed study of these oscillations
for the THTN model and are also motivated by the numerical
simulations in [8]. For example, [8, Figure 2] showed that the
time evolution of the concentration of mRNA exhibits an apparent
slow–fast structure. The limit cycle in [8, Figure 3A] looks like
a relaxation oscillation. [8] numerically found that for K < 50,
the period of limit cycle abruptly increases and becomes quite
sensitive to the changes of parameters. The similar phenomenon
appears in canard explosion.

The slow–fast structure for the THTN model in the present
paper is induced by the low rate of mRNA degradation, which is
referred to as the low degradation rate case. To analyze relaxation
oscillations and canard explosions, one efficient approach is to
apply the geometric singular perturbation theory (see [15–21]).
For convenience, we introduce its basic notions in Section 2. In
slow–fast systems with S-shaped critical manifolds, the shapes of
perturbed limit cycles depend on the types of two non-hyperbolic
points. If a non-hyperbolic point is also an equilibrium of the
slow–fast THTN model, then it is a canard point. Otherwise,
it is a jump point (see Section 5). So one of key steps is to
give a complete classification of all possible distributions of the
equilibria (see Lemma 3.3) and then distinguish the types of
them. After that, we obtain the desired circadian oscillators in the
form of canard cycles and relaxation oscillations by the normal
forms near the canard points and the results in [18,19,22]. See
Theorems 5.1, 5.3 and 5.4.

Besides these oscillations, we study several interesting phe-
nomena on the dynamics of the THTN model. For example, by the
Fenichel Theorem [22, Theorem 9.1], we prove the nonexistence
of limit cycles, and the existence of homoclinic orbits and hete-
roclinic orbits. See Theorems 5.1, 5.3 and 5.4. Based on the center
manifold theory, we study the saddle–node bifurcations near
saddle–node points. See Theorem 5.2. We also prove the coexis-
tence of two limit cycles for the THTN model in some parameter
domains, where one is stable and the other is unstable. See (vi)

of Theorem 5.1. The interesting occurrence of two different limit
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ycles for some parameters is referred to as birhythmicity. This
henomenon suggests that the periods of oscillations depend on
nvironment conditions. The coexistent limit cycles found in the
HTN model are different from those in the negative feedback
odel proposed by Leloup and Goldbeter [5], which numerically
howed the coexistence of two stable limit cycles.
This paper is organized as follows. In Section 2, we intro-

uce basic notions on geometric singular perturbation theory as
reparations. In Section 3, we provide a complete classification of
he equilibria. In Sections 4 and 5 , we analyze the dynamics of
he THTN model in the high degradation rate case and the low
egradation rate case, respectively. We end with some remarks
n the further study in the final section.

. Geometric singular perturbation theory

Multiple time scale systems frequently appear in many prac-
ical applications, such as population dynamics [23–27], cellular
hysiology [28–32], mechanical systems [33–36] and stochastic
ynamics [37–40]. These systems usually admits a clear separa-
ion in two time scales, one slow time scale and one fast time
cale, which are also called the slow–fast systems. Following the
ioneering work [22] of Fenichel in 1979, geometric singular
erturbation theory has been developed to be an efficient method
o study multiple time scale dynamics.

Now we introduce basic notions on geometric singular per-
urbation theory for planar slow–fast systems. Consider a planar
low–fast system of the form
dx
dt

= x′
= f (x, y, µ, ε),

dy
dt

= y′
= εg(x, y, µ, ε),

(2.1)

here (x, y) ∈ R2, µ ∈ Rm with m ≥ 1, a small parameter ε with
< ε ≪ 1, and the functions f and g are Ck with k ≥ 3. Letting
= εt , system (2.2) is rescaled to

ε
dx
dτ

= εẋ = f (x, y, µ, ε),

dy
dτ

= ẏ = g(x, y, µ, ε).
(2.2)

n the limiting case ε = 0, system (2.1) becomes the layer
quation

x′
= f (x, y, µ, 0),

y′
= 0,

(2.3)

nd system (2.2) becomes the reduced equation

0 = f (x, y, µ, 0),
ẏ = g(x, y, µ, 0).

(2.4)

For the layer equation (2.3) with a fixed µ ∈ Rm, its equilibria
set Cµ,0 := {(x, y) ∈ R2

: f (x, y, µ) = 0} is the phase state of the
reduced equation (2.4). A point in Cµ,0 with ∂ f /∂x ̸= 0 is called a
regular point. Otherwise it is called a contact point. The set Cµ,0
is called the critical set and is called the critical manifold if it is a
submanifold of R2. This set is useful in investigating the dynamics
of the slow–fast system (2.1). More specifically, by the Fenichel
theory [22], a normally hyperbolic manifold Mµ,0, which is a
compact submanifold Cµ,0 formed by regular points of a critical
set Cµ,0, is perturbed to a slow manifold Mµ,ε of slow–fast system
(2.1) with 0 < ε ≪ 1. The stable and unstable manifolds of Mµ,0
are also persistent for a sufficiently small ε.

The preceding results show the dynamics near the normally
hyperbolic invariant manifolds. However, non-hyperbolic points
at which ∂ f /∂x = 0 widely appear in applications, such as the
 a

3

well-known van der Pol equation. A contact point arising in a crit-
ical manifold is one of the most common forms for the breakdown
of normal hyperbolicity. We analyze two different contact points
in planar slow–fast systems, that is, the so-called jump point and
canard point [15,18,41], which can induce relaxation oscillation
and canard cycle, respectively. Roughly speaking, the reduced
flow (2.4) directs towards a jump point and passes through a
canard point. Relaxation oscillations and canard cycles can be
seen as the perturbations of slow–fast cycles formed by gluing
the orbits of the reduced system and the layer equations. Four
classical slow–fast cycles are shown in Fig. 1.

Relaxation oscillations, which perturb from their singular
counterparts (see Fig. 1(d)), are periodic solutions which spend
a long time along the slow manifold towards a jump point,
jumps from this contact point, spends a short time parallel to
the unstable fibers towards another stable branch of the critical
manifold, follows the slow motion again until another jump
point is reached, and finally forms a closed loop via several
similarly successive motions [19,42]. Canard cycle appearing near
a canard point is a periodic solution which is contained in the
intersection of an attracting slow manifold and a repelling slow
manifold [15,19,41]. This phenomenon is closely related to canard
explosion [19,41], which is a transition from a small limit cycle of
Hopf type via a family of canard cycles to a relaxation oscillation.

3. Model reduction and analysis of equilibria

In order to simplify calculations, we first transform the THTN
model into an equivalent system and then consider the properties
of its equilibria. Letting

(M, P, t) →

(
k3

8Kνp
y,

1
8K

x,
1
k3

t
)
,

the THTN model is transformed into
dx
dt

= x′
= y − ψ1(x),

dy
dt

= y′
= ε (ψ2(x) − y) ,

(3.1)

where

ψ1(x) =
b1φ(x) + b2x

a + x
+ x, ψ2(x) =

v

c + (x − φ(x))2
,

φ(x) = 2(
√
1 + x − 1), x ≥ 0,

(3.2)

and the positive parameters a, b1, b2, c, ε, v are given by

a = 8JPK , b1 =
8(k1 − k2)K

k3
, b2 =

8k2K
k3

,

c = 256K 2P2
c , ε =

km
k3
, v =

2048νmνpP2
c K

3

k3km
.

Throughout this paper, we assume that the rate of mRNA degra-
dation is proportional to that of mRNA synthesis. Then the pa-
rameters v and ε are independent of each other.

Define the function ψ by

ψ(x) := ψ1(x) − ψ2(x) for x ≥ 0. (3.3)

oncerning ψi and ψ , we have the following two lemmas.

emma 3.1. Let ψ1 be defined by (3.2). Then the second derivative
′′

1 of ψ1 has a unique positive zero x+ = u2
+

+ 2u+, where u+ is
he unique positive zero of the function φ1 defined as

1(u) = 3b1(u + 1)4 − (8b1 + 4ab2)(u + 1)3 + 6b1(1 − a)(u + 1)2

− b1(a − 1)2, (3.4)

nd the following statements hold:
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Fig. 1. 1(a) Canard slow–fast cycle without head. 1(b) Transitory canard. 1(c) Canard slow–fast cycle with head. 1(d) Singular relaxation cycle.
a
S
T

S
L
w

R

r

L

4

T
m

L
R

A

(i) ψ1(0) = 0, ψ1(x) > 0 for x > 0 and ψ1(x)/x → 1 as
x → +∞.

(ii) ψ ′

1(0) = (b1 + b2)/a + 1, ψ ′

1(x) → 1 as x → +∞ and ψ ′

1
admits the following trichotomies:

(ii.1) if ψ ′

1(x+) > 0, then ψ ′

1(x) > 0 for x ≥ 0.
(ii.2) if ψ ′

1(x+) = 0, then ψ ′

1(x) ≥ 0 for x ≥ 0, and x+ is the unique
positive zero of ψ ′

1.
(ii.3) if ψ ′

1(x+) < 0, then ψ ′

1 has exactly two zeros xm and xM with
0 < xm < x+ < xM , and ψ ′

1 satisfies that ψ ′

1(x) > 0 for
0 < x < xm and x > xM , ψ ′

1(x) < 0 for xm < x < xM .

(iii) ψ ′′

1 (x) < 0 for x ∈ [0, x+) and ψ ′′

1 (x) > 0 for x ∈ (x+,+∞).

Proof. Set u =
√
1 + x−1 for x ≥ 0. Then x = u2

+2u for u ≥ 0.
y a direct computation,

(u + 1)3(u2
+ 2u + a)3ψ ′′

1 (x(u)) = φ1(u),

here φ1 is defined by (3.4). Then by a standard analysis, we
btain this lemma. □

In (i) of Theorem 4.1 we will see that the dynamics of (3.1)
ith ψ ′

1(x+) ≥ 0 are simple. Consequently, with no confusion, we
lways assume that ψ ′

1(x+) < 0. So the graph of ψ1 is S-shaped.

emma 3.2. Let the functions ψ2 and ψ be defined by (3.2) and
3.3), respectively. Then the function ψ2 has the following properties:

(i) ψ2(0) = v/c, 0 < ψ2(x) ≤ v/c for x ≥ 0, and ψ2(x) → 0 as
x → +∞.

(ii) ψ ′

2(0) = 0, −v/(c
√
c) ≤ ψ ′

2(x) < 0 for x > 0, and
ψ ′

2(x) → 0 as x → +∞.
(iii) the second derivative ψ ′′

2 of ψ2 has exactly one zero x1 ∈

(0,+∞), which is the unique positive root of equation
6(

√
x + 1 − 1)5 + 5(

√
x + 1 − 1)4 − 2c

√
x + 1 − c = 0,

and ψ ′′

2 (x) < 0 for 0 < x < x1 and ψ ′′

2 (x) > 0 for x > x1.
And the function ψ has the following properties:

(iv) for each positive parameters a, b1, b2, c, ε and v, the function
ψ has at least one positive zero and at most three positive
zeros.

(v) if the function ψ has precisely two positive zeros x = x̃0 and
x = x̃1 with x̃0 < x̃1, then either ω = x̃0 or ω = x̃1 satisfies
that ψ(ω) = ψ ′(ω) = 0 and ψ ′′(ω) ̸= 0.

Proof. By a standard analysis, the properties of ψ2 are obtained.
Hence the proof is omitted.

To obtain the properties on ψ , let u =
√
1 + x − 1 for x ≥ 0.

Then

(u2
+ 2u + a)(u4

+ a)ψ(x(u))

= (u4
+ 4u3

+ (a + b2 + 4)u2
+ 2(a + b1 + b2)u)(u4

+ c)

− v(u2
+ 2u + a) := φ (u).
2

4

Since φ2(0) = −av < 0 and φ2(u) → +∞ as u → +∞, by
continuity there exists at least one positive zero for the function
ψ . Note that the third derivative of φ2 is in the form

φ
(3)
2 (u) = 336u5

+ 840u4
+ 120(a + b2 + 4)u3

+ 120(a + b1 + b2)u2
+ 24cu + 24c,

nd φ(3)
2 (u) > 0 for u ≥ 0. Then φ has at most three positive zeros.

o we have (iv). By studying the properties of φ2, we obtain (v).
herefore, the proof is now complete. □

Assume that ψ ′

1(x+) < 0. Then the graph of the function ψ1 is
-shaped. To consider the properties of the equilibria in (3.1), let
= L0∪L1, R = R0

∪R1 and M = {(x, y) : y = ψ1(x), xm < x < xM},
here the sets

L0 = {(xm, ψ1(xm))}, L1 = {(x, y) : y = ψ1(x), 0 ≤ x < xm},
0

= {(xM , ψ1(xM ))}, R1
= {(x, y) : y = ψ1(x), x > xM}.

We now define symbolic sequences to indicate the numbers and
relative positions of the equilibria on the graph of ψ1. We use,
for example, the symbolic sequence LMR to represent that ψ2
intersects ψ1 at points in the sets L, M and R in order as the
independent variable x increases, other symbolic sequences are
similarly defined. These symbolic sequences are referred to as the
intersection point sequences.

We next consider all possible intersection point sequences in
the case ψ ′

1(x+) < 0, which is useful in the proof for the main
esults in the low degradation rate case.

emma 3.3. Suppose that the function ψ1 satisfies ψ ′

1(x+) <
0, where the function ψ1 and the constant x+ are defined as in
Lemma 3.1. Then the intersection point sequences have the following
different types (see Fig. 2):

(i) if the number of the intersection points is one, then all possible
intersection point sequences are L0, L1, M, R0 and R1.

(ii) if the number of the intersection points is two, then all possible
intersection point sequences are L0M, L1M, MM, MR0 and
MR1.

(iii) if the number of the intersection points is three, then all pos-
sible intersection point sequences are L0MR0, L0MR1, L1MR0,
L1MR1, L0MM, L1MM, MMM, MMR0 and MMR1.

We give the lengthy proof for this lemma in Appendix A.

. Dynamics of the high degradation rate case

In this section, we give a detailed study of the dynamics of the
HTN model in the high degradation rate case, that is, the rate of
RNA degradation is high enough. Then ε is sufficiently large.

emma 4.1. Let the sets R2
+

and A be respectively defined by
2
+

= {(x, y) ∈ R2
: x ≥ 0, y ≥ 0} and

=

{
(x, y) ∈ R2

: 0 ≤ x ≤
v
, 0 ≤ y ≤

v }
.

c c
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Fig. 2. All possible intersection point sequences and the corresponding slow–fast limits. Red dots are the equilibria lying on the graph of the function ψ1 (black
urve). Black arrows indicate the flow of the reduced equation. Blue arrows indicate the flow of the layer equation.
T
t

hen the sets R2
+
and A are both the positive invariant sets of system

3.1). Furthermore, the set A attracts the set R2
+

under the flow of
ystem (3.1).

roof. By analyzing the field vector of system (3.1) along the
oundaries of the sets R2

+
and A, the first statement is obtained.

or each solution (x(t), y(t)) of system (3.1) with the initial value
x(0), y(0)) ∈ R2

+
, we have that x(t) ≥ 0 and y(t) ≥ 0 for

t ≥ 0. Then by the second equation in system (3.1), we have that
y′(t) ≤ −εy + v/c for t ≥ 0, which together with Gronwall’s
Inequality yields that

y(t) ≤ y(0)e−εt
+ v/c, t ≥ 0. (4.1)
 (

5

Consider the first equation in system (3.1) with 0 ≤ y(t) ≤ v/c.
Similarly, we have that

x(t) ≤ x(0)e−t
+ v/c, t ≥ 0. (4.2)

hen by (4.1) and (4.2), the second statement holds. Therefore,
he proof is now complete. □

Let the point (x0, y0) with x0 ≥ 0 be a finite equilibrium of
system (3.1). Then by the form of system (3.1), the value of x0 is
independent of the parameter ε and only relies on the param-
eters a, bi, c and v. In order to obtain the type of equilibrium
x , y ), we consider the Jacobian matrix J (x , y ) of system (3.1)
0 0 0 0
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(x0, y0) =

(
−ψ ′

1(x0) 1
εψ ′

2(x0) −ε

)
.

he determinant and the trace of this Jacobian matrix are respec-
ively given by

(x0, y0) := ε(ψ ′

1(x0) −ψ ′

2(x0)), T (x0, y0) := −ε −ψ ′

1(x0). (4.3)

o determine the type of this equilibrium, we need to further
onsider the sign of the constant

(x0, y0) := (T (x0, y0))2 − 4D(x0, y0) = (ε −ψ ′

1(x0))
2
+ 4εψ ′

2(x0).

(4.4)

Based on Bendixson’s Theorem (see [43, Theorem 7.10, p. 188]),
we have the following statements.

Theorem 4.1. Consider system (3.1). Then the following conclusions
hold:

(i) if ψ1 satisfies ψ ′

1(x+) ≥ 0, then there exists a unique equilib-
rium (x0, y0) in R2

+
, which is a stable focus or node. Further-

more, system (3.1) has no periodic orbits in R2
+
, and (x0, y0)

attracts the set R2
+

under the flow of system (3.1).
(ii) if ψ1 satisfies −ε < ψ ′

1(x+) < 0, then system (3.1) has no
periodic orbits in R2

+
, and at least one equilibrium and at most

three equilibria. Furthermore, the equilibria of system (3.1)
admit the following trichotomies:

(ii.1) if system (3.1) has a unique equilibrium (x0, y0), then (x0, y0)
is a stable focus or node, and (x0, y0) attracts the set R2

+
under

the flow of system (3.1).
(ii.2) if system (3.1) has two equilibria (x10, y

1
0) and (x20, y

2
0), then

the point at which ψ1(x) = ψ2(x) holds is a saddle–node, the
other point is a stable focus or node.

(ii.3) if system (3.1) has three equilibria (xi0, y
i
0), i = 1, 2, 3,

satisfying x10 < x20 < x30, then (x10, y
1
0) and (x30, y

3
0) are a stable

focus or node, and (x20, y
2
0) is a saddle.

Proof. Under the condition ψ ′

1(x+) ≥ 0, Lemmas 3.1 and 3.2 yield
that ψ(0) = −v/c < 0, ψ ′

= ψ ′

1(x) − ψ ′

2(x) > 0 for x > 0. Then
there is a unique equilibrium (x0, y0) for system (3.1) in R2

+
. Note

that this equilibrium satisfies D(x0, y0) > 0 and T (x0, y0) ≤ −ε <

0. Then (x0, y0) is a stable focus for (ε −ψ ′

1(x0))
2
+ 4εψ ′

2(x0) < 0
and is a stable node for (ε−ψ ′

1(x0))
2
+4εψ ′

2(x0) ≥ 0. Assume that
ψ1 satisfies ψ ′

1(x+) ≥ 0. By Lemma 3.1 we have that

∂

∂x
(y−ψ1(x))+

∂

∂y
(ε(ψ2(x)− y)) = −(ε+ψ ′

1(x)) ≤ −ε, x ≥ 0.

(4.5)

Hence, Bendixson’s Theorem yields that system (3.1) has no pe-
riodic orbits in R2

+
. Recall that (x0, y0) is a stable focus or node.

Then (x0, y0) attracts the set R2
+

under the flow of system (3.1).
Thus, the statements in (i) are proved.

If ψ1 satisfies −ε < ψ ′

1(x+) < 0, then by similar method
used in the proof for (i), we obtain that system (3.1) has no
periodic orbits in R2

+
. As for the types of equilibria, we only give

the proof for the case (ii.2). Without loss of generality, assume
that ψ1(x10) = ψ2(x10) and x10 > x20. Then by Lemmas 3.1 and
3.2, we obtain that T (xi0, y

i
0) < 0, D(x10, y

1
0) = 0, D(x20, y

2
0) > 0

and ε(ψ ′′

1 (x0) − ψ ′′

2 (x0)) < 0. Hence, (x20, y
2
0) is a stable focus or

node, and by using [44, Theorem 7.1, p.114] (see also the proof in
Theorem 5.2), we obtain that (x10, y

1
0) is a saddle–node. Therefore,

the proof is now complete. □
6

Remark 4.1. Whether an equilibrium is a focus or node, is
determined by the sign of ∆(x0, y0) = (ε − ψ ′

1(x0))
2

+ 4εψ ′

2(x0)
see [43,44]). More precisely, if ∆(x0, y0) = (ε − ψ ′

1(x0))
2

+

εψ ′

2(x0) < 0 (resp. ≥ 0), then it is a focus (resp. node). We also
emark that for sufficiently large ε = km/k3 > |ψ ′

1(x+)|, there are
o periodic orbits in system (3.1).

. Dynamics of the low degradation rate case

In this section, we consider the dynamics of the THTN model
n the low degradation rate case, that is, the rate of mRNA degra-
ation is low enough. Throughout this section, we always assume
hat 0 < ε ≪ 1 and v is independent of ε. Then system (3.1) is a
tandard slow–fast system of the form (2.1). For convenience, we
rite ψ1(x, λ) and ψ2(x, λ, v), instead of ψ1(x) and ψ2(x), where
= (a, b1, b2, c). Then system (3.1) can be written as

dx
dt

= x′
= y − ψ1(x, λ) := f (x, y, λ),

dy
dt

= y′
= ε (ψ2(x, λ, v) − y) := εg(x, y, λ, v).

(5.1)

By a time rescaling s = εt , the slow system corresponding to
system (5.1) is in the form

ε
dx
ds

= εẋ = y − ψ1(x, λ),

dy
ds

= ẏ = ψ2(x, λ, v) − y.
(5.2)

et the set C0 be defined by C0 = {(x, y) ∈ R × R : y = ψ1(x, λ)}.
hroughout this section we always assume that ψ1 satisfies
ψ ′

1(x+) < 0 for suitable parameters λ and v. Then the set C0
is S-shaped. Due to Lemma 3.1, all points in the set C0, except
xi, yi) := (xi, ψ1(xi)), i = m,M , are normally hyperbolic. We now
ssume that the parameter ε is sufficiently small. Then Fenichel
heory [22] is applicable, and normally hyperbolic invariant man-
folds persist near the critical manifold for nonzero ε. The reduced
ystem (see (2.4)) on L1 ∪ M ∪ R1 is governed by
∂ψ1

∂x
(x, λ)

dx
ds

= ψ2(x, λ, v) − ψ1(x, λ). (5.3)

n the following, we investigate the dynamics of the THTN model
n the low degradation rate case by employing geometric singular
erturbation theory.

.1. Local dynamics of canard points

We start by studying the local dynamics of canard points.
ssume that for λ = λ0 and v = v0, either (xm, ym) or (xM , yM )
s an equilibrium of the slow–fast system (5.1). Then at this
oint (xi, yi), i = m or M , we have that f (xi, yi, λ0) = 0 and
(xi, yi, λ0, v0) = 0. By Lemma 3.1 the function f satisfies
∂ f
∂x

(xi, yi, λ0) = −
∂ψ1

∂x
(xi, λ0) = 0.

hen the critical manifold C0 loses hyperbolicity at (xi, yi) and
xi, yi) is a contact point. By Lemmas 3.1 and 3.2, the slow–fast
ystem (5.1) satisfies the nondegeneracy conditions:

∂2f
∂x2

(xi, yi, λ0) = −
∂2ψ1

∂x2
(xi, λ0) ̸= 0,

∂ f
∂y

(xi, yi, λ0) = 1,

∂g
∂x

(xi, yi, λ0, v0) =
∂ψ2

∂x
(xi, λ0, v0) < 0,

∂g
∂v

(xi, yi, λ0, v0) =
1

c0 + (xi − φ(xi))2
> 0,

here ∂2ψ1
∂x2

(xi, λ0) < 0 for i = m and ∂2ψ1
∂x2

(xi, λ0) > 0 for
i = M . Then by (3.2), (3.3) and (3.4) in [18, p. 303], the above
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ondegeneracy conditions insure that the contact point (xi, yi) is
canard point of the slow–fast system (5.1).
We next consider the normal forms of system (5.1) near the

anard points (xi, yi), i = m,M .

emma 5.1. Assume that for λ = λ0 and v = v0, either (xm, ym) or
(xM , yM ) is an equilibrium of the slow–fast system (5.1). Then for a
fixed λ = λ0, the slow–fast system (5.1) near (xm, ym) and (xM , yM )
can be changed into

x′
= −y + x2Φ1(x),

y′
= ε

(
xΦ2(x, v) − v +

1
D1ψ2(xi, λ0, v0)

y
)
,

(5.4)

here Φj are defined by

Φ1(x) = 1 +
2

ϕ′′

1 (0)
Φ̂1(−

2
ϕ′′

1 (0)
x),

2(x, v) = 1 +
1

D1ϕ2(0, 0)
Φ̂2

(
−

2
ϕ′′

1 (0)
x,

2D1ϕ2(0, 0)(c0 + (xi − φ(xi))2)
ϕ′′

1 (0)
v

)
,

nd the functions ϕj and Φ̂j are in the form

ϕ1(x) = ψ1(x + xi, λ0) − yi,
ϕ2(x, v) = ψ2(x + xi, λ0, v + v0) − yi, (5.5)

Φ̂1(x) =

∫ 1

0

∫ 1

0
αϕ′′

1 (αβx)dαdβ −
1
2
ϕ′′

1 (0),

Φ̂2(x, v) = x
∫ 1

0

∫ 1

0
αD11ϕ2(αβx, 0)dαdβ

+v

∫ 1

0

∫ 1

0
D12ϕ2(αx, βv)dαdβ.

Here, Dij = Dj ◦ Di and each Dj denotes the partial derivative with
respect to the jth variable.

Proof. Assume that (xi, yi), i = m or M , is an equilibrium of
system (5.1) with λ = λ0 and v = v0. Let λ = λ0 be fixed. Then
by a translation transformation T1 of the form

T1 : (x, y, v) → (x + xi, y + yi, v + v0), (5.6)

system (5.1) is transformed into the form

x′
= y − ϕ1(x),

y′
= ε (ϕ2(x, v) − y) ,

(5.7)

where ϕi are defined by (5.5) satisfying ϕ1(0) = 0, ϕ′

1(0) = 0 and
ϕ2(0, 0) = 0. Thus the function ϕ1 can be written as the form

ϕ1(x) = x
∫ 1

0
ϕ′

1(αx)dα = x2
∫ 1

0

∫ 1

0
αϕ′′

1 (αβx)dαdβ,

which implies

ϕ1(x) = x2
(
1
2
ϕ′′

1 (0) + Φ̂1(x)
)
.

Similarly, we have

ϕ2(x, v) = ϕ2(x, v) − ϕ2(0, v) + ϕ2(0, v)

= x
∫ 1

0
D1ϕ2(αx, v)dα +

v

c0 + (xi − φ(xi))2

= x
(
D1ϕ2(0, 0) + x

∫ 1

0

∫ 1

0
αD11ϕ2(αβx, 0)dαdβ

+v

∫ 1 ∫ 1

D12ϕ2(αx, βv)dαdβ
)

0 0
x

7

+
v

c0 + (xi − φ(xi))2

= x
(
D1ϕ2(0, 0) + Φ̂2(x, v)

)
+

v

c0 + (xi − φ(xi))2
.

By taking a coordinate transformation T2 of the form

T2 : (x, y, v, ε) →

(
−

2
ϕ′′

1 (0)
x,

2
ϕ′′

1 (0)
y,

2D1ϕ2(0, 0)(c0 + (xi − φ(xi))2)
ϕ′′

1 (0)
v, −

1
D1ϕ2(0, 0)

ε

)
, (5.8)

system (5.7) is changed into the form (5.4). Therefore, the proof
is now complete. □

Next we define several constants, which play important roles
in the analysis of the dynamics near the canard points. Similarly
to the formulas (3.12) and (3.13) in [19], let

κi,1 =
dΦ1

dx
(0), κi,2 =

∂Φ2

∂x
(0, 0), κi,3 =

1
D1ψ2(xi, λ0, v0)

,

i = m, M,

and define Ai by

i = 3κi,1 − 2κi,2 − 2κi,3, i = m, M.

Here the key constants Ai determine the nondegeneracy condi-
tions for the Hopf bifurcations near the canard points (xi, yi) and
are important for the analysis of canard explosions (see [19,20]).
By a direct computation we obtain

κi,1 = −
2D111ψ1(xi, λ0)
3(D11ψ1(xi, λ0))2

,

κi,2 = −
D11ψ2(xi, λ0, v0)

D11ψ1(xi, λ0)D1ψ2(xi, λ0, v0)
, κi,3 =

1
D1ψ2(xi, λ0, v0)

,

Ai = −
2D111ψ1(xi, λ0)
(D11ψ1(xi, λ0))2

+
2D11ψ2(xi, λ0, v0)

D11ψ1(xi, λ0)D1ψ2(xi, λ0, v0)

−
2

D1ψ2(xi, λ0, v0)
. (5.9)

ompared the above notations to the corresponding ones in [18],
he functions hj in [18, system (3.6), p.304] are in the form

1 = 1, h2 = Φ1, h3 = 0, h4 = Φ2, h5 = 1,

6 =
1

D1ψ2(xi, λ0, v0)
,

nd the constants aj introduced in [18, p. 305] are in the form

1 = a2 = 0, a3 = κi,1, a4 = κi,2, a5 = κi,3.

Since the constants Ai satisfy

−
1
2
(D11ψ1(xi, λ0))2 · D1ψ2(xi, λ0, v0) · Ai

D111ψ1(xi, λ0) · D1ψ2(xi, λ0, v0) − D11ψ1(xi, λ0)
·D11ψ2(xi, λ0, v0) + (D11ψ1(xi, λ0))2,

y a direct computation we have that three different cases Ai < 0,
i > 0 and Ai = 0 can appear under some suitable conditions.
e follow [19] and analyze the canard explosion in (5.1). Thus,
e assume that Ai ̸= 0 for i = m,M . This implies that two
opf bifurcations near (xi, yi) are both nondegenerate (see (iv) of
heorem 5.1). The cases Ai = 0 will be studied in the future.
For sufficiently small ε > 0, one can see that the manifolds

1, M and R1 perturb smoothly to locally invariant manifolds L1ε ,
ε and R1

ε , respectively. Assume that (xm, ym) (resp. (xM , yM )) is
canard point. Let Σm (resp. ΣM ) be the cross-section of the

urve M at the point (x0m, ψ1(x0m)) (resp. (x0M , ψ1(x0M )) along the
-direction, where x0 (resp. x0 ) satisfies that x0 − x (resp.
m M m m
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M − x0M ) is positive and sufficiently small. Let the manifold
1
ε (resp. R1

ε) and Mε extend in the neighborhood of this ca-
ard point. Assume that they respectively intersect with the
ection Σm (resp. ΣM ) at points (xm,l, ψ1(x0m)) and (xm,m, ψ1(x0m))
(resp. (xM,m, ψ1(x0M )) and (xM,r , ψ1(x0M ))). See Fig. 3. We have the
following results.

Lemma 5.2. Assume that for λ = λ0 and v = v0, the slow–fast
system (5.1) has an equilibrium at either (xm, ym) or (xM , yM ) for
x ≥ 0. Then for sufficiently small ε > 0, there exist two smooth
functions vci , i = m,M, defined by

vci (ε) = v0 + Kiε + O(ε3/2), i = m,M, (5.10)

such that the slow–fast system (5.1) with λ = λ0 has xm,l = xm,m
for i = m and xM,m = xM,r for i = M if and only if v = vci (ε), where
the constants Ki are defined by

Ki = (κi,3+
Ai

4
)·
(D1ψ2(xi, λ0, v0))2(c0 + (xi − φ(xi))2)

D11ψ1(xi, λ0)
, i = m,M.

(5.11)

Furthermore, if (xm, ym) is a canard point, then xm,l > xm,m for
0 < v − vcm(ε) ≪ 1 and xm,l < xm,m for 0 < vcm(ε) − v ≪ 1. If
(xM , yM ) is a canard point, then xM,m > xM,r for 0 < vcM (ε)−v ≪ 1
and xM,m < xM,r for 0 < v − vcM (ε) ≪ 1.

Proof. We only give the proof for the case (xm, ym). Under the
transformation T2 ◦ T1, we assume that the points (xm,l, ψ1(x0m))
and (xm,m, ψ1(x0m)) are changed to the points (wm,l, zm) and
(wm,m, zm), respectively. Recall that the transformations Tj, j =

1, 2, are given by (5.6) and (5.8), and ϕ′′

1 (0) = D11ψ1(xm, λ0, v0) <
0. Then xm,l − xm,m and wm,l −wm,m have the same sign. To finish
the proof for this lemma, we consider the normal form (5.4) of
system (5.1) near (xm, ym). By [18, Theorem 3.1], there exists a
smooth function v̂cm(·) defined by

vcm(ε) = −
4κm,3 + Am

8
ε + O(ε3/2)

uch that system (5.4) has wm,l = wm,m if and only if v = v̂cm(ε).
hus, by taking the variable transformation T −1

1 ◦ T −1
2 , we obtain

hat (5.10) holds for i = m. Since the constant dλ2 in [18, Formula
3.23)] is negative, the remaining statements hold. Thus, the proof
s finished. □

.2. Global dynamics of the slow–fast circadian oscillator system

In this section, we study the global dynamics of the slow–fast
ystem (5.1). The discussion is divided into three different parts
ccording to the number of equilibria.
8

.2.1. One equilibrium
Assume that the slow–fast system (5.1) with λ = λ0 and

= v0 has exactly one equilibrium (x0, y0) in the set x ≥ 0. Then
ll types of the intersection point sequences are L1, L0, M , R0 and
1. See Figs. 2(a)–2(e).
If the unique equilibrium (x0, y0) is of type M , then (xi, yi)

re both jump points. Let xl (resp. xr ) be the value such that
1(xl, λ0) = yM (resp. ψ1(xr , λ0) = ym) and (xl, yM ) ∈ L (resp.
xr , ym) ∈ R). We define a singular relaxation cycle Γr . See
ig. 4(a). This cycle Γr consists of four branches, among which
wo branches are the critical fibers of the layer equation joining
xm, ym) to (xr , ym) and (xM , yM ) to (xl, yM ), another two branches
re the parts of the critical manifolds joining (xl, yM ) to (xm, ym)
nd (xr , ym) to (xM , yM ).
If the unique equilibrium (x0, y0) is of type L0 or type R0,

hen (xm, ym) or (xM , yM ) is a canard point. As a preparation, we
ext begin with the construction of canard slow–fast cycles. See
igs. 4(b) and 4(c). For a positive constant θ with 0 < θ < ym−yM ,
et the constants xmj , j = l,m, r , with 0 < xml (θ ) < xm < xmm(θ ) <
M < xmr (θ ), denote the roots of equation ψ1(x, λ0) = ym − θ . We
efine the canard slow–fast cycles Γm(θ ), 0 ≤ θ ≤ 2(ym −yM ), for
he canard point (xm, ym) as follows. For 0 ≤ θ ≤ ym − yM ,

m(θ ) :=
{
(x, ψ1(x, λ0)) : x ∈ [xml (θ ), x

m
m(θ )]

}
∪
{
(x, ym − θ ) : x ∈ [xml (θ ), x

m
m(θ )]

}
,

nd for ym − yM ≤ θ ≤ 2(ym − yM ),

m(θ ) :=
{
(x, ψ1(x, λ0)) : x ∈ [xl, xmm(2(ym − yM ) − θ )]

}
∪
{
(x, 2yM + θ − ym) : x ∈ [xmm(2(ym − yM ) − θ ),

xmr (2(ym − yM ) − θ )]
}

∪
{
(x, ψ1(x, λ0)) : x ∈ [xM , xmr (2(ym − yM ) − θ )]

}
∪ {(x, yM ) : x ∈ [xl, xM ]} .

imilarly, we can define the family of slow–fast cycles ΓM (·) for
he canard point (xM , yM ), the detail is omitted. Then we have the
ollowing statements.

heorem 5.1. Assume that for λ = λ0 and v = v0, the slow–fast
ystem (5.1) has a unique equilibrium (x0, y0) in the set x ≥ 0. Then
or λ = λ0, v = v0 and sufficiently small ε > 0, the following
tatements hold:

(i) if the equilibrium (x0, y0) is in the set L1 (resp. R1), then
system (5.1) has no periodic orbits in the set R2

+
, and (x0, y0)

is a stable node and attracts the set R2
+

under the flow of
system (5.1).

(ii) if the equilibrium (x0, y0) is in the set M, then for sufficiently
small ε > 0, the equilibrium (x , y ) is an unstable node, and
0 0
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Fig. 4. Slow–fast cycles (the red curves) are constructed: 4(a) Singular relaxation cycle. 4(b) Canard slow–fast cycle without head. 4(c) Canard slow–fast cycle with
head. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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there exists a unique limit cycle Γr,ε in a small neighborhood
of the slow–fast cycle Γr . Furthermore, the limit cycle Γr,ε
is locally asymptotically stable with the Floquet exponent
bounded above by −C/ε for some C > 0, and Γr,ε → Γr
as ε → 0 in the sense of Hausdorff distance.

(iii) if the equilibrium (x0, y0) is in the set L0 (resp. R0), then
(x0, y0) is a stable focus.
Further, for the intersection point sequences L0 and R0, let
λ = λ0 be fixed and the parameter v vary. Then for sufficiently
small ε > 0, the following assertions hold:

(iv) there exists a V0 > 0 such that for each v with |v − v0| <
V0, system (5.1) possesses a unique equilibrium near (xm, ym)
(resp. (xM , yM )) in the set x ≥ 0, which converges to (xm, ym)
(resp. (xM , yM )) as (v, ε) → (v0, 0). Moreover, there exist two
Hopf bifurcation curves vHi defined by

vHi (ε) = v0 +
κi,3(D1ψ2(xi, λ0, v0))2(c0 + (xi − φ(xi))2)

D11ψ1(xi, λ0)
ε

+ O(ε3/2), i = m,M, (5.12)

such that this equilibrium is stable for v < vHm(ε) (resp.
v > vHM (ε)) and is unstable for v > vHm(ε) (resp. v < vHM (ε)).
These Hopf bifurcations are nondegenerate if the constants Ai
given by (5.9) satisfy Ai ̸= 0, i = m,M, and are supercritical
for Am < 0 (resp. AM > 0) and are subcritical for Am > 0
(resp. AM < 0).

(v) fix some γ ∈ (0, 1) and assume that Ai defined by (5.9) satisfy
Ai ̸= 0. Then for each i = m,M, there exists a smooth family
of periodic orbits

(θ, ε) → (vi(θ, ε), Γi(θ, ε)), ε ∈ (0, ε0), θ ∈ (0, 2(ym −yM )),

such that Γi(θ, ε) → Γi(θ ) as ε → 0. More precisely, the peri-
odic orbit Γi(θ, ε) is O(εγ )-close to the canard point (xi, yi) for
each θ ∈

(
0,
(
−D1ψ2(xi, λ0, v0)ε

)γ ), a relaxation oscillation
for each θ ∈

(
2ym −

(
−D1ψ2(xi, λ0, v0)ε

)γ
, 2ym

)
, and a ca-

nard cycle for v = vi(θ, ε) and each θ ∈
[(

−D1ψ2(xi, λ0, v0)
ε)γ , 2ym −

(
−D1ψ2(xi, λ0, v0)ε

)γ ], where vi(θ, ε) satisfies

|vi(θ, ε) − vci (ε)| ≤
D11ψ1(xi, λ0)

2D1ψ2(xi, λ0, v0)(c0 + (xi − φ(xi))2)

× e−

(
−D1ψ2(xi,λ0,v0)ε

)γ−1

, (5.13)

and vci is in the form (5.10).
(vi) if (x0, y0) = (xm, ym) is a canard point, then for Am > 0 and

some v with vcm(ε) < v < vHm(ε), there are two coexistent
periodic orbits surrounding the equilibrium (xm, ym), where
the inner one is unstable and the outer one is stable. If
(x0, y0) = (xM , yM ) is a canard point, then for AM < 0 and
some v with vc (ε) < v < vH (ε), there are two coexistent
M M

9

periodic orbits surrounding the equilibrium (xM , yM ), where
the inner one is stable and the outer one is unstable.

Proof. We omitted the proofs for the types of the equilibria,
which can be obtained by a standard analysis. The dynamics of
the layer equations and the reduced systems are shown in Fig. 2.

To prove (i), we only consider the case (x0, y0) ∈ L1, as the
other one can be similarly proved. Note that the manifold L1
is normally hyperbolic and transversally intersects with x-axis.
Then by [22, Theorem 9.1], the manifold L1 perturbs smoothly to
locally invariant manifolds L1ε which connects (x0, y0) to a point at
x-axis and transversally intersects with x-axis. Then no periodic
orbits surround (x0, y0). This together with Lemma 4.1 yields the
attraction of (x0, y0). Thus, (i) is obtained.

To prove (ii), assume that for λ = λ0 and v = v0 type M
appears. By Lemmas 3.1 and 3.2, system (5.3) satisfies ẏ > 0 for
0 < x < xm and ẋ < 0 for x > xM , and the stability of the critical
manifold C0 changes at points (xi, yi) for the layer equation. The
statements on the limit cycle Γr,ε can be proved by applying
[19, Theorem 2.1, p. 318] and [22, Theorem 9.1]. Thus, (ii) is
obtained.

To prove (iv), we recall that the existence and location of
equilibria for the slow–fast system (5.1) are independent of ε.
Then the first statement holds. By [19, Formula (3.15), p.326], for
each i = m,M , the Hopf bifurcation curve V̂H

i for the normal form
(5.4) is in the form

VH
i (ε) = −

κi3

2
ε + O(ε3/2) = −

1
2D1ψ2(xi, λ0, v0)

ε + O(ε3/2).

hus by the transformation T −1
1 ◦ T −1

2 , we obtain the Hopf bifur-
ation curve given by (5.12). Note that for canard point (xm, ym)
resp. (xM , yM )), the transformation T2 does not change (resp.
hanges) the sign of v. Then from [19, Theorem 3.1] it follows
hat the remaining statements in (iv) hold.

To prove (v), we first consider the normal form (5.4) of the
low–fast system (5.1) near the canard points (xi, yi). Then by
pplying Theorems 3.3 and 3.5 in [19], we can prove (v) by the
imilar method used in the proof for (iv).
To prove (vi), we only consider the case (x0, y0) = (xm, ym), as

he other one can be similarly proved. Assume that Am > 0. Then
y D11ψ1(xm, λ0) < 0, (5.10) and (5.12), we have that
c
m(ε) < vHm(ε), vHm(ε) − vcm(ε) = O(ε)

or sufficiently small ε > 0, where vcm(ε) and vHm(ε) control
he Hopf bifurcation and the intersection of slow manifolds near
xm, ym), respectively. Let a sufficiently small ε > 0 be fixed
nd vary v from vcm(ε) to vHm(ε). When v is in an exponentially
mall neighborhood of vcm(ε) and satisfies vcm(ε) < v < vHm(ε),
y Lemma 5.2 and (v) in this theorem we have xm,l > xm,m and
canard cycle with head appears. By the bifurcation diagram in
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19, Figure 7 (b), p. 328], the amplitude of this limit cycle in-
reases as v increases and this persistent limit cycle is a relaxation
scillation or a stable canard cycle with head for each v in a small
eighborhood of vHm(ε). Then we obtain the outer limit cycle. By
iv) in this theorem, the Hopf bifurcation is subcritical for Am > 0.
Then there exists a sufficiently small Ṽ0 > 0 such that for each
v with 0 < vHm(ε) − v < Ṽ0, an unstable limit cycle arises from
the subcritical Hopf bifurcation and coexists with the obtained
large amplitude limit cycle. Thus, two coexistent periodic orbits
are obtained and (vi) is proved. This finishes the proof. □

5.2.2. Two equilibria
Assume that the slow–fast system (5.1) has precisely two

equilibria in the set x ≥ 0 for some λ = λ0 and v = v0. Then all
possible intersection point sequences are as follows: L0M , L1M ,
MM , MR0 and MR1. See Figs. 2(f)–2(j).

We first show that one of equilibria in M is a saddle–node and
the slow–fast system (5.1) undergoes saddle–node bifurcation
[45, Section 3.4] as the parameter v varies.

Theorem 5.2. Assume that for λ = λ0 and v = v0, the slow–fast
system (5.1) has precisely two equilibria in the half plane x ≥ 0.
Then the following statements hold:

(i) for sufficiently small ε > 0, system (5.1) has a saddle–
node point (x0, y0) ∈ M, at which system (5.1) satisfies
D1ψ1(x0, λ0) = D1ψ2(x0, λ0, v0) and D11ψ1(x0, λ0) ̸=

D11ψ2(x0, λ0, v0).
(ii) let λ = λ0 be fixed and the parameter v vary. Then system

(5.1) undergoes a saddle–node bifurcation, more precisely, if
ψ1(x, λ0) ≤ ψ2(x, λ0, v0) (resp. ψ1(x, λ0) ≥ ψ2(x, λ0, v0))
near x = x0, then for small |v − v0|, system (5.1) has no
equilibria near (x0, y0) for v > v0 (resp. v < v0), and system
(5.1) has two equilibria (x10, y

1
0) and (x20, y

2
0) satisfying x10 < x20

near (x0, y0) for v < v0 (resp. v > v0), where (x10, y
1
0) is an

unstable node (resp. a saddle) and (x10, y
1
0) is a saddle (resp.

an unstable node).

Proof. Assume that system (5.1) has precisely two equilibria in
the set x ≥ 0 for λ = λ0 and v = v0, then by Lemmas 3.2
and 3.3, there exists precisely one equilibrium (x0, y0) in M ,
which is a tangent point between functions ψ1 and ψ2, that is,
D1ψ1(x0, λ0) = D1ψ2(x0, λ0, v0). Then for sufficiently small ε > 0,
the functions D(·, ·), T (·, ·) and ∆(·, ·) defined by (4.3) and (4.4)
satisfy

D(x0, y0) = 0, T (x0, y0) > 0, ∆(x0, y0) > 0,

and the eigenvalues of the Jacobian matrix J (x0, y0) are µ1 =

−ε − D1ψ1(x0, λ0) > 0 and µ2 = 0. By a change

(x, y) → (x̄ + ȳ + x0,D1ψ1(x0, λ0)x̄ − εȳ + y0),

and then dropping the bars over the variables, we can change
system (5.1) into
dx
dt

= X2(x + y),

dy
dt

= µ1y + Y2(x + y),
(5.14)

where X2 and Y2 are given by

X2(x) =
ε

D1ψ1(x0, λ0) + ε

(
ψ2(x + x0, λ0, v0) − ψ1(x + x0, λ0)

)
,

Y2(x) = −
1

D1ψ1(x0, λ0) + ε

(
D1ψ1(x0, λ0)ψ1(x + x0, λ0)

+ εψ2(x + x0, λ0, v0)
)

+D ψ (x , λ0)x + y .
1 1 0 0
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Clearly, X2(0) = Y2(0) = X ′

2(0) = Y ′

2(0) = 0. Then by the Implicit
Function Theorem, there exists a smooth function y = y(x) with
y(0) = y′(0) = 0 such that µ1y(x) + Y2(x, y(x)) = 0 in a
neighborhood of (0, 0). By a direct computation, for small |x| the
function X2(· + y(·)) can be expanded as the form

X2(x + y(x)) = K2x2 + O(x3),

where the coefficient K2 is in the form

K2 =
ε
(
D11ψ2(x0, λ0, v0) − D11ψ1(x0, λ0)

)
D1ψ1(x0, λ0) + ε

.

y Lemma 3.2 we have K2 ̸= 0. Thus, [43, Theorem 2.19, p.74]
yields that the equilibrium (x0, y0) ∈ M is a saddle–node. Then
(i) holds.

To prove (ii), we only consider the case that ψ1(x, λ0) ≤

ψ2(x, λ0, v0) for small |x − x0|, as the other case can be similarly
discussed. Then we have

D11ψ2(x0, λ0, v0) − D11ψ1(x0, λ0) > 0.

Consider (5.14) with v0 replaced by v+v0. By the center manifold
theory [46, Section 1.3], the flow on the center manifold for an
equivalent system of (5.14) is governed by

dx
dt

=
ε

D1ψ1(x0, λ0) + ε

((
1

c0 + (x0 − φ(x0))2

+D13ψ2(x0, λ0, v0)x
)
v

+
1
2

(
D11ψ2(x0, λ0, v0) − D11ψ1(x0, λ0)

)
x2
)

+ O(|(x, v)|3)

dv
dt

= 0.

(5.15)

he proof for (5.15) is given in Appendix B. Since D1ψ1(x0, λ0) <
, for sufficiently small ε system (5.15) has no equilibria near x =

for v > 0 and has two equilibria x = x1(v) and x = x2(v) with
1(v) < x2(v) near x = 0 for v < 0, where x = x1(v) and x = x2(v)
re an unstable node and a stable node, respectively. See Fig. 5.
hen (ii) holds. Therefore, the proof is now complete. □

By the above theorem, we observe that the equilibrium of type
in the sequences L1M , MR1, L0M and MR0 is a saddle–node, so

s one of the equilibria in the sequence MM . More properties of
he slow–fast system (5.1) with two equilibria are given in the
ext results.

heorem 5.3. Assume that the slow–fast system (5.1) has precisely
wo equilibria in the set x ≥ 0 for λ = λ0 and v = v0. Then for
ufficiently small ε > 0, the following statements hold:

(i) if the intersection point sequence is L1M (resp. MR1), then
system (5.1) has a stable node (x10, y

1
0) in L1 (resp. R1), a

saddle–node (x20, y
2
0) in M, no periodic orbits in the set x ≥

0 and infinitely many heteroclinic orbits joining (x20, y
2
0) to

(x10, y
1
0). Further, all orbits starting from the first quadrant

including its boundary, except a unique center manifold of
(x20, y

2
0), converge to the stable node (x10, y

1
0) as time goes to

infinity.
(ii) if the intersection point sequence is MM, then system (5.1) has

an unstable node (x10, y
1
0) ∈ M, a saddle–node (x20, y

2
0) ∈ M,

and a unique heteroclinic orbit joining the unstable node to
the saddle–node.

(iii) if the intersection point sequence is L0M (resp. MR0), then
system (5.1) has a stable focus (x10, y

1
0) in L0 (resp. R0) and

a saddle–node (x2, y2) in M. Let λ = λ0 be fixed and the
0 0
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Fig. 5. Saddle–node bifurcation.
parameter v satisfy |v − v0| ≪ 1. Then system (5.1) has a
homoclinic orbit, which closes to either a canard slow–fast
cycle without head or a canard slow–fast cycle with head, if
and only if κi,3+Ai/4 < 0 and v = vci (ε), where the functions
vci are defined by (5.10). Furthermore, if κi,3 + Ai/4 < 0 and
0 < v−vcm(ε) ≪ 1 (resp. 0 < vcM (ε)−v ≪ 1), then either an
unstable canard cycle with head or an unstable canard cycle
without head bifurcates from this homoclinic orbit.

Throughout the proof for this theorem, we omit the proofs for
the types of the equilibria. Dynamics of the cases L1M , MM and
L0M are illustrated by Fig. 6.

Proof. To prove (i), we only give the proof for type L1M . Similarly
to (i) of Theorem 5.1, system (5.1) with sufficiently small ε > 0
has no periodic orbits surrounding (x10, y

1
0). Note that dx/dt < 0

along y = ψ2(x, λ0) with x > x10 and x ̸= x20. Then no periodic
orbits exist in the first quadrant. By Theorem 5.2, we obtain
that the saddle–node (x20, y

2
0) possesses a unique center manifold

approaching to it and infinitely many center manifolds leaving it.
Hence, there are infinitely many orbits, which leave the saddle–
node point (x20, y

2
0), joining (x20, y

2
0) to (x10, y

1
0), and a unique orbit

approaching to (x20, y
2
0). Thus, the proof for (i) is finished by using

Lemma 4.1.
To prove (ii), assume that (x10, y

1
0) and (x20, y

2
0) are a transversal

point and a tangent point of the functionsψ1 andψ2, respectively.
Without loss of generality, assume that x10 < x20 (see Fig. 6(b)).
By Theorem 5.2, there is a unique center manifold on which
the orbit approaches to (x20, y

2
0) from the above and infinitely

many orbits leaving (x20, y
2
0). The existence and uniqueness of

heteroclinic orbits are derived from the persistence of normally
hyperbolic invariant manifolds. Thus, the proof for (ii) is finished.

To prove (iii), we only consider type L0M (see Fig. 6(c)). Let
the notations be given as in Lemma 5.2. If κm,3 + Am/4 < 0 and
v = vcm(ε), then by D11ψ1(xm, λ0) < 0 and (5.10), we obtain
that v = vcm(ε) > 0. This together with Theorem 5.2 yields that
there are a saddle (̃x20, ỹ

2
0) and an unstable node (x30, y

3
0), which

bifurcate from the saddle–node (x20, y
2
0) and satisfy x10 < x̃20 < x30.

By Lemma 5.2, we obtain a homoclinic orbit, which is homoclinic
to the saddle (̃x20, ỹ

2
0) and together with this saddle forms a small

loop near a canard slow–fast cycle without head (see Fig. 7(a)) or
a big loop near a canard slow–fast cycle with head (see Fig. 7(b)).
If either κm,3 + Am/4 > 0 or v ̸= vcm(ε), then by Lemma 5.2
and Theorem 5.2, no homoclinic orbits exist in system (5.1) with
sufficiently small ε. To prove the last statement, assume that
κm,3 + Am/4 < 0 and 0 < v − vcm(ε) ≪ 1. Then by Lemma 5.2
we obtain that xm,l > xm,m. Note that the first order saddle
quantity T (̃x20, ỹ

2
0) of the saddle (̃x20, ỹ

2
0) satisfies T (̃x20, ỹ

2
0) > 0 for

sufficiently small ε. Then by [47, Theorem 3.3, p. 357], an unstable
periodic orbit bifurcates from this homoclinic orbit. Furthermore,
if the homoclinic orbit is small, then the perturbed periodic orbit
11
is a canard cycle without head. If the homoclinic orbit is big, then
it is a canard cycle with head. Thus, we obtain (iii). This finishes
the proof. □

5.2.3. Three equilibria
Assume that the slow–fast system (5.1) possesses three equi-

libria for some λ = λ0 and v = v0. Then all possible intersection
point sequences are L0MR0, L0MR1, L1MR0, L1MR1, L0MM , L1MM ,
MMM , MMR0 and MMR1. See Figs. 2(k)–2(s). The main results for
this case are summarized as follows.

Theorem 5.4. Assume that the slow–fast system (5.1) has precisely
three equilibria (xi0, y

i
0), i = 1, 2, 3, in the set x ≥ 0 for λ = λ0 and

v = v0, where x10 < x20 < x30. Then for sufficiently small ε > 0, the
following statements hold:

(i) if the intersection point sequence is L1MR1, then (x10, y
1
0) ∈

L1 and (x30, y
3
0) ∈ R1 are stable nodes and (x20, y

2
0) ∈ M

is a saddle, system (5.1) has no periodic orbits in the set
x ≥ 0, and two heteroclinic orbits joining (x20, y

2
0) to (x10, y

1
0)

and (x20, y
2
0) to (x30, y

3
0), respectively. Furthermore, the set A

defined as in Lemma 4.1 is divided into two disjoint sets Ω1
and Ω2 by the stable manifolds of (x20, y

2
0), and all orbits

starting from the interior ofΩ1 (resp.Ω2) converge to (x10, y
1
0)

(resp. (x30, y
3
0)) as time goes to infinity.

(ii) if the intersection point sequence is MMM, then (x10, y
1
0) and

(x30, y
3
0) are unstable nodes and (x20, y

2
0) is a saddle, and a

locally asymptotically stable relaxation oscillation Γr,ε arising
from the singular relaxation cycle Γr approaches to Γr in the
sense of Hausdorff distance as ε → 0, where the singular
relaxation cycle Γr is constructed as in Fig. 4(a).

(iii) if the intersection point sequence is L1MM (resp. MMR1), then
(x10, y

1
0) ∈ L1 (resp. (x30, y

3
0) ∈ R1) is a stable node, (x20, y

2
0) ∈

M is a saddle and (x30, y
3
0) ∈ M (resp. (x10, y

1
0) ∈ M) is an un-

stable node, and system (5.1) has no periodic orbits in the first
quadrant, a heteroclinic orbit connecting (x20, y

2
0) to (x30, y

3
0)

(resp. (x10, y
1
0)), two heteroclinic orbits connecting (x20, y

2
0) to

(x10, y
1
0) (resp. (x

3
0, y

3
0)) and infinitely many heteroclinic orbits

connecting (x30, y
3
0) to (x10, y

1
0).

(iv) if the intersection point sequence is L0MM (resp. MMR0), then
(x10, y

1
0) ∈ L0 (resp. (x30, y

3
0) ∈ R0) is a stable focus, (x20, y

2
0) ∈

M is a saddle and (x30, y
3
0) ∈ M (resp. (x10, y

1
0) ∈ M) is

an unstable node, and system (5.1) has a heteroclinic orbit
connecting (x20, y

2
0) to (x30, y

3
0) (resp. (x

1
0, y

1
0)). Further, let λ =

λ0 be fixed and the parameter v vary. Then for (x10, y
1
0) ∈ L0

(resp. (x30, y
3
0) ∈ R0), system (5.1) undergoes Hopf bifurcation

and canard explosion in the ways as in Theorems 5.1 (iv) and
(v), respectively.

(v) if the intersection point sequence is L0MR1 (resp. L1MR0), then
(x10, y

1
0) ∈ L0 (resp. (x30, y

3
0) ∈ R0) is a stable focus, (x20, y

2
0) ∈

M is a saddle and (x3, y3) ∈ R1 (resp. (x1, y1) ∈ L1) is a
0 0 0 0
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ψ

Fig. 6. Dynamics of the slow–fast system (5.1) with two equilibria in the set x ≥ 0. The solid black curves are the orbits of system (5.1), the graphs of the functions

1 and ψ2 respectively indicate the dashed red and the dashed blue curves.
Fig. 7. Two possible homoclinic orbits arise in type L0M . The red dots are equilibria, the solid black curves are the orbits of system (5.1), and the graphs of the

functions ψ1 and ψ2 respectively indicate the dashed red and the dashed blue curves.
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stable node. Further, let λ = λ0 be fixed and v vary. Then
the following statements hold:

(v.1) system (5.1) undergoes Hopf bifurcation according to
Theorem 5.1(iv).

(v.2) system (5.1) has no relaxation oscillations or canard cycles
with head as v varies near v0.

(v.3) there are two smooth functions vci , i = m,M, having the
expansions in (5.10) such that system (5.1) possesses a ho-
moclinic orbit, which is homoclinic to a saddle in M and lies
near a canard slow–fast cycle without head, if and only if
v = vci (ε).

(v.4) if 0 < v − vcm(ε) ≪ 1 (resp. 0 < vcM (ε) − v ≪ 1), then
an unstable canard cycle without head bifurcates from this
homoclinic orbit. If 0 < vcm(ε)−v ≪ 1 (resp. 0 < v−vcM (ε) ≪

1), then there exist no periodic orbits bifurcating from this
homoclinic orbit.

(vi) if the intersection point sequence is L0MR0, then (x10, y
1
0) ∈ L0

is a stable focus, (x20, y
2
0) ∈ M is a saddle and (x30, y

3
0) ∈ R0 is

a stable focus. Further, let λ = λ0 be fixed and v vary. Then
the following statements hold:

(vi.1) system (5.1) undergoes a Hopf bifurcation near (xm, ym) or
(xM , yM ) according to the way stated in Theorem 5.1(iv), but
not simultaneously.

(vi.2) there are two smooth functions vci , i = m,M, defined by
(5.10) such that system (5.1) has a homoclinic orbit, which
is homoclinic to a saddle in M, if and only if v = vci (ε).

(vi.3) assume that the constants Ki defined by (5.11) satisfy Km ̸=

KM . Then for v satisfying 0 < v − vcm(ε) ≪ 1 (resp.
0 < vcM (ε) − v ≪ 1), there exists an unstable canard cycle
bifurcating from the homoclinic orbit corresponding to v =

vcm(ε) (resp. v = vcM (ε)), and these two canard cycles cannot
appear simultaneously. If v satisfies 0 < vcm(ε) − v ≪ 1
(resp. 0 < v − vc (ε) ≪ 1), then there are no periodic
M i

12
orbits bifurcating from the homoclinic orbit corresponding to
v = vcm(ε) (resp. v = vcM (ε)).

Proof. Here we also omitted the proofs for the types of the
equilibria.

To prove (i), we first consider the existence of periodic orbits.
Similarly to Theorem 5.1(i), no periodic orbits surround stable
nodes (x10, y

1
0) and (x30, y

3
0). Since (xi, yi), i = m,M , are jump points,

by [18, Theorem 2.1, p.290] we have that the stable manifolds
of (x20, y

2
0) extend to the boundary of the set A. Hence, the sta-

ble manifolds of (x20, y
2
0) cut A into two disjoint parts, and no

periodic orbits surround (x20, y
2
0). Thus, no periodic orbits exist.

The invariant property of A yields the last statement. Thus, (i) is
proved.

Similarly to Theorem 5.1(ii), we can obtain (ii) in this theorem.
To prove (iii), we only consider type L1MM . Similarly to

Theorem 5.1(i), no periodic orbits surround (x10, y
1
0). Note that

he manifold M smoothly perturbs to locally invariant manifold
ε , which connects (x20, y

2
0) to (x30, y

3
0). Then system (5.1) with

ufficiently small ε has no periodic orbits in the first quadrant.
hus, (iii) is obtained.
To prove (iv), for type L0MM (resp. MMR0), the slow manifold
ε connects (x20, y

2
0) to (x30, y

3
0) (resp. (x

1
0, y

1
0)). Then the existence

f the heteroclinic orbit is obtained. The assertions (iv) and (v)
n Theorem 5.1 yield that the last statement holds. Thus, (iv) is
roved.
To prove (v), we only discuss type L0MR1. Similarly to (iv) in

heorem 5.1, (v.1) holds. Note that (xM , yM ) is a jump point. Then
y [18, Theorem 2.1, p.290], the locally invariant manifold Mε ,
hich is a stable manifold of the saddle (x20, y

2
0), can extend to

he boundary of the invariant region A. Consequently, neither
elaxation oscillations nor canard cycles with head appear. Hence,
v.2) holds. The statements (v.3) and (v.4) can be similarly proved
y the method used in Theorem 5.3(iii). Thus, (v) is proved.
To prove (vi.1), by Theorem 5.1(iv), near (xi, yi) Hopf bifur-

ations can take place by perturbing v, and the correspond-
H
ng Hopf bifurcation curves vi (·) are given by (5.12). Note that
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Fig. 8. A big limit cycle (the red cycle) encloses a small limit cycle (the mauve
cycle). The red point indicates an equilibrium.

D11ψ1(xm, λ0) < 0, D11ψ1(xM , λ0) > 0, and D1ψ2(xi, λ0, v0) < 0.
Then vHm(ε) > 0 and vHM (ε) < 0 for sufficiently small ε, which
implies that two Hopf bifurcations do not appear simultaneously.
Thus, (vi.1) is proved. Similarly to (v.3) in this theorem, we can
obtain (vi.2). To prove (vi.3), assume that Km ̸= KM . Then by
Lemma 5.2, two homoclinic orbits stated in (vi.2) cannot appear
simultaneously. By (5.13) we obtain that canard cycles appear
for the parameter v in the exponentially small interval of vci (ε).
This together with |vcm(ε) − vcM (ε)| = O(ε) yields that two canard
cycles cannot appear simultaneously. The remaining statements
can be proved by the similar way as the proof for (v.4). Thus, (vi)
is proved. Therefore, the proof is complete. □

5.3. Numerical examples

Now we give several concrete numerical examples to illustrate
the obtained results as follows.

Example 5.1. Let the parameters a, b1, b2, c , ε and v satisfy
a = 0.01, b1 = 20, b2 = 0.1, c = 1, ε = 0.01 and v = 37.9 in
system (3.1). A numerical simulation shows that there exists a big
limit cycle enclosing a small one. This indicates the coexistence
of two limit cycles.

Example 5.2. Let the parameters a, b1, b2, c and ε be given by
a = 0.1, b1 = 30, b2 = 0.6, c = 1 and ε = 0.005 in system (3.1).
Then a canard explosion appears as the parameter v varies. See
Figs. 9(a)–9(c).

6. Concluding remarks

We have studied the dynamics of the THTN model, which
is a circadian oscillator model based on the dimerization and
proteolysis of PER and TIM proteins in Drosophila. After giving
a classification of all possible distributions of the equilibria, we
obtain the existence of a bounded attractor in the first quadrant,
the nonexistence of periodic solutions in the high degradation
rate case, and the global dynamics in the low degradation rate
case. These results are helpful for understanding the effects of
the biophysical parameters on circadian oscillations in the THTN
model.

More concretely, Theorem 4.1 shows that circadian oscilla-
tion disappears when the rate km of mRNA degradation is suf-
ficiently high. As a result, the oscillatory behavior requires the
rate km of mRNA degradation to be bounded. As stated in (vi)
of Theorem 5.1, under some parameter conditions there exists
the configuration of a big limit cycle enclosing a small one in the
THTN model and a numerical example is presented in Fig. 8. This
interesting phenomenon is called birhythmicity and suggests that
depending on the different biological environments, the circadian
oscillator exhibits different periodic behaviors. Theorems 5.1, 5.3
13
and 5.4 show that relaxation oscillations and canard cycles could
also appear in the THTN model and Fig. 9 gives several concrete
examples. For example, as shown in Fig. 9(c), when the concentra-
tion of mRNA is high, the total amount of PER protein increases
to a high level in a short time. After that the concentration of
mRNA decreases until it reaches a low level, and as a consequence
the total amount of PER protein quickly decreases. Then the con-
centration of mRNA increases to a high level again. This process
leads to the occurrence of a relaxation oscillation. Theorems 5.1,
5.3 and 5.4 also give the nonexistence of periodic solutions, and
the existence of several complex oscillations including canard ex-
plosion and periodic solutions bifurcating from homoclinic orbits
and heteroclinic orbits as the parameter v varies. These results
suggest that the periods and the amplitudes of the circadian
oscillations could be affected by the ratio of the rate of mRNA
degradation to the rate of mRNA synthesis.

The results in the present paper could be also applicable to
explain the numerical results in [8]. For example, assume that
vm = 10km and take the values of other parameters as in
[8, Table 1]. Then by [8, Figure 3B] and the formulas below (3.2),
the THTN model with small km has exactly one equilibrium of
type L1 and no limit cycles when K = 1 (see (i) of Theo-
rem 5.1). The equilibrium is of type M and one asymptotically
stable relaxation oscillation arises when K = 200. This cycle is
hyperbolic and not sensitive to the changes of parameters (see (ii)
of Theorem 5.1). However, the equilibrium can be near the canard
point when K < 50, and then canard explosion appears as the
parameter K varies. So the limit cycle is sensitive to the changes
of parameters (see (iv), (v) and (vi) of Theorem 5.1). All of these
results are consist with the numerical results in [8]. Consequently,
our work is helpful to understand the effects of the biophysical
parameters on oscillations in the THTN model.

It is also possible to understand the dynamics of the THTN
model with the general rate km. By some changes, the THTN
model can be transformed in a Liénard-like equation

dx
dt

= y −

(
(ε + 1)(x2 + 2x) +

b2x2 + 2(b1 + b2)x
x2 + 2x + a

)
,

dy
dt

= 2ε(x + 1)
(

v

x4 + c
−

b2x2 + 2(b1 + b2)x
x2 + 2x + a

− x2 − 2x
)
,

where the parameters are defined as in system (3.1). Then the
results on Liénard equations (see, for instance, [43,44]) can be
applied to obtain the global dynamics of the THTN model in the
general case. The Liénard-like structure for the THTN model could
be helpful to investigate the effects of the model parameters on
the periods of circadian oscillations.
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ppendix A. Proof of Lemma 3.3

Before proving Lemma 3.3, we give the next auxiliary lemma.

emma A. There exist positive parameters c and v such that
he graph of ψ2 passes a pair of points (ω1, y1) and (ω2, y2) with
1 < ω2 in R2

+
if and only if the following properties hold:

(ω1 − φ(ω1))2

(ω2 − φ(ω2))2
<

y2
y1
< 1. (A.1)

roof. If the graph of ψ2 passes points (ω1, y1) and (ω2, y2) with
1 < ω2, then 0 < y2 < y1 and

v = yi(c + (ωi − φ(ωi))2), i = 1, 2. (A.2)

learly, the above equations have a unique solution (c, v) in the
orm

c =
y2(ω2 − φ(ω2))2 − y1(ω1 − φ(ω1))2

y1 − y2
,

v =
y1y2((ω2 − φ(ω2))2 − (ω1 − φ(ω1))2)

y1 − y2
.

By applying c > 0 and v > 0, we obtain (A.1). Thus, the
sufficiency is proved.

If two points (ωi, yi) satisfy ω1 < ω2 and (A.1), then these
equations in (A.2) have a unique solution (c, v) with c > 0 and
v > 0. Thus, the necessity is proved. This finishes the proof. □

Now we prove Lemma 3.3 by the above lemma.

Proof of Lemma 3.3. By the monotonicity of the functions ψ1
nd ψ2, we obtain that all possible combinations of intersection
oint sequences are as follows: L, M , R, LM , MM , MR, LMM , LMR,
MM and MMR. To complete the proof, it is only necessary to
rove that all types shown in this lemma can be realized. Let the
arameters b1 = b̃b1 and b2 = b̃b2, and the function ϕ be defined
y ϕ(x) = (̃b1φ(x)+ b̃2x)/(a+x) for x ≥ 0. Then ψ1(x) = bϕ(x)+x.
y Lemma 3.1 there exist some a∗, b∗ and b̃∗

i such that for some
∗ > 0,

dψ1

dx
(x∗) = b∗

dϕ
dx

(x∗) + 1 = 0,
d2ψ1

dx2
(x∗) = b∗

d2ϕ
dx2

(x∗) = 0,

d3ψ1

dx3
(x∗) = b∗

d3ϕ
dx3

(x∗) > 0.

(A.3)

y the second equation, we observe that x∗ is independent of b
nd only depends on the constants a and b̃i. Taking c = c∗

:=

(6u5
∗

+ 5u4
∗
)/(2u∗ + 3), u∗ :=

√
1 + x∗ − 1 and v = v∗

:=

c∗
+ (x∗

− φ(x∗))2)ψ1(x∗), by Lemma 3.2 we have

d2ψ2 (x∗) = 0, ψ1(x∗) = ψ2(x∗). (A.4)

dx2

14
Let the parameters a = a∗, b̃i = b̃∗

i and c = c∗ be fixed. Consider
the following equations

∂ψ1

∂x
(x, b, v) = 0, ψ(x, b, v) = ψ1(x, b, v) − ψ2(x, b, v) = 0.

(A.5)

By (A.3) and (A.4) we have (x, b, v) = (x∗, b∗, v∗) is a solution of
(A.5). Since b∗ > 0 and ∂ψ2

∂x (x∗, b∗, v∗) < 0, the matrix(
∂2ψ1
∂x2

∂2ψ1
∂b∂x

∂ψ

∂x
∂ψ

∂b

)
(x∗,b∗,v∗)

=

(
0 −

1
b∗

∂ψ2
∂x (x∗, b∗, v∗) ϕ(x∗, b∗, v∗)

)
is nonsingular. Thus by the Implicit Function Theorem, there exist
two C∞ functions

x(v) = x∗
+ α1(v − v∗) + O((v − v∗)2),

(v) = b∗
+ α2(v − v∗)2 + O((v − v∗)3),

uch that ∂ψ1
∂x (x(v), b(v), v) = 0 and ψ(x(v), b(v), v) = 0 for small

v − v∗
|, where the constants

1 = −
1

∂ψ2(x∗,b∗,v∗)
∂x (c∗ + (x∗ − φ(x∗))2)

> 0,

2 = (α1b∗)2
∂3ϕ(x∗, b∗, v∗)

∂x3
> 0.

or sufficiently small |v − v∗
| > 0 we have b(v) > b∗. By the

irst equation in (A.3) we obtain that ∂ψ1
∂x (x∗, b∗, v∗) = −1/b∗ <

, which implies that ∂ψ1
∂x (x∗, b(v), v) = 1 − b(v)/b∗ < 0 for

sufficiently small |v − v∗
| > 0. From Lemma 3.1 it follows that

the function ∂ψ1
∂x (·, b(v), v) has exactly two positive zeros xm(v)

and xM (v) with 0 < xm(v) < x∗ < xM (v). Note that the constant
α1 satisfies α1 > 0. Then x(v) satisfies x(v) = xm(v) for v < v∗

nd x(v) = xM (v) for v > v∗. By continuity we obtain that for
ufficiently small |v − v∗

| > 0, there is a constant ϱ2 > 0 such
hat x∗

− ϱ2 < xm(v) < x∗ < xM (v) < x∗
+ ϱ2 and

∂ψ2

∂x
(x, b, v) ≤ −2ϱ2 < −ϱ2 <

∂ψ1

∂x
(x, b, v) ≤ 0

for xm(v) ≤ x ≤ xM (v).

hus for small v∗
− v > 0 (resp. v − v∗ > 0), equation

(x, b(v), v) = 0 with respect to x has exactly one positive root
x = xm(v) (resp. x = xM (v)). Hence, the sequences L0 and R0

xist. Under the assumption that the sequence L0 appears, let
ω2, y2) = (xM , ψ2(xM )) and ω1 = xm be fixed. By varying y1,
e obtain L1 by decreasing y1 slightly from y1 = ψ1(xm), and M
y increasing y1 slightly. Similarly, we can get the sequence R1.
hus, the proof for (i) is obtained.
Take the parameters such that the intersection point sequence

0 appears. Let two points (ω1, y1) and (ω2, y2) satisfy (ω1, y1) =

xm, ψ2(xm)) and (ω2, y2) = (xM , ψ2(xM )). Then by Lemma 3.3,

x − φ(x ))2/(x − φ(x ))2 < ψ (x )/ψ (x ) < 1,
m m M M 2 M 2 m
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hich implies that for fixed (ω1, y1) = (xm, ψ2(xm)) and ω2 =

M , the inequalities in (A.1) hold for each y2 with ψ2(xM ) ≤

y2 < ψ1(xm) = ψ2(xm). In particular, set y2 = ψ1(xM ). Then
by Lemma 3.3 there exist some parameters c and v such that
ψ1(xm) = ψ2(xm) and ψ1(xM ) = ψ2(xM ). Note that dψ1

dx (xi) = 0 >
dψ2
dx (xi), i = m,M , and ψ has at most three positive zeros. Then
there exists exactly one point x3 ∈ (xm, xM ) such that ψ1(x3) =

2(x3). Thus the sequence L0MR0 appears and ψ1 transversally
ntersects with ψ2 at three different points. Varying y2 slightly,
e get the sequences L0MM for y2 − ψ1(xM ) < 0 and L0MR1

or y2 − ψ1(xM ) > 0. By decreasing y2 again, the sequence L0M
an be obtained. Hence, the sequences L0M , L0MM , L0MR0 and
0MR1 exist for suitable parameters. Similarly, we can obtain the
equences MR0, MMR0 and L1MR0 starting from R0, the sequences
1M , L1MM and L1MR1 from L1, the sequences MM , MMM and
MR1 from M , and the sequence MR1 from R1. Thus, we give the
roof for (ii) and (iii). Therefore, the proof is now complete. □

ppendix B. Proof of (5.15)

We write system (5.14) as the form
dx
dt

= X̄2(x + y, v),

dy
dt

= µ1y + Ȳ2(x + y, v),

dv
dt

= 0,

(B.1)

here X̄2 and Ȳ2 denote X2 and Y2 with v0 replaced by v + v0,
espectively. Note that system (B.1) has two zero eigenvalues
nd one nonzero eigenvalue µ1 at the origin. Then by the center
anifold theory [46, Section 1.3], system (B.1) has a C3 center
anifold y = ỹ(x, v) for sufficiently small |x| and |v|. By a direct
omputation, the restriction of (B.1) to the center manifold has
he expansion

dx
dt

=
ε

D1ψ1(x0, λ0) + ε
×

(
1

c0 + (x0 − φ(x0))2
v

+ (D13ψ2(x0, λ0, v0))(x + ỹ(x, v))v

+
1
2

(
D11ψ2(x0, λ0, v0) − D11ψ1(x0, λ0)

)
(x + ỹ(x, v))2

+
1
2

(
D33ψ2(x0, λ0, v0)

)
v2
)

+ O(|(x, v)|3),

dv
dt

= 0.

(B.2)

ote that D33ψ2(x0, λ0, v0) = 0 and ỹ(x, v) = O(|(x, v)|2) for
sufficiently small |x| and |v|. Then we can write (B.2) as the form
(5.15). This finishes the proof.
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