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a b s t r a c t

In 1972, P.W. Anderson suggested that ‘More is Different’, meaning that complex physical systems
may exhibit behavior that cannot be understood only in terms of the laws governing their microscopic
constituents. We strengthen this claim by proving that many macroscopic observable properties of a
simple class of physical systems (the infinite periodic Ising lattice) cannot in general be derived from
a microscopic description. This provides evidence that emergent behavior occurs in such systems, and
indicates that even if a ‘theory of everything’ governing all microscopic interactions were discovered, the
understanding of macroscopic order is likely to require additional insights.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The reduction of collective systems to their constituent parts
is indispensable to science. The behavior of ideal gases can
be understood in terms of a simple model of non-interacting
point particles; the properties of chemical compounds predicted
through their underlying atomic structure; andmuch of the recent
advances in biology has been achieved by reducing biological
behavior to properties of the DNA molecule.
These and other triumphs have fostered the optimistic belief

that all scientific theories can ultimately be reduced to a small
set of fundamental laws; that the universe is broken up into a
series of reductive levels (e.g., ecosystems, multicellular living
organisms, cells, molecules, atoms, elementary particles); and that
any scientific theory that governs one reductive level can be
mathematically deduced from the laws that govern the reductive
levels below it [1,2]. This encourages certain subfields to claim
a kind of moral high ground, based on an ideal of science as
determining the fundamental microscopic behavior, with the rest
‘just’ details.
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Of course, many disagree that the rest is just details. In
1972, P.W. Anderson laid out such a case in his article ‘‘More
is Different’’ [2], arguing that complex systems may possess
emergent properties difficult or impossible to deduce from a
microscopic picture. Anderson gives several examples which he
suggests illustrate this idea, based on broken symmetry, and goes
so far as to claim that in the limit of infinite systems, emergent
principles take over and govern the behavior of the system, which
can no longer be deduced from the behavior of the constituent
parts.
Macroscopic laws that govern the behaviors of macroscopic

systems often relate idealized macroscopic observables that
implicitly assume this infinite limit. Pressure gradient, surface
tension etc., are only formally defined on systems assumed to
be continuous, i.e., contain an infinite number of infinitesimal
particles. Thus, such macroscopic laws cannot logically be derived,
even in principle, from microscopic principles. Is Anderson
correct? His examples were largely speculative. The question of
whether some macroscopic laws may be fundamental statements
about nature or may be deduced from some ‘theory of everything’
remains a topic of debate among scientists [1,3].
In this article we strengthen Anderson’s claims by proving

that standard notions of reductionism cannot generally hold in a
widely studied class of collective systems, the infinite square Ising
lattice. We show that for a large class of macroscopic observables,
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including many of physical interest, the value of those observables
is formally undecidable, i.e., cannot generally be computed from
the fundamental interactions in the lattice. Consequently, any
macroscopic law that governs the behavior of such properties
cannot be deduced from first principles. Our result therefore
indicates that perhaps a ‘theory of everything’ may not explain all
natural phenomena; additional experiments and intuition may be
required at each reductive level.
Our paper is inspired by previous results [4–6] on undecidabil-

ity in physical systems. We employ a similar strategy, which is to
map computational models into equivalent physical systems; the
undecidability of the computationalmodels then implies that there
must exist undecidable properties of those physical systems. Our
proof extends this mapping so that these undecidable properties
encompass a large class of observables that are physically inter-
esting on macroscopic scales. These results present analytical evi-
dence for emergence.

2. Reductionism and the periodic Ising lattice

Square Ising lattices describe a classical system of spins
arranged at the vertices of a d-dimensional rectangular grid. The
state of each spin is described by a single value (0 or 1) and interacts
only with its two-dimensional neighbors. In this paper, we work
with planar lattices (d = 2), though our results easily generalize to
higher dimensions. While this simple model was first introduced
to describe magnetic materials [7], where each spin describes the
orientation of a microscopic magnetic moment, it has become
ubiquitous in modeling a diverse range of collective systems,
including lattice gases [7], neural activity [8], protein folding [9],
and flocking [10]. Emergence in such models would thus suggest
that it is of common occurrence in nature. For convenience, we
use the standard terminology ofmagnetism, thoughour arguments
apply equally to other applications of the model.
Mathematically, we index each spin of the two-dimensional

square Ising lattice by a vector of integers x = (i, j) (Fig. 1(a)),
such that sx ∈ {0, 1} denotes the state of the spin at location x.
Interactions on this lattice are described by the Hamiltonian H ,
a function that maps each configuration of the lattice to a real
number corresponding to energy. The general Ising model with an
external field has a Hamiltonian of the form (e.g., see [7])

H =
∑
cx,ysxsy +

∑
Mxsx (1)

where cx,y are the interaction energies between spins sx and sy, and
Mx describes the external field at sitex.We say spins j and k interact
if cj,k 6= 0. The ground states of the system are configurations that
minimize the value of H .
Consider a macroscopic system modeled by a square Ising

lattice of N × N spins, with N � 1. Such systems often exhibit
periodicity, i.e., clusters of spins are often found to experience
similar interactions. We can specify such systems by periodic
Ising models, which consist of a tessellation of spin blocks, each
governed by identical intra- and inter-block interactions (Fig. 1(b)).
Understanding the behavior of such a macroscopic system

need not entail knowledge of the dynamics of each individual
microscopic constituent. The physically relevant observables, at
macroscopic scales, such as magnetization (the proportion of
spin in state 1), are generally global properties of the lattice. An
insight into the behavior of such systems may be obtained from
knowledge of the macroscopic laws that govern the dynamics
of such properties. While a priori, there is no guarantee that
such laws should exist, the existence of thermal physics and
other macroscopic principles suggests that the universe conspires
in many instances to give the macroscopic world some sort of
order [3].
In contrast, reductionism contends that any macroscopic order

can be understood by decomposing the system to its basic
interactions, i.e., the known interactions of each periodic block
Fig. 1. The square Ising lattice (a) consists of a rectangular grid of spins such that
only adjacent spins interact, i.e., cx,y = 0 unless |x− y| =

∑
i |xi − yi| = 1. Such a

lattice is periodic if it can be specified completely by some Hamiltonian Hk that acts
on a K × K Ising block (b). Note that the Hamiltonians are tessellated in such a way
that the adjacent blocks always share one common row or column.

within the lattice. Thus, from a reductionist perspective, the
fundamental science of such a system is the determination of these
interactions, and the rest is just working out the consequences of
those interactions.
We construct a class of periodic Ising models that directly

contradict this perspective. In particular, we consider two-
dimensional macroscopic lattices where the spins of a one-
dimensional edge are fixed by some spatially varying external
magnetic field. We will show that at its lowest energy state,
a general class of macroscopic properties cannot be generally
predicted from knowledge of the lattice Hamiltonian Hk. Thus any
macroscopic law that governs these quantities must be logically
independent of the fundamental interactions.
In practice, of course, many periodic Ising systems are soluble.

What relevance, then, do these results have for the practice of
science? We observe that in many cases of physical interest
(e.g., the three-dimensional Ising model), no explicit, formal
solution is known; it is possible that this is not merely a product
of our ignorance, but rather because no solution exists.

3. The approach

Our approach is inspired by the existence of ‘emergent’
phenomena in mathematics. Unlike physical systems, the axioms
that define a mathematical system, its analogous ‘theory of
everything’, are known; yet, many properties of such systems
cannot be proven either true or false, and hence are formally
undecidable [11]. The Turing machine [12] is one such system.
First proposed to formally describe a universal computer, Turing
machines are theoretical devices that consist of a finite state
machine that operates on an unbounded one-dimensional array of
binary states. Despite the fact that the behavior of these machines
is formally characterized, most questions regarding their long-
term dynamics are undecidable.
One well-known example of undecidability is the halting

problem [12], which asks whether a given machine ever halts
on a specific input. In fact, a much more general class of
questions is undecidable. Rice’s theorem [13] states that any non-
trivial question about a Turing machine’s black-box behavior is
undecidable, i.e., any question about the functional relationship
between inputs and outputs. For example, Rice’s theorem tells us
that there is no general algorithmwhichwill tell us whether or not
a given Turing machine acts to square its input, although of course
for specific machines it may be possible to determine whether or
not this is the case.
Numerous simple physical systems capable of simulating

arbitrary Turing machines have been proposed, e.g., [5,14]. Since
such ‘universal’ systems are as powerful as Turing machines, and
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thus an arbitrary computer, the only viable general method of
predicting the dynamics of such systems is by direct simulation.
The only way to find whether or not it halts is to run the machine
ad infinitum, there exists no algorithm that can determine the
eventual behavior of any universal system.
The ‘Game of Life’ [15] is a well-known example. The state of

this system consists of an infinite two-dimensional rectangular
grid of cells, each of which is either alive or dead. The system
evolves in discrete time steps, where the fate of each cell depends
on the state of the eight cells in its neighborhood (i.e., the 3 ×
3 block centered around the cell). Although this simple system
exhibits dynamics entirely defined only by a binary function (its
update function) on nine bits, it is universal. The ‘Game of Life’ is
not unique, and belongs to a general class of discrete dynamical
systems known as cellular automata (CA), including Life without
Death [16] and the one-dimensional Rule 110 [17].
The dynamics of a CA are governed by an update rule

applied identically to each cell, reminiscent of a periodic Ising
lattice where each block experiences the same Hamiltonian.
This motivates encoding the dynamics of a CA in the ground
state of the periodic Ising lattice. While such constructions
exist [18,19], our constructions must be tailored so computing the
macroscopic properties of the lattices would entail knowledge of
the undecidable properties of the underlying CA.

4. The cellular automata encoding

We encode the dynamics of any d-dimensional CA within the
ground states of a (d + 1)-dimensional periodic Ising lattice with
a particular HK . The construction is not unique; a given CA may be
simulated by an infinite number of different periodic Ising lattices.
Formally, we consider a CA that consists of a d-dimensional

lattice of cells, each of which may be either 0 or 1. The
neighborhood of a cell is the set of cells in a block of cells (2r + 1)
on a side, and centered on the cell, where r is some positive integer
that specifies the size of the neighborhood we are considering. The
way the state of a CA changes at each time step is dictated by a
local update rule, i.e., a function, f , that maps this neighborhood to
{0, 1}. For example, the state of any one-dimensional CA is defined
by an infinite array of binary numbers . . . b−1,tb0,tb1,tb2,t . . . at
time t . If r = 1, then at t+1, the state of each cell updates according
to bk,t+1 = f

(
bk−1,t , bk,t , bk+1,t

)
. In order to avoid burdensome

notationwewill explicitly outline themapping of a CA to a periodic
Ising lattice for the simple case of d = r = 1. The general mapping
follows identical ideas.
We make use of ‘designer Ising blocks’, bounded two-

dimensional blocks of spinswith an associated Hamiltonianwhose
ground state encodes a desired logical operation f . The input is
encoded in bits on one boundary of the block, while output bits
on the boundary opposite (Fig. 2). Formally, consider an arbitrary
binary function f with m inputs and n outputs; we define a
‘designer Ising block’ as follows. Take a C×D block of spins, where
C,D > max(m, n), governed by a Hamiltonian Hf with ground
state set Gf . We designate m input spins,

−→s = (s1, s2, . . . , sm)
from the first row to encode the input and n output spins, −→r =
(r1, r2, . . . , rn) from the last row as output.
We say a configuration of the lattice, s, satisfies {−→s ,−→r } if

the input and output spins are in states −→s and −→r respectively.
Suppose that (1) there exists s ∈ Gf that satisfies {

−→s , ·} for
each of the 2m possible inputs of f and (2) every s ∈ Gf satisfies
{
−→s ,−→r = f (−→s )}, then we can set the ground state of the
Ising block to simulate the action of f on any desired input by
appropriately biasing the input spins by external fields. In fact,
previous results [19] indicate appropriate blocks exist for any f ;
we outline an explicit method in the Appendix.
Fig. 2. For any binary function f , we can construct an Ising block such that its
ground state encodes f . If the input bits si are fixed, then the output bits ri = f (si)
when this block is at ground state.

Fig. 3. (Color online) The dynamics of any given CA (a) with update rule f (b) can
be encoded in the ground state of a periodic Ising lattice (c) through a periodic
tessellation of designer Ising blocks that simulate the operations f (d), FANOUT (e),
and SWAP (f).

To simulate the dynamics of a CA with an update function f , we
utilize designer Ising blocks that simulate (1) the update function
f ; (2) the three way FANOUT function that takes a bit as input
and makes two copies; (3) the SWAP function, which switches the
states of its two inputs. Like the construction of a digital circuit
these building blocks can be tessellated together to simulate the
dynamics of any given CA (see Fig. 3). The set of ground states of
the resulting periodic Hamiltonian encodes the dynamics of the
given CA for all possible initial conditions. The application of an
external field to the first row (layer) of the lattice then simulates
the evolution of the encoded CA with a particular initial condition.
Thus, the ground state of the periodic Ising model is universal.

5. Undecidable macroscopic observables

For each Turing machine, T , with input x, we can construct
a periodic Ising lattice such that knowledge of its ground state
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implies complete knowledge of T (x). Thus, the ground state of
such lattices must be undecidable. This result can be strengthened.
Rice’s theorem not only predicts that T (x) is non-computable, but
also all black-box properties of T . Examples include, ‘is T (x) >
500? for all inputs’ and ‘does T double all its inputs’. Properties such
as these must correspond to a property of the Ising lattice.
This motivates us to introduce a Rice’s theorem for physical

systems. Any property of a physical system is specified by a function
P that maps the configuration space of the system to the real
numbers. Suppose that the system is universal, and thus encodes
an underlying Turingmachine T . Provided the observable property
is dependent on the output of T (x), so that knowledge of P implies
non-zero information about T (x), then P cannot be computable for
all such systems. This result is quite general. Given an Ising lattice,
there are infinitely many ways of encoding a Turing machine.
Provided a single one of these encodings affect the value of P , then
‘Rice’s theorem for physical systems’ applies.
A useful example is the ‘prosperity’ of a CA, the probability that a

randomly chosen cell at a random time step is alive. This equates to
the proportion of living cells, averaged over all time steps from 0 to
infinity. In many universal CAs (Game of Life, Life without Death),
information is encoded in the presence or in the absence of clusters
of living cells of specific configurations, referred to as gliders or
ladders. Different computational results lead to different numbers
of gliders, and these glidersmay cause unbounded growth of living
cells. Thus, the prosperity of a CA is indeed dependent on the
output of an encoded Turing machine, and must be undecidable.
The prosperity of a CA is essentially a macroscopic observable

— for a magnetic system, it is just the averagemagnetization of the
system, up to an additive constant. Such observables are averaging
properties. That is, we can divide the Ising lattice into a periodic
tessellation of finitely sized blocks such that the property depends
on the average of some non-constant function f on each block.
Formally, let P : C → R be a general function that maps
each configuration of the Ising lattice into a real number, where
C is the configuration space of the Ising lattice. Divide the Ising
lattice into a periodic tessellation of finitely sized Ising blocks
B1, B2, . . . of size C × D, for some fixed C,D ∈ N. Let CC×D denote
the configuration space of each block. We introduce a non-trivial
function f : CC×D → R, i.e., there exists s1, s2 ∈ CC×D such that
|f (s1) − f (s2)| ≥ ε, for some fixed ε > 0. Define A(s) : C → R,
A(s) = 〈f (s)〉 as the average of f over all Bi.
We say that P is an averaging macroscopic property if

knowledge of P(s) gives information about the value of A(s) for
some choice of C and D. Explicitly, let RA be the range of A and
RP be the range of P . Suppose that for each p ∈ RP , P(s) = p
implies A(s) 6∈ [a, b] for some non-zero interval [a, b], then P is
an averaging macroscopic property. Total magnetization, average
spin–spin correlation, and most standard quantities of physical
interest can be shown to fall into this category. Indeed, we will
show that given such a macroscopic property P , we construct
a modified encoding scheme such that the value of the given
observable is almost entirely dependent on the ‘prosperity’ of the
underlying CA.
The primary strategy is to replace the FANOUT blocks in

our encoding scheme with ‘magnifier blocks’ (see Fig. 4(a)). The
‘magnifier block’ is a ‘designer Ising block’ that simulates the 3-
way FANOUT and additionally exhibits a ground state with notably
different contributions to P depending on its input. Provided these
blocks are of sufficient size, knowledge of P implies knowledge of
the average input of these magnifiers, i.e., the prosperity of the
underlying CA.
Formally, assume that P is decidable. In particular, the

proposition ‘‘P(s) = p at ground state s?’’ is decidable for any p.
Then, there must exist an interval [a, b] such that the proposition
‘A(s) lies outside [a, b] at ground state’ is also decidable. However,
Fig. 4. Magnifier blocks can be inserted into the CA encoding (a) and made
large enough such that their properties dominate the properties of the lattice. The
ground state of these spin blocks (pictured) can exhibit significantly different values
of magnetization (b), correlations functions (c) and degeneracy (d), for different
inputs. Here, degenerate spins denote spins whose state has no effect on the energy
of the lattice.

since the Ising lattice is universal, a magnifier for any function
exists. Therefore, we may construct a magnifier that ensures that
A(s) ∈ [a, b] iff the underlying prosperity is less than 1/2.
The decidability of P then implies knowledge of the underlying
prosperity. Hence, any such macroscopic property of the periodic
Ising lattice is generally undecidable. We illustrate this with a
number of examples:

1. A magnetization magnifier has ground states of either all 0’s or
all 1’s (Fig. 4(b)). Thus, magnetization is undecidable.

2. The correlation length measures the scaling of limr→∞〈sl,m,
sl,m+r〉 (where 〈·〉 denotes an average over all lattice sites)
with r . Knowledge of the correlation length allows us to solve
the undecidable question of whether the encoded CA will
eventually have no living cells [20]. Thus the correlation length
is undecidable.

3. Finite range correlations, i.e., 〈sl,m, sl,m+r〉 or 〈sl,m, sl+r,m〉, for
some r , measure periodic structures. Since this property
depends on the correlations of finitely sized blocks (magnified
in Fig. 4(c)), these correlations are undecidable.

4. The partition function at zero temperature is determined by the
degeneracy of the system. Since degeneracy can be magnified,
(Fig. 4(d)) partition functions are non-computable.

Chaitin [21] has emphasized that such undecidability results
automatically imply results about what is provable in such
systems. In particular, our results imply that for any such
observable, there must exist a specific Ising lattice for which it is
not possible to prove the ground state value of the observable.
The reason, in outline, is that if such a proof always existed, then
it would be possible to construct an algorithm for determining
the value of the observable, simply by enumerating and checking
all possible proofs. We expect that this result readily generalizes
to lattices of finite temperatures and more exotic macroscopic
observables using different encodings and non-deterministic CAs.
Another potential avenue for further research is to relate

idealistic macroscopic properties of the Ising lattice to the digits
of Chaitin’s constantΩ [22], which represents the probability that
a randomly chosen Turing machine will halt. Should there exist
a set of physically meaningful binary observables that encode Ω ,
then it would imply that the set of observables is algorithmically
random. That is, any axiom that defines k of these observables
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would require at least k bits of information. Such a result would
suggest that not only does there existmacroscopic laws that cannot
be logically deduced from a ‘theory of everything’, but that there
exists an infinite number of such laws.

6. Discussion and conclusion

It may be objected that our results only hold in infinite lattices,
and hence are not relevant for real finite physical systems. Most
scientists would agree that any finite system, with finite energy,
exhibits behavior that is computable (but c.f., [23]). Yet infinite
systems also play an essential role in developing our understanding
of real physical systems. Even if we possessed a supercomputer
capable of simulating complex systems, we would still not
understand the system without referring to macroscopic concepts
such as phase transitions and the renormalization group [24],
which apply only in the limit of infinite systems. Yet these same
tools are essential to our understanding of the behavior of real
physical systems.
In summary, Ising models play an important role in modeling

many physical and biological phenomena. Our results indicate
that in such systems, many general macroscopic ground state
properties cannot be computed from fundamental laws governing
the microscopic constituents. Despite complete characterization
of the system, we can assign two different values to any such
property, and there would exist no logical way to prove which
assignment is correct. Instead, in specific instances, the best one
can do is assert the value of some physically interesting properties
as axiomatic, perhaps on the basis of experimental evidence or
(finite) simulations; this would truly be an example where ‘more
is different’.
Althoughmacroscopic concepts are essential for understanding

our world, much of fundamental physics has been devoted to the
search for a ‘theory of everything’, a set of equations that perfectly
describe the behavior of all fundamental particles. The view that
this is the goal of science rests in part on the rationale that such a
theory would allow us to derive the behavior of all macroscopic
concepts, at least in principle. The evidence we have presented
suggests that this view may be overly optimistic. A ‘theory of
everything’ is one of many components necessary for complete
understanding of the universe, but is not necessarily the only
one. The development of macroscopic laws from first principles
may involve more than just systematic logic, and could require
conjectures suggested by experiments, simulations or insight.
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Appendix. Universality of Ising blocks

In this section, we prove that the ground states of designer Ising
blocks are universal. Any boolean function f can be represented
by a logic circuit that consists of the following components: (1)
wires (2) FANOUT gates and (3) NANDgates.Mathematically, these
operations are defined as (1) Wire(b1) = b1, (2) FANOUT(b1) =
(b1, b1) (3) NAND(b1, b2) = ¬(b1 ∧ b2).
We convert this to a planar circuit, that is, one inwhich nowires

intersect. This is achieved by replacing each intersection with a
SWAP gate, SWAP(b1, b2) = (b2, b1). Such SWAP gates can be de-
composed into a network of three XOR gates i.e., SWAP(b1, b2) =
Fig. 5. (Color online) The interaction graphs of ‘designer Ising blocks’ that simulate
each of the basic boolean operations. These blocks can then be linked together by
wires to simulate an arbitrary computation.

XOR1(XOR2(XOR1(b1, b2))), where XOR1(b1, b2) = (b1 ⊕ b2, b2)
and XOR2(b1, b2) = (b1, b1 ⊗ b2).
Observe that designer Ising blocks can be constructed to

simulate these components, i.e., (1) wires (2) FANOUT gates (3)
NAND gates and (4) XOR gates (c.f., Fig. 5). Therefore, any planar
circuit, and hence any boolean function, can be implemented by a
designer Ising block.
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