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a b s t r a c t

Some dynamical properties for a Lorentz gas were studied considering both static and time-dependent
boundaries. For the static case, it was confirmed that the system has a chaotic component characterized
with a positive Lyapunov exponent. For the time-dependent perturbation, themodel was described using
a four-dimensional nonlinear map. The behaviour of the average velocity is considered in two different
situations: (i) non-dissipative and (ii) dissipative dynamics. Our results confirm that unlimited energy
growth is observed for thenon-dissipative case.However, and totally new for thismodel,whendissipation
via inelastic collisions is introduced, the scenario changes and the unlimited energy growth is suppressed,
thus leading to a phase transition from unlimited to limited energy growth. The behaviour of the average
velocity is described using scaling arguments.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The process in which a classical particle acquires unlimited en-
ergy from collisions with heavy and moving boundaries is often
called the phenomenon of Fermi acceleration. It was first reported
by Enrico Fermi [1] as an attempt to explain the acceleration of cos-
mic rays. He proposed that such behaviour appears due to inter-
action between charged particles and time-dependent magnetic
fields produced by the interstellar medium. Later, [1] some al-
ternative models have been proposed using different approaches
with applications in different fields of science including molecu-
lar physics [2], optics [3], nanostructures [4], quantum dots [5] and
many other.

One of the most studied versions of the problem is the well
known one-dimensional Fermi–Ulam model (FUM) [6–12]. The
model consists of a classical particle confined and bouncing be-
tween two rigid walls in which one of them is fixed and the other
one moves in time according to a periodic function. It is well
known that the phase space, in the absence of dissipation, shows
a mixed structure in the sense that depending on the combina-
tions of control parameters and initial conditions, both invariant
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spanning curves (also called invariant tori), chaotic seas and Kol-
mogorov–Arnold–Moser (KAM) islands are all observed. An alter-
native model was later proposed by Pustylnikov [13,14]. Such a
system consists of a classical particle bouncing in a vertical mov-
ing platform under the effect of an external constant gravitational
field [15–21]. Despite the similarity between the twomodels, they
exhibit different behaviour for the average velocity for long time.
The main difference between them is that in the FUM framework
the Fermi acceleration is not observed. The time between two col-
lisions decreases as the velocity increases. On the other hand, for
specific combinations of both control parameters and initial con-
ditions the phenomenon of unlimited energy growth can be ob-
served in the bouncer model. For such a model, the time between
collisions rises as the velocity increases, thus leading the parti-
cle to experience a loss of correlation between two collisions thus
leading to Fermi acceleration. This apparently contradictory result
was later discussed and explained by Lichtenberg and Lieberman
[22,23] and can be easily understood by looking at the phase space.
The FUM has a set of invariant spanning curves limiting the size of
the chaotic sea (as well as the particle’s velocity), but such invari-
ant tori, which could be interpreted as physical barriers, are not
observed in the bouncer model and the energy grows unbounded.
Extensions of the formalism for two dimensional systems are not
so simple, thus one cannot confirm a priori if the phenomenon of
Fermi acceleration will be observed or not. In this sense a con-
jecture was proposed by Loskutov–Ryabov–Akinshin (LRA) [24].
This conjecture, known as the LRA-conjecture, states that a chaotic
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component in the phase space with static boundary is a sufficient
condition to observe Fermi acceleration when a perturbation is
introduced. Results that corroborate the validity of this conjec-
ture include the time-dependent oval billiard [25] and stadium bil-
liard [26]. Very recent Leonel and Bunimovich [27] extended the
conjecture for the existence of a heteroclinic orbit in the phase
space instead of the existence of a set with chaotic dynamics.

When dissipation is introduced, a drastic change is observed in
the phase space. Invariant spanning curves are destroyed; the el-
liptic fixed points turns into sinks and the chaotic sea can be even-
tually replaced by a chaotic attractor [28]. However, the influence
of dissipation on the average velocity is still not fully understood.
Some consequences of the dissipation to the phenomenon of Fermi
acceleration in a one-dimensional Fermi–Ulam model were dis-
cussed by Leonel [29]. It is well known that in such a system, in
its original formulation and for smooth enough perturbation of the
boundary, the particle does not have unlimited energy growth. If
one considers the motion of the moving wall to be random, the
phenomenon of Fermi acceleration is observed. However, the in-
troduction of inelastic collision is enough to suppress Fermi accel-
eration. Results considering also the one dimensional Fermi–Ulam
model under an external force of sawtooth type [30] under effects
of dissipation generated from sliding of a body against a rough sur-
face have also been considered. The external perturbation of saw-
tooth type was chosen because the oscillating wall always gives
energy to the particle after collisions. The main question they ad-
dressed was: would it be possible to suppress Fermi acceleration un-
der the effect of dissipation generated from sliding of a body against a
rough surface? The answer is not so simple and it depends on both
initial conditions and the combination of control parameters. Itwas
observed that for a certain range of parameters Fermi acceleration
can be observed. But then, it is suppressed under specific ranges of
initial conditions.

In this paper, we study a Lorentz gas model considering both
the static and the time-dependent boundary. In the first part of the
paper, we study the Lorentz gas with static boundary. We derive a
two dimensional nonlinear mapping that describes the dynamics
of the model. We obtain the phase space and we show that it
has chaotic components which are characterized via a positive
Lyapunov exponent. Then, in the second part, we introduce a time-
dependent perturbation to the boundary. There aremany different
ways to introduce a time-dependent perturbation and the most
common methods are: (i) the stochastic case, where the boundary
changes according to a random function [29]; (ii) the regular case,
where the position of the boundary varies according to a harmonic
law [31]. However, in both situations the position of the centre
of mass of the discs, which describe the scatterers, is assumed to
be fixed. Then, for the first time, we introduce a different kind of
time-dependent perturbation for a Lorentz gas. We assume that
the radius of the scatterers is fixed and the centre of mass changes
according to a harmonic function. Our main goal in this part of the
work is to verify the validity of the LRA conjecture (see also Ref. [27]
for a newwriting of the LRA conjecture), which is confirmed when
we studied the behaviour of the average velocity for an ensemble
of particles. Since the phenomenon of Fermi acceleration is present
in this model our next approach is to introduce dissipation into the
model via damping coefficients and try to understand the influence
of dissipation on the particle’s behaviour. Our results allow us
to confirm that when inelastic collisions are introduced into the
model, such a procedure is a sufficient condition to break down the
phenomenon of Fermi acceleration [29]. In both the conservative
as well as the dissipative cases, we describe the behaviour of the
average velocity using a scaling formalism.

The paper is organized as follows. In Section 2 we describe
how to obtain the two-dimensional mapping that describes the
dynamics of the static system. Section 3 is devoted to discussing
the time-dependentmodel as well as our numerical results. Finally
the conclusions are drawn in Section 4.
Fig. 1. Illustration of the Lorentz gas with triangular configuration.

2. A static Lorentz gas and the mapping

In this section we discuss all the details needed for the
construction of a nonlinear mapping that describes the dynamics
of the problem. The model consists of a classical particle of mass
m suffering elastic collisions with circular scatterers (see Fig. 1).
We chose a triangular arrangement of the scatterers [32] (which
also appears as the Star of David if one connects circles 1, 5 and 9
and 11, 7 and 3) in order to avoid particles travelling infinitely far
between collisions, and the fixed lattice spacing a to be twice the
radius of the scatterers, R = a/2. The system is described in terms
of a two dimensional mappingΞ(θn, bn) = (θn+1, bn+1)where the
dynamical variable θn denotes the direction of the trajectory while
bn is the impact parameter. Given an initial condition (θ0, b0), the
particle starts from the black circle (centre in Fig. 1) and hits one
of the 12 other circles. In this sense, we specify the scattered hit
in the collision n + 1 by sn = 0, . . . , 11 and introduce l(sn) for the
distance between this scatterer and the scatterer hit at the collision
n+1. l(sn) can assume the values of 2a/

√
3 and 2a for even and odd

values of sn, respectively. Additionally, when the particle hits the
boundary it is specularly reflectedwith the same absolute velocity.
The particle does not suffer influences of any external field along its
linear trajectory. From the green triangle in Fig. 2(a) one can easily
verify

sin

θn −

πsn
6


= −

(bn+1 − bn)
l(sn)

. (1)

Moreover, from Fig. 2(b) one can find that

α = arcsin(−bn+1/R), (2)
β = π − 2α, (3)
ψ = 2α − θn, (4)
θn+1 = π − 2α + θn. (5)

Such a result allows us to obtain θn+1,

θn+1 = π + θn + 2 arcsin(bn+1/R). (6)

From Eq. (1) it is easily to find that the impact parameter, bn+1,
is given by

bn+1 = bn − l(sn) sin

θn −

πsn
6


. (7)

Thus, themapping that describes the dynamics of a two dimen-
sional Lorentz gas is given by

Ξ :


θn+1 = π + θn + 2 arcsin


bn+1

R


bn+1 = bn − l(sn) sin


θn −

πsn
6

 , (8)
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Fig. 2. Dependence of (a) bn+1 on bn and θn; (b) θn+1 on bn+1 and θn .
by definition b ∈ [−R, R] and θ ∈ [0, 2π ] is a counterclock-
wise angle such that Ξ is defined on the fundamental domain
[−R, R] × [0, 2π ]. From the mappingΞ , Eq. (8), one can easily ob-
tain the Jacobian matrix, J , which is defined as

J =


∂θn+1

∂θn

∂θn+1

∂bn
∂bn+1

∂θn

∂bn+1

∂bn

 , (9)

with coefficients given by

∂θn+1

∂θn
= 1 − 2


R2 − b2n+1l(sn) cos


θn −

πsn
6


, (10)

∂θn+1

∂bn
= 2


R2 − b2n+1, (11)

∂bn+1

∂θn
= −l(sn) cos


θn −

πsn
6


, (12)

∂bn+1

∂bn
= 1. (13)

After some easy calculation one can show that the mapping Ξ
preserves the phase space measure since det(J) = 1.

It is well known that the Lyapunov exponents are an important
tool to identify whether the model has chaotic regions or not. As
discussed in [33], the Lyapunov exponents are defined as

λj = lim
n→∞

1
n
ln |Λj|, j = 1, 2, (14)

where Λj are the eigenvalues of M =
∏n

i=1 Ji(θi, bi) and Ji is
the Jacobian matrix evaluated over the orbit (θi, bi). However,
direct implementation of a computational algorithm to evaluate
Eq. (14) has severe limitations in obtaining M . Even in the limit
of short n, the components of M can assume very different orders
of magnitude for chaotic orbits and periodic attractors making
impractical the implementation of the algorithm. In order to avoid
this problem we note that J can be written as J = ΘT where Θ
is an orthogonal matrix and T is a right triangular matrix. Thus
we rewrite M as M = JnJn−1 . . . J2Θ1Θ

−1
1 J1, where T1 = Θ−1

1 J1.
A product of J2Θ1 defines a new J ′2. In a next step, it is easy to show
that M = JnJn−1 . . . J3Θ2Θ

−1
2 J ′2T1. The same procedure can be used

to obtain T2 = Θ−1
2 J ′2 and so on. Using this procedure the problem

is reduced to evaluate the diagonal elements of Ti : T i
11, T

i
22. Finally,

the Lyapunov exponents are now given by

λj = lim
n→∞

1
n

n−
i=1

ln |T i
jj|, j = 1, 2. (15)
Fig. 3. (a) Phase space generated from iteration of mapping (8); (b) behaviour of
the positive Lyapunov exponent of the chaotic sea. The control parameter used in
both figures was a = 2.

If at least one of the λj is positive then the orbit is classified as
chaotic. Additionally, in conservative systems λ1 + λ2 = 0 while
in dissipative systems λ1 + λ2 < 0, which is a consequence of
the Liouville’s theorem. The phase space for the mapping (8) is
shown in Fig. 3(a). For the same control parameter used in Fig. 3(a),
a = 2, we have also evaluated numerically the positive Lyapunov
exponent as one can see in Fig. 3(b). The average of the positive
Lyapunov exponent for the ensemble of the five time series gives
λ̄ = 0.371 ± 0.001 where the value 0.001 corresponds to the
standard deviation of the five samples.

So as a main conclusion of this section, we confirm that the
static version of the Lorentz gas does indeed have chaotic portions
therefore leading one to believe, according to the LRA conjecture,
that if a time-dependent perturbation to the boundary is intro-
duced, then Fermi acceleration should be observed.
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3. A time-dependent Lorentz gas

In this section we introduce for the first time in the literature,
a new kind of time-dependent perturbation in a Lorentz gas. We
assume that the radius of the scatterers is fixed and the centre of
mass changes according to a harmonic function f (t), in particular
we assume the case where

fi(t) = ϵi[1 + cos(t)], for i = x, y (16)

where ϵi is the amplitude of the time-dependent perturbation
and t is the time. As a consequence of the introduction of the
time-dependent perturbation into the model, two new dynamical
variables appear namely, velocity and time. Such a new set of
variables leads us to describe the system in terms of a four
dimensional nonlinear mapping which relates the nth collision
to the (n + 1)th as Ξ(θn, bn, Vn, tn) = (θn+1, bn+1, Vn+1, tn+1).
The corresponding variables are: (i) the direction of the trajectory,
θn; (ii) the impact parameter, bn; (iii) the absolute velocity of the
particle, Vn and (iv) the instant of the collision with the boundary,
tn.

Assuming that an initial condition (θ0, b0, V0, t0) is given, we
can obtain the equation that describes the dynamics of the system.
Thus, according to our construction, the Cartesian components of
R are given by

X(δn, tn) = R cos(δn)+ ϵx[1 + cos(tn)], (17)
Y (δn, tn) = R sin(δn)+ ϵy[1 + cos(tn)], (18)

where δn is the angular positionwhich is given by δn = π/2+θn −

arcsin(bn/R). Since we already know the angle that the particle’s
trajectory makes with the horizontal (θn + π/2) and the position
of the hit at the nth collision, a velocity vector can be obtained and
is written as
−→
V n = |

−→
Vn |[cos(θn + π/2)i + sin(θn + π/2)j], (19)

wherei andj represent the unit vectors with respect to the X and Y
coordinates, respectively. The above expressions allow us to obtain
the position of the particle as a function of time for t ≥ tn, thus

Xp(t) = X(δn, tn)+ |
−→
V n| cos(θn + π/2)(t − tn), (20)

Yp(t) = Y (δn, tn)+ |
−→
V n| sin(θn + π/2)(t − tn). (21)

The index p denotes the corresponding coordinates of the particle.
In order to know theposition of theparticle at the (n+1)th collision
we need to solve numerically the following equation

r =


[Xx(t)− Xp(t)]2 + [Yy(t)− Yp(t)]2 ∼= R, (22)

where both Xx and Yy are given by

Xx(t) = lx + ϵx[1 + cos(t)], (23)
Yy(t) = ly + ϵy[1 + cos(t)], (24)

with lx and ly the X and Y components of l(sn); this distance
is measured from the origin of the coordinate system to the
centre of the sn = 0, . . . , 11 scatters at the (n + 1)th col-
lision. Since we already know the position of the particle at
the (n + 1)th collision, then the distance between two succes-
sive impacts can be easily obtained, which is given by d =

[Xp(t)− X(δn, tn)]2 + [Yp(t)− Y (δn, tn)]2. The time at the (n +

1)th collision is obtained evaluating the expression

tn+1 = tn +


[Xp(t)− X(δn, tn)]2 + [Yp(t)− Y (δn, tn)]2

|
−→
V n|

. (25)

The next step is to obtain the impact parameter, bn+1, which is
given by
bn+1 = bn − l(sn) sin

θn − ψ +

π

2


, (26)

where l(sn) =

(1X)2 + (1Y )2 and ψ = arctan(1X/1Y )with

1X = lx + ϵx[cos(tn+1)− cos(tn)] (27)

1Y = ly + ϵy[cos(tn+1)− cos(tn)] (28)
Moreover, the new direction of the trajectory, θn+1 is

θn+1 = π + θn + 2 arcsin
[
bn+1

R

]
. (29)

We already know (θn+1, bn+1, tn+1); however, we still have to
find

−→
V n+1. At the new angular position δn+1, the unitary tangent

and normal vectors are
−→
T n+1 = cos(δn+1)i + sin(δn+1)j, (30)
−→
N n+1 = − sin(δn+1)i + cos(δn+1)j. (31)

Since the reference frame of the boundary is moving, then,
at the instant of the collision, according to our construction, the
following conditions must be satisfied
−→
V ′

n+1 ·
−→
T n+1 = γ

−→
V ′

n ·
−→
T n+1, (32)

−→
V ′

n+1 ·
−→
N n+1 = −δ

−→
V ′

n ·
−→
N n+1, (33)

where γ ∈ [0, 1] and δ ∈ [0, 1] are damping coefficients, which
means that the particle has a fractional loss of energy upon each
collision. The complete inelastic case occurs when γ = δ = 0. On
the other hand, when γ = δ = 1 corresponds to the conservative
case. The upper prime indicates that the velocity of the particle is
measured with respect to the moving boundary referential frame.

Hence, one can easily find that
−→
V n+1 ·

−→
T n+1 = γ

−→
V n ·

−→
T n+1 + (1 − γ )

−→
V b(tn+1) ·

−→
T n+1, (34)

−→
V n+1 ·

−→
N n+1 = −δ

−→
V n ·

−→
N n+1 + (1 + δ)

−→
V b(tn+1) ·

−→
N n+1, (35)

where
−→
V b(tn+1) is the velocity of the boundary which is written

as
−→
V b(tn+1) = − sin(tn+1)[ϵxi + ϵyj]. (36)

Finally, the velocity at the (n + 1)th collision is given by

|
−→
V n+1| =


(
−→
V n+1 ·

−→
T n+1)2 + (

−→
V n+1 ·

−→
N n+1)2. (37)

3.1. Numerical results

As part of our numerical results for the time-dependent Lorentz
gas, we shall discuss the behaviour of the average velocity of the
particle, thus the phenomenon of Fermi acceleration. Two different
procedures were applied in order to obtain the average velocity.
First, we evaluate the average velocity over the orbit for a single
initial condition which is defined as

Vi =
1

n + 1

n−
j=0

Vi,j, (38)

where the index i corresponds to a sample of an ensemble of initial
conditions. Hence, the average velocity is written as

V =
1
M

M−
i=1

Vi, (39)

where M denotes the number of different initial conditions. We
have considered M = 1000 in our simulations and from now on,
we also fixed the value a = 2.

3.2. Scaling results for the conservative case

It is natural to believe that as the control parameters are varied,
the behaviour of the average velocity may depend explicitly on
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Fig. 4. Behaviour of V̄ × n for different initial velocities. The control parameters
used were ϵx = 10−4, ϵy = 3 × 10−4 and a = 2.

them [34–36]. In this section we discuss the influence of the initial
velocity on the behaviour of the average velocity, thus our main
goal in this section is to describe a scaling present in the model
for the conservative case. We assume in Eqs. (32) and (33) that
γ = δ = 1. Such a set of control parameters lets us confirm the
applicability of the LRA conjecture to this model (see Ref. [27] for
a new version of the LRA conjecture).

We begin by discussing a scaling observed for the average
velocity of the particle as a function of V0 and n. Fig. 4 shows
the behaviour of V̄ × n for different initial velocities. The control
parameters used in Fig. 4 were ϵx = 10−4 and ϵy = 3 × 10−4.
We have chosen 21 different values for V0 while a random choice
for the other variables were made as t ∈ [0, 2π ], θ ∈ [0, 2π ] and
b ∈ [1 − (ϵx + ϵy),−1 + (ϵx + ϵy)]. As one can see, all curves of V̄
behave quite similarly in the sense that: (a) for short n, the average
velocity remains constant for a while when eventually, (b) after a
changeover, all the curves start growing with the same exponent.
Such behaviour is typical in systems that can be described using
the scaling approach. Based on the behaviour shown in Fig. 4, we
propose the following hypotheses:

1. when n ≪ nx, V̄ behaves according to

V̄sat ∝ V ζ0 , (40)

2. for n ≫ nx, the average velocity is given by

V̄ ∝ nν, (41)

3. the crossover iteration number that marks the change from
constant velocity to the growth regime is written as

nx ∝ V ξ0 , (42)

where ζ and ν are the critical exponents and ξ is a dynamic
exponent.

After considering these three initial suppositions, we suppose
that the average velocity is described in terms of a homogeneous
a

b

Fig. 5. (a) Plot of Vsat × V0 . (b) Behaviour of nx as a function of V0 .

function of the type

V̄ (V0, n) = lV̄ (lpV0, lqn), (43)

where l is the scaling factor, p and q are scaling exponents that in
principle must be related to ζ , ν and ξ . If we chose lpV0 = 1, then
l = V−1/p

0 and Eq. (43) is given by

V̄ (V0, n) = V0
−1/pV̄1(V

−q/p
0 n), (44)

where V̄1(V
−q/p
0 n) = V̄ (1, V−q/p

0 n) is assumed to be constant for
n ≪ nx. Comparing Eqs. (44) and (40), we obtain ζ = −1/p.

On the other hand, choosing now l = n−1/q, Eq. (43) is rewritten
as

V̄ (V0, n) = n−1/qV̄2(n−p/qV0), (45)

where the function V̄2 is defined as V̄2(n−p/qV0) = V̄ (n−p/qV0, 1).
It is also assumed to be constant for n ≫ nx. Comparing Eqs. (45)
and (41) we find ν = −1/q. Given the two different expressions of
the scaling factor l, we obtain a relation for the dynamic exponent
ξ , which is given by

ξ =
ζ

ν
. (46)

Note that the scaling exponents are determined if the critical
exponents ζ and ν are numerically obtained. The exponent ν is
obtained from a power law fitting for the average velocity when
n ≫ nx. Thus, an average of these values gives ν = 0.49(1). Fig. 5
shows the behaviour of (a), V̄sat × V0 and (b), nx × V0. Applying
power law fittings we obtain ζ = 1.00(1) ∼= 1 and ξ = 2.01(3).
Considering the previous values of both ζ and ν and using ξ = ζ/ν,
we find that ξ = 2.04(2). Such a result indeed agrees with our
numerical data.

In order to confirm the initial hypotheses and, since the values
of the scaling exponents ζ , ν and ξ are now known, we may
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a

b

Fig. 6. (a) Behaviour of average velocity for different values of V0; (b) their collapse
onto a single and universal plot.

Fig. 7. Behaviour of V × n for different values of δ, as labelled in the figure.

in principle collapse all the curves onto a single and universal
plot, as demonstrated in Fig. 6. Such a collapse confirms that,
despite the strong influence of the initial velocity, the behaviour
of the average velocity is therefore scaling invariant under specific
transformations. For large enough time, our results thus confirm
that the LRA conjecturewas also applied successfully in thismodel.

3.3. Scaling results for the dissipative case

In this section we will use the same scaling formalism as used
in the previous section but now to describe the behaviour of the
average velocity of the particle in the presence of dissipation. Our
approach will then be to characterize the behaviour of the average
velocity in terms of the number of collisions with the scatters
and as a function of the damping coefficient along the normal
component of the particle’s velocity, δ. We study a dissipative
version of the Lorentz gas close to the transition from unlimited
to limited energy growth. Indeed, such a transition happens when
the control parameter δ → 1 and it is better characterized if we
chose the following convenient transformation δ → (1 − δ).

To obtain the average velocity, each initial condition has a fixed
initial velocity, V0 = 10−4 and randomly chosen t ∈ [0, 2π ],
θ ∈ [0, 2π ] and b ∈ [1 − (ϵx + ϵy),−1 + (ϵx + ϵy)]. The control
parameter γ was fixed as γ = 1.

Fig. 7 shows the behaviour of the average velocity as a function
of the number of collisions for different values of the damping
coefficient δ. Observe that, for different values of δ and for small
n, the average velocity starts to grow and then it bends towards a
regime of saturation for large enough values of n. The changeover
from growth to the saturation is marked by a typical crossover
number nx. For such a behaviour,we can also propose the following
scaling hypotheses:

1. when n ≪ nx the average velocity is

V ∝ nη, (47)

2. for long time, n ≫ nx, the average velocity approaches a regime
of saturation, that is described as

V sat ∝ (1 − δ)σ , (48)

3. the crossover number that marks the regime of growth to the
constant velocity is written as

nx ∝ (1 − δ)z, (49)

where σ , η and z are critical exponents.

These scaling hypotheses allow us to describe the average
velocity in terms of a scaling function of the type

V [n, (1 − δ)] = lV [lpn, lq(1 − δ)], (50)

where p and q are scaling exponents and l is a scaling factor. Since
l is a scaling factor, we can chose it such that lpn = 1, yielding

V [n, (1 − δ)] = n−1/pV 1[(n)−q/p(1 − δ)], (51)

where V 1[(n)−q/p(1 − δ)] = V [1, (n)−q/p(1 − δ)] is assumed to
be constant for n ≪ nx. Comparing Eqs. (47) and (51), we obtain
η = −1/p. A power law fitting gives us that η = 0.471(2).
Such a value was obtained from the range of δ ∈ [0.99, 0.99999].
Choosing now lq(1 − δ) = 1, we have that l = (1 − δ)−1/q and
Eq. (50) is rewritten as

V [n, (1 − δ)] = (1 − δ)−1/qV 2[(1 − δ)−p/qn], (52)

where V 2[(1 − δ)−p/qn] = V [(1 − δ)−p/qn, 1] is assumed to be
constant for n ≫ nx. Comparing Eqs. (48) and (52), we obtain
−1/q = σ = −0.47(3) (see Fig. 8(a)). Using now the expressions
obtained for the scaling factor l, we can easily show that

z =
σ

η
= 0.99(5), (53)

which is quite close to the value obtained numerically, as shown
in Fig. 8(b). A confirmation of the initial hypotheses is made by
collapsing all the curves of V̄ × n onto a single and universal plot,
as shown in Fig. 9, showing that the system is scale invariant under
a specific transformation. We also have shown that dissipation
causes a drastic change in the behaviour of V . Note that δ → 1
implies that Eqs. (48) and (49) both diverge, thus recovering the
results for the conservative case, i.e., exhibiting Fermi acceleration.
However, when δ is slightly less than 1, the average velocity
grows and then reaches a regime of saturation for long enough
time. Our results reinforce that dissipation introduced via damping
coefficients is a sufficient condition to suppress the phenomenon
of Fermi acceleration, as Leonel’s conjecture claims [29].
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Fig. 8. (a) Behaviour of V sat × (1 − δ). (b) Behaviour of the crossover number nx
against (1 − δ). A power law fitting in (a) furnishes σ = −0.47(3) while in (b)
z = −1.04(7).

b

a

Fig. 9. (a) Different curves of V for five different control parameters. (b) Their
collapse onto a single and universal plot.
4. Conclusion

In this paper we considered the problem of a classical Lorentz
gas considering both static and time-dependent boundaries. For
the static casewe obtained themapping that describes the dynam-
ics of the system and we have shown that the model has a chaotic
component characterized by a positive Lyapunov exponent. Such
a chaotic component is what the LRA conjecture claims is needed
to produce Fermi acceleration when a time-dependent perturba-
tion to the boundary is introduced. After that, we introduce a new
type of time-dependent perturbation on the boundary. Our results
confirm that the LRA conjecture is applied also for the conserva-
tive case. When dissipation, via inelastic collision of the particle
with the scatterers is introduced into the model, we observed that
the average velocity grows with time and then reaches a constant
value for large enough time confirming that Fermi acceleration is
suppressed. Finally, and for the first time with this model, the av-
erage quantities were described by scaling functions with charac-
teristic exponents whose validity was confirmed with the collapse
of the curves of V̄ into a universal plot.
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