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Abstract

The quasi-periodic doubling cascade is shown to occur in the transition from regular to weakly turbulent behaviour in
simulations of incompressible Navier—Stokes flow on a three-periodic domain. Special symmetries are imposed on the flow field
in order to reduce the computational effort. Thus we can apply tools from dynamical systems theory such as continuation of
periodic orbits and computation of Lyapunov exponents. We propose a model ODE for the quasi-period doubling cascade which,
in a limit of a perturbation parameter to zero, avoids resonance related problems. The cascade we observe in the simulations
is then compared to the perturbed case, in which resonances complicate the bifurcation scenario. In particular, we compare
the frequency spectrum and the Lyapunov exponents. The perturbed model ODE is shown to be in good agreement with the
simulations of weak turbulence. The scaling of the observed cascade is shown to resemble the unperturbed case, which is directly
related to the well known doubling cascade of periodic orbits.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction flow. In the early days of numerical simulation such re-
duction by symmetry was used to probe into turbulent
In the absence of boundaries the incompressible flow, revealing structures such as the Taylor—-Green vor-
Navier—Stokes equations are symmetric under rota- tex[1]. Kida[2] put forward what is probably the maxi-
tions, translations and reflections. If we impose a sub- mal reduction still allowing for turbulent flow. The cor-
group of symmetries on the solutions we reduce the responding flow is callebigh symmetriand was used
number of degrees of freedom in simulations of the to study flow statistics at moderate to high Reynolds

numben3-5].
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without any special symmetry. However, reduction by To within the accuracy of the numerics, the scaling
symmetry can still be a useful approach when going to of the cascade is shown to agree with that of the un-
ever higher Reynolds number, requiring higher resolu- perturbed model ODE, which is known theoretically.
tion of the models, and when applying tools of dynam- Whenlooking at the leading Lyapunov exponents a dif-
ical systems theory to turbulence. ference becomes apparent: in the unperturbed model
Recently considerable effort has been made to apply ODE the largest two nonzero exponents become equal
continuation and bifurcation analysis to fluid dynam- on an open interval in parameter space in between suc-
ical problems, see e.§6,7]. If this could be done at  cessive doubling bifurcation points, whereas in the per-
realistic resolution the results could prove a valuable turbed model ODE, and also in the flow simulations,
complement to statistical analysis of direct numerical they remain separate. This difference might by caused
simulation. Atthe momentthe maximum number ofde- by the crossing of resonance tongues or other codimen-
grees of freedom tackled successfully is of ordet.10  sion one phenomena in which the stable torus loses nor-
Given that the simulation of turbulent flow at moderate mal hyperbolicity. A thorough study of the model ODE
Reynolds number requires a number of degrees of free-with finite perturbation might yield an explanation.
dom in the order of 19 reduction by symmetry can be
successfully applied.
Here, we examine the transition from regular to 2. The vorticity equation for high symmetric
weakly turbulent motion in high symmetric flow. Ex-  flow
ploiting the divergence free condition in addition to the
symmetry we gain a factor of about 300 with respectto ~ Consider an incompressible fluid in a periodic box
general, non symmetric flow and a factor of 3/2 withre- 0 < x1, x2, x3 < 27. In terms of the Fourier represen-
spect to earlier work on high symmetric flow interms of  tation of velocity and vorticity,
the number of degrees of freedom. Thus we can analyse . .
the transition usigg continuation of periodic orbits anyd V=1 Z (k) €, = Z (k) € @)
computation of Lyapunov exponents, using the direct K K
method for integration rather then the pseudo-spectral we have
method. . - 5.
In addition to the Ruelle-Takens scenario, reported &wi(k) = €ijik jkivivy — vk“@;(K) 3
on previously[8], we find that a cascade of quasi- .
periodic doubling bifurcations, otherwise knows as kiit; = 0 ®)
torus doubling bifurcations, occurs in the transition to &, (k) = —éijik jDr(K) (4)
weak turbulence. To the author’s best knowledge this ) _ o _ )
is the first time this bifurcation sequence is found in Wherevis the kinematic viscosity, ; « is the permuta-
Navier—Stokes flow at realistic truncation level. In or- tionsymboland the tilde denotes the Fourier transform.
der to relate the numerical results to theoretical predic- N térms of the standard norm energy and enstrophy are
tions we propose a model ordinary differential equation 91ven by
(ODE) for this cascade. In contrast to model equations g _ 12, 0 = Lw)? (5)
studied previously9,10] these equations, based on a 2 2
fixed time smooth suspension of thé&hbn map, dis-  respectively. Now consider the following discrete sym-
play a complete cascade with a fixed frequency ratio metry operationss;, reflections in the planes; given
of the bifurcating tori in the limit of a perturbation pa- by x; = 7 andRr;, rotations overr/ 2 radiants about the
rameter to zero. If we introduce a slight perturbation in linesl; : x; = w/2for j # i. If the flow is invariant un-
the model ODE the bifurcation cascade is interrupted, der these operations only one out of three components
as it is in the simulations of weak turbulence. Also, Of vorticity in a volume fraction 14 needs to be com-
the frequency spectrum at the onset of chaos and theputed to determine the flow on the periodic domain.
dependence of the leading Lyapunov exponents on theFig. 1gives an impression of the symmetries. We call a
bifurcation parameter in the simulations is shown to be flow invariant unders; andRr;, first described by Kida
very similar those of the perturbed model ODE. [2], high symmetric
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Fig. 1. The structure of high symmetry. F represents the state on a

face of a box with edges of lengity2. Reproduced frorf2].

Symmetry operation§; andR; introduce linear re-
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moderate to high Reynolds number. Inthe present work
we exploit the divergence free condition for vorticity
to further reduce the number of modes. With the aid of
Eq.(6) it reads

ki@ (k1, k2, k3) + kow1(k, k3, k1) + ka1 (ks, k1, k2)
=0 9)
Taking maximal advantage of relatior{6)—(9) we
consider only Fourier components @f; in the
fundamental domaidk € Z3|kz > ko, k3 > k1, k1 >
0, k2 > 0, k3 < N}. The number ofindependent modes

is reduced by a factor of 288 in the leading order.
These components satisfy the following equation

%5)1(161, k2, k3)
= koka(S(ks, k1. k2) — S(k. ks, k1))
+ kikoT (k2. k3, k1) — kak1T (ka, k1. ko)
+ (k3 — k3)T (k1. ko, k3) — vk?@1 (k1. k2, k3)

lations between the Fourier components of vorticity. (10)
First of all we have
ke, ko, k3) = @oks, ku, ko) = da(ka, ka, k1) (6) whereS and7 are the Fourier transforms of
so that we may consider only one component. This S(x1, x2, x3) = va(x1, x2, x3)? (11)
scalar function is even or odd in its arguments: T(x1, x2, x3) = v1(x2, x3, x1)v1(x3, X1, X2)
w1(k1, k2, k3) = w1(—k1, k2, k3) = —1(k1, —k2, k3) and
= —w1(ky, k2, —k3) Q) » N .
k“01 = kow1(ks, k1, k2) — kzw1(k2, k3, k1) (12)

and finally we have

—aw1(ka, k3, ko) for ky andks andks even
w1(k1, ko, k3) = ¢ @1(kq, k3, k2) for k1 andk, andks odd, (8)

0 otherwise

We consider a cubic truncation, iJé; 2 3| < N. Rela-
tions(6)—(8)reduce the number of independent Fourier
modes of vorticity by a factor of 192 in the lead-
ing order, that isV3. This reduction was exploited by
Kida and Murakamj3,4] to investigate scaling laws at

n(N) =

2(3)+3(3) -

2 N—13+3 N-—1\? 1
3\ 2 2\ 2 6

Energy is supplied by fixing the low order odd mode
@1(1, 1, 3) = —3/8. Thus we obtain a family of dy-
namical systems with one parameterand a number
of degrees of freedom given by

7N
1,

52 if Niseven

(N;1>_L if Nisodd

(13)
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3. Numerical considerations Below simulations are performed with a viscos-
ity in the range M05 < v < 0.01 and the truncation

In performing time integrations we avoid the use levelfixed toN = 15 ( = 300). We computed the en-
of a pseudo-spectral method, commonly employed for ergy and the enstrophy, as well as Taylor’s micro-scale
three dimensional simulations of Navier-Stokes. Up Reynolds numberR;, and Kolmogorov’s dissipation
to a truncation level ofv = 25 (z = 1365) the direct length scaley, defined by
method is not exceedingly slow due to the reduction of 0 E 2
the number of degrees of freedom described above andr, = \/7 n=1— (14)
yields easy access to the Jacobian for integration of the 3v/Q 20
variational equations. Also, the direct integration code The dimensionless numbeiV indicates if the res-
can easily be run in parallel, distributing the compu- olution is high enough in numerical simulations. If
tation of the components of the vector field over any »N ~ 1 the truncation error is considered negligible.
number of processors. For higher truncation levels, at At the fist transition to chaos, the focus of this paper,
which storage of the nonlinear interaction coefficients we haveyN ~ 0.8. The band average energy spectrum
requires huge memory space, it is mandatory to use is shown inFig. 2(left). In order to make sure that the
a pseudo spectral method, as describeB]n even results presented below do not depend critically on
though it does not exploit the divergence free condi- the truncation level we repeated some of the compu-
tion (9). For time integration a seventh to eight order tations, in particular the location of the quasi-periodic
Runge-Kutta—Felbergh scheme with adaptive step size bifurcation points described in Secti@ at N = 21
is employed. As many of the results presented here are(n = 814). The qualitative behaviour remains the
based on rather long time integrations it important to same as the bifurcation points shift slightly to lower
keep the error tolerance low. We have checked energy viscosity. For this truncation level we haveV ~ 1
conservation at zero forcing and viscosity using the at the first transition point. The band-averaged energy
high order and the fourth order Runge-Kutta schemes. spectrum is shown ifig. 2(right). At the small scales
For realistic O(1) levels of the energy, an integration an exponential decay is visible, indicating that our
time Ar = 10° and a fixed error tolerand& = 10~° numerical results are reliable.
the step size required for the fourth order scheme is  Periodic orbits are continued in the viscosity as
about 10 times smaller then the average step size us-fixed points of a Poinc& map, using the arclength
ing the high order scheme. As the high order method method as described ifiL1]. This method is time
needs 13 evaluations of the vector field at each time consuming because of the integration of the linearised
step, against four for the low order scheme, it is more equations. However, running the code in parallel this

efficient. is no obstacle.
0 v=0.00836 1ol v=0.0074
] N=15 . N=21
=
b 11
=3
W
o' .
0.1} .
0.1 : : ; : : : : ; : : : ; : :
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 01 02 03 04 05 06 07 08 09 1
kn kn

Fig. 2. Band-averaged energy spectra near the first transitions to chaos, described inSS€titamed from an integration of 300 time units,
log-linear scale in normalised units. Left: Truncation leek= 15, right: N = 21.
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4. Transitions to chaos

For large viscosity an equilibrium state is the global
attractor in our simulations of high symmetric flow.
At v~ 0.0113 a Hopf bifurcation occurs in which
a stable periodic orbit is created. To get an impres-
sion of the transitions from periodic to chaotic mo-
tion we computed a limit point diagram in the range
0.01 > v > 0.005 of the Poinca map on the coordi-
nate plane given by(0, 2, 4) = —0.05. In this range
the time average micro-scale Reynolds number varies
from R;, =~ 27 toR; ~ 50, indicating that the aperiodic
behaviour can be classified as weak turbulence, fully
developed turbulence sets in around- 0.004 and
R, ~ 60 in high symmetric flow. The limit point dia-
gramis shown ifrig. 3. Two parameter ranges with pe-
riodic behaviour can be seen: one around 0.01 and
one around = 0.0068. A continuation of these peri-
odic orbits in parameteris shown irFig. 4. The branch
which is stable around = 0.0068 does not bifurcate
from an equilibrium at high viscosity. Both branches
become unstable in a Neimark-Sacker bifurcation. Di-
rectly beyond these bifurcation points we expect the
behaviour to be quasi periodic, and indeed invariant cir-
cles appear in the Poin@sectionfFig. 3. The break-

+“Vlchaotic _ _ o
7 .7 V two or three periodic
4 N, . .
L7+ IV periodic
.

@4(5,1,1)

.
,

+7 lll chaotic, two or three periodic

0.04 - . o
0.02+ e Il two pe!ioq;c
0 Vil //’Iperiodic
0.02) %%,//ﬁ
-0.04 -
-0.06 -
= 0.2
=~ 0.15
0.1

,_.-0' 0.05
7005 @4(2,2,4)

0.01 -0.1

0.005 4 006 <
g.007 0.008
v 0.009

Fig. 3. Limit point diagram of high symmetric flow simulations. It-
erates of the Poincarmap, obtained from an integration of length
Ar = 1000, are drawn for each parameter value. Transient motion is
discarded and the step size of the parameter is set401 x 10~%.

The last point of each integration is the initial point at the next param-
eter value, starting at the stable periodic orbit at 0.0105. Visible

is the transition + Il from periodic to quasi periodic, H> Ill to
chaotic, Ill— IV back to periodic, IV— V to quasi periodic and

V — VI to chaotic/turbulent. In region Il the behaviour alternates
between chaotic and two or three periodic while the spatial structure
of the flow remains simple.
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Fig. 4. Branches of periodic orbits of high symmetric flow, truncated
at N = 15. Solid lines denote stable branches and dashed lines un-
stable branches. Bifurcation points are marked SN for saddle-node,
NS for Neimark-Sacker and H for Hopf. The roman number refer
to the stable periodic behaviour as seen in the limit point diagram,
Fig. 3

down of these invariant tori gives rise to chaos. The
torus created at NSlisplays a quasi-periodic Hopf bi-
furcation and thus the Ruelle-Takens scenario to chaos
is followed, as reported if8]. The torus created at NS
displays a quasi-periodic doubling bifurcation which
turns out to be the first of a cascade, discussed in detall
in Sectionb.

The fundamental frequencies of the tori created at
NS, 2 have a physical interpretation. The higher fre-
guencywi ~ 2.6 is set by the large eddy overturning
time, estimated a§ =[/U ~ 2.3 whereU ~ 0.9 is
the root mean square velocity ahe: </73/3 is the
characteristic length scale given that by symmetsjes
the planesy; 23 = 7 are impermeable and by sym-
metriesR; the velocity field has a three-fold rotational
symmetry around the main diagonal= x2 = x3. The
lower frequencyw, ~ 0.26, corresponds to a modula-
tion of the amplitude of the energy. It is also present
in fully developed turbulence with high symmetry and
can be though of as a retaining time scale of anoma-
lously high energy. The dynamics on these time scales
is illustrated by the isosurface of enstrophy shown in
Fig. 5. On the short time scald, patches of high vor-
ticity are generated on the main diagonal and off the
diagonal in triples related by the three-fold rotational
symmetry. These patches converge to the origin and
to the center of thes2-periodic box, points of special
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Fig. 5. Isosurface of enstrophy during quasi-periodic behaviour correspondiingy &a. Edges of length, taken from the 2-periodic domain
and isosurface level set to eight times the spatio-temporal average. The main diagonal is an axis of three-fold rotational symmetry. The time step
between a and b (c and d) is half the short peffipd= 27/w, and from a to ¢ (b—d) half the long peridd = 27/ w;.

symmetry. On the longer time scale the overall ampli-  Such sequences of torus doubling bifurcations
tude of this process is modulated. Note, that the patcheshave been observed both numerically, e.g. in se-
of high vorticity do not have the elongated, tubular vere truncations of the Navier—-Stokes equatifirig
shape typical of developed turbulence. and in a periodically driven low-order atmosphere

model [18], and experimentally, e.g. in electronic

circuits [15,16] and have also been studied in con-
5. The quasi-periodic doubling cascade nection to strange non chaotic attractdf®]. In

these examples chaotic behaviour is observed af-

In Fig. 6 six Poincaé plots are shown beyond bi- ter two or three doublings. In our system we find

furcation point Ng. The torus “doubles” at least four ~ four doublings, after which quasi-periodic motion
times (a—e) before a chaotic attractor appears with ais very hard to distinguish from aperiodic motion
shape very similar to the doubled torus. numerically.
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The observation of incomplete quasi-periodic dou- for instance, concluded that the cascade was inter-
bling cascades led to the introduction of simple mod- rupted when the stable torus loses smoothness and
els which highlight the similarity to the well known collides with an unstable parent torus. In reference
periodic doubling cascad®,10]. In these models an  [18] a strikingly complicated, yet incomplete picture
infinite cascade can only be observed in a limit of the is sketched of the mechanisms that can interrupt the
parameters were the vector field can be decomposedcascade.
into a three dimensional vector field which exhibits a In order to interpret our numerical results, let us
period doubling cascade and a constant rotation. Away formulate a new model ODE for the quasi-periodic
from this limit the stable torus is more fragile after each doubling cascade. Models studied bef{®el9] were
bifurcation and the cascade is interrupted. based on the logistic map and cannot be regarded as

In order to see why the cascade is interrupted, we the Poincae map of a smooth flow. Our starting point
need to investigate the quasi-periodic doubling bifur- is the Henon map.
cation in detail. Rigorous bifurcation theorems for bi- Let?,(x, y) be afamily of Henon maps oR? which
furcating invariant tori were formulated by Broer and exhibits a period doubling cascade. Lsetbe the pe-
coworkerg12,13] They include the bifurcation shown  riod doubling bifurcation point at which a stablé- 2
here, in which a torus loses stability and a new stable periodic point is created and let limy s; = s.. Let
torus is created with one fundamental frequency half ¢;(x, y, u;s) be a smooth fixed time suspensiortof
that of the original torus. However, the bifurcation the- on R? x § so thates(x, y, 0;s) = (H,(x, y), 0). The
orem is given for a one parameter family of tori that flow ¢, is generated by an autonomous vector field,
satisfy a non resonance condition on the fundamental denoted here by19, + f29, + 9,. In Appendix Aex-
frequencies. If the fundamental frequencies of the torus plicit expressions are given as formulated20]. Fi-
become resonant normal hyperbolicity is lost and per- nally, we add a second periodic variable and a coupling
sistence under parameter variations is not guaranteedproportional toe:

We have only one parameter in our system and the fun- . .
damental frequencies depend on it continuously. Aswe * = f1(x, y, u;s) + €h1(v), u=1

vary the parameter we cut through a Cantor set of val- ¥ = f2(x, y, u;s) + €h2(v), V= +e€g(x,y)

ues at which the torus is normally hyperbolic. Thus, (15)
the loss of normal hyperbolicity through resonance is a

possible mechanism for the interruption of the cascade. withh : § — R2, g : R? — Randwirrational. Fore =

However, the resonances we pass through, i.e. theOthe flow onR? x S x Sis given byy,(x, y, u, v;s) =
Arnold’ tongues we cross, are of fairly high order as (¢:(x, y, u;s), vo + wt) and we know that
we find for the fundamental frequencies at;NBat
w1 ~ 10wy. Recently an algorithm for the continuation (1) Ats = s; a stable torus with fundamental frequen-

of invariant tori was developed that “steps over” such cies 12" andw is created.

high order resonances without a problem, and in fact (2) The quasi-periodic doubling bifurcations accumu-
this algorithm was tested on a systemthatexhibitsacas-  late ons. with the same scaling as for the period
cade of quasi-periodic doublin{fs4]. In this paper itis doubling cascade, thus for the bifurcation points
pointed out that in the absence of a non resonance con-  we find that lim_ o (s; — si—1)/(six1 — si) =,
dition the notion of a quasi-periodic bifurcation point wheres = 4.669. . ., the Feigenbaum constant.

itself is unclear, as no normally hyperbolic torus exists (3) The Lyapunov exponents of the attracting torus are
in a whole interval in parameter space. On one side of determined by the Floquet multipliers of the cor-
this interval we observe the stable single torus and on responding periodic points ¢f,. Therefore, the

the other side the stable doubled torus. This interval leading nonzero exponent should be equal to the
turns out to be small compared to the numerical reso- second exponent on a open interval contained in
lution of our simulations, a step size in the viscosity of each intervalgj, s;+1).

aboutsy ~ 107,
Apart form resonances there are other mechanism For finitee the second fundamental frequency will de-
that can interrupt the cascade. Stagliano ef{X8)], pend ons continuously and resonance points will be
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passed through on the way to the accumulation point cieswz/2,w2/4 andw,/8 show up, as well as combina-
s = Sc. tion peaks arounds . Fig. 7shows the spectrum around
In the following we compare the model ODE to the fundamental frequencies for the simulations of
the simulations of weak turbulence. The damping pa- weak turbulence. A rather similar figure for the model
rameter of the @non map is fixed tg = 1/4. The ODE is omitted here. In the case of a period doubling
unperturbed model then displays a doubling cascadecascade the amplitude ratjp between consecutive

withs1 = 1.1718...,52 = 1.7031...,53 = 1.8144. .. peaksy/2 can be predicted on basis of the scaling con-
ands. = 1.84525.. .. In the perturbed system we fix stantg21]. We attempted to measure this ratio for the
the second frequency to the golden mean, ae- spectrum shown ifrig. 7 but only the first three peaks
(v/5+ 1)/2 and can be distilled from these data. These scale roughly by
] afactorofu = 4, not far from the theoretical prediction
h1(v) = sin 2rv for the period doubling case = 4.648. ... The same
ha(v) =0 (16) estimate is obtained for the model ODE. In the case
glx,y) =y of P_oi_ncaé maps, rather then discrete maps, similar
deviations from the theory are found.
The perturbation parameter is fixed ¢e= 0.001. At In Figs. 8(left) and @eft) the leading Lyapunov
this perturbation strength we observe four doubling bi- exponents are shown as a function of the bifurcation
furcations before chaos sets in. In the Poigcater- parameter, i.e. the ViSCOSinOI’ the high-symmetric
section plane given by = 0, projected on the andy flow and the parametes of the Henon map for the
variables, the bifurcation sequence looks very similar model ODE. From these data we can estimate the
to the one shown ifig. 6. locus of the bifurcation points, stressing once more

We have computed the frequency spectrum near thethat this notion is ill-defined on a scale smaller then

onset of chaos and the (partial) Lyapunov spectrum our resolution in parameter space. Thus we find con-
both for the weak turbulence and for the model ODE. secutive estimates for the Sca"ng constaas (Si —

For computation of Lyapunov exponents of the high- (v, — 3;_1)/(viz1 — 1) ord; = (5i — si—1)/(ix1 — 51):
symmetric flow we used finite differencing rather than
integration of the full linearised system. Integration was
done until the zero exponent associated with the direc- §;1 = 4.64+0.2, 5§, =4.88+0.5,
tion transversal to the flow and tangent to the torus had for high-symmetric flow and
converged up (o 10 61 =475+ 005 & =463+02,
urning first to the frequency spectrum we observe
that after three doublings bifurcations peaks at frequen- forthe model ODE

1e-05 T T T T v T T T v 1e-05

5 o . - Tor :
1e-06f 292 2 20 1 1e08} 01— 502 — 1 @+ oy
1e-07 ¢ { ] 1e-07f ‘l
$aliiih | te-08f |
1e-09} (VLN
1e-09 s \ |
—~ e-
1 tem |
te-11 1] f J 1otz M |
1e-12[|_‘1_1m2 | 1e-13} |
1e-13[ [ 1 1 14|
e-13 §w2 1e-14
1e-14 . " L . . " L . . 1e-15 " . . . .
0 01 02 03 04 05 06 07 08 09 1 1 15 2 2.5 3 3.5 4
(O] (0]

Fig. 7. Frequency spectrum of the energy just beyond bifurcation pgiat@und the widely separated frequencigs. Note the peaks due to
the doubling bifurcations arounop and the resonance peaks around
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Fig. 8. Left: Largest nonzero Lyapunov exponents as a function of in the quasi-periodic doubling cascade. The first doubling points have
been marked Pi = 1-3. Right: Enlargement of the regions aroundddd D,. Note that after the second doubling the Lyapunov exponents do
not meet.

Again, this is compatible with the theory for period In Fig. Yright) an enlargement is shown of the Lya-
doubling cascades, albeit a rough estimate. punov exponents of the model ODE around the dou-
In Fig. §right) enlargements around the pointg D  bling points I3 and Oy. For comparison, the exponents
and D are shown for the high-symmetric flow simu- of the unperturbed model, computed from thendn
lations. After the first doubling the leading non zero map itself, have been drawn with thin lines. Again the
exponents are equal on small interval of order= Lyapunov exponents do not become equal in between
108, After the second doubling the leading expo- doubling points. The step size has been taken as small
nents neither cross nor become equal. This result wasas 8s = 1 x 10~°. Apparently, the slightly perturbed
confirmed by integration of the full linearised equa- model ODE yields the same behaviour of the lead-
tions at several points in the parameter range whereing Lyapunov exponents as the simulations of high-
the leading exponents attain their minimal distance. symmetric flow.
The parameter range between the third and fourth  For now we have no explanation for the absence
doublings is too small to see whether the exponents of crossing or equal leading Lyapunov exponents in
meet. In this range we record the passage throughbetween doubling points. As noted before, the invari-
a high order resonance which does not destroy the ant tori are structurally stable only on a fractal domain
torus. of the parameter and bifurcations might go unnoticed
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Fig. 9. Left: Largest nonzero Lyapunov exponents as a function o for the model ODE15)with € = 0.001. The doubling points have been
marked as irFig. 8 Right: Enlargement of the region around P The bold lines denote the exponents for the perturbed modetad.001.
For comparison the exponents for the unperturbed ease() are shown with thin lines. Note that the exponents of the perturbed system do no

meet between the doubling points.

when monitoring Lyapunov exponents with finite step

cade, both numerical and experimental, chaos is re-

size for the parameter. A more thorough understanding ported to set in after two or three doublirid$,17,16]

could be obtained by a continuation of the invariant
torus itself and by further study of the model ODE
(15), which is the topic of future research.

6. Conclusion

We have investigated the transition from stationary
to disordered behaviour in simulations of high sym-
metric flow. In combination with the symmetry the di-
vergence free condition was exploited to reduce the
number of degrees of freedom by a factor of about
300 with respect to simulations of general periodic
Navier—Stokes flow, a gain of 30% compared to ear-
lier work [2-5,8] This allowed us to investigate the
bifurcation scenario in detail and at realistic truncation
level.

Along with the Ruelle-Takens scenario, the quasi-

The fact that we see more doublings might be due to the
widely separate fundamental frequencies of the bifur-
cating tori in our system, as is the case in recent work
by Schilder et al[14].

In order to make the notion of a quasi-periodic dou-
bling cascade precise we have proposed a model ODE,
Eq.(15), such that in the limit of a perturbation param-
etere | 0 the correspondence to the periodic doubling
cascade is exact. The scaling of the first steps of the
observed quasi-periodic doubling cascade agrees with
the prediction of the unperturbed EG5). Looking at
the leading nonzero Lyapunov exponents, however, a
difference between the perturbed model ODE and the
high-symmetric flow simulations on one side, and the
unperturbed model ODE on the other side, becomes
apparent. In the perturbed model ODE and in the sim-
ulations the two largest nonzero exponents remain sep-
arate in between doublings, or at least no crossing is

periodic doubling cascade occurs as a route to weak found with a small but finite step size in the parameter.

turbulence. By means of Poinéssections, power spec-

An explanation might follow from a detailed study of

tra and Lyapunov exponents we have shown that this the model ODH15) with nonzero perturbation. Other

cascade bears close resemblance to the well knowninteresting questions would be if the scaling laws of the
doubling cascade for periodic orbits. We observe four doubling cascade are influenced by the perturbation and
doublings after which quasi-periodic behaviour is very how many steps of the cascade can be observed given
hard to distinguish from chaotic behaviour numerically. the ratio of fundamental frequencies and the strength
In previous work on the quasi-periodic doubling cas- of the perturbation.
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The solutions presented here, in particular the In order to define the functiof(x, y, u; s) we need to
bifurcating tori, are solutions of the truncated three introduce the following auxiliary functions:
dimensional Navier—Stokes equations on a periodic
domain. They might, however, prove to be unstable
to asymmetric perturbations. It is therefore uncertain ) )
whether the quasi-periodic doubling cascade can be G, ) = {g n—&y —&n (Inj— $$2+nn )}
observed in periodic flow without any symmetries im- gt
poseql. Itdoes, how_ever, occurgtlow R_eynolds number, g ;) = &% {(gg+ ”)552 - 2 + " |nj}
at which asymmetric perturbations might be damped.

Even at such low Reynolds number, the simulation X(x.y)=/""(1x —&y)
of general three dimensional flow, and the bifurcation (A.2)

analysis as presented here, remains a formidable task.
where the primes denote differentiation with respect to

u. Suppressing the explicit dependenceiamthe right

E(u) = (3— 2u)u®
_1+ulnj—(2Inj+3)u2+(2+lnj)u3

Note added in proof hand side we have
After numerical experiments with a model ODE ¢ 5) = HEn) GEn)\ (x
similar to the one presented here, Carles Gisng- NG, E) H®n, €)

gested that the lack of equal or crossing eigenvalues,
seen inFig. 8andFig. 9, is due to the loss of reducib-
lity of the stable torus on parameter intervals in between
doubling bifurcations.

LR (. y);9) (g/) . (A3)
&n
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