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In this paper we study the Lorenz equations using the perspective of the Conley index theory. More
specifically, we examine the evolution of the strange set that these equations posses throughout the
different values of the parameter. We also analyze some natural Morse decompositions of the global
attractor of the system and the role of the strange set in these decompositions. We calculate the
corresponding Morse equations and study their change along the successive bifurcations. We see how
the main features of the evolution of the Lorenz system are explained by properties of the dynamics
of the global attractor. In addition, we formulate and prove some theorems which are applicable in
more general situations. These theorems refer to Poincaré-Andronov-Hopf bifurcations of arbitrary
codimension, bifurcations with two homoclinic loops and a study of the role of the traveling repellers
in the transformation of repeller-attractor pairs into attractor-repeller ones.
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1. Introduction

Edward N. Lorenz studied in the 1960s a simplified model of
fluid convection dynamics in the atmosphere [1]. This model is
described by the following family of differential equations, now
known as the Lorenz equations,
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where o, r and b are three real positive parameters correspond-
ing respectively to the Prandtl number, the Rayleigh number and
an adimensional magnitude related to the region under consid-
eration. As we vary the parameters, we change the behavior of
the flow determined by the equations in R>. The values o = 10
and b = 8/3 have deserved special attention in the literature. We
shall fix them from now on, and we shall consider the family of
flows obtained when we vary the remaining parameter, r.

Based on numerical studies of these equations, Lorenz found
sensitive dependence on initial conditions and he emphasized the
importance of this property in the study of natural phenomena,
observing that, even in simple models, trajectories are sensitive to
small changes in the initial conditions. He was able to prove that
for every value of the parameter r there is a bounded region (an
ellipsoid) where every trajectory eventually enters and never
thereafter leaves. As a consequence, the existence of a global
attractor £2 of zero volume is established. This attractor is the
intersection of the successive images of the ellipsoid by the flow
for increasing times and should not be confused with the famous
Lorenz attractor, which is a proper subset of £2.
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Afraimovic¢, Bykov and Sil'nikov [2], Williams [3] and Guck-
enheimer and Williams [4] constructed and studied a geometric
model of the system based on the numerically-observed fea-
tures of the solutions of the Lorenz system. From this model,
the existence of a robust attractor can be derived. Tucker [5,6]
proved that, in fact, the Lorenz equations define a geometric
Lorenz flow and, as a consequence, they admit an attractor.
In [7] it is proved that this attractor is mixing. Tucker’s results
were preceded by Mischaikow and Mrozek [8,9] and Mischaikow,
Mrozek and Szymczak [10] who gave a computer-assisted proof
of the existence of chaos in the Lorenz equations. An important
contribution to the study of the equations is the book [11] by
Sparrow. This book was written long before Tucker’s work was
available and some of the global statements made in it are only
tentative. However, except for a few details, they have proved
to agree with Tucker’s results. The topological classification of
the Lorenz attractors (for different parameter values) can be
found in the paper [12] by D. Rand. A recent study of the global
organization of the phase space in the transition to chaos in the
Lorenz system can be found in the recent paper [13] by Doedel,
Krauskopf and Osinga (see also [14,15]). See also [16,17] by R.
Barrio and S. Serrano for related results. An additional reference
is the book [18], where the elements of a general theory for
flows on three-dimensional manifolds are presented. The main
motivation for this theory was, according to the authors, the
Lorenz equations.

The present paper is devoted to the study of the Lorenz equa-
tions, using the perspective of the Conley index theory. More
specifically, we examine the evolution of the strange set that
these equations posses throughout the different values of the
parameter. We also analyze some natural Morse decompositions
of the global attractor of the system and the role of the strange set
in these decompositions. We calculate the corresponding Morse
equations and study their change along the successive bifurca-
tions. We see how the main features of the evolution of the
Lorenz system are explained by properties of the dynamics of
the global attractor. Particular importance is given to the evo-
lution through the preturbulent stage, just before the strange
set becomes an attractor. It is proved that the transition from
the preturbulent stage of the system to the turbulent one is
marked by a change in the internal dynamics of the strange
set, namely, an attractor-repeller splitting of the strange set,
which is present at the preturbulent stage, ceases to exist at the
turbulent stage. On the other hand, we see that the evolution
of the system from the homoclinic bifurcation to the Hopf bi-
furcation corresponds to a transformation of a repeller-attractor
decomposition of the global attractor into an attractor-repeller
one. This transformation is achieved via a “traveling repeller”.
The purpose of the paper is to give a global vision from both
the dynamical and the topological perspectives and, based on the
features of the Lorenz equations, formulate and prove some the-
orems which reach well beyond the scope of these equations and
are applicable in more general situations. These theorems refer to
Poincaré-Andronov-Hopf bifurcations of arbitrary codimension,
bifurcations with two homoclinic loops and a study of the role of
the traveling repellers in the transformation of repeller-attractor
pairs into attractor-repeller ones.

2. Preliminaries

Through the paper we deal with families of flows ¢; : R" x
R — R" depending continuously on a parameter A € [0, 1].
In some occasions we assume that these families are induced
by families of ODE's X = F,(X) depending differentiably on the
parameter. In this case, it will be implicit that, for each A, F; is a
C! map.

Trajectories, limit sets and stability

The main reference for the elementary concepts of dynamical
systems will be [19] but we also recommend [20-23].

Let ¢ : R" xR — R" be a flow. Sometimes we write xt instead
of ¢(x, t) in order to simplify the notation.

We shall use the notation y(x) for the trajectory of the point
X, i.e.

y(x)={xt | t € R}.

Similarly for the positive semi-trajectory and the negative semi-
trajectory

yTX)={xt|teR?), y (x)={x|teR ).

By the omega-limit of a point x we understand the set

w(X) = mx[t, 00).

t>0

In an analogous way, the negative omega-limit is the set

" (x) = [ |x(—o0, TI.
t<0

We recall that if w(x) (resp. w*(x)) is compact then it must be
connected.

Attractors

In the literature there are many different definitions of at-
tractor as it has been pointed out by Milnor [24]. Among the
definitions treated by Milnor we shall use that of an asymp-
totically stable compactum. An invariant compactum K is stable
if every neighborhood U of K contains a neighborhood V of K
such that V[0, oo) C U. Similarly, K is negatively stable if every
neighborhood U of K contains a neighborhood V of K such that
V(—o00,0] C U.

The compact invariant set K is said to be attracting provided
that there exists a neighborhood U of K such that @ # w(x) C K,
for every x € U, and repelling if there exists a neighborhood U of
K such that ¥ # w*(x) C K for every x € U.

An attractor (or asymptotically stable compactum) is an attract-
ing stable set and a repeller is a repelling negatively stable set. We
stress the fact that stability (positive or negative) is required in
the definition of attractor or repeller.

If K is an attractor, its region (or basin) of attraction of K is
the set

AK)={xe M | ¥ # o(x) C K}.
It is well known, that A(K) is an open invariant set. If in particular
A(K) is the whole phase space we say that K is a global attractor.

Dissipative flows

Let M be a non-compact, locally compact metric space. A flow
¢ : M x R — M is dissipative provided that for each x € M,
w(x) # ¥ and the closure of the set

20p) = J o)
xeM
is compact.

The dissipativeness of ¢ is equivalent to the existence of a
global attractor or, equivalently, to {oo} being a repeller for the
flow extended to the Alexandroff compactification of M, leav-
ing oo fixed. This was proved by Pliss [25]. Dissipative flows
have been introduced by Levinson [26]. An interesting reference
regarding dissipative flows is [27].
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Isolated invariant sets and isolating blocks

An important class of invariant compacta is the so-called iso-
lated invariant sets (see [28-30] for details). These are compact
invariant sets K which possess an isolating neighborhood, i.e. a
compact neighborhood N such that K is the maximal invariant
set in N.

A special kind of isolating neighborhoods will be useful in the
sequel, the so-called isolating blocks, which have good topological
properties. More precisely, an isolating block N is an isolating
neighborhood such that there are compact sets N\, N° C 9N,
called the entrance and the exit sets, satisfying

(1) 8N = N'UN°;

(2) for each x € N there exists ¢ > 0 such that x[—&, 0) C
M \ N and for each x € N° there exists § > 0 such that
x(0,8] C M\ N;

(3) for each x € AN\ N' there exists ¢ > 0 such that x[—¢, 0) C
N and for every x € dN \ N° there exists § > 0 such that
x(0,8] C N.

These blocks form a neighborhood basis of K in M. If the flow is
differentiable, the isolating blocks can be chosen to be manifolds
which contain N' and N° as submanifolds of their boundaries and
such that 3N’ = 9N° = N' N N°.

Hartman-Grobman blocks and complex invariant manifolds

LetX = F(X) an ODE defined in R" and let ¢ be the (local) flow
induced by this vector field. Suppose that X = F(X) possesses
a hyperbolic fixed point p and let ¢, the flow induced by the
linearization Y = dF(p)Y of X = F(X). Then, Hartman-Grobman
Theorem (see [31, Chapter 2, pg. 120] or [32, Theorem I1.3, pg. 53])
ensures that there exist neighborhoods U of p and V of 0 in R" and
a homeomorphism h : U — V such that h(p(x, t)) = ¢.(h(x), t)
if o(x, [0, t]) C U. Let § > 0 be such that the closed ball Bs(0) of
radius & centered at O is contained in V. Notice that Bs(0) is an
isolating block of {0} for ¢, if the norm of R" is chosen properly.
Then, it follows that h~'(Bs(0)) is an isolating block of {p} for ¢.
We shall call this kind of blocks Hartman-Grobman blocks of the
hyperbolic fixed point {p}.

Consider an ODE X = F(X) defined in R> and let p be a
hyperbolic fixed point having one negative eigenvalue B and
two complex conjugated eigenvalues u £ vi with © < 0. Let
Y = dF(p)Y be the linearization of X = F(X), E the invariant
2-dimensional subspace associated to the complex eigenvalues
and § > 0 such that Bs(0) C V. We call local complex invariant
manifold of p to the positively invariant open 2-disk Loc W =
h~Y(ENB;(0)). The complex invariant manifold of p is defined as the
set of points whose forward trajectory eventually enters Loc W€,
ie.

W€ = {x e R® | xt € Loc W€ for some t > 0}.

Algebraic topology and shape theory

We use some topological notions through this paper. We rec-
ommend the books of Hatcher and Spanier [33,34] to cover this
material. We use the notation H* for Cech cohomology. We con-
sider cohomology taking coefficients in Z. We recall that Cech and
singular cohomology theories agree on polyhedra and manifolds
and, more generally, on ANRs.

If a pair of spaces (X, A) satisfies that its cohomology H*(X, A)
is finitely generated for each k and is non-zero only for a finite
number of values of k (as it happens if (X, A) is a pair of compact
manifolds), its Poincaré polynomial is defined as

Pi(X.A) =Y rtkH (X, A)*.
k>0

There is a form of homotopy which has proved to be the
most convenient for the study of the global topological properties
of the invariant spaces involved in dynamics, namely Borsuk’s
homotopy theory or shape theory, introduced and studied by Karol
Borsuk. We are not going to make a deep use of shape theory but
we recommend to the interested reader the books [35-37] for
an exhaustive treatment of the subject, and the papers [38-45]
for a short comprehensive introduction and some applications to
dynamical systems. We only recall that shape theory and homo-
topy theory agree when dealing with manifolds, CW-complexes
or, more generally, ANRs and that Cech cohomology is a shape
invariant.

Conley index

Let K be an isolated invariant set. Its Conley index h(K) is
defined as the pointed homotopy type of the topological space
(N/N°, [N°]), where N is an isolating block of K. A weak version of
the Conley index which will be useful for us is the cohomological
index defined as CH*(K) = H*(h(K)). It can be proved that
CH*(K) = H*(N, N°). Our main references for the Conley index
theory and its applications are [28,46-49]. In addition, some
applications of the Conley index theory to the study of the Lorenz
equations can be seen in [50-52].

Morse decompositions and equations

We recall that if K is a compact invariant set, the finite collec-
tion {My, ..., M,} of pairwise disjoint invariant subcompacta of
K is a Morse decomposition if it satisfies that

n
for each x € (K \ UM,-) ,  o(x) C Mj and o*(x) C My
i=1
withj < k.

Each set M; is said to be a Morse set.

Given a Morse decomposition {M;, My, ..., My} of an isolated
invariant set K, there exists a polynomial Q(t) whose coefficients
are non-negative integers such that

Zpt(h(Mi)) = P(h(K)) + (1 +1)Q(t).
i=1

This formula, which relates the Conley indices of the Morse
sets with the Conley index of the isolated invariant set is known
as the Morse equations of the Morse decomposition and it gener-
alizes the classical Morse inequalities.

Hausdorff distance

Let X be a complete metric space with metric d and consider
the hyperspace H(X) whose elements are the non-empty subcom-
pacta of X. We recall that the Hausdorff distance in #(X) is defined
as

dy(A,B) =infle > 0| BC A, and A C B},

where A, and B, denote the open e-neighborhoods of A and B,
with respect to the metric d, respectively. For more information
about the Hausdorff distance and its properties we recommend
de book [53].
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Continuations of isolated invariant sets

In this paper the concept of continuation of isolated invariant
sets plays a crucial role. Let M be a locally compact metric space,
and let ¢, : M x R — M be a parametrized family of flows
(parametrized by A € [0, 1], the unit interval). The family (K )¢,
where | C [0, 1] is a closed (non-degenerate) subinterval and,
for each A € J, K, is an isolated invariant set for ¢, is said
to be a continuation if for each Ay € ] and each N,, isolating
neighborhood for K, there exists § > 0 such that N, is an
isolating neighborhood for K; for every A € (Ag — 68,20 +38)N]J.
We say that the family (K; ),¢ is a continuation of K, for each
ro €.

Notice that [48, Lemma 6.1] ensures that if K, is an isolated
invariant set for ¢, , there always exists a continuation (K,\)Aejxo
of K;,, for some closed (non-degenerate) subinterval Ay € J,, C
[0, 1].

There is a simpler definition of continuation based on [48,
Lemma 6.2]. There, it is proved that if ¢, : M x R — M is a
parametrized family of flows and if Ny and N, are isolating neigh-
borhoods of the same isolated invariant set for ¢,,, then there
exists § > 0 such that Ny and N, are isolating neighborhoods for
@y, for every A € (Ao — 8, Ao +8) N [0, 1], with the property that,
for every A, the isolated invariant subsets in Ny and N, which have
N; and N, as isolating neighborhoods coincide.

Therefore, the family (Kj )¢, with K, an isolated invariant set
for ¢,, is a continuation if for every Ao € J there are an isolating
neighborhood N, for K;, and a § > 0 such that N, is an isolating
neighborhood for K, for every A € (Ao — 8, Ag +8) N J.

Notice that, since this should not lead to any confusion, some-
times we will only say that K;, is a continuation of K, without
specifying the subinterval J C [0, 1] to which the parameters
belong.

We shall make use of [54, Theorem 4] which states that if K
is an attractor for ¢,, and (K; )¢ is a continuation of K;, then
there exists § > 0 such that K;,_ is an attractor of the same shape
of K, for A € (Ag — 8,20 +8)NJ.

3. Generalized pitchfork bifurcations

We shall use along the paper some facts about the Lorenz
equations which can be found in the existing literature. We
recommend, in particular, the book by Sparrow [11].

For r < 1 the origin is a global attractor (this includes r =
1 although for r = 1 there are two negative eigenvalues and
the third is equal to zero). For r > 1 there are two additional
singularities C; and C, which are attractors until r = 24.74
(when a Hopf bifurcation takes place). For r > 1 the origin is
a hyperbolic fixed point with a two-dimensional stable manifold
and a one-dimensional unstable manifold. All the points not lying
in W*(0) are attracted by C; or G, until the value r = 13.926,
when a homoclinic bifurcation takes place. For all r with 1 <
r < 13.926, the unstable manifold of 0 consists of two orbits
attracted by C; and C, respectively, together with 0. Hence, at
r = 1, a pitchfork bifurcation takes place in the origin, which is
an attractor for r = 1 and becomes a hyperbolic non stable fixed
point for r > 1. We summarize the discussion in the following
statement:

- For r < 1 the origin is a global attractor and for r > 1 it becomes
a hyperbolic fixed point with a two-dimensional stable manifold and
a one-dimensional unstable manifold.

This is a particular example of a phenomenon which can be
studied in a more general form in R" with an arbitrary distribu-
tion of positive and negative eigenvalues. There are two extreme

cases: (a) when the origin becomes a hyperbolic point with di-
mension of W*(0) equal to 1 (which is the current situation with
n = 3) and (b) when the origin becomes a hyperbolic point
with dimension of W*(0) equal to n or, in other words, the origin
becomes a repeller. The second case has been called a generalized
Poincaré-Andronov-Hopf bifurcation [51,55]. We would like to
study in detail this phenomenon for arbitrary dimension of W*(0)
because, when it takes place, an interesting invariant object is
created near the origin, namely an attractor with the Borsuk
homotopy type (or shape) of a sphere of dimension one unit less
than the dimension of W¥(0).

In order to state our next result, we must introduce first a
definition which is applicable in the following situation: Let ¢, :
R" x R — R" be a family of flows induced by a system X = F,(X)
of ODE in R" which depend differentiably on a parameter A €
[0, 1] and suppose that 0 is an equilibrium for every A. Suppose,
additionally, that 0 is an attractor for A = 0 and a hyperbolic
fixed point with exactly k positive and n — k negative eigenvalues
for A > 0 (hence, W;(0) is an immersed (n — k)—dimensional
manifold). We say that the family is rigid at A = 0 if there
is an ¢ > 0 arbitrarily small and a A, > 0 such that every
trajectory of W;(0) other than 0 leaves B(0) in the past and the
pair (B.(0), B.(0) N W;(0)) is homeomorphic to the pair (B, By—)
(the unit closed balls of dimensions n and (n — k) respectively)
for every A with 0 < A < .. Rigidity is a kind of uniformity
condition for the local stable manifolds (which are known to be
topological (n — k)—balls), which prevents them from collapsing
immediately after A = 0 (it is not difficult to describe situations
where that phenomenon occurs).

In the case of the Lorenz system immediately after the pitch-
fork bifurcation (r > 1), the stable manifold W*(0) of the origin
can be regarded, at least near the origin, as a plane, the plane as-
sociated with the two negative eigenvalues of the flow linearized
near the origin (see [11, p. 13]). Thus, for ¢ sufficiently small,
every trajectory other than 0 leaves B,(0) in the past and the pair
(B.(0), B.,(0) N W*(0)) is homeomorphic to the pair (B3, B,) for all
values of the parameter sufficiently close to r = 1. Hence the
Lorenz system is rigid at the value of the pitchfork bifurcation.

Theorem 1. Let ¢, : R" x R — R" be a family of flows induced
by a system X = F.(X) of ODE in R" depending differentiably on
a parameter A € [0, 1] and suppose that 0 is an equilibrium for
every A. Suppose that {0} is an attractor for ». = 0 and a hyperbolic
fixed point with exactly k positive and n — k negative eigenvalues
for A > 0. We assume that W;(0) is rigid at . = 0. Then there
exists a Ao > 0 such that for every A with 0 < A < \q there
exists an attractor A, with the Borsuk homotopy type (shape) and
the cohomology of the sphere S*=1. The Conley index of A, is the
homotopy type of (S¥=1 U {x}, %) and its cohomological Conley index
is Z fori =0,k — 1 and {0} otherwise if k > 1 and Z® Z for i = 0
and {0} otherwise if k = 1. Moreover, the family A, shrinks to 0O
when A — 0 (in particular, if k = 2 we have a family of attractors
with the shape of S! shrinking to 0). Moreover, the attractor A,
is contained in an attractor K; of trivial shape which contains the
origin and such that (A,, {0}) is an attractor-repeller decomposition
of K;, whose Morse equations are

14+t 4tk =141+ o)k

The family (K, ) also shrinks to 0. In the particular case of the Lorenz
flow, A, consists of two equilibria, i.e. Ay, = S° and K, is the union
of A, with the unstable manifold of the origin i.e. K; ~ By and the
Morse equations are

24 t=1+(1+1).
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Proof. Since {0} is an attractor of ¢; for A = O, there is a
continuation (K; ) of {0}, where K, is an attractor of trivial shape
of ¢, for A sufficiently small [54, Theorem 4]. Since K, is the
maximal invariant set of ¢, in a neighborhood of 0 and O is an
equilibrium of ¢, we have that 0 € K;. We define A, = K, \W}(0).
First we see that W;(0) C K,. Otherwise, there exists a point
x € W}(0) such that x ¢ K; and we arrive at a contradiction as
follows. Notice that x must be in the region of attraction .4, (Kj)
of K, since 0 € K, and A4,(K;) is a neighborhood of K;, which
implies that xt must be in A, (K;) \ K, for certain negative value
of t. Since A, (K;) \ K is invariant, the whole trajectory of x is
in A4;(K;) \ K, and, hence, ¥ # w;(x) C K,. In addition, since
x € W}(0), w*(x) = {0} C K,. As a consequence, K, U ¢;(x, R)
is a compact invariant set contained in A;(Kj ). This contradicts
the stability of K;, since K, being stable, must be the maximal
compact invariant set contained in its region of attraction. We
shall see now that A, is compact. Since (K; ) is a continuation of
{0} we have that K, C B.(0) for 0 < A < Xo where ¢ > 0
is chosen using the rigidity of W;(0). If A, is not compact then
there exists a sequence of points x, € A, = K;, \ W}(0) such that
xp — x and x € W}(0). Since K; and W} (0) are invariant then A;
is also invariant and we can assume that x, — 0. This is proved
as follows. Since x € W;'(0) we have that xt, — 0 for a certain
sequence ty — —oo. For every k select a x;, such that x,,t; is
1/k-close to xty. Hence x,, ty — 0 with x,, t; € A;. Consider now a
Hartman-Grobman block H, for ¢, contained in B.(0). Since the
points x, are not in W}(0) there exists, for each n, t; < 0 such
that x,t, € 0H, and x,[t,, 0] C H,. Since 0H, is compact we may
assume that x,t, — y € 0H,. Notice that the sequence t, —> —oo
since, otherwise, we may assume that it converges to some ty < 0
and, hence x,t, converges to Oty = 0 which is clearly not in dH;.
Let us see that yt € H, for each t > 0 and, as a consequence,
y € W(0). Let t > 0, then, since t, — —oo, there exists ng such
that t + t, < 0 for every n > ng. Thus x,(t + t,) € H, for each
n > ng and, since the sequence x,(t,+t) converges to yt, it follows
from the compactness of H, that yt € H;. As a consequence, the
rigidity condition ensures that the trajectory of y must leave B,(0)
and, thus, K;, which is in contradiction with the invariance of Kj.
This contradiction proves the compactness of A;. Moreover the
pair (A, {0}) is an attractor-repeller decomposition of K; . Indeed,
we see that {0} is a repeller for ¢, |,. Suppose that {0} is not a
repeller for ¢, |, , then [48, Lemma 3.1] ensures that any compact
neighborhood U of 0 in K; disjoint from A, contains a point x,
other than 0, such that y(x) C U. Since U isolates {0} in K;,
it follows that w,(x) = {0} and the rigidity condition ensures
that the trajectory of x must leave K in contradiction with the
invariance of K;. Notice that W} (0) is the region of repulsion of
{0} and, hence, A, = K; \ W}(0) is its complementary attractor.
Since K; is an attractor and A; is an attractor in K, then A, is
an attractor of the flow ¢,. We consider the attractor-repeller
cohomology sequence of the decomposition (A;, {0}) of K;,

..+ — CH"Y(K,) - CH'Y(A,) — CH({0}) — CH(K;) — - - -

Since K; is a continuation of the attractor {0} of ¢y we know
its cohomology index and the cohomology index of {0} for ¢,(
because 0 is now a hyperbolic point). We deduce from this the
cohomology index of A, which is Z in dimension k — 1 when
k > 1 and Z & Z in dimension 0 when k = 1. On the other
hand by the rigidity condition Loc W}(0) is uniformly locally flat
and this implies that if we take § sufficiently small we have Bs(0)
is contained in the region of attraction of K, and Bs(0) \ W;(0)
is homeomorphic to B, \ B,_; which is homotopy equivalent to
Sk=1 Using the flow we can define a sequence of maps ry
Bs(0) \ W§(0) — R" by

(%) = @a(x, k).

Since A, is an attractor and Bs;(0)\ W;(0) is contained in its region
of attraction, it follows that given any neighborhood U of A, there
exists kg € N such that the image of ry is contained in U for
every k > ko. In addition, the flow defines, in a natural way, a
homotopy between r, and ry 1, for each k > ko, taking place in
U. As a consequence, this family of maps defines an approximative
sequence

r = {ry, B;(0) \ W3(0) — A, },

in the sense of Borsuk [35] and, hence, a shape morphism. Since
rkla, is homotopic to the identity for each k, it follows that the
shape morphism induced by the inclusion i : Ay, — Bs(0)\ W;(0)
is a left inverse for r and, therefore

Sh(S*~") = Sh(B5(0) \ W;(0)) > Sh(A,).

On the other hand, since the cohomology Conley index of A, is Z
in dimension k — 1 if k > 1 and Z & Z in dimension 0 if k = 1,
it follows that H*(A;) # H*({x}). Now since Sh(s¥=1) > Sh(A;)
and H*(A,) # H*({*}) Borsuk-Holsztynski Theorem [56], which
ensures that if a compactum K satisfies that Sh(K) < Sh(S") and
K does not have the shape of a point then Sh(K) = Sh(S"), applies
and we have that, in fact, Sh(S~1) = Sh(A,). A direct consequence
of this fact is that the Conley index of A, is the homotopy type of
(ST U {x}, *).

From the previous discussion it readily follows that CH(A, ) is
Z fori = 0,k — 1 and zero otherwise when k > 1 and Z & Z for
i = 0 an zero otherwise when k = 1, CH!(K;) is Z for i = 0 and
zero otherwise and CH({0}) is Z for i = k— 1 and zero otherwise.
Combining all of this we get the desired Morse equations for the
attractor-repeller decomposition (A;, 0) of K;. O

Remark 2. Our previous result can be looked at as describ-
ing either a generalized pitchfork bifurcation or a generalized
Poincaré-Andronov-Hopf bifurcation of arbitrary codimension.

4. Transient chaos

For a parameter value approximately equal to 13.926..., the
behavior of the flow experiments an important change. At this
critical value the stable manifold of the origin includes the unsta-
ble manifold of the origin; i.e. trajectories started in the unstable
manifold of the origin tend, in both positive and negative time,
to the origin. As a consequence, a couple of homoclinic orbits is
produced, one for every branch of the unstable manifold and we
say that a homoclinic bifurcation has taken place at the parameter
value ry = 13.926... This parameter value signals the appearance
of a phenomenon known as preturbulence or transient chaos,
whose study was carried out by Kaplan and Yorke and by Yorke
and Yorke in [57,58]. This phenomenon is characterized by the
fact that certain trajectories behave chaotically for a while, before
escaping to an external attractor. Turbulent trajectories also exist
but represent a set of measure zero. By using arguments similar,
to a certain extent, to Smale’s horseshoe [59] they proved that for
r > ry a countable infinity of periodic orbits is created together
with an uncountable infinity of bounded trajectories that are
asymptotically periodic (in either forwards of backwards time)
and an uncountable infinity of bounded aperiodic trajectories.
These aperiodic trajectories were termed as turbulent by Ruelle
and Takens [60] because their limit sets are neither points, nor
periodic orbits, nor manifolds. Sparrow remarked that also an
uncountable infinity of bounded trajectories which terminate in
the origin is produced. The union of all these trajectories together
with the origin forms an invariant “strange set” K, which exhibits
sensitive dependence on initial conditions. By studying a return
map of the flow with respect to a suitable Poincaré section,
Sparrow proved, relying on Kaplan and Yorke’s results, that the
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intersections of the trajectories of K, with the Poincaré section
can be coded by bisequences of two symbols S and T such
that repeating sequences correspond to periodic orbits, sequences
which terminate on the right correspond to trajectories which
terminate in the origin and aperiodic sequences correspond to
trajectories which oscillate aperiodically.

In the sequel we analyze the nature and the evolution of the
strange sets K, from the point of view of Conley’s index theory. To
get our conclusions, we use some facts that have been established
by Kaplan-Yorke [57] and Sparrow [11].

1. The strange sets are isolated invariant sets and they define a con-
tinuation (in the sense of Conley’s theory) of the double homoclinic
loop.

Every K, is a compact isolated invariant set. As a matter of
fact, if we take a neighborhood N; of the double homoclinic
loop, consisting of a small box B around the origin, together
with two tubes, S and T around the two branches of the loop
(see [11, Appendix D, pg. 199]), we have that K; is the maximal
invariant set inside this neighborhood for values of r close to that
of the homoclinic bifurcation. The passage of the trajectories of K
through the tubes is in correspondence with the codification with
two symbols previously stated, and this is the explanation for the
use of the same notation. We clearly have that the family (K;),
for r > ry, is a continuation (in the sense of Conley’s theory),
of the double homoclinic loop which originates the homoclinic
bifurcation at r = ry.

2. The continuation is continuous in the Hausdorff metric for r = ry.

As a matter of fact, each of tubes S and T contains exactly
one periodic orbit which does not wind around the z-axis. The
notation S and T is also used to designate these two simplest
orbits. Then, if we fix ¢ > 0 we have that the neighborhood
N; can be chosen to be contained in the e-neighborhood of the
double homoclinic loop for values of r sufficiently close to ry and,
hence, so is K;. On the other hand, the s-neighborhood of the
orbits S and T (and hence the ¢-neighborhood of K;) contains the
double homoclinic loop for r sufficiently close to ry. This proves
that K, converges to the double homoclinic loop when r — ry.

3. The strange sets have the cohomological Conley index of the circle.

The cohomological Conley index of K; is isomorphic to H*(S!,
%), where S! is the circle. This is a consequence of the fact that
the origin {0} is a continuation of the double homoclinic loop for
r < ry. Since the cohomological Conley index is preserved by
continuation and the index of the origin is isomorphic to H*(S!, %)
then the index of the double homoclinic loop and also that of its
continuation K, for r > ry must be the same.

4. The strange sets are repellers in an attractor-repeller decomposi-
tion of the global attractor $2, of the flow.

The strange set K, is contained in the global attractor £2;. Since
all the trajectories in £2; not contained in K; terminate in C; or G,
we must have that the w*— limit of these trajectories (else than
C; or C;) must be contained in K;. As a consequence ({C; G2}, K;)
is an attractor-repeller decomposition of the global attractor £2,.

5. The strange sets K. are not chaotic but they admit an attractor-
repeller decomposition ({0}, L,) where L, is chaotic. the set L, is the
suspension of a smale horseshoe but the strange set K; is not.

Contrarily to some statements in the literature, the strange
set K, is not chaotic, since there is not a single trajectory in K,
whose closure contains the trajectories terminating in the origin.
This was remarked by Sparrow in [11]. However, if we consider
all the trajectories in K, except those terminating in the origin
we obtain a chaotic invariant set L. As a matter of fact, this
was the set discovered and studied by Kaplan and Yorke in [57]
where they proved that L, has sensitive dependence on initial
conditions, the set of periodic orbits is dense in L, and it contains
an uncountable infinity of aperiodic dense trajectories. This set
is the suspension of a return map of the flow with respect to a
suitable Poincaré section studied by Sparrow, whose dynamics is
that of the Smale horseshoe. On the other hand the existence of a
fixed point in K, prevents the strange set from being a suspension.
As we prove in our next result, L. is an isolated invariant set
with trivial cohomological index and the pair ({0}, L;) defines an
attractor-repeller decomposition of K;. We deduce from this that
{{C1.G2}, {0}, L/} is a Morse decomposition of the global attractor
£2,. The Morse equations of this decomposition are obtained also
in our next result, where we analyze a situation which is more
general than the one described here.

6. The strange sets K. have the cohomology of the figure eight.

In spite of its dynamical and topological complexity, the
strange set K, has the cohomology of the figure eight. This is a
consequence of a more general result proved in our next theorem.

Our study of the evolution of the strange set concerns mainly
asymptotic properties of its internal structure and of the struc-
ture of the global attractor of the flow. Recently, E.]. Doedel, B.
Krauskopf and H.M. Osinga [13] have performed a study of the
global organization of the phase space in the transition to chaos
where they show how global invariant manifolds of equilibria and
periodic orbits change with the parameters.

The following is a result of a general nature which has been
suggested by the previous discussion on the evolution of the
Lorenz strange set. Some of the remarks previously made are
consequences of this theorem.

Theorem 3. Let ¢, : R* x R — R? be a dissipative family of flows
induced by a system X = F,(X) of ODE in R® depending differen-
tiably on a parameter . € [0, 1]. Suppose that 0 is a hyperbolic
equilibrium for every A with exactly one positive and two negative
eigenvalues and that there are two other hyperbolic equilibria C; and
C,, both of them having one real negative eigenvalue 8, and two
conjugate complex eigenvalues w, =+ v;i with u, < 0 for every
M. Suppose that for . = 0 the fixed point 0 has two homoclinic
trajectories corresponding with the two branches of its unstable
manifold and that the points C; and C, attract all bounded orbits
of R3 not lying in W;(0) and suppose, additionally, that for A > 0
the two branches of W;(0) connect the point 0 with C; and G,
respectively and that W;(0)\ {0} contains at least one bounded orbit.
Then:

(a) For » = 0, the w*-limit of every bounded orbit different from
the stationary orbits C; and C, is contained in the double
homoclinic loop W{/(0).

(b) For A > O the set of bounded trajectories of ¢, other than
those finishing in C; or C, is a non-empty isolated invari-
ant set K; whose cohomology Conley index is isomorphic
to H*(S', *). Moreover ({C1.C}, K) is an attractor-repeller
decomposition of the global attractor $2, and K; itself has

https://doi.org/10.1016/j.physd.2019.132162.
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a finer attractor-repeller decomposition ({0}, L, ) where L;
consists of all bounded trajectories not ending neither in the
origin nor in C; or Cy. The set L, has trivial cohomology index
and the triple {{C;.C2}, {0}, L,} is a Morse decomposition of
the global attractor whose Morse equations are

24t=1+(1+1).

(c) If the complex invariant manifolds of the points C; and C, con-
sist of all the bounded orbits finishing in C; and C, respectively
(as is the case in the Lorenz equations) then the cohomology
of K;. agrees with that of the figure eight.

Proof. To prove part (a) consider the global attractor £2y of
the flow ¢,. Since {C;,C;} is an attractor contained in §2, there
exists a dual repeller for the flow ¢q restricted to §2¢. Obviously
the double loop W{(0) is contained in this repeller. Moreover,
for every point x € £y with x # G, i = 1,2, we have that
0 # w*(x) C Wy(0) since, otherwise, there would be a bounded
orbit in w*(x) not lying in W3(0) and not attracted by C; or G,
contrarily to our hypothesis. As a consequence, W(0) is, in fact,
the dual repeller of {C; C,} for the flow ¢, restricted to £2o.

To prove part (b) we use the fact that the attractor-repeller
decomposition ({C;,C,}, W}(0)) of £ has a continuation to an
attractor-repeller decomposition of the global attractor §2; of the
flow ¢;. The continuation of {C; C,} is the attractor {C; C,} itself.
And the continuation of the repeller W/(0) is the set K, formed by
the union of all bounded orbits not ending in C; or C,, which is the
dual repeller of {C; C,} for the restriction of ¢, to £2;. Since the
Conley index continues, the cohomology index of K; for the flow
@, must agree with that of Wj(0) for the flow ¢y. We see that the
cohomology index of W(0) is isomorphic to H*(S!, %).Let N be a
compact manifold with boundary which is a positively invariant
neighborhood of the global attractor £2,. It is possible to get such
a neighborhood by using a Lyapunov function. Then, (N, @) is an
index pair for £2y. Notice that by [38, Theorem 3.6] N is acyclic.
Since ({Cy, G;}, W¥(0)) is an attractor-repeller decomposition for
£20 [48, Corollary 4.4] ensures the existence of Ny C N such that
(No, ¥) is an index pair for {C;, C;} and (N, Np) is an index pair
for W!(0). Taking into account that Ny is a positively invariant
neighborhood of {C;, G}, [38, Theorem 3.6] it follows that H*(Ny)
is isomorphic to Z&@ Z for k = 0 and zero otherwise. Consider the
long exact sequence of reduced cohomology of the pair (N, Np)

. — H&N, No) — HYN) — ﬁk(No) — .

This exact sequence, together with the previous discussion, en-
sures that H*(N, Ng) is isomorphic to 0 if i # 1. On the other
hand, for i = 1 we have

02 H(N) = Z = H(No) = HY(N, No) — H'(N) = {0}

hence, 9 is an isomorphism and, as a consequence, H!(N, Ng) = Z.

Now consider the subset L, of K; consisting of all bounded
trajectories of ¢, not ending neither in the origin nor in C; or C,.
We shall prove that L, is a repeller for the flow ¢; restricted to
K,. We remark that W;'(0) N K, = {0} for A > 0 since the two
branches of W;'(0) connect the point 0 with C; and G, respectively
and the stationary points C; and C, do not belong to K;. Since 0
is a hyperbolic equilibrium for every A with exactly one positive
and two negative eigenvalues, it possesses a Hartman-Grobman
block H, of 0 (which can be arbitrarily small). We claim that there
exists an ¢ > 0 such that for every x € H, N K; with x € B.(0) its
positive semitrajectory y *(x) is contained in H; and, hence, ends
in 0. Otherwise there is a sequence of points x, € K, x, — 0,
such that ¥y (x,) leaves H,. This produces an orbit in K; which
leaves H, in the future and whose w*-limit is {0}, which is in
contradiction with the fact that W{(0) N K, = {0}. Then there

is an ¢ > 0 such that all points of H; N K; contained in the ball
B.(0) go to 0. Hence, we have a neighborhood H; N K; N B,(0)
of 0 in K, attracted by {0} and such that the orbits of its points
do not leave H, in the future. This proves that {0} is an attractor
in K; whose dual repeller is obviously L;. The attractor-repeller
cohomology exact sequence of the decomposition ({0}, L, ) of K
takes the form

e D cHr i) S cHrjoy) > -

and, taking into account that the cohomology indices of {0} and
K are both H*(S!, %), we readily get that CH'(L,) is trivial for
i # 1,2. To see that CHI(L,) is trivial for i = 1,2 we analyze
the following segment of the long exact sequence

0— CH'(L) 5 cH(K,) LN CH'({0}) 2> CH2(L,) — 0

Let us see that i* is an isomorphism. Let N be a compact man-
ifold with boundary which is a positively invariant neighborhood
of the global attractor £2,. Then, (N, ) is an index pair for £2;.
Since ({Cy, G3}, K;)) is an attractor-repeller decomposition for £2;
and ({0}, L, ) is an attractor-repeller decomposition of Kj, it easily
follows that {{Cq, G5}, {0}, L,} is a Morse decomposition of £2;.
Hence, [48, Corollary 4.4] ensures the existence of a filtration
N_O C N; c N such that (NO,@)_is an index pair for {C;, G5},
(N, Np) is an index pair for K;, (N, N;) is an index pair for L, and
(N1, No) is an index pair for {0}. Notice that the homomorphism
i* is induced by the inclusion i : (Ny, Ng) <> (N, Np). Taking
into account that Ny is a positively invariant neighborhood of
{C1, G3}, [38, Theorem 3.6] ensures that this inclusion induces
the following commutative diagram of short exact sequences in
cohomology

0 — Z=HNy) — 2 Z=H'(N,No) H(N) 0
0 7 = H°(Ny) s 7= H'(Nq, No) H'(Ny) 0

Since H'(N) = 0 by [38, Theorem 3.6], it follows that 9 is an
isomorphism. Let us see that d is also an isomorphism. From the
fact that the lower right arrow is an epimorphism, it follows that
H(Ny) is either 0, Z or a finite cyclic group. The exactness of
the second row ensures that d is a monomorphism and, hence,
the lower right arrow cannot be an isomorphism. As a conse-
quence H'(N;) cannot be Z. In addition, the Universal Coefficient
Theorem ensures that H'(N;) must be torsion free and, as a con-
sequence, it cannot be finite cyclic either. Hence, H'(N;) = 0 and
d is also an isomorphism. By combining this with the fact that the
leftmost vertical arrow is the identity homomorphism, it follows
that i* is an isomorphism and, hence, it readily follows, from the
exactness of the attractor-repeller sequence, that CH'(L,) = 0 for
i=1,2.

We see that the Morse equations of the decomposition {{Cy,
(2}, {0}, L, } of the global attractor £2; are

24t=1+(1+1).

Since {Cq, G5} is an attractor consisting of two fixed points and
Njp is a positively invariant neighborhood, it easily follows that
CH*({C1, G2}) = H*(S%) which contributes with the term 2 of the
lefthand side of the equation. The term t of the lefthand side
comes from the fact that CH*({0}) = H*(S!, %) is a hyperbolic
fixed point with one real positive eigenvalue and two complex
conjugate eigenvalues with negative real part. L, does not con-
tribute to the equations since its cohomology index is trivial.
Finally, the term 1 from the righthand side of the equation comes
from the fact that CH*(£2,) = H*(N) which is acyclic by [38,
Theorem 3.6].

To prove part (c) we remark that our hypothesis ensures the
existence of arbitrarily small positively invariant neighborhoods
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ﬁl and &z of Cy and G, in £2;, that are topological closed disks. If
we call N = N;UN, and consider the exact cohomology sequence
of the pair (£2,, N) we readily see that HX(£2,, N) = {0} for every
k # 1 and Hl(QA,NZ = Z. Now consider smaller positively
invariant closed disks Ny and N, contained in the interiors of Ny
and N, respectively. By excision H(£2,, N) = H¥(2, \N, N\ N),
where N = N, U Na. By the choice of the disks N; and N, we
have that £2; \ N is negatively invariant and, since K; is the
complementary repeller of {Cy, (3} in §2;, the cohomology of K;
agrees with that of £2; \ N (see [38, Theorem 3.6]). By combining
this with the fact that £2, \ N is connected, since otherwise N;
would disconnect N; for i = 1, 2, it follows that K;_ is connected.
If we consider now the exact cohomology sequence of the pair
(£, \N,N\N)

o= HIN\R) — HYQ, \N, N\ N) — HY2, \ R)
— HN\N) - -

and take into account that N \ N is homotopy equivalent to the
union of two disjoint circles we readily get that the homology of
K;, is that of the figure eight. O

There is some recent literature dedicated to the study of tran-
sient chaos. According to Capeans, Sabuco, Sanjuan and Yorke [61]
“this is a characteristic behavior in nonlinear dynamics where
trajectories in a certain region of phase space behave chaoti-
cally for a while, before escaping to an external attractor. In
some situations the escapes are highly undesirable, so that it
would be necessary to avoid such a situation”. These authors
have developed control methods which prevent the escapes of the
trajectories to external attractors, in such a way that they stay in
the chaotic region forever. See [62-68] for some contributions on
this subject.

5. Traveling repellers: The creation and evolution of the
Lorenz attractor

The attractor-repeller decomposition ({0}, L.) of the strange
set ceases to exist at r = 24.06, when the two branches of the
unstable manifold of the origin are absorbed by K;. As a matter of
fact, they asymptotically converge (only at this value of r) to the
original periodic orbits S and T, responsible in the future for the
Hopf bifurcation. Immediately afterwards, the strange set K, ex-
pels the simple periodic orbits S and T and it becomes an attractor
(the Lorenz attractor), while the unstable manifold of the origin
remains in K;. We remark, however, that at the parameter value
r = 24.06 the strange set K; is still a repeller relative to the flow
restricted to the global attractor £2,. Hence, the creation of the
Lorenz attractor is the result of a repeller-attractor bifurcation in
2, at r = 24.06.

The Conley index theory tells us that if we restrict ourselves
to the consideration of the flow ¢|,,, then the repeller K4 06
continues to a family of repellers I%r for parameter values r >
24.06. The Lorenz attractor K; is a proper subset of K, and it must
have a dual repeller R,. This repeller is the union of the two orig-
inal periodic orbits S and T. We then have an attractor-repeller
decomposition (K;, R;) of K, for r > 24.06. This discussion can be
summarized as follows.

1. If we consider the flow restricted to the global attractor 2, then
the Lorenz attractor is created at a repeller-attractor bifurcation
of the strange set K, at the parameter value r = 24.06: the
strange set K; is a repeller for r = 24.06 and is an attractor
for r > 24.06. The continuation K, of Ky;0¢ for r > 24.06 is
a repeller for ¢,|p, which contains the Lorenz attractor K; and
has an attractor-repeller decomposition (K;, R;), where R, is the
union of the two original periodic orbits S and T.

We remark that the creation of the repeller R, is a necessary
consequence of the bifurcation at r = 24.06. We can state a
much more general result, which shows that the complexity of
this repeller is in some dimensions higher than the complexity of
the strange set K406 (from the point of view of Conley’s theory),
although its topological structure is much simpler:

Theorem 4. Let ¢, : R" x R — R", A € R, be a continuous
family of flows and let $2;,with Ay < A < A1, be a continuation of
isolated invariant sets. Suppose that K;; is a repeller for the restricted
flow @y, 2, and that there exists a family of compacta K,, with
M < A =< Ay, such that K, is an attractor for the restricted
flow @, lq, and K, converges to K, in the Hausdorff metric (or,
more generally, K;, converges upper-semicontinuously to K, ). Then
a family of repellers R, of ¢xlg,, with Ry N K, = §, is created for
A > Ao which upper-semicontinuously converge to K,,. Moreover,
if K;, has trivial cohomological Conley index in one dimension (as it
is the case for the Lorenz attractor for dimensions other than O or
1), then the cohomological index of K, in that dimension is a direct
summand of that of R;. Finally, the cohomological indices of K;,, and
R;. agree in dimension k if K, has trivial indices in dimensions k — 1
and k.

Proof. Since the family of isolated invariant compacta £2; is
a continuation of £2;, we have that the repeller K, of ¢,,| 2,

continues to a family of repellers 12)\ of ¢, |e,. Then, for every
sufficiently small neighborhood U of K;, in R", the compactum
IAQ is the maximal invariant set contained in U for the flow ¢, |,
with A sufficiently close to Ay. Since the family of attractors
K, converges upper-semicontinuously to K,,, they must be con-
tained in U, also for A sufficiently small. But, since IAQ is maximal
invariant, then K; is, in fact, contained in K,. Now, the fact that
K, is an attractor for ¢,|p,, and hence for (pﬂk}\, implies the

existence of a dual repeller R, C IAQ. Since IAQ is itself a repeller
then R; is also a repeller for the flow ¢;|, (not only for ¢; | ).
Moreover, the family of repellers R, clearly converges upper-
semicontinuously to K;,, (since the family K; do) and, obviously,
R, NK; = 0.

We have now for A > 4o an attractor-repeller decomposition
(K., R;) of the isolated invariant compactum K. If we write the
cohomological exact sequence of this decomposition

o5 CH(K) > CHK(R,) — CHNK,) — CHY(K;)
O CHY(Ry) = - -

and take into consideration the fact that (IA(A) is a continuation of
K, (and, thus, their Conley indices agree) we see that, if CH¥(K;)
vanishes then CH’j(RA) — CH"(IAQ) is an epimorphism and, hence,
CHY(K;,) = CH¥(K,) is a direct summand of CH¥(R, ). Moreover,
if CH*"1(K;) also vanishes then CH¥(R,) = CHX(K;). O

We remark again that, in the case of the Lorenz equations, for
r = 24.06 the strange invariant set Ky40¢ iS not yet an attractor.
In fact it is a repeller for the restricted flow ¢4.06]0,, 4, Which
contains the two branches of the unstable manifold of the origin
and the original periodic orbits S and T. Immediately after, the
strange invariant set expels these periodics orbits (while retaining
the unstable manifold) and becomes an attractor (the Lorenz
attractor). The periodic orbits S and T “travel” through the global
attractor and, finally, are absorbed by the fixed points C; and G,
at the parameter value r = 24.74, when a Hopf bifurcation takes
place.

From the point of view of the global attractor §2,, we have
that the pair (K406, {C1, C2}) defines a repeller-attractor decom-
position of 2 while the pair (K474, {C1, C2}) defines an attractor-
repeller decomposition. The mechanism which makes possible
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Fig. 1. Branched manifold.

this sharp transformation is the expulsion by K,4 0¢ of the original
periodic orbits S and T and its posterior absorption by C; and
C, at the parameter value r = 24.74. In other words, the
“traveling repeller” R, = S U T is responsible for the transition.
We summarize the process in the following statement.

2. (From repeller-attractor to attractor-repeller decompositions of
£2;). The strange set K406 is a repeller relative to the restricted
flow ¢24.06]2,405» Which contains the two branches of the unsta-
ble manifold of the origin and the original periodic orbits S and
T. The pair (K406, {C1, C2}) defines a repeller-attractor decom-
position of the global attractor £2,40¢. Immediately after (i.e. for
r > 24.06), the strange invariant set expels these periodics
orbits (while retaining the unstable manifold) and becomes an
attractor (the Lorenz attractor). The set R, = SUT is a repeller
relative to the flow ¢;|e, and “travels” through 2, until finally
is absorbed by {Cq, C;} at the parameter value r = 24.74 of the
Hopf bifurcation. At this value, the pair (K474, {C1, C2}) defines
an attractor-repeller decomposition of §2,474.

Now a few comments about the topological properties of the
Lorenz attractor are in order. Some global properties of the Lorenz
attractor have been studied in [51]. In particular, the Borsuk
homotopy type (or shape) of the attractor is calculated there
and from this calculation all the homological and cohomologi-
cal invariants follow. Another possibility for studying the global
properties of the attractor is to use the branched manifold (see
Fig. 1). We give only a brief, informal, indication on how this can
be done.

The branched manifold is a two-dimensional manifold with
singularities (the branch points) on which the forward flow (i.e. a
semi-flow) is defined. In spite of its name, it is not a manifold but
an Absolute Neighborhood Retract (ANR), an important notion of
the Theory of Retracts also studied by Borsuk. The class of ANRs
has homotopical properties similar to those of the manifolds. The
semi-flow in the branched manifold comes from the Lorenz flow
after collapsing to a point certain segments, all whose points
share a common future (see [11, Appendix G, pg. 229] for a
discussion). The semi-flow has a global attractor whose Borsuk
homotopy type is the same as that of the Lorenz attractor, since
the above mentioned identification preserves the global proper-
ties of the attractor. By [38, Theorem 3.6] (see also [39,40,69,70])
the inclusion of the attractor in the manifold is a (Borsuk) homo-
topy equivalence. It follows from this that the Borsuk homotopy
type (or shape) of the Lorenz attractor is that of the branched
manifold, which turns out to be that of the figure eight. This
agrees with the results found in [51]. A consequence of this is
that the cohomology of the Lorenz attractor and its cohomological
Conley indices are isomorphic to Z in dimension zero, to Z & Z
in dimension one and zero otherwise.

Our previous Theorem 4 implies that the 2-dimensional co-
homological (Conley) complexity of the traveling repeller R, is
higher than that of K405. As a matter of fact, Ky4 06 has the
cohomological Conley indices of the (pointed) circle and hence
CH*(Ky405) = {0}, as it has been remarked in Section 4. On
the other hand, it follows immediately from our next result that
CH*R)=Z®Z.

The following theorem addresses a more general situation. We
simplify the hypotheses slightly to make the exposition simpler.

Theorem 5. Let ¢, : R" x R — R", A € R, be a continuous
family of flows and let $2 be a global attractor for all the flows ;.
Suppose that K and C are isolated invariant sets for every A and that
(K, C) is a repeller-attractor decomposition of §2 for ¢, and (K, C)
is an attractor-repeller decomposition of §2 for ¢;,, where Ay < Aj.
Suppose, additionally, that the isolated invariant set R; is a repeller
of @, for Ag < A < Ay and that (K U C, R,) is an attractor-repeller
decomposition of £2. Denote by ry the rank of H¥(K) and by r, the
rank of H*(C). Then we have the following Morse equations

o (1o — e+ () =141+ D),
k>2

for the repeller-attractor decomposition (K, C) of ¢, q,

o+ 15+ (m+ror+ry— e+ Y (e rer + 1+ )
k>2
=1+ (141)Q(t),

for the attractor-repeller decomposition (K U C, R;) of ¢, | with
A < A<M and

o+ (r+ro— 1+ (ne+nen)tt = 14 (14 6)Qs(0),
k>2

for the attractor-repeller decomposition (K, C) of ¢, |q.
To prove Theorem 5 we shall make use of the following
lemma.

Lemma 6. In the conditions of Theorem 5 we have that

(a) CHXC) = HXC) = CHM'Y(K) if k > 0 and CH°(C)
H°(C) = Z & CH'(K) for the flow ¢;,.

(b) CHXK) = H¥K) = CH*'Y(C)ifk > 0 and CH(K)
HO(K) = Z @ CH'(C) for the flow ¢,.

(c) CH¥*'(R)) = CH¥K U C) = HNK UC)ifk > 0 and
CHYK UC) = HY K UC)=Z@® CH(R,) for the flow ¢, with
}\.0 <A< }\.1.
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Proof. We shall prove a more general result which encompasses
(a), (b) and (c). Let ¢ : R" x R — R" a dissipative flow with
global attractor 2. Suppose that (A, R) is an attractor repeller
decomposition of £2 and consider the cohomology long exact
sequence associated to the decomposition (A, R),

LR L cHr2) S cHra) S -
since £2 is a global attractor, it follows that CH¥(£2)is Z if k = 0
and zero if k > 0. Taking this into account in the exact sequence
it readily follows that CH*(A) = CH**'(R) if k > 0. On the other
hand, since none of the components R is an attractor, it follows
that CH°(R) = 0 and, hence, the initial part of the sequence looks
like

0 — CH%(2) — CH%A) — CH'(R) > 0

The Universal Coefficient ensures that CH'(R) must be torsion free
and, as a consequence, the short exact sequence splits. Then

CH%(A) = CHY(2)® CH'(R) = Z & CH'(R)
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Notice that, since A is an attractor for the flow ¢ restricted to
the global attractor §2, then A is an attractor for ¢. Therefore
CH*(A) = H*(A). The result follows by replacing A and R by the
corresponding sets. [

Proof of Theorem 5. The proof follows from Lemma 6 combined
with the fact that CH*(£2) is Z if k = 0 and zero if k > 0, £2 being
a global attractor for each A. O

Concerning the previous lemma, it is interesting to note that,
when §2 is a global attractor, then the topological properties
of K and C determine the cohomological Conley indices and
the Morse equations of all the involved isolated invariant sets,
including R;. It is also interesting to see how the transition from
repeller-attractor to attractor-repeller is reflected in the Morse
equations.

Another situation, not applicable to the Lorenz equations but
provided of theoretical interest, is when we have a flow in a
compact manifold M and a similar transition for a pair (K, L). Then
McCord duality for attractor-repeller pairs [71,72] is applicable
and the equations are determined by the topology of K and M
alone (the Conley index properties of C being dual to those of
M).
We finally point out that the evolution of the Lorenz attractor
that we have just studied has a nice counterpart from the an-
alytical point of view. The following statement summarizes the
situation.

3. The transition from the repeller-attractor decomposition
(K24.06, {C1, C2}) (creation of the Lorenz attractor) to the attractor-
repeller decomposition (K24.74, {Cq,
G, }) (Hopf bifurcation) through the decomposition (K, U {C;, G},
R, = S U L) (involving the traveling repellers R;) of the global at-
tractor §2 is reflected in the Morse equations shown in Theorem 5.

Applying Theorem 5 to this situation we get that, for r =
24.06 the Morse equations associated to the repeller-attractor
decomposition (Kz4.06, {C1, C2}) Of @24.06]2,, o5 ar€

24t=1+(1+1),

for r with 24.06 < r < 24.74 the Morse equations associated to
the attractor-repeller decomposition (K, U {Cy, C;}, R, = SUL) of
¢rla, are

344t +2t2 =1+ (1+1t)(2 +2t),

and, for r = 24.74 the Morse equations associated to the
attractor-repeller decomposition (K474, {Ci, C2}) of ¢2474l02,474
are

142t +2t2 =1+ (14 1)2t.
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