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Based on the model system undergoing phase separation and chemical reactions, we investigate the
dynamics of propagating dissipative waves under external forcing which is periodic both in space and
time. A phase diagram for the entrained and non-entrained states under the external forcing is obtained
numerically. Theoretical analysis in terms of phase description of the traveling waves is carried out to
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two bifurcation lines are connected at a Bogdanov-Takens bifurcation point.
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1. Introduction

Synchronization and entrainment of nonlinear oscillators under
external periodic forcing have been studied for many years. It has
been shown that the phase dynamics which introduces one phase
variable for a limit cycle oscillation is very useful to understand
those phenomena [1,2]. The time-evolution equation for the phase
6 is given by
do 2 0 1
ar w+ f(0), (1)
where w is the frequency of the limit cycle oscillation and £2 is that
of the periodic external forcing. The function f (@) is a 27 -periodic
function. It is evident that Eq. (1) for 0 < 6 < 2m has a pair of
time-independent solutions for small differences of | — £2|. One is
stable and the other is unstable. If the value |w — §2| is increased by
changing the external frequency £2, the pair of solutions converges
and disappears. This means that the bifurcation is a saddle-node
bifurcation.

In comparison with these studies of nonlinear oscillators, non-
linear dissipative waves under external forcing have not been
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explored extensively despite the fact that existence of such waves
are one of the most relevant self-organized phenomena far from
equilibrium. Some recent studies towards this direction are given
in Refs. [3-8]. In the previous papers [9,10], we addressed this
problem not only for the external forcing but also for the feed-
back control. We carried out numerical simulations and theoretical
analysis based on a model system in one dimension. In the present
paper, we focus our analysis on the external forcing and investigate
the entrained dynamics in further detail. In the next section (Sec-
tion 2) we start with a description of our model system. Numerical
results are shown in Section 3. The phase dynamics approach is
given in Section 4. Section 5 is devoted to discussion.

2. Model equations

We start with the coupled set of equations for the local con-
centrations in a hypothetical ternary mixture where both phase
separation and chemical reactions take place simultaneously. Let
us assume that molecules A, B and C are adsorbed on a flat sub-
strate with the local concentrations, ¥4, ¥ and ¥, respectively.
The other chemical species involved in the chemical reactions are
assumed to exist abundantly in the gas phase above the substrate,
and the products are also assumed to dissolve quickly into the
gas phase. Each lattice site of the substrate is occupied by one
and only one molecule A, B or C. Any pair of molecules A and B
that are nearest neighbors exchange their positions randomly with
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a certain probability, but C molecules do not participate in such
exchanges. In this way, the condition ¥4 + ¥ + ¥¢c = 1 is satis-
fied in the continuum limit, while diffusion is exhibited by A and B
molecules but not C molecules. When these molecules encounter
other molecules in the gas phase, they undergo the chemical re-
actions A —- B — C — A with the reaction rates y1, ¥, and y3
respectively. It is assumed that the A and B species tend to segre-
gate each other whereas the C component is neutral to both A and
B. Then the time-evolution equations for the local concentrations

V¥ = ¥4 — Ypand ¢ = Y4 + V¥p are given by [11]

w = V-V’ — 1ty + ¢’ +a rxn, (2
P W Hae+az+Ixt), (2)
% = b1 + by + b3 + I'(x,t). (3)

The phase separation process is characterized by the parameter
T > 0. The coefficients are given in terms of the reaction rates by

a1=—(y1+%), (4)
az=—(V1—%+y3), (5)
as = bs = ys, (6)
b =2, (7)
by =— (2 +). (8)

The function I" (x, t) stands for the external force which is moving
steadily to the right

I'(x,t) = g cos(grx — £2t), 9)

with the strength ¢, the wave number gy and the frequency 2 [12].
Here we suppose that the system is exposed by illuminating light
through a periodically arrayed slit and the slit moves at a constant
velocity £2/qs. As a result, we assume that the reaction rate y; is
modified such that y3 — y3 + I'. In this way, the I" term is added
both in Egs. (2) and (3) since a3 = bs = y3 as Eq. (6). We have
ignored a term I"¢ arising from the y3¢ term in Eqgs. (5) and (8)
assuming a sufficiently small forcing €.

We have studied earlier the solution of Egs. (2) and (3) without
the external forcing [11]. The uniform time-independent solution
becomes unstable by increasing the parameter t with fixing other
parameters. Depending on the rate constants, e.g. 3, there are two
possibilities. One is a Hopf bifurcation at a finite wave number. We
have verified that a traveling wave appears above the threshold.
The other is a Turing-type bifurcation beyond which a spatially
periodic motionless pattern appears.

Throughout this paper, we will fix the parameters as t = 1.6,
y1 = 0.3, = 0.16 and y3 = 0.05. This set of the parameters
are close to the Hopf bifurcation threshold t = 7. = 1.46 at a
finite wave number g = q. &~ 0.9 [11]. The frequency of oscillation
at the bifurcation point is given by w, =~ 0.07 and the external
frequency £2 is varied around this critical frequency to investigate
the dynamics under forcing.

3. Numerical simulations

We have carried out numerical simulations of Eqgs. (2) and (3)
with (9) in one dimension. The system size is L = 20w with a
periodic boundary condition and the space is divided intoN = 128
cells with the cell size 6x = 20m /N. This system size is almost
commensurate with the critical spatial period of the traveling wave
£, = 2m/q. =~ 27 /0.9. The wave number of the external force is
fixed to be the same as g, in order to avoid extra complications
of dynamics. The explicit Euler scheme is employed with the time
increment 6t = 0.001. Initially we provide a wave propagating to
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Fig. 1. Phase diagram for the entrainment with the external forcing traveling to
the right on the ¢ — 2 plane. The meaning of the symbols is given in the text. The
solid lines are the saddle-node bifurcation thresholds whereas the dotted line is the
Hopf bifurcation threshold. These two lines are obtained from the phase equations
of motion (12) and (13). The Bogdanov-Takens bifurcation point is indicated by the
double circle.

the right without the external forcing and then, at a certain time
instant, switch on the external force (9) which is also traveling to
the right.

Fig. 1 represents the phase diagram on the ¢ — £ plane ob-
tained numerically asymptotically in time. The traveling wave is
completely entrained by the external force in the region filled by
symbols (4) whereas it is not entrained in the region filled by ¢.
In the region indicated by e, the wave trains undergo an oscilla-
tion trapped at the potential minima of the traveling external force.
The space-time plot of these dynamics for ¢ = 0.007 is displayed
in Fig. 2 where the gray scale indicates the magnitude of /. The
entrained state (£2 = 0.07) is shown in Fig. 2(a). Fig. 2(b) illus-
trates the drift state (§2 = 0.1) where the wave speed is modulated
periodically every time the external force catches up the traveling
waves. Fig. 2(c) exhibits the trapped state (£2 = 0.02) where each
wave train moves back and forth propagating gradually to the right
on an average. In the narrow region indicated by the black triangles
in Fig. 1, propagation reversal occurs. That is, the wave propagating
to the right starts to propagate to the left after applying the exter-
nal force which is propagating to the right. The mechanism of this
apparently strange phenomenon will be clarified in Section 4. In
particular, see Fig. 6.

The above results are obtained in the situation that the external
forcing is traveling to the same direction as the propagating wave.
It should be noted, however, that Eqs. (2) and (3) without the ex-
ternal forcing have the waves traveling both to the right and to the
left depending on the initial condition. Therefore, it is interesting to
see what dynamics appears when the force moving to the opposite
direction is applied. The phase diagram in such a case is obtained
numerically as shown in Fig. 3 where the white circles indicates the
region that the waves keep propagating to the initial direction with
the periodic modulation by the external force traveling to the op-
posite direction. That is, the waves are not entrained. In the region
indicated by other symbols, the waves change their propagating
direction after switching on the external force and the asymptotic
dynamics are the same as those in Fig. 1.

4. Phase equations

In order to clarify the dynamics in the phase diagram displayed
in Fig. 1, we derive the phase equations of motion for the propa-
gating waves under the external force. We represent the solutions
of Egs. (2) and (3) as
¥ = Yo + Y1 (t) cos(qex — 2t + 61(1)), (10)
¢ = do + ¢1(t) Cos(qex — 2t + 6(1)), (11)
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Fig. 2. Space (horizontal)-time (vertical) plot of the propagating waves for ¢ = 0.007 (a) in the entrained state for 2 = 0.07, (b) in the non-entrained state near the
saddle-node bifurcation for £2 = 0.1 and (c) in the trapped state near the Hopf bifurcation for £2 = 0.02.
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Fig. 3. Phase diagram on the ¢-£ plane for the wave train propagation under
external forcing traveling to the left.

where ¥ and ¢ are the solutions of a; v +a,¢p+as = 0Oand b1y +
by¢ + b3z = 0.The unknown functions ¥ (t), ¢1(t), 61(t) and 6, (t)
are to be determined. The procedure and the results are the same
as the previous ones [9]. The final set of phase equations is given by

d91 & .
K = .Q - ESII‘I(QO
(0) ( (@) (U)
1 1 1 :
—a— 14+ —= — — Sln912, (12)
(0) ) (0)
1//] 1 ':[’1
de
2 _ 0 % siney)
dt o\
(0) < 1(1) gn)
+bh— 1+ 2 — 2L ) sin6y, (13)
0) 0) (0)
¢‘1 1 ¢1
where
012 =61 — 6, (14)
and
3 1 azb
012 _ 2 271 2
Z(% ) —qc+r_fc+P(al_ b, (cos 613) >, (15)
b
0 _ (_; cos(Glz)) o (16)
b,
M= % (cos(91) _& cos(6,) cos 012) , (17)
3¢2(yy)? by
(0)
o _ Pt o €
0= W T~ cos(6,). (18)

0)
1

In Eq. (15), the positive solution for 1/, should be chosen for con-

sistency with the simulations.

When the external force is absent, Eqs. (12) and (13) become a
single equation for 615, which takes the following form

B2, tan@r) + 22 sin2s 19

el 2 tan(612) + 2b, sin(2612). (19)
Note that the right hand side is an odd function of 6, so that
Eq. (19) has two stable solutions which correspond to the waves
propagating either to the left or to the right because the original set
of Egs. (2) and (3) are invariant under the transformation x <> —x.

Egs. (12) and (13) are valid up to O(¢). We have omitted the
higher harmonics in the derivations of these equations. However,
those effects are verified numerically to be negligible. Putting
df;/dt = db,/dt = 0in Egs. (12) and (13), the time-independent
solution, which corresponds to the entrained state, has been
obtained numerically by the Newton method and the stability of
the stationary solutions is analyzed.

We have carefully examined the phase equations (12) and (13).
It turns out that there are two different ways resulting in instabil-
ity of the entrained state. One possibility is a pair annihilation of
the stable and the unstable fixed points. The other one is that the
eigenvalue in the linearized equations around the steady solution
is complex and its real part becomes positive. In the previous pa-
per [9], we overlooked this unusual possibility in the entrainment
and synchronization phenomena. The former is a saddle-node bi-
furcation and the latter is a Hopf bifurcation. The solid lines in
Fig. 1 indicates the saddle-node bifurcation line whereas the dot-
ted line is the Hopf bifurcation line. These two lines meet at about
£2 = 0.0430 and ¢ = 0.00275 which is a Bogdanov-Takens bi-
furcation point [13]. It is shown that these lines obtained from the
phase equations (12) and (13) are consistent quantitatively with
the numerical simulations except for the larger values of € (>0.09)
where the lowest mode truncation in the phase dynamics becomes
less accurate. In order to illustrate the above conclusion, the results
of detailed computations of Egs. (12) and (13) performed near the
bifurcation lines are represented in Figs. 4-6.

The nullclines of Egs. (12) and (13) for ¢ = 0.004 are plotted in
the space of 6, +6, and 61, = 61 —6, in Figs. 4-6 for different values
of the frequency £2. The thin solid (broken) line is the nullcline of
Eq. (12) (Eq. (13)). Since Egs. (12) and (13) are invariant under the
simultaneous transformations 61, — 61 + 7 and 6; + 6, —
01 + 6, — m, only the interval —m /2 < 6y, < m/2 is plotted.
Note that 6y, for 6; + 6, = 0 is equal to 6y, for 6; + 6, = 47 but
61 + 6, for 01, = —m /2 isequal to 61 + 6, — 7 for 61, = 7 /2.

Fig. 4(a) and (b) display the nullclines for £2 = 0.08 and for
£2 = 0.09 respectively. There are a pair of steady solutions in
Fig. 4(a) where the solution indicated by the white dot is stable
(node) and the one indicated by the black circle is unstable (saddle).
These two solutions disappear for £2 = 0.09 in Fig. 4(b) indicating
a transition from the entrained state to the non-entrained state of
the waves. It is evident that this transition occurs as a saddle-node
bifurcation. The time-dependent trajectory corresponding to the
non-entrained phase-slip waves is shown by the thick solid line in
Fig. 4(b). It should be noted that there is a stable non-entrained

—
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Fig. 4. Nullcline of Egs. (12) and (13) for ¢ = 0.004 and (a) £2 = 0.08 and (b)
£2 = 0.09 respectively. The white dot is the stable fixed point and the black dot is
the unstable fixed point. This pair of the fixed points disappears in (b). The thin solid
line is the line for d9; /dt = 0 and the thin broken line is the line for df, /dt = 0.The
thick solid line is the trajectory of the stable non-entrained solution propagating to
the same direction as the external force. The dotted broken line is the trajectory of
the stable non-entrained solution propagating to the opposite direction.
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Fig. 5. Nullcline and the asymptotic solutions of Eqs. (12) and (13) for ¢ = 0.004
and (a) £2 = 0.04, and (b) 2 = 0.029 respectively. The thick solid line in (b) is
the stable limit cycle solution. The meanings of other lines are the same as those in
Fig. 4.
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Fig. 6. Nullcline and the asymptotic solutions of Eqs. (12) and (13) for ¢ = 0.004
and (a) 2 = 0.028,and (b) £2 = 0.01 respectively. The meanings of the lines are the
same as those in Fig. 4. Note that there is a dotted broken line but no thick solid line
in (a) indicating that the non-entrained waves propagating to the same direction as
the external force do not exist.

solution propagating to the direction opposite to the external
forcing as the trajectory is indicated by the dotted broken line in
Fig. 4(a) and (b). This solution exists in all the parameters shown
not only in Fig. 4 but also in Figs. 5 and 6.

The arrows in Figs. 4-6 indicate the direction of the time-
evolution. The upward (downward) arrows show propagation to
the left (right) relative to the external force propagating to the
right. The arrows on the thick solid line in Fig. 4(b) are directed
to upward because the wave is propagating to the right but its
velocity is slower than that of the external force.

The dynamics for the lower values of £2 are shown in Fig. 5(a)
and (b) for 2 = 0.04, 2 = 0.029 respectively. Fig. 5(a) for
2 = 0.04 displays a stable steady solution (white dot) of the
entrained state and an unstable solution (black circle). For a smaller
value of 2 = 0.029, both of the time-independent solutions are
unstable (one is unstable focus and the other is saddle) and a limit
cycle orbit appears around the first one that clearly indicates a Hopf
bifurcation.

By decreasing further the value of §2, the limit cycle disappears
and the monotonously time-dependent motion appears which
represents a periodically modulated traveling wave as shown by
the dotted broken line for £2 = 0.028 in Fig. 6(a) and both by
the thick solid line and by the dotted broken line for £2 = 0.01 in
Fig. 6(b). Note that there is no thick solid line in Fig. 6(a) and that
the non-entrained solution propagating to the same direction as
the external force does not exist here. This means that the traveling
wave changes the propagating direction when the external forcing
(which is moving to the same direction as the initial traveling
wave)is applied. Actually this phenomenon occurs for a narrow but
finite interval of §2 as is indicated by the black triangles in Fig. 1.

In order to investigate the properties of the transitions from
the trapped oscillation in Fig. 5(b) to the reversal of propagation
direction in Fig. 6(a) and from the reversal of propagation to the
phase-slip waves in Fig. 6(b), we examine the phase trajectory
on the 6; & 6, plane as shown in Fig. 7 for ¢ = 0.004. It is
evident that the limit cycle oscillation in Fig. 7(a) for £2 = 0.029
disappears in Fig. 7(b) for £2 = 0.028. This happens when the orbit
touches, as £2 is decreased, the separatrix which exists between
the limit cycle and the attractor of the non-entrained solution. One
notes from Fig. 1 that decreasing §2 for 2 < w. corresponds to
decreasing the magnitude € of the external force. Recall that the
system is bistable for ¢ = 0 as mentioned in Eq. (19). This is
the reason why two attractors of wave solutions propagating to
the opposite direction appear for 2 = 0.01 together with the
separatrix connecting two unstable fixed points as can be seen in
Fig. 7(c). The phase difference in the absence of the external force is
012, ~ —0.628 which is close to the location of the attractor of the
waves propagating to the right (the trajectory directed downward).
As aresult, the right-moving wave emerges after switching on the
external force.

5. Discussion

We have shown that the transition between entrained and
non-entrained states occurs as a Hopf bifurcation as well as a
saddle-node bifurcation. The latter is the usual behavior of the
entrainment of a limit cycle oscillation under external periodic
forcing. In the present paper, we have found, for the first time,
that a Hopf bifurcation appears in the entrainment phenomenon of
nonlinear dissipative waves. These results have been confirmed by
the theory of phase description. The main results are summarized
in the phase diagram shown in Fig. 1. It is mentioned here that the
boundary between the drift state and the trapped oscillatory state
is not so simple. For example, if one decreases the value of 2 for the
fixed value of ¢ = 0.006 the trapped oscillatory state disappears
at £ = 0.013 (although not shown in Fig. 1) but reappears for
£2 <0.002.

It is emphasized that the two phase variables are necessary to
represent the entrained and non-entrained dynamics properly. If
only one phase variable is introduced for each oscillator as an or-
dinary phase dynamics of an oscillatory system [1,2], the trapped
oscillation as shown in Fig. 2(c) cannot be obtained theoretically.
The above property inherent in the nonlinear propagating waves
has a clear distinction from entrainment of limit cycle oscillation.
When the external forcing is strong enough in the latter case, the
original limit cycle orbit is deformed substantially so that the phase
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Fig. 7. Trajectory on the 8; £ 6, plane corresponding to Eqs. (12) and (13) for ¢ = 0.004 and (a) £2 = 0.029, (b) £2 = 0.028 and (c) £2 = 0.01.

description becomes less accurate and the amplitude modulation
have to be considered. Because of the coupling between the phase
and the amplitude, an oscillatory modulation is possible [2]. How-
ever this oscillation has no relation to the trapped oscillation men-
tioned above caused by the coupling of the two phase variables.

The phase equations of motion given by Eqs. (12) and (13) are
fairly complicated. One of the reasons is that the original system
governed by Egs. (2) and (3) have solutions propagating to the right
and the left. When external forcing is absent, these two solutions
are equally possible and therefore the system is bistable. The phase
dynamics equations (12) and (13) contain this property correctly
and therefore look complicated. As displayed in Fig. 6, Egs. (12)
and (13) exhibit the non-entrained waves propagating to the same
direction as and the opposite direction to the external forcing.

In the present study, we have restricted ourselves to the case
qr = qc and varied the frequency of the external forcing §2 around
the critical value w,. In our previous paper [14], we have stud-
ied the dynamics for g # q.. It has been shown that, if g5 ~
g and 2 =~ w, the traveling waves are entrained by the ex-
ternal force. However, if the deviations of g; and £2 are large,
a wave-modulation occurs locally in space and it propagates ei-
ther to the right or to the left depending on the parameters. This
is a dynamical version of discommensuration in the commen-
surate-incommensurate transitions [15]. A trapped oscillation of
waves has also been obtained when the external frequency is sub-
stantially different from w. [14]. Therefore, it is interesting to in-
vestigate how the Bogdanov-Takens bifurcation point is extended
when gf # q.. However, this is left for a future study.
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