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We correct some tables and figures in Bustamante and Calleja (2019). We also report on the new
computations that verify the accuracy of the data and extend the results. The new computations have
led us to find new patterns in the data that were not noticed before. We formulate some more precise
conjectures.
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1. Introduction

The goal of this note is to present a correction of some of the
ables and figures presented in [1], see Section 3. We have also
evised and extended the results with a new implementation of
he algorithms. This has lead to some new patterns in the data
Section 4) and new verifications (Section 5).

We recall that the aim of [1] was to study quantitatively the
omains of analyticity of quasiperiodic orbits for the dissipative
tandard map (1) through a careful analysis of their Lindstedt
eries, as well as with non-perturbative computations. The results
n [1] agreed with the conjectures in [2]. In particular, the result
n [1] verifies numerically the conjecture about the optimality of
he domains of analyticity described in [2]. The qualitatively con-
ectured optimal domain of analyticity for the map (1) does not
ontain any ball with center at the origin nor angular sectors with
idth larger than π/3, so one does not expect the Lindstedt series
o converge. The shape of the domain of analyticity suggests the
indstedt expansions might belong to a Gevrey class.
In this work we present corrections and extended results

elated to the Gevrey character of the Lindstedt series that was
lso studied in [1]. In particular, some of the figures and tables
resented in [1] are not accurate, see Section 3. The corrected
ables included here contain sharper results. With the corrected
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ata and the extended computations performed, we have refor-
ulated a conjecture about the Gevrey character of the Lindsted
eries, see Conjecture 1.
We note that some rigorous studies compatible with the con-

ectures in [1] and Section 4 have been obtained recently in [3].

. Summary of [1]

.1. Lindstedt series

We recall that one of the goals of [1] was to study some
roperties of the Lindstedt series of quasi-periodic orbits for the
issipative standard map fε(xn, yn) = (xn+1, yn+1)

xn+1 = xn + yn+1 (1)
yn+1 = bεyn + cε + εV ′(xn)

defined on the cylinder M = S1
× R; bε = 1 − ε3, V ′(x) =

1
2π sin(2πx). When one chooses the parameter cε appropriately,
it is known that (1) has an analytic invariant circle corresponding
to a quasi periodic orbit with Diophantine frequency ω.

It is known that quasi periodic orbits of (1) can be described
by a 1-periodic function uε : S1

→ R and a constant cε satisfying

Ecε [uε] = 0 (2)

where Ecε [uε(θ )] ≡ uε(θ +ω)− (1+bε)uε(θ )+bεuε(θ −ω)+ (1−
′

ε)ω − cε + εV (θ + uε(θ )).

https://doi.org/10.1016/j.physd.2020.132837
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132837&domain=pdf
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able 1
umerical fit of a function log(R)+σ log(k) to the data Aρ (k) for different values
f ρ and frequency ω =

√
5−1
2 . Computations were done using 213 Fourier

oefficients and 600 digits of precision. The numerical fit was made in for
00 ≤ k ≤ 300.
eρ (k) := Aρ (k) − (log(R) + σ log(k))

R σ ∥eρ∥∞

ρ = 0.1 0.672269 0.227899 0.020793
ρ = 0.01 0.585740 0.238324 0.019491
ρ = 0.001 0.576278 0.240049 0.019325
ρ = 0.0001 0.575333 0.240225 0.019280
ρ = 0.00001 0.575239 0.240243 0.019282
ρ = 0.000001 0.575230 0.240244 0.019279
ρ = 0.0000001 0.575229 0.240244 0.019278

Lindstedt expansions are obtained by considering the formal
ower series uε(θ ) =

∑
∞

k=0 uk(θ )εk and cε =
∑

∞

k=0 ckε
k, and solv-

ing (2) order by order. The coefficients uk and ck are determined
by the following cohomology equation

Lωuk(θ ) − ck + uk−3(θ ) − uk−3(θ − ω) = Sk(θ ), k ≥ 4 (3)

where Lwϕ(θ ) ≡ ϕ(θ + ω) − 2ϕ(θ ) + ϕ(θ − ω), and εV ′
≡∑

∞

k=0 Sk(θ )ε
k.

We note that given that the Lindstedt series in this case are
not convergent in any ball and the terms grow very fast, the
numerical calculation of the coefficients uk is much more unstable
that in the cases where the Lindstedt series converges.

2.2. Gevrey character of Linsdtedt series

One of the goals of [1] was to study, numerically, the Gevrey
character of the Lindstedt series

∑
ukε

k. To do this we considered
the quantities

Aρ(k) ≡
1
k
log ∥uk∥ρ, Hr (k) ≡

1
k
log ∥uk∥W r (4)

which measure the growth of the coefficients of the Lindstedt
series using different norms. The norms were chosen as ∥f ∥ρ =

ℓ∈Z |f̂ℓ|
2
e2π |ℓ|ρ and ∥f ∥2

W r =
∑

k∈Z(2πk)2r |fk|2.
We recall that a formal power series,

∑
fnεn, is σ -Gevrey with

espect to a norm, ∥ · ∥, if the coefficients satisfy

fn∥ ≤ CRnnσn.

quivalently,
1
n
log ∥fn∥ ∼ σ log(n) + log(R)

or n large enough.

3. Correction to [1]

The main correction is that the data in Table 1, Table 2 and
n the plots on Figure 2, and Figure 3 in [1] do not correspond
o their labels. These tables and figures were included to study
he growth of the coefficients of the Linsdtedt series

∑
ukε

k,
corresponding to the frequency ω =

√
5−1
2 .

The correct table 1 and Figure 2 in [1] must be Table 1 and
ig. 1 in this corrigendum.
The corrected Table 2 and Figure 2 in [1] must be Table 2 and

ig. 2, respectively, on this corrigendum.
We note that the numbers R and σ in Tables 1 and 2 are just

he raw numbers obtained by fitting numerically functions of the
orm log(R) + σ log(k) to the data Aρ(k) and Hr (k), we are not
ure how to assess the reliability of these numbers. Also, we have
dded a column with a measure of the remainder, ∥e∥ , between
∞

2

Fig. 1. Plot of Aρ (k), 1 ≤ k ≤ 500, for the frequency ω =

√
5−1
2 .

Fig. 2. Plot of Hr (k), 1 ≤ k ≤ 500, for the frequency ω =

√
5−1
2 .

Table 2
Numerical fit of a function log(R) + σ log(k) to the data Hr (k) for different
values of r and frequency ω =

√
5−1
2 . Computations were done using 213

Fourier coefficients and 600 digits of precision. The numerical fit was made
for 100 ≤ k ≤ 300.
er (k) := Hr (k) − (log(R) + σ log(k))

R σ ∥er∥∞

r = 1 0.685071 0.212840 0.020144
r = 2 0.816610 0.185284 0.023905
r = 3 0.974288 0.157572 0.028145
r = 4 1.163403 0.129713 0.032216
r = 5 1.390238 0.101731 0.036129
r = 6 1.662287 0.073651 0.039905

the numerical fit and the data, this column was not included in
the tables in [1]. The measure of these remainders, which looks a
little bit worrisome, seems to come from an oscillatory behavior in
the data, the structure of the remainders is studied in Section 4.2.

The problem with the figures and tables in [1] is that the data
used on them corresponded to the quantities 1

k log ∥k!uk∥ and not
to the data given by Aρ(k) and Hr (k), defined in (4). Note that, by
the well known Stirling’s formula log(k!) = k log(k)−k+O(log(k)),
if k−1 log ∥uk∥ ≈ log(R) + σ log(k) then k−1 log ∥k!uk∥ ≈ log(ã) +

(σ + 1) log(k) for k ≫ 1. We recall that the values corresponding
to the column σ on the tables in [1] gave σ ≈ 1. The fact that the
values of σ in Tables 1 and 2 are not approximate to zero can be
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Fig. 3. Comparison between H6(k) and two different numerical fits for 100 ≤

k ≤ 300, ω =

√
5−1
2 . It can be observed that introducing a translation, b, could

make a significant change in the exponent σ .

explained by how the numerical fits are done this time, which is
explained in the next paragraph.

We note first that [1] used fits of the form log(R)+σ log(k+b)
which involve an extra parameter b. We consider that omitting
the translation by b is more suitable for a systematically study
of the growth of the coefficients of the Lindstedt series, see
Section 2.2. Note that by adjusting R and b one can get log(R̃) +

σ̃ log(k) ≈ log(R) + σ log(k + b) with k1 ≤ k ≤ k2, for example,
log(1.66287) + 0.073651 log(k) ≈ log(0.57) + 0.24 log(k + 240)
for 100 ≤ k ≤ 300, see Fig. 3. We also note the numerical fits are
made taking a smaller range for k in Aρ(k) and Hr (k), the range
for k in [1] was 100 ≤ k ≤ 1000 (which is another reason for
which the tables needed to be corrected). The fits in Tables 1
and 2 were made considering 100 ≤ k ≤ 300, this is due to the
fact that we consider that the errors, in the computation of the
coefficients uk, are small enough within this range of parameters,
see Section 5. Finally, the factor O(log(k)/k), that one gets using
Stirling’s formula, satisfies O(log(k)/k) = O(10−2) for 100 ≤ k ≤

300, which could also affect the values of σ at order 10−1. We
consider that the observations above explain why the values in
the column σ in Tables 1 and 2 are not only translations, by 1, of
the values obtained in [1].

For the sake of completeness we include a comparison be-
tween A10−7 (k), H6(k) and their respective numerical fits, see
Fig. 4. Note that even if the norms considered in Aρ(k) and Hr (k)
are in principle not compatible, the fact that Aρ(k) and Hr (k) have
similar trends seems to indicate that there is a mechanism which
is captured for any norm for the functions we study. This suggests
that a more detailed study of the structure of this functions could
be interesting.

The corrections in the tables have important consequences for
the statement of Conjecture 9 in [1]. The conjecture proposed
the Gevrey character of the Lindstedt expansions with Gevrey
exponent σ ≈ 1, according to the tables included in [1]. The
corrected tables, Tables 1 and 2 (with more reliable data), suggest
that the conjecture about the Gevrey character is still true but
with a different exponent σ . We reformulate the conjecture in
Section 4.1, after we present the results we have obtained with
the extended computations that have been performed. We recall
that the computations in [1] were done only for the frequency
ω =

√
5−1
2 , in the next section we present also results for different

values of ω.

4. Some new patterns and extension of the computations

Since the publication of [1] we have run several modifications
of the program and re-implemented some of the algorithms. This
3

Fig. 4. Comparison between H6(k) and A10−7 (k) with their respective numerical
fits, ω =

√
5−1
2 .

Fig. 5. Graph of Aρ (k) for different values of the frequencies ω, ρ = 10−7 .

llowed us to find some new patterns in the data and extend the
omputations to other frequencies ω. The new results allow us to
eformulate the conjecture established in [1], Conjecture 1, and
lso give evidence of new patterns that were not noticed before,
ee Conjecture 3.

.1. Results for different frequencies

We recall that the computations in [1] were done using the
requency ω =

√
5−1
2 . This time, we have performed the com-

putations also for different frequencies, of the same Diophantine
type, and we have found a similar behavior in the growth of the
coefficients of the Lindstedt series. We present the results below.

Fig. 5 contains a plot of Aρ(k), ρ = 10−7, for all the frequencies
considered.

The plots in Fig. 5 seem to indicate a logarithm growth for
all the frequencies considered. To study more systematically the
growth of the coefficients of the Lindsted series we have also
fitted numerically functions of the form log(a) + σ log(k), the re-
ults are summarized in Table 3. We note that all the frequencies
onsidered belong to the same Diophatine class D(ν, 1), where
∈ D(ν, τ ) means that |e2π ikω

− 1| ≥ v|k|−τ .
Figs. 6 and 7 contain comparisons between the quantities Aρ

nd their respective numerical fits.
The extension of the computations to other frequencies and

he information summarized in Table 3 allow us to reformulate
onjecture 9 in [1] for a more general case.
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Fig. 6. Comparison between Aρ (k), ρ = 10−7 , and its corresponding numerical fit. Left panel: values for the frequency ω =

√
7−1
2 . Right panel: values for the frequency

=
√
3.
Fig. 7. Comparison between Aρ (k), ρ = 10−7 , and its corresponding numerical fit. Left panel: values for the frequency ω =

√
13−1
6 . Right panel: values for the

requency ω =

√
5−1
6 .
able 3
umerical fit of a function log(R) + σ log(k) to the data Aρ (k) for different
alues of the frequency ω and ρ = 10−7 . Computations were done using 213

ourier coefficients and 600 digits of precision. The numerical fit was made in
or 100 ≤ k ≤ 300.
eω(k) = Aρ (k) − log(R) + σ log(k), ρ = 10−7

R σ ∥eω∥∞

ω =

√
5−1
2 = [0, 1, 1, 1, 1, 1, 1, . . .] 0.575229 0.240244 0.019278

ω =

√
3−1
2 = [0, 2, 1, 2, 1, 2, 1, . . .] 0.695887 0.225349 0.047762

ω =
√
2 = [1, 2, 2, 2, 2, 2, 2, . . .] 0.583365 0.247799 0.033104

ω =
√
3 = [1, 1, 2, 1, 2, 1, 2, 1, . . .] 0.460186 0.307029 0.038801

ω =

√
7−1
2 = [0, 1, 4, 1, 1, 4, 1, 1, . . .] 1.300597 0.112924 0.045704

ω =

√
13−1
6 = [0, 2, 3, 3, 3, 3, 3, . . .] 0.582937 0.258504 0.047840

ω =

√
5−1
6 = [0, 4, 1, 5, 1, 5, 1, 5, . . .] 1.235768 0.158503 0.042327

Conjecture 1. Given ω ∈ D(ν, 1), the Lindstedt series, uε =

ukε
k, of quasi-periodic orbits for the map (1) belongs to a Gevrey

lass with Gevrey exponent σ ≤ 0.307. That is, ∥un∥ρ ≤ CRnnσn

with σ ≤ 0.307 and ρ ≤ 10−7.

Remark 2. It is worth to note that Conjecture 1 is compatible
with the rigorous results obtained in [3]. Considering the map
(1), with dissipation bε = 1 − ε3 and a frequency ω ∈ D(ν, 1),
he rigorous results in [3] yield a Gevrey exponent σ = 2/3.

It is also important to note that the results in [3] give the same
upper bound of the Gevrey exponent for frequencies, ω, of the
same Diophantine type D(ν, τ ). The behavior observed in Figs. 5,
6, 7, and Table 3 seems to indicate that the upper bound of the
4

Fig. 8. Graph of Aρ (k) for ρ = 10−7 , ω =

√
5−1
2 . The same oscillatory behavior

is also present for Hr (k).

Gevrey exponent found in [3] is not optimal, but seems to be
within a factor 2 for being optimal.

4.2. New patterns

A careful inspection of Figs. 1, 5, 6, and 7 shows that the graphs
of Aρ(k) present an oscillatory behavior of period three, see Fig. 8.
These oscillations are present for all the values of the frequencies
considered.
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Fig. 9. Plots of the centralization xk . Left panel: Plot for the frequency
√
5−1
2 . Right panel: Plot for frequency

√
3−1
2 .
Fig. 10. Plots of the centralization xk . Left panel: Plot for the frequency
√
2. Right panel: Plot for frequency

√
3.
Fig. 11. Plots of the centralization zk . Left panel: Plot for the frequency
√
7−1
2 . Right panel: Plot for frequency

√
5−1
6 .
t

As we mentioned before, the coefficients of the Lindstedt

series are determined by solving equation (3) in which the co-
efficient of order k depends explicitly on the coefficient of order
 ω

5

k − 3. This is due to the power three of ε in the function bε . At
he same time this phenomenon is independent of the frequency
we choose. This gives an explanation of the appearance of an
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Fig. 12. Left panel: Plot of log10(∥Lωun(θ ) − Sn(θ ) − cn − un−3(θ − ω) + un−3(θ )∥∞) for different values of the frequency ω, 1 ≤ n ≤ 500. Right panel: Plot of
log10(∥|Ec≤N (ε)[u≤N

ε ]∥∞), with ϵ = 10−2 .
Fig. 13. Left panel: Graphs of log10(∥un − vn∥∞) where un and vn are the same coefficients of the Lindstedt series but computed using a different number, ℓ, of
Fourier coefficients. Right panel: Graphs of the relative errors, log10(∥un − vn∥∞/∥un∥∞).
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scillating pattern observed in the inset of Fig. 8 which appears
or all the frequencies we considered. However, the computations
how that the amplitude of the oscillations decreases as k grows
and this oscillating effect fades away.

To study how the amplitude of the oscillations decreases we
have centralized the oscillations by considering the differences
between Aρ(k) and some moving averages. More precisely, de-
noting ak = Aρ(k), ρ = 10−7, we have considered the following
centralizations

xk = ak −
1
5

k+2∑
j=k−2

aj, zk = ak −
1
3k

k+2∑
j=k

jaj, (5)

Since the oscillations have period three, the centralization xk is
made by subtracting a moving average that captures two periods
of the oscillation. The results for xk are summarized in Figs. 9 and
10. For all the centralizations considered it is quite surprising that
the amplitude of the oscillations seems to decrease as k−β , with
β ≈ 1. Due to this behavior we consider a second centralization,
zk, which assumes that the oscillations decrease as k−1. The
results for zk are summarized in Fig. 11.

The results collected in the figures above suggest that the
centralizations behave like k−β f (k) with f a periodic function. This
observation motivates the following conjecture.
 A

6

Conjecture 3. Let Aρ(k) =
1
k log ∥uk∥ρ , then Aρ(k) ≈ log(R) +

σ log(k) + k−β f (k) with β ≈ 1, f (k) a periodic function of period 3,
and k ≫ 1.

5. Validation of the results

To validate the results described above we verified that the
cohomology equation (3) is satisfied at every order with a suitable
error. We also verified, as shown in [1], that the invariance equa-
tion (2) satisfies that log10(∥Ec≤N (ε)[u≤N

ε ]∥∞) ∼ O((N+1) log10(ε))
s long as the error is above machine precision. We recall that
c≤N (ε)[u≤N

ε ] means that we evaluate the operator E, given in
2), in the finite expansions u≤N

ε =
∑N

k=1 ukε
k and c≤N (ε) =

N
k=0 ckε

k.
In Fig. 12, we show the results of these computations.
For this Corrigendum, the computations have been performed

sing 600 digits and 2ℓ Fourier coefficients, with 10 ≤ ℓ ≤ 13. Us-
ng this precision we have verified that the coefficients un of the
indstedt expansion have a relative error less than 10−300 when
≤ 400, see Fig. 13. We have also checked that the functions un
re trigonometric polynomials of degree n, as predicted in [3], up
o an error less than 10−200 within the same range of parameters.
ll the computations were done in pari/gp, [4].
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