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a b s t r a c t

Solitons of a discrete nonlinear Schrödinger equation which includes the next-nearest-neighbor (NNN)
interactions are studied by means of a variational approximation (VA) and numerical computations. A
large family of multi-humped solutions, including those with a nontrivial intrinsic phase structure, which
is a feature particular to the system with the NNN interactions, are accurately predicted by the VA.
Bifurcations linking solutions with the trivial and nontrivial phase structures are captured remarkably
well by the analysis, including a prediction of the corresponding critical parameter values.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

It has long been known that the discrete nonlinear Schrödinger
(DNLS) equation is a relevant model for a wide range of applica-
tions including nonlinear optics (waveguide arrays), matter waves
(Bose–Einstein condensates trapped in optical lattices) andmolec-
ular biology (modeling the DNA double strand). One of the reasons
this model and its variants are relevant in many areas is the ex-
tensive range of phenomenology that the equations encompass,
including the discrete diffraction, gap solitons, Peierls–Nabarro po-
tentials, lattice chaos, Anderson localization, snaking and modula-
tion instabilities, among other effects, see the recent book [1] for a
review.

In this work we consider the DNLS equation which allows
for linear coupling to additional (than just nearest) neighbors.
Such ‘‘nonlocal’’ interactions have been studied before, and, in
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particular, solutions with a nontrivial phase distribution [2] were
identified, while a sufficiently slow decay of the interaction
strength was found to lead to bistability of the fundamental
soliton solutions [3,4]. As concerns physical realizations of such
interactions, they are relevant in models of waveguide arrays that
are aligned in a zigzag pattern [5], and in modeling the charge
transport in biological molecules [6]. For other applications of the
nonlocal DNLS systems see Ref. [2] and references therein.

The nonlocal DNLS equation has the general form

iu̇n + |un|
2un = −ϵ

−
m∈N

knmum, (1)

where un(t) is the complex discrete wave field, n is the integer
lattice coordinate, and the real parameter ϵ is the coupling
strength, the coupling matrix being composed of real symmetric
elements knm. The Hamiltonian and power,

H =

−
n∈N


1
2
|un|

4
+ ϵ

−
m∈N

knmu∗

num


, P = ‖u‖2

l2 , (2)

where ‖u(t, ·)‖2
l2 =

∑
n∈Z |un(t)|2, are conserved quantities of

Eq. (1) if the coupling matrix is symmetric. Solutions of Eq. (1) are
obviously invariant against the phase shift, un(t) ↔ un(t) exp(iβ)
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with real β ∈ R (the gauge invariance), and against the reflection
transformation, un(t) ↔ u−n(t). The case of knm = δm,n±1 − 2δm,n,
where δm,n is Kronecker’s delta-symbol, corresponds to nearest-
neighbor interactions (discrete Laplacian) of the standard DNLS
equation.

The main goal of this work is to develop an efficient variational
approximation (VA) for discrete solitons with an arbitrary width
and nontrivial phase structure, produced by Eq. (1) with the ex-
tended linear coupling. To this end, we present an ansatz that leads
to a relatively simple analysis, and yields remarkable accuracy in
describing the discrete solitons with the complex intrinsic struc-
ture. In addition to the development of the VA, we also provide an
in-depth analysis of the intricate bifurcation scenario in thismodel,
including relevant linear stability computations. Not only does this
analysis provide an interesting comparison to the traditional DNLS
model, but it also extends the existing work on DNLS equations
with extended coupling, which previously only had a limited focus
on the stability properties and emergent bifurcations.

The manuscript is organized as follows. In Section 2 we
present the equations to be solved for the computations of the
steady states, their phase condition for emergence from the anti-
continuous limit, the dynamical reduction to a four-dimensional
map, and the stability and bifurcations for the basic type of solu-
tions thatwewill consider. In Section 3wedescribe in detail the VA
employed to describe the main type of discrete solitons supported
by the next-nearest-neighbor coupling that include trivial phase
(all nodes with same or opposite phases) and nontrivial phase con-
figurations. Finally, in Section 4 we present our conclusions and
potential avenues for future work.

2. Steady-states

A natural starting point is to consider steady-state solutions, in
the form of

un(t) = φneit (3)

where amplitudes φn may be complex, and rescaling was used to
fix the frequency as 1. Upon the substitution of expression (3) into
Eq. (1), we arrive at the stationary problem

(|φn|
2
− 1)φn = −ϵ

−
m∈N

knmφm. (4)

Throughout the manuscript, we will consider the next-nearest-
neighbor (NNN) coupling as an example to illustrate salient
features of the nonlocal model. In addition, we assume that the
coupling matrix is symmetric and the lattice is uniform, hence the
NNN variant of Eq. (4) is, with obviously redefined elements of the
coupling matrix,

(|φn|
2
− 1)φn

= −ϵ(k2φn−2 + k1φn−1 + k0φn + k1φn+1 + k2φn+2). (5)

2.1. The phase condition

In the anti-continuum (AC) limit, which is defined by ϵ = 0,
solutions are defined by respective sets of excited sites (with a
nonzero field at them), taken as φn = eiθn where θn are arbitrary
phases. It was shown in Ref. [2] that the solutions initiated at the
AC limit persist, as the inter-site couplings are turned on (ϵ ≠ 0),
if the following conditions on the phases are satisfied:−
n≠m

knm sin(θn − θm) = 0. (6)

In the NNN case, Eq. (6) reduces to either

(i) sin(θn − θm) = 0, n,m ∈ {1, 2, 3} or
(ii) θ−1 − θ0 = θ0 − θ1 and cos(θ−1 − θ0) = −k1/(2k2).
In general, we consider the relative phases as trivial if they are
integer multiples of π , and nontrivial otherwise. In this sense, case
(i) is trivial and (ii) is nontrivial. If a solution is composed of trivial
relative phases, we say the solution is trivial (not to bemistaken for
the zero solution, which we ignore), and likewise for the nontrivial
case.

2.2. Dynamical reduction

Eq. (4) may be rewritten as a system of first-order difference
equations. For the NNN coupling, the fourth order recurrence
relation (5), reduces to the following four coupled first order
difference equations:

Xn+1 =
φn − |φn|

2φn

ϵ
−


Zn +

k1
k2

Yn +
k0
k2
φn +

k1
k2

Xn


,

φn+1 = Xn,

Yn+1 = φn, (7)
Zn+1 = Yn.

Discrete soliton solutions of Eq. (5) correspond to homoclinic
orbits of the fixed point at the origin, in terms of map (7).
Decay rates of the solutions are given by λ|n|, where λ is the
eigenvalue of the Jacobian of system (7) evaluated at the origin
and corresponding to the stable manifold. A detailed description
of dynamical reductions can be found in Ref. [1, Chapter 11]. For
our purposes, the only information needed from this reduction
are the decay rates. The actual computation of the manifolds
is a delicate issue, since the two-dimensional manifolds are
embedded into a four-dimensional space for real φn, and an
eight-dimensional space for complex φn. In a two-dimensional
phase space, the manifolds can be numerically computed by
iterating several points on the unstable eigenvector (respectively
stable eigenvector) through the forwardmap (respectively inverse
map) to generate the unstable (respectively stable) manifold. This
method will generally fail in higher-dimensional phase spaces due
to the existence of additional, more dominant, eigen-directions.
Although the detailed computation of the manifolds in the higher
dimensional phase spaces considered here falls outside the scope
of the present work, it would be interesting to approximate the
manifolds with an appropriate parameterized cubic polynomial
following a method similar to that developed in Ref. [7] for the
nearest-neighbor (local) DNLS.

2.3. Linear stability

The linear stability of steady states can be analyzed in the usual
way, assuming the perturbed solution as

un(t) = (φn + (vn + iwn)eλt + (v∗

n + iw∗

n)e
λ∗t)eit , (8)

which leads to the respective spectral problem,
vn − ϵ

−
m∈N

knmvm − 3|un|
2vn = −λwn,

wn − ϵ
−
m∈N

knmwm − |un|
2wn = λvn.

(9)

We are looking for nonzero eigenvectors, i.e., solutions of the
linearized system in the l2(Z,C2) space. The corresponding steady-
state solution is called unstable if there exists at least one
eigenvector for which Re(λ) > 0. The only solutions that are
stable (for sufficiently weak coupling) in the nearest-neighbor
DNLS equation are those with consecutive π phase differences
between adjacent sites [8,9]. As we explain below, the extended
coupling affects the stability (see Fig. 1).

2.4. Bifurcations

From Eq. (6) we see that in the standard nearest-neighbor
DNLS equation, only solutions with trivial phase distributions
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Table 1
Examples of trivial (a)–(e) and nontrivial (f) phase distributions referred to
throughout the text. Dashes represent non-excited sites, hence they do not carry
phase. The corresponding solutions, which have the form of φn = exp(iθn) in the
anti-continuum limit, persist for ϵ ≠ 0. Parameters are k2 = 0.6, k1 = 1.0 and
k0 = −2(k2 + k1). The n = ±1 phase values listed for (f) are approximate ones.
Their exact values are given by Eq. (6).

n −2 −1 0 1 2 Label
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Fig. 1. (Color online) Top: The power versus the coupling strength ϵ for solution of
types (a)–(e) from Table 1 for the nearest-neighbor (local) DNLS equation, i.e. with
k2 = 0, k1 = 1.0 and k0 = −2. Dashed red and solid blue lines correspond to
unstable and stable solutions, respectively. Bottom: The same branches but in the
NNN DNLS equation, here k2 = 0.6, k1 = 1.0 and k0 = −2(k2 + k1). Solution
(f) with a nontrivial phase distribution (black thicker part of the line) appears in
the latter case, with power which is very close to that of solution (e) with the
trivial phase distribution. This bifurcation can be better seen by comparing the
phases, see Fig. 4. The unlabeled (top) branch (which corresponds to initial phases
of {0, 0, π, 0, 0}) merges with the branch labeled (e) in both panels (although the
collision occurs outside the plotting region for the bottom panel).

persist for non-zero coupling. These solutions can be continued
in ϵ and gradually vanish through saddle–node bifurcations
[10],2 with only the single-site (θ0 = 0) and two-site (θ0 =

θ1 = 0) solutions persisting toward the continuum limit (with both
approaching the soliton solution of the continuous NLS equation).
This bifurcation scenario is shown in the top panel of Fig. 1 for
configurations (a)–(e) of Table 1. The extended coupling allows
for additional types of solutions with nontrivial phase patterns,
which, in the case of the NNN system, means one additional
waveform, indicated by the thick black solid line in the bottom
panel of Fig. 1. In these diagrams, the power is plotted versus
coupling strength ϵ. For this choice of parameters, the nontrivial
branch (f) and the trivial one (e) lie very close to each other,
making the identification of the bifurcation points difficult. The
role of the nontrivial-phase solutions can be better seen through
the comparison of the phases, see Figs. 4 and 6. Also, the extended
coupling modifies the stability properties of some trivial phase
solutions. For example, the branch (a) is always stable for the
nearest-neighbor interactions (see top panel of Fig. 1) while it
displays an instability window for intermediate coupling strengths
in the NNN coupling case (see bottom panel of Fig. 1), in a way
somewhat reminiscent of the findings of Refs. [3,4]. Numerical
steady states were found using a fixed-point iteration method
(Newton’s method) and the bifurcation diagrams were produced
using arclength continuation within AUTO.

3. The variational approximation

The Lagrangian of Eq. (4) is

L =

−
n∈Z


1
2
|φn|

4
− |φn|

2
+ ϵ

−
m∈S

knmφ∗

nφm


. (10)

According to the variational principle, critical points of the
Lagrangian (10) correspond to solutions of Eq. (4). This underlies
the heuristic justification of the variational approximation (VA),
whereby an ansatz (trial configuration of the wave field) with a
finite number of parameters is substituted into the Lagrangian, and
critical points are then sought for the resulting finite parameter
subspace. This approachhas long beenused in various applications,
see the review [11] and more recent works, such as Refs. [12–15].
The VA has also been used to study nonlocal interactions, see,
e.g., Ref. [4], but in the latter case only solutions initiated by a single
excited site in the AC limit, i.e., solutions of type (a) in terms of
Table 1, were studied. To the best of our knowledge, the present
work for the first time extends the VA to describe not only discrete
multi-humped solutions with arbitrary phases (with at least three
excited sites), but also ones with nontrivial phase distributions.

3.1. Trivial phase distributions

We start by considering solutions with trivial phase distribu-
tions. Our objective is to construct approximate discrete solitons
by means of a real-valued ansatz:

ψn =


Bn for n ∈ S,
A exp(−η|n + n0|) for n ∉ S, (11)

where S denotes the set of nodes between the first and last
excited lattice sites. We define the width W of the solution as the
number of elements of the set S. Parameters A and Bn represent
the amplitudes, and η is the decay rate. For solutions with odd W
(site-centered configurations) the position parameter is n0 = 0,

2 Generally, the solutions of the nearest-neighbor DNLS may disappear through
either pitchfork or saddle–node (in fact, more appropriately saddle-center)
bifurcations.
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and for even W (bond-centered configurations) it is n0 = 0.5.
Independent amplitudes Bn are necessary to describe the core of
the multi-humped solutions accurately.

Since this ansatz is genuinely discrete, is of limited smoothness
and includes a purely exponential tail, the corresponding approx-
imations will only be valid for a small coupling strength, since the
solutions become increasingly smooth (sech-like) as the contin-
uum limit is approached. The VA also tends to fail when the actual
discrete modes become too wide which is again tantamount to in-
creasingly smooth, near-continuum solutions.

Solutions with a single excited site in the AC limit are weakly
influenced by the extended coupling. For this reason, we aim to
apply the VA to the simplest solution type that ‘‘feels’’ the extended
coupling, which corresponds to W = 3. The substitution of this
ansatz into the Lagrangian and calculation of the ensuing sums
yields the effective Lagrangian

Leff =
A4

2
E0,2η − A2E0,η +

−
m∈N

ϵA2Em,ηk|m|

−

−
j∈S


B2
j (1 − B2

j /2)− ϵ

W−
n=−W

kjψ∗

nψj


, (12)

where

Ej,η ≡
e−η(2+|j|)

e2η − 1
. (13)

The Euler–Lagrange equations derived from this Lagrangian are

∂Leff

∂pi
= 0, (14)

where pi ∈ {A, Bn} are parameters of the ansatz. The equation
corresponding to varying amplitude A yields

2A3E0,2η − 2AE0,η + ϵ2A
−
m∈N

Em,ηkm + e−3ηϵ(B−1 + B1)k2

+ 2e−2ηϵ(2B0k2 + (B−1 + B1)k1) = 0, (15)

and the variation of the Bj’s yields,

B−1(B2
−1 − 1)+ ϵ


Ae−3ηk2 + Ae−2ηk1 +

−
m∈N

′

k|m|B|m|−1


= 0,

(16)

B0(B2
0 − 1)+ ϵ(2Ae−2ηk2 + k0B0 + k1(B−1 + B1)) = 0, (17)

B1(B2
1 − 1)+ ϵ


Ae−3ηk2 + Ae−2ηk1 +

−
m∈N

′

k|m|B1−|m|


= 0, (18)

where the prime over the sum indicates that them = 0 entry is to
be doubled.

Rather than performing the variation with respect to the decay
constant η, we replace it by η ≡ ln λ, where λ is the corresponding
multiplier determined by the dynamical reduction. Furthermore,
we set n0 = 0 rather than using it as a variational parameter. This
excludes asymmetric solutions, hence we can also set B1 = B−1,
further reducing the number of parameters.

Eqs. (16)–(18) pertain to the localized pattern withW = 3, but
they can be readily extended to other cases. Using these equations,
we can approximate all the solutions with trivial phases from
Fig. 1, i.e., branches (a)–(e), including the single- and double-site
solutions, see Fig. 2. Indeed, the predictions are so good that one
cannot see the differences when the bifurcation diagram based
on the VA is juxtaposed with Fig. 1. A zoom of the saddle–node
bifurcation between solutions (c) and (d) is shown in the top panel
of Fig. 3 where the differences are visible. One might expect the
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Fig. 2. Numerical solutions of Eq. (1) with trivial phase distributions (solid lines)
and the variational solutions based on ansatz (11) continued to ϵ = 0.1 (markers).
Labels (a)–(d) correspond to those in Table 1. The coupling parameters are defined
as k2 = 0.6, k1 = 1.0 and k0 = −2(k2+k1). The error ‖φ−ψ‖l2 at these parameter
values are (a) 7.4 × 10−5 , (b) 0.0009, (c) 0.002, and (d) 0.001.
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Fig. 3. Top: Zoom of the saddle–node bifurcation involving branches (c) and (d)
from the bottom panel of Fig. 1. The variational solution (the black dashed-dotted
line) predicts the bifurcation at a slightly smaller value of the coupling strength
than the numerical solution (the red dashed line). Both solutions are unstable in this
parameter region. Bottom: Plot of two pairs of isolated eigenvalues versus the arc
length of the P(ϵ) curve of the top panel. Here, zero arc length corresponds to the (c)
solution at ϵ = 0 and the end of the arc length curve corresponds to the (d) solution
at ϵ = 0. The eigenvalue pair (I) emerges from the edge of the continuous spectrum,
i.e. λ2 = −1. The eigenvalue pair (II) is responsible for the instability since it has
a positive real part (i.e. λ2 > 0) in the entire region plotted. For both panels the
coupling parameters are defined as k2 = 0.6, k1 = 1.0 and k0 = −2(k2 + k1).

(c) and (d) solution branches to have opposite stability, which
would be the case in a standard saddle–node bifurcation in a low-
dimensional model. However, due to the higher dimensionality
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corresponding to the bifurcation shown in the middle panel is labeled I. However, due to the emergence of a second real eigenvalue pair (II), the solution (e) is unstable in all
of the parameter region shown. The corresponding spectral picture for the solution (f) is similar, but without the curve I. Thus, solution (f) becomes unstable at ϵ ≈ 0.098.
of the DNLS model considered here, there will be additional
eigenvalues that could affect the stability character of the solution.
Indeed, for the (c) and (d) solutions there are two pairs of isolated
eigenvalues (and one pair at the origin). One of these pairs moves
along the imaginary axis and becomes real (see curve (I) of the
bottom panel of Fig. 3) for some critical value of ϵ. However, due
to the existence of the other pair of eigenvalues (see curve (II)),
which has non-zero real part in the parameter region shown, both
solutions are unstable.

It is obvious that ansatz (11) can only capture solutions with
the trivial phase structure, as it is real-valued. Nonetheless, it
is informative to inspect the AC limit in the framework of the
variational equations to see what types of solutions are candidates
to be approximated. With ϵ = 0 the equations reduce to A = 0
and Bj(B2

j − 1) = 0 such that the corresponding VA solutions
coincide exactly with solutions of the full problem (4) with the
phases given by either 0 or ±π , as expected. The fact that the VA
and full solutions match at ϵ = 0 follows from the choice of the
ansatz. This is not the case if the standard ansatz, based on the
exponential cusp with the single central point is used, cf. Ref. [16].

3.2. Nontrivial phase distributions

In order to capture solutions with nontrivial phases, a phase
profile must be added to the ansatz. To motivate our choice, we
look closer at the solutions with nontrivial phases. Similarly to
the trivial-phase ansatz (11), we separate the initially excited
sites from the others. The outer part of the solution should have
exponential decay, but with a varying phase. In the left panel of
Fig. 4 the phases of the numerically found nontrivial solution (f)
for ϵ = 0.1 are plotted against the lattice coordinate. A precise
description of each phase would make the ansatz too complex,
leading to intractable sums in the effective Lagrangian. However, it
is clear that the solutionwill be an exponentially localized one, and
a coarse approximation for the phasesmay be sufficient. Therefore,
motivated by Fig. 4,we assume a constant phase, κ−1, for n < 0 and
another constant phase, κ1, for n > 0. For the core of the solution,
one might introduce the number of additional phase parameters
equal to W , one per each site, but, aiming to keep the number of
parameters reasonably low, we make the following observations
based on the dependence of the phases for the core sites as a
function of ϵ (see middle panel of Fig. 4). We have observed that
the phase at the central site (n = 0) stays almost constant as the
coupling is turned on and the difference between the other points
in the core (n = ±1) are θ±1(ϵ) ≈ θ0

±1±b, where θ0n is the phase at
the n-th site in the AC limit, and b is a constant which depends on
parameters of the system (see themiddle panel of Fig. 4). Therefore,
for the nontrivial-phase solution with width W = 3 we adopt the
following ansatz,
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ψn =


A exp(iκ−1) exp(−η|n|) for n < −1,
B exp(i(φ0

−1 − b)) for n = −1,
C exp(iφ0

0) for n = 0,
B exp(i(φ0

1 + b)) for n = 1,
A exp(iκ1) exp(−η|n|) for n > 1,

(19)

where real parameters A, B, C represent the amplitude, and the
phases are represented by κ±1 and b. As before, η is determined
via the dynamical reduction. We also present in the right panel of
Fig. 4 the instability eigenvalues for the trivial phase solution (e). As
can be seen from this panel, if it was not for the eigenvalue pair (II),
this solution would gain stability after collision with the nontrivial
phase solution (f) for ϵ > 0.25. In particular, this eigenvalue plot
in conjunction with the middle panel of the figure illustrating the
phases of the different branches clearly showcases the existence of
a subcritical pitchfork bifurcation, which leads to the termination
of the nontrivial phase branch (f). The profiles of the (e) and (f)
solutions are shown in Fig. 5.
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The effective Lagrangian corresponding to the nontrivial-phase
ansatz is the same as in the case of the solution with the trivial
phases, with the exception thatψ appearing in Eq. (14) will be the
one of Eq. (19) and with B±1 = B and B0 = C .

The variation of the effective Lagrangian with respect to the
parameters A, B, C, κ−1, κ1 and b yields, respectively,

0 = −2AE0,η + Bϵ(k1e−2η
+ k2e−3η)(cos(r−)+ cos(r+))

+ ϵe−2ηCk2(cos(κ−1 − θ00 )+ cos(κ1 − θ00 ))

+ 2ϵA
−
m∈S

Em,ηkm + 2A3E0,2η, (20)

0 = ϵBk2 cos(θ0−1 + 2b − θ01 )+ ϵ(Ck1(cos(s−)+ cos(s+))
+ A(cos(r−)+ cos(r+))(k1e−2η

+ k2e−3η))

+ B(B2
− 1)+ ϵBk0, (21)

0 = ϵ(Ck0 + Bk1(cos(s−)+ cos(s+))
+ Ak2e−2η(cos(θ00 + κ−1)+ cos(−θ00 + κ1)))

+ C(C2
− 1), (22)

0 = ϵA(Ck2e−2η sin(κ−1 − θ00 )

+ B sin(r−)(k1e−2η
+ k2e−3η)), (23)

0 = ϵA(Ck2e−2η sin(κ1 − θ00 )

+ B sin(r+)(k1e−2η
+ k2e−3η)), (24)

0 = ϵB(2A(sin(r+)− sin(r−))(k1e−2η
+ k2e−3η)

− 4k2B sin(θ00 + 2b − θ0
−1))

− ϵBCk1(sin(s+)− sin(s−)), (25)

where r−
≡ κ−1 −b−θ0

−1, r
+

≡ κ1 +b−θ01 , s
−

= −θ0
−1 −b+θ00 ,

and s+ = −θ01 + b + θ00 . These equations reduce to those for
the trivial-phase solutions, displayed in the previous section for
κ±1 = 0 and b = θ01 . To look at the bifurcation between the trivial-
and nontrivial-phase solutions (e) and (f) in another way, we can
vary the outer coupling parameter k2 in Eq. (5), while keeping ϵ
fixed. As mentioned before, it is easier to identify the bifurcation
through the comparison of phases, thereforewe consider the phase
difference 1θ = θ0 − θ1, which has the advantage of being
independent of any constant phase (since the solutions are gauge
invariant). The agreement between the numerically exact solution
and the one based on the VA is quite remarkable, see Fig. 6. In this
figure, themirror symmetric nontrivial phase solution (i.e., the one
with opposite relative phases) has been omitted.

Using these variational equations, it is possible to approximate
the bifurcation point of Fig. 6, which connects solutions (e) and
(f), without actually solving Eqs. (20)–(25). Making use of the
approximations κ1 = −κ−1 and κ−1 = (b + θ−1)/2 and Taylor-
expanding Eq. (23) leads to

κ−1 ≈ ±


B(k1e−2η + k2e−3η)− 2Ck2e−2η

B(k1e−2η + k2e−3η)/12 − 2Ck2e−2η/96
, (26)

or κ−1 = 0. Using values of B and C obtained from the (much
simpler) Eqs. (15)–(18), we thus produce an accurate prediction
of the bifurcation, avoiding the need to solve the full system of
Eqs. (20)–(25), since all terms in Eq. (26) are known. The right hand
side of Eq. (26) vanishes at k2 ≈ 0.538, which is close the actual
bifurcation value of k2 ≈ 0.551 in Fig. 6. This is an improvement in
comparison to the prediction based on Eq. (6), which is k2 ≈ 0.5.
The deviation from the latter simple leading order prediction can
be justified by the use of ϵ = 1, whereas the derivation of Ref. [2]
was valid for small ϵ.

As a final example, we will briefly consider a four-site solution
(W = 4). See Fig. 7 for examples of such solutions. The corres-
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Δθ

(e)

(f)

–3.2

–2.7

–3.1

–3

–2.9

–2.8

k2

Fig. 6. Phase difference 1θ = θ0 − θ1 for the numerical (red dashed curve) and
variational (black dashed-dotted curve) solutions for branches (e) and (f) versus
the outer-coupling parameter k2 . The remaining parameters are defined as ϵ =

0.1, k1 = 1.0 and k0 = −2(k2 + k1). The bifurcation here is of the pitchfork type,
with the mirror-symmetric partner of (f) connecting with solution (e) as well.
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Fig. 7. The real (top row) and imaginary (middle row) parts and intensity (bottom
row) of the four-site trivial-phase solutions (g) and (i), which are connected through
the nontrivial phase solution (h).

ponding even counterpart of ansatz (19) is

ψn =



A exp(iκ−1) exp(−η|n + n0|) for n < −1
B exp(i(φ0

−1 − b)) for n = −1
C exp(i(φ0

0 − c)) for n = 0
C exp(i(φ0

1 + c)) for n = 1
B exp(i(φ0

1 + b)) for n = 2
A exp(iκ1) exp(−η|n + n0|) for n > 2,

(27)

where n0 = 0.5. The effective Lagrangian corresponding to ansatz
(27) is the same as the trivial-phase one, with the exception that
once again the ψ appearing in Eq. (14) will be of the form of
Eq. (27), with B−1 = B2 = B, B0 = B1 = C , and

Ej,η =
e−η(2+|j|+2n0) + e−η(4+|j|+2n0)

e2η − 1
. (28)
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Fig. 8. (Color online) Top: Plots of the phases differences 1θ1 = θ1 − θ0 and
1θ2 = θ2 − θ1 of solutions (g)–(i). At this resolution the difference between
the variational and numerical curves cannot be seen. Solution (h) undergoes two
stability changes in the parameter region shown here (dashed red and blue solid
lines show the unstable and stable families, respectively). Bottom: Zoom of the
circled area showing the discrepancy between the variational approximation (black
dashed-dotted lines) and numerically generated curves (red dashed lines).

The extra term e−η(4+|j|+2n0) appearing in the expression for Ej,η
for the solutions with the even width is due to the fact that
the summation in the Lagrangian is no longer symmetric about
the zero site. The variations with respect to the parameters
A, B, C, κ−1, κ1, b and c yield, respectively,

0 = A3E0,2η − AE0,η + ϵA
−
m∈S

Em,ηkm

+ ϵB(k1e−η(2+n0) + k2e−η(3+n0)) cos(r−

b )

+ϵB(k1e−η(3+n0) + k2e−η(4+n0)) cos(r+

b )

+ ϵCk2e−η(2+n0) cos(r−

c )+ ϵCk2e−η(3+n0) cos(r+

c ), (29)

0 = 2B(B2
− 1)+ 2ϵBk0 + ϵCk1(cos(s−c )+ cos(s+c ))

+ ϵCk2(cos(s−b )+ cos(s+b ))+ ϵA(cos(r−

b )k1e
−η(2+n0)

+ cos(r−

b )k2e
−η(3+n0) + cos(r+

b )k1e
−η(3+n0)

+ cos(r+

b )k2e
−η(4+n0)), (30)

0 = 2C(C2
− 1)+ ϵB(k1 cos(s−c )+ k1 cos(s+c )+ k2 cos(s−b )

+ k2 cos(s+b ))+ 2ϵCk0 + 2ϵCk1 cos(θ0 + 2c − θ1)

+ ϵAk2(e−η(2+n0) cos(θ0 − κ−1 + c)
+ e−η(3+n0) cos(θ1 − κ1 − c)), (31)

0 = ϵA(Ck2e−η(2+n0) sin(κ−1 − θ00 − c))
+ B sin(r−

b )(k1e
−η(2+n0) + k2e−η(3+n0)), (32)

0 = ϵA(Ck2e−η(3+n0) sin(κ1 − θ1 + c))
+ B sin(r+

b )(k1e
−η(3+n0) + k2e−η(4+n0)), (33)

0 = −ϵBC(k2 sin(s−b )+ k2 sin(s+b )+ k1 sin(s+c )+ k1 sin(s−c ))
+ ϵBA(sin(r−

b )k2e
−η(3+n0) − sin(r+

b )k2e
−η(4+n0)

− sin(r+

b )k1e
−η(3+n0) + sin(r−

b )k1e
−η(2+n0)), (34)

0 = −ϵCB(k2 sin(s−b )+ k2 sin(s+b )− k1 sin(s+c )− k1 sin(s−c ))
− 2k1ϵC2 sin(θ0 − 2c − θ1)

+ ϵAC(sin(r−

c )k2e
−η(2+n0) − sin(r+

c )k2e
−η(3+n0)), (35)

where r−

b ≡ κ−1 − b − θ−1, r+

b ≡ κ1 + b − θ2, r−
c ≡ κ−1 − c − θ0

and r+
c ≡ κ1 + c − θ1, s−b ≡ θ−1 − θ1 + c + b, s+b ≡ θ0 −

θ2 + c + b, s−c ≡ θ1 − θ2 − c + b, s+c ≡ θ−1 − θ0 − c + b.
Although it is not the goal of this work to provide for a list of
every possible bifurcation scenario, it is worth mentioning that
nontrivial-phase solutions connect various types of phase-trivial
ones. For example, as depicted in Fig. 8, the nontrivial solution
(h) connects the phase-trivial ones (g) and (i), with k2 treated as
the bifurcation parameter. Solution (g), with phases differences
{1θ1,1θ2} = {−π,−π}, bifurcates at k2 ≈ 0.345, where the
nontrivial-phase solution (h) emerges. The phase differences of
solution (h) change as k2 varies. At k2 ≈ 0.894, solution (h) collides
with and is annihilated by the trivial-phase solution (i), which has
phase differences {1θ1,1θ2} = {0,−π}. i.e., the phenomenology
involves a supercritical pitchfork (in the bifurcation parameter k2)
for the emergence of the nontrivial phase branch (h) from (g) and a
subcritical pitchfork which results from the collision of (g) with (i).
This is similar to how asymmetric solutions connect solutions of
varying width in DNLS equations with higher-order nonlinearities
[14,17–20] with the exception that the overall (in)stability of the
trivial-phase solutions is not affected by collision with nontrivial-
phase solutions.3 The nontrivial-phase solution itself undergoes a
stability change, as can be seen in the top panel of Fig. 8. The VA
captures this scenario remarkably well. Indeed, in the top panel
of Fig. 8, the difference between the numerical and variational
solutions cannot be spotted. Actually, a very strong zoom around
the bifurcation point is needed to depict the difference (see bottom
panel) and the relevant error in the identification of the critical
point is less than 0.4%.

4. Conclusions

We have revisited discrete nonlinear Schrödinger (DNLS)
models with extended linear couplings in the lattice, developing a
new version of the variational approximation (VA) for the models
of this type. Using an ansatz that coincides with exact solutions
in the anti-continuum limit, we were able to accurately describe,
for the first time, multi-humped solutions, including those with
nontrivial phase structures, and the bifurcations linking different
species of the discrete solitons. Pitchfork bifurcations connecting
the solutions with the nontrivial and trivial phase structures
were identified, for which the VA was successful in predicting,
thus demonstrating its reliability. In particular, the strength of
VA analysis is that it provides simple formulas to predict such
bifurcation points. Like in other settings where the VA is used,
a precise evaluation of the validity of this approximation is an
open question, therefore we relied on the direct comparison with
numerical solutions of the full problem. It was found that the
accuracy of the VA is quite good for small lattice coupling strength.

There remain several other open problems concerning next-
nearest-neighbor DNLS equations, such as how to compute the
stable manifolds in terms of the dynamical reduction, or what
the appropriate continuum-limit counterparts of these models are
and what modifications to the existence and spectral properties
of the solitary waves the long-range kernels may induce more
generally. As concerns the VA, its time-dependent version can
be also used to predict the linear stability of the solutions, see
Refs. [11,14], which may be another direction for the development
of the analysis reported in this work. Finally, bearing inmind some
of the important consequences of long-range interactions in higher
dimensions, such as the stabilization of unstable vortices among
others [21], consideration of such questions in the discrete realm
is a theme of particular interest in its own right.
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