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Abstract

The quasi-periodic doubling cascade is shown to occur in the transition from regular to weakly turbulent behaviour in
simulations of incompressible Navier–Stokes flow on a three-periodic domain. Special symmetries are imposed on the flow field
in order to reduce the computational effort. Thus we can apply tools from dynamical systems theory such as continuation of
periodic orbits and computation of Lyapunov exponents. We propose a model ODE for the quasi-period doubling cascade which,
in a limit of a perturbation parameter to zero, avoids resonance related problems. The cascade we observe in the simulations
is then compared to the perturbed case, in which resonances complicate the bifurcation scenario. In particular, we compare
the frequency spectrum and the Lyapunov exponents. The perturbed model ODE is shown to be in good agreement with the
simulations of weak turbulence. The scaling of the observed cascade is shown to resemble the unperturbed case, which is directly
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elated to the well known doubling cascade of periodic orbits.
2005 Elsevier B.V. All rights reserved.
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. Introduction

In the absence of boundaries the incompressible
avier–Stokes equations are symmetric under rota-

ions, translations and reflections. If we impose a sub-
roup of symmetries on the solutions we reduce the
umber of degrees of freedom in simulations of the

∗ Tel.: +61 3 9479 2109; fax: +61 3 9479 2466.
E-mail address:l.vanveen@latrobe.edu.au.

flow. In the early days of numerical simulation such
duction by symmetry was used to probe into turbu
flow, revealing structures such as the Taylor–Green
tex[1]. Kida[2] put forward what is probably the ma
mal reduction still allowing for turbulent flow. The co
responding flow is calledhigh symmetricand was use
to study flow statistics at moderate to high Reyn
number[3–5].

As computers have grown considerably since t
those results may be reproduced today in simula
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without any special symmetry. However, reduction by
symmetry can still be a useful approach when going to
ever higher Reynolds number, requiring higher resolu-
tion of the models, and when applying tools of dynam-
ical systems theory to turbulence.

Recently considerable effort has been made to apply
continuation and bifurcation analysis to fluid dynam-
ical problems, see e.g.[6,7]. If this could be done at
realistic resolution the results could prove a valuable
complement to statistical analysis of direct numerical
simulation. At the moment the maximum number of de-
grees of freedom tackled successfully is of order 104.
Given that the simulation of turbulent flow at moderate
Reynolds number requires a number of degrees of free-
dom in the order of 106, reduction by symmetry can be
successfully applied.

Here, we examine the transition from regular to
weakly turbulent motion in high symmetric flow. Ex-
ploiting the divergence free condition in addition to the
symmetry we gain a factor of about 300 with respect to
general, non symmetric flow and a factor of 3/2 with re-
spect to earlier work on high symmetric flow in terms of
the number of degrees of freedom. Thus we can analyse
the transition using continuation of periodic orbits and
computation of Lyapunov exponents, using the direct
method for integration rather then the pseudo-spectral
method.

In addition to the Ruelle-Takens scenario, reported
on previously[8], we find that a cascade of quasi-
periodic doubling bifurcations, otherwise knows as
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To within the accuracy of the numerics, the scaling
of the cascade is shown to agree with that of the un-
perturbed model ODE, which is known theoretically.
When looking at the leading Lyapunov exponents a dif-
ference becomes apparent: in the unperturbed model
ODE the largest two nonzero exponents become equal
on an open interval in parameter space in between suc-
cessive doubling bifurcation points, whereas in the per-
turbed model ODE, and also in the flow simulations,
they remain separate. This difference might by caused
by the crossing of resonance tongues or other codimen-
sion one phenomena in which the stable torus loses nor-
mal hyperbolicity. A thorough study of the model ODE
with finite perturbation might yield an explanation.

2. The vorticity equation for high symmetric
flow

Consider an incompressible fluid in a periodic box
0 < x1, x2, x3 ≤ 2π. In terms of the Fourier represen-
tation of velocity and vorticity,

v = i
∑

k

ṽ(k) eik·x, ω =
∑

k

ω̃(k) eik·x (1)

we have

d

dt
ω̃i(k) = εijkkjklṽkvl − νk2ω̃i(k) (2)

kiũi = 0 (3)
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orus doubling bifurcations, occurs in the transition
eak turbulence. To the author’s best knowledge

s the first time this bifurcation sequence is found
avier–Stokes flow at realistic truncation level. In
er to relate the numerical results to theoretical pre

ions we propose a model ordinary differential equa
ODE) for this cascade. In contrast to model equat
tudied previously[9,10] these equations, based o
xed time smooth suspension of the Hénon map, dis
lay a complete cascade with a fixed frequency r
f the bifurcating tori in the limit of a perturbation p
ameter to zero. If we introduce a slight perturbatio
he model ODE the bifurcation cascade is interrup
s it is in the simulations of weak turbulence. Al

he frequency spectrum at the onset of chaos an
ependence of the leading Lyapunov exponents o
ifurcation parameter in the simulations is shown t
ery similar those of the perturbed model ODE.
˜ i(k) = −εijkkjṽk(k) (4)

hereν is the kinematic viscosity,εi,j,k is the permuta
ion symbol and the tilde denotes the Fourier transfo
n terms of the standard norm energy and enstroph
iven by

= 1
2‖v‖2, Q = 1

2‖ω‖2 (5)

espectively. Now consider the following discrete sy
etry operations:Si, reflections in the planesVi given
yxi = π andRi, rotations overπ/2 radiants about th

inesli : xj = π/2 for j �= i. If the flow is invariant un
er these operations only one out of three compon
f vorticity in a volume fraction 1/43 needs to be com
uted to determine the flow on the periodic dom
ig. 1gives an impression of the symmetries. We c
ow invariant underSi andRi, first described by Kid
2], high symmetric.
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Fig. 1. The structure of high symmetry. F represents the state on a
face of a box with edges of lengthπ/2. Reproduced from[2].

Symmetry operationsSi andRi introduce linear re-
lations between the Fourier components of vorticity.
First of all we have

ω̃1(k1, k2, k3) = ω̃2(k3, k1, k2) = ω̃3(k2, k3, k1) (6)

so that we may consider only one component. This
scalar function is even or odd in its arguments:

ω̃1(k1, k2, k3) = ω̃1(−k1, k2, k3) = −ω̃1(k1,−k2, k3)

= −ω̃1(k1, k2,−k3) (7)

and finally we have

ω̃1(k1, k2, k3) =


−ω̃1(k1, k3, k2) for k1 andk2 andk3 eve

ω̃1(k1, k3, k2) for k1 andk2 andk3 odd

0 otherwise.

We consider a cubic truncation, i.e.|k1,2,3| ≤ N. Rela-
tions(6)–(8)reduce the number of independent Fourier
modes of vorticity by a factor of 192 in the lead-
ing order, that isN3. This reduction was exploited by
Kida and Murakami[3,4] to investigate scaling laws at

moderate to high Reynolds number. In the present work
we exploit the divergence free condition for vorticity
to further reduce the number of modes. With the aid of
Eq.(6) it reads

k1ω̃1(k1, k2, k3) + k2ω̃1(k2, k3, k1) + k3ω̃1(k3, k1, k2)

= 0 (9)

Taking maximal advantage of relations(6)–(9) we
consider only Fourier components ofω1 in the
fundamental domain{k ∈ Z

3|k3 > k2, k3 ≥ k1, k1 ≥
0, k2 > 0, k3 ≤ N}. The number of independent modes
is reduced by a factor of 288 in the leading order.

These components satisfy the following equation

d

dt
ω̃1(k1, k2, k3)

= k2k3(S̃(k3, k1, k2) − S̃(k2, k3, k1))

+ k1k2T̃ (k2, k3, k1) − k3k1T̃ (k3, k1, k2)

+ (k2
2 − k2

3)T̃ (k1, k2, k3) − νk2ω̃1(k1, k2, k3)

(10)

whereS̃ andT̃ are the Fourier transforms of

S(x1, x2, x3) = v1(x1, x2, x3)2

T (x1, x2, x3) = v1(x2, x3, x1)v1(x3, x1, x2)
(11)

and
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2ṽ1 = k2ω̃1(k3, k1, k2) − k3ω̃1(k2, k3, k1) (12)

nergy is supplied by fixing the low order odd mo
˜ 1(1,1,3) = −3/8. Thus we obtain a family of dy
amical systems with one parameter,ν, and a numbe
f degrees of freedom given by

7
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2
− 1, if N is even

1
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(
N − 1

2

)
− 1, if N is odd.

(13)
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3. Numerical considerations

In performing time integrations we avoid the use
of a pseudo-spectral method, commonly employed for
three dimensional simulations of Navier–Stokes. Up
to a truncation level ofN = 25 (n = 1365) the direct
method is not exceedingly slow due to the reduction of
the number of degrees of freedom described above and
yields easy access to the Jacobian for integration of the
variational equations. Also, the direct integration code
can easily be run in parallel, distributing the compu-
tation of the components of the vector field over any
number of processors. For higher truncation levels, at
which storage of the nonlinear interaction coefficients
requires huge memory space, it is mandatory to use
a pseudo spectral method, as described in[3], even
though it does not exploit the divergence free condi-
tion (9). For time integration a seventh to eight order
Runge-Kutta–Felbergh scheme with adaptive step size
is employed. As many of the results presented here are
based on rather long time integrations it important to
keep the error tolerance low. We have checked energy
conservation at zero forcing and viscosity using the
high order and the fourth order Runge-Kutta schemes.
For realistic O(1) levels of the energy, an integration
time�t = 103 and a fixed error toleranceδE = 10−9

the step size required for the fourth order scheme is
about 10 times smaller then the average step size us-
ing the high order scheme. As the high order method
needs 13 evaluations of the vector field at each time
s ore
e

Below simulations are performed with a viscos-
ity in the range 0.005< ν < 0.01 and the truncation
level fixed toN = 15 (n = 300). We computed the en-
ergy and the enstrophy, as well as Taylor’s micro-scale
Reynolds number,Rλ, and Kolmogorov’s dissipation
length scale,η, defined by

Rλ =
√

10

3

E

ν
√
Q
, η = 4

√
ν2

2Q
(14)

The dimensionless numberηN indicates if the res-
olution is high enough in numerical simulations. If
ηN ∼ 1 the truncation error is considered negligible.
At the fist transition to chaos, the focus of this paper,
we haveηN ≈ 0.8. The band average energy spectrum
is shown inFig. 2(left). In order to make sure that the
results presented below do not depend critically on
the truncation level we repeated some of the compu-
tations, in particular the location of the quasi-periodic
bifurcation points described in Section5, at N = 21
(n = 814). The qualitative behaviour remains the
same as the bifurcation points shift slightly to lower
viscosity. For this truncation level we haveηN ≈ 1
at the first transition point. The band-averaged energy
spectrum is shown inFig. 2(right). At the small scales
an exponential decay is visible, indicating that our
numerical results are reliable.

Periodic orbits are continued in the viscosity as
fixed points of a Poincaré map, using the arclength
method as described in[11]. This method is time
consuming because of the integration of the linearised
e this
i

F to cha its,
l right:N
tep, against four for the low order scheme, it is m
fficient.

ig. 2. Band-averaged energy spectra near the first transitions
og-linear scale in normalised units. Left: Truncation levelN = 15,
quations. However, running the code in parallel
s no obstacle.

os, described in Section5. Obtained from an integration of 300 time un
= 21.
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4. Transitions to chaos

For large viscosity an equilibrium state is the global
attractor in our simulations of high symmetric flow.
At ν ≈ 0.0113 a Hopf bifurcation occurs in which
a stable periodic orbit is created. To get an impres-
sion of the transitions from periodic to chaotic mo-
tion we computed a limit point diagram in the range
0.01> ν > 0.005 of the Poincaré map on the coordi-
nate plane given by ˜ω(0,2,4) = −0.05. In this range
the time average micro-scale Reynolds number varies
fromRλ ≈ 27 toRλ ≈ 50, indicating that the aperiodic
behaviour can be classified as weak turbulence, fully
developed turbulence sets in aroundν ≈ 0.004 and
Rλ ≈ 60 in high symmetric flow. The limit point dia-
gram is shown inFig. 3. Two parameter ranges with pe-
riodic behaviour can be seen: one aroundν = 0.01 and
one aroundν = 0.0068. A continuation of these peri-
odic orbits in parameterν is shown inFig. 4. The branch
which is stable aroundν = 0.0068 does not bifurcate
from an equilibrium at high viscosity. Both branches
become unstable in a Neimark-Sacker bifurcation. Di-
rectly beyond these bifurcation points we expect the
behaviour to be quasi periodic, and indeed invariant cir-
cles appear in the Poincaré section,Fig. 3. The break-

t-
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n is

m-

es
ture

Fig. 4. Branches of periodic orbits of high symmetric flow, truncated
atN = 15. Solid lines denote stable branches and dashed lines un-
stable branches. Bifurcation points are marked SN for saddle-node,
NS for Neimark-Sacker and H for Hopf. The roman number refer
to the stable periodic behaviour as seen in the limit point diagram,
Fig. 3.

down of these invariant tori gives rise to chaos. The
torus created at NS2 displays a quasi-periodic Hopf bi-
furcation and thus the Ruelle-Takens scenario to chaos
is followed, as reported in[8]. The torus created at NS1
displays a quasi-periodic doubling bifurcation which
turns out to be the first of a cascade, discussed in detail
in Section5.

The fundamental frequencies of the tori created at
NS1,2 have a physical interpretation. The higher fre-
quency,ω1 ≈ 2.6 is set by the large eddy overturning
time, estimated asT = l/U ≈ 2.3 whereU ≈ 0.9 is
the root mean square velocity andl = 3

√
π3/3 is the

characteristic length scale given that by symmetriesSi,
the planesx1,2,3 = π are impermeable and by sym-
metriesRi the velocity field has a three-fold rotational
symmetry around the main diagonalx1 = x2 = x3. The
lower frequency,ω2 ≈ 0.26, corresponds to a modula-
tion of the amplitude of the energy. It is also present
in fully developed turbulence with high symmetry and
can be though of as a retaining time scale of anoma-
lously high energy. The dynamics on these time scales
is illustrated by the isosurface of enstrophy shown in
Fig. 5. On the short time scale,T, patches of high vor-
ticity are generated on the main diagonal and off the
diagonal in triples related by the three-fold rotational
symmetry. These patches converge to the origin and
to the center of the 2π-periodic box, points of special
Fig. 3. Limit point diagram of high symmetric flow simulations. I
erates of the Poincaré map, obtained from an integration of leng
�t = 1000, are drawn for each parameter value. Transient motio
discarded and the step size of the parameter is set toδν = 1 × 10−4.
The last point of each integration is the initial point at the next para
eter value, starting at the stable periodic orbit atν = 0.0105. Visible
is the transition I→ II from periodic to quasi periodic, II→ III to
chaotic, III→ IV back to periodic, IV→ V to quasi periodic and
V → VI to chaotic/turbulent. In region III the behaviour alternat
between chaotic and two or three periodic while the spatial struc
of the flow remains simple.
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Fig. 5. Isosurface of enstrophy during quasi-periodic behaviour corresponding toFig. 6a. Edges of lengthπ, taken from the 2π-periodic domain
and isosurface level set to eight times the spatio-temporal average. The main diagonal is an axis of three-fold rotational symmetry. The time step
between a and b (c and d) is half the short periodT1 = 2π/ω1 and from a to c (b–d) half the long periodT2 = 2π/ω2.

symmetry. On the longer time scale the overall ampli-
tude of this process is modulated. Note, that the patches
of high vorticity do not have the elongated, tubular
shape typical of developed turbulence.

5. The quasi-periodic doubling cascade

In Fig. 6 six Poincaŕe plots are shown beyond bi-
furcation point NS1. The torus “doubles” at least four
times (a–e) before a chaotic attractor appears with a
shape very similar to the doubled torus.

Such sequences of torus doubling bifurcations
have been observed both numerically, e.g. in se-
vere truncations of the Navier–Stokes equations[17]
and in a periodically driven low-order atmosphere
model [18], and experimentally, e.g. in electronic
circuits [15,16] and have also been studied in con-
nection to strange non chaotic attractors[19]. In
these examples chaotic behaviour is observed af-
ter two or three doublings. In our system we find
four doublings, after which quasi-periodic motion
is very hard to distinguish from aperiodic motion
numerically.
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Fig. 6. Poincaŕe sections in the plane ˜ω(0,2,4) = −0.05, projected onto the modes ˜ω(2,2,4) andω̃(3,1,3). Four quasi-periodic doublings are
shown in (a–e) and the resulting chaotic attractor in (f).
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The observation of incomplete quasi-periodic dou-
bling cascades led to the introduction of simple mod-
els which highlight the similarity to the well known
periodic doubling cascade[9,10]. In these models an
infinite cascade can only be observed in a limit of the
parameters were the vector field can be decomposed
into a three dimensional vector field which exhibits a
period doubling cascade and a constant rotation. Away
from this limit the stable torus is more fragile after each
bifurcation and the cascade is interrupted.

In order to see why the cascade is interrupted, we
need to investigate the quasi-periodic doubling bifur-
cation in detail. Rigorous bifurcation theorems for bi-
furcating invariant tori were formulated by Broer and
coworkers[12,13]. They include the bifurcation shown
here, in which a torus loses stability and a new stable
torus is created with one fundamental frequency half
that of the original torus. However, the bifurcation the-
orem is given for a one parameter family of tori that
satisfy a non resonance condition on the fundamental
frequencies. If the fundamental frequencies of the torus
become resonant normal hyperbolicity is lost and per-
sistence under parameter variations is not guaranteed.
We have only one parameter in our system and the fun-
damental frequencies depend on it continuously. As we
vary the parameter we cut through a Cantor set of val-
ues at which the torus is normally hyperbolic. Thus,
the loss of normal hyperbolicity through resonance is a
possible mechanism for the interruption of the cascade.

However, the resonances we pass through, i.e. the
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for instance, concluded that the cascade was inter-
rupted when the stable torus loses smoothness and
collides with an unstable parent torus. In reference
[18] a strikingly complicated, yet incomplete picture
is sketched of the mechanisms that can interrupt the
cascade.

In order to interpret our numerical results, let us
formulate a new model ODE for the quasi-periodic
doubling cascade. Models studied before[9,19] were
based on the logistic map and cannot be regarded as
the Poincaŕe map of a smooth flow. Our starting point
is the H́enon map.

LetHs(x, y) be a family of H́enon maps onR2 which
exhibits a period doubling cascade. Lets̄i be the pe-
riod doubling bifurcation point at which a stable 2i-
periodic point is created and let limi→∞ s̄i = sc. Let
φt(x, y, u; s) be a smooth fixed time suspension ofHs

on R
2 × S so thatφ1(x, y,0;s) = (Hs(x, y),0). The

flow φt is generated by an autonomous vector field,
denoted here byf1∂x + f2∂y + ∂u. In Appendix Aex-
plicit expressions are given as formulated in[20]. Fi-
nally, we add a second periodic variable and a coupling
proportional toε:

ẋ = f1(x, y, u; s) + εh1(v), u̇ = 1

ẏ = f2(x, y, u; s) + εh2(v), v̇ = ω + εg(x, y)

(15)

with h : S → R
2,g : R

2 → Randω irrational. Forε =
0 the flow onR2 × S × S is given byψt(x, y, u, v; s) =
(

( en-

( u-
iod
ints

( are
or-
e

the
d in

F de-
p be
rnold’ tongues we cross, are of fairly high order
e find for the fundamental frequencies at NS1 that
1 ≈ 10ω2. Recently an algorithm for the continuati
f invariant tori was developed that “steps over” s
igh order resonances without a problem, and in

his algorithm was tested on a system that exhibits a
ade of quasi-periodic doublings[14]. In this paper it is
ointed out that in the absence of a non resonance
ition the notion of a quasi-periodic bifurcation po

tself is unclear, as no normally hyperbolic torus ex
n a whole interval in parameter space. On one sid
his interval we observe the stable single torus an
he other side the stable doubled torus. This inte
urns out to be small compared to the numerical r
ution of our simulations, a step size in the viscosit
boutδν ≈ 10−7.

Apart form resonances there are other mecha
hat can interrupt the cascade. Stagliano et al.[19],
φt(x, y, u; s), v0 + ωt) and we know that

1) At s = s̄i a stable torus with fundamental frequ
cies 1/2i andω is created.

2) The quasi-periodic doubling bifurcations accum
late onsc with the same scaling as for the per
doubling cascade, thus for the bifurcation po
we find that limi→∞(si − si−1)/(si+1 − si) = δ,
whereδ = 4.669. . ., the Feigenbaum constant.

3) The Lyapunov exponents of the attracting torus
determined by the Floquet multipliers of the c
responding periodic points ofHs. Therefore, th
leading nonzero exponent should be equal to
second exponent on a open interval containe
each interval (̄si, s̄i+1).

or finiteε the second fundamental frequency will
end ons continuously and resonance points will
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passed through on the way to the accumulation point
s = sc.

In the following we compare the model ODE to
the simulations of weak turbulence. The damping pa-
rameter of the H́enon map is fixed toj = 1/4. The
unperturbed model then displays a doubling cascade
with s1 = 1.1718. . ., s2 = 1.7031. . ., s3 = 1.8144. . .
andsc = 1.84525. . .. In the perturbed system we fix
the second frequency to the golden mean, i.e.ω =
(
√

5 + 1)/2 and

h1(v) = sin 2πv

h2(v) = 0

g(x, y) = y

(16)

The perturbation parameter is fixed toε = 0.001. At
this perturbation strength we observe four doubling bi-
furcations before chaos sets in. In the Poincaré inter-
section plane given byv = 0, projected on thex andy
variables, the bifurcation sequence looks very similar
to the one shown inFig. 6.

We have computed the frequency spectrum near the
onset of chaos and the (partial) Lyapunov spectrum
both for the weak turbulence and for the model ODE.
For computation of Lyapunov exponents of the high-
symmetric flow we used finite differencing rather than
integration of the full linearised system. Integration was
done until the zero exponent associated with the direc-
tion transversal to the flow and tangent to the torus had
converged up to 10−4.

rve
t uen-

ciesω2/2,ω2/4 andω2/8 show up, as well as combina-
tion peaks aroundω1.Fig. 7shows the spectrum around
the fundamental frequencies for the simulations of
weak turbulence. A rather similar figure for the model
ODE is omitted here. In the case of a period doubling
cascade the amplitude ratioµ between consecutive
peaksω/2i can be predicted on basis of the scaling con-
stants[21]. We attempted to measure this ratio for the
spectrum shown inFig. 7but only the first three peaks
can be distilled from these data. These scale roughly by
a factor ofµ = 4, not far from the theoretical prediction
for the period doubling caseµ = 4.648. . .. The same
estimate is obtained for the model ODE. In the case
of Poincaŕe maps, rather then discrete maps, similar
deviations from the theory are found.

In Figs. 8(left) and 9(left) the leading Lyapunov
exponents are shown as a function of the bifurcation
parameter, i.e. the viscosityν for the high-symmetric
flow and the parameters of the H́enon map for the
model ODE. From these data we can estimate the
locus of the bifurcation points, stressing once more
that this notion is ill-defined on a scale smaller then
our resolution in parameter space. Thus we find con-
secutive estimates for the scaling constantδ as δi =
(ν̄i − ν̄i−1)/(ν̄i+1 − ν̄i) orδi = (s̄i − s̄i−1)/(s̄i+1 − s̄i):

δ1 = 4.64± 0.2, δ2 = 4.88± 0.5,

for high-symmetric flow and

F on poin3 a to
t undω1.
Turning first to the frequency spectrum we obse
hat after three doublings bifurcations peaks at freq

ig. 7. Frequency spectrum of the energy just beyond bifurcati
he doubling bifurcations aroundω2 and the resonance peaks aro
δ1 = 4.75± 0.05, δ2 = 4.63± 0.2,

for the model ODE.

t Dround the widely separated frequenciesω1,2. Note the peaks due
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Fig. 8. Left: Largest nonzero Lyapunov exponentsλ1,2 as a function ofν in the quasi-periodic doubling cascade. The first doubling points have
been marked Di, i = 1–3. Right: Enlargement of the regions around D1 and D2. Note that after the second doubling the Lyapunov exponents do
not meet.

Again, this is compatible with the theory for period
doubling cascades, albeit a rough estimate.

In Fig. 8(right) enlargements around the points D1
and D2 are shown for the high-symmetric flow simu-
lations. After the first doubling the leading non zero
exponents are equal on small interval of orderδν =
10−6. After the second doubling the leading expo-
nents neither cross nor become equal. This result was
confirmed by integration of the full linearised equa-
tions at several points in the parameter range where
the leading exponents attain their minimal distance.
The parameter range between the third and fourth
doublings is too small to see whether the exponents
meet. In this range we record the passage through
a high order resonance which does not destroy the
torus.

In Fig. 9(right) an enlargement is shown of the Lya-
punov exponents of the model ODE around the dou-
bling points D3 and D4. For comparison, the exponents
of the unperturbed model, computed from the Hénon
map itself, have been drawn with thin lines. Again the
Lyapunov exponents do not become equal in between
doubling points. The step size has been taken as small
as δs = 1 × 10−5. Apparently, the slightly perturbed
model ODE yields the same behaviour of the lead-
ing Lyapunov exponents as the simulations of high-
symmetric flow.

For now we have no explanation for the absence
of crossing or equal leading Lyapunov exponents in
between doubling points. As noted before, the invari-
ant tori are structurally stable only on a fractal domain
of the parameter and bifurcations might go unnoticed
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Fig. 9. Left: Largest nonzero Lyapunov exponentsλ1,2 as a function ofs for the model ODE(15)with ε = 0.001. The doubling points have been
marked as inFig. 8. Right: Enlargement of the region around D3,4. The bold lines denote the exponents for the perturbed model atε = 0.001.
For comparison the exponents for the unperturbed case (ε = 0) are shown with thin lines. Note that the exponents of the perturbed system do no
meet between the doubling points.

when monitoring Lyapunov exponents with finite step
size for the parameter. A more thorough understanding
could be obtained by a continuation of the invariant
torus itself and by further study of the model ODE
(15), which is the topic of future research.

6. Conclusion

We have investigated the transition from stationary
to disordered behaviour in simulations of high sym-
metric flow. In combination with the symmetry the di-
vergence free condition was exploited to reduce the
number of degrees of freedom by a factor of about
300 with respect to simulations of general periodic
Navier–Stokes flow, a gain of 30% compared to ear-
lier work [2–5,8]. This allowed us to investigate the
bifurcation scenario in detail and at realistic truncation
level.

Along with the Ruelle-Takens scenario, the quasi-
periodic doubling cascade occurs as a route to weak
turbulence. By means of Poincaré sections, power spec-
tra and Lyapunov exponents we have shown that this
cascade bears close resemblance to the well known
doubling cascade for periodic orbits. We observe four
doublings after which quasi-periodic behaviour is very
hard to distinguish from chaotic behaviour numerically.
In previous work on the quasi-periodic doubling cas-

cade, both numerical and experimental, chaos is re-
ported to set in after two or three doublings[15,17,16].
The fact that we see more doublings might be due to the
widely separate fundamental frequencies of the bifur-
cating tori in our system, as is the case in recent work
by Schilder et al.[14].

In order to make the notion of a quasi-periodic dou-
bling cascade precise we have proposed a model ODE,
Eq.(15), such that in the limit of a perturbation param-
eterε ↓ 0 the correspondence to the periodic doubling
cascade is exact. The scaling of the first steps of the
observed quasi-periodic doubling cascade agrees with
the prediction of the unperturbed Eq.(15). Looking at
the leading nonzero Lyapunov exponents, however, a
difference between the perturbed model ODE and the
high-symmetric flow simulations on one side, and the
unperturbed model ODE on the other side, becomes
apparent. In the perturbed model ODE and in the sim-
ulations the two largest nonzero exponents remain sep-
arate in between doublings, or at least no crossing is
found with a small but finite step size in the parameter.
An explanation might follow from a detailed study of
the model ODE(15)with nonzero perturbation. Other
interesting questions would be if the scaling laws of the
doubling cascade are influenced by the perturbation and
how many steps of the cascade can be observed given
the ratio of fundamental frequencies and the strength
of the perturbation.
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The solutions presented here, in particular the
bifurcating tori, are solutions of the truncated three
dimensional Navier–Stokes equations on a periodic
domain. They might, however, prove to be unstable
to asymmetric perturbations. It is therefore uncertain
whether the quasi-periodic doubling cascade can be
observed in periodic flow without any symmetries im-
posed. It does, however, occur at low Reynolds number,
at which asymmetric perturbations might be damped.
Even at such low Reynolds number, the simulation
of general three dimensional flow, and the bifurcation
analysis as presented here, remains a formidable task.

Note added in proof

After numerical experiments with a model ODE
similar to the one presented here, Carles Simó sug-
gested that the lack of equal or crossing eigenvalues,
seen inFig. 8andFig. 9, is due to the loss of reducib-
lity of the stable torus on parameter intervals in between
doubling bifurcations.
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In order to define the functionf (x, y, u; s) we need to
introduce the following auxiliary functions:

ξ(u) = (3 − 2u)u2

η(u) = 1 + u ln j − (2 lnj + 3)u2 + (2 + ln j)u3

G(ξ, η) = 1

ξ2 + η2

{
ξ′η − ξη′ − ξη

(
ln j − 2

ξξ′ + ηη′

ξ2 + η2

)}
H(ξ, η) = 1

ξ2 + η2

{
(ξ′ξ + η′η)

ξ2 − η2

ξ2 + η2
+ η2 ln j

}
X(x, y) = j−u(ηx − ξy)

(A.2)

where the primes denote differentiation with respect to
u. Suppressing the explicit dependence onu in the right
hand side we have

f (x, y, u; s) =
(
H(ξ, η) G(ξ, η)

G(η, ξ) H(η, ξ)

)(
x

y

)

+F (X(x, y); s)

(
ξξ′

ξ′η

)
. (A.3)
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