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a b s t r a c t

In a recent paper (He et al., 2019), it is shown that the upper decay rate of global solution
of compressible Navier–Stokes(CNS) equations converging to constant equilibrium state (1, 0) in
H1

−norm is (1 + t)−
3
4 (

2
p −1) when the initial data is large and belongs to H2(R3) ∩ Lp(R3)(p ∈ [1, 2)).

Thus, the first result in this paper is devoted to showing that the upper decay rate of the first order
spatial derivative converging to zero in H1

−norm is (1+ t)−
3
2 (

1
p −

1
2 )−

1
2 . For the case of p = 1, the lower

bound of decay rate for the global solution of CNS equations converging to constant equilibrium state
(1, 0) in L2−norm is (1+ t)−

3
4 if the initial data satisfies some low frequency assumption additionally.

In other words, the optimal decay rate for the global solution of CNS equations converging to constant
equilibrium state in L2−norm is (1 + t)−

3
4 although the associated initial data is large.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are concerned with the upper and lower
bounds of decay rates for large solution to the three dimensional
barotropic compressible Navier–Stokes(CNS) equations:⎧⎪⎨⎪⎩

∂tρ + div(ρu) = 0,
∂t (ρu) + div(ρu ⊗ u) − µ∆u − (µ + λ)∇ div u + ∇P = 0,
lim

|x|→∞

(ρ − 1, u)(x, t) = (0, 0),

(1.1)

where (x, t) ∈ R3
×R+. The unknown functions ρ, u = (u1, u2, u3)

and P represent the density, velocity and pressure respectively.
The pressure P is given by smooth function P = P(ρ) = ργ

with the adiabatic exponent γ ≥ 1. The constants µ and λ are
the viscosity coefficients, which satisfies the following conditions:
µ > 0, 2µ + 3λ ≥ 0. To complete system (1.1), the initial data is
given by

(ρ, u)(x, t)|t=0 = (ρ0(x), u0(x)).

Compressible Navier–Stokes equations (1.1) govern the motion
of a compressible viscous barotropic fluid, and there are many
literatures on the compressible Navier–Stokes equations because
of its physical importance and mathematical challenges. Here we
review some results which are related to well-posedness. When
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the initial data is away from vacuum, Nash [1] proved the local
well-posedness for the compressible Navier–Stokes equations.
Matsumura and Nishida [2] first established the global existence
with the small initial data in H3

−framework. Later, Valli [3] and
Kawashita [4] obtained the global existence with the small initial
data in H2

−framework. Recently, Huang, Li and Xin [5] proved
the global existence and uniqueness of system (1.1) with the
density containing vacuum in the condition that the initial energy
is small. For further results about the well-posedness, we refer the
readers to [6,7] and the references therein.

The decay problem has been one of main interests in math-
ematical fluid dynamics, there are many interesting work that
has been obtained. The optimal decay rate of strong solution was
addressed in whole space firstly by Matsumura and Nishida [8],
and the optimal Lp(p ≥ 2) decay rate is established by Ponce [9].
The authors obtained the optimal decay rate for Navier–Stokes
system with an external potential force in a series of papers [10–
12]. By assuming the initial perturbation is bounded in Ḣ−s rather
than L1, Guo and Wang [6] built the time decay rate for the
solution of system (1.1) by using a general energy method. It
should be emphasized that their method in [6] can be used to
many other kinds of equations, such as Boltzmann equation, as
well as some related fluid models. For many other results for the
decay problem for the isentropic or non-isentropic Navier–Stokes
equations, one can refer to [13–16] and the references therein.

However, most of above decay results are established under
the condition that the initial data is a small perturbation of
constant equilibrium state. An interesting question is what may
happen about the large time behavior of global strong solution
with general initial data. Very recently, He, Huang and Wang [17]
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proved global stability of large solution to the system (1.1). Let us
give a short review of their work. By using some techniques about
the blow-up criterion coming from [5,18–21], and assuming the
density is bounded uniformly in time in Cα with α arbitrarily
small, that is supt≥0 ∥ρ(t)∥Cα ≤ M , they obtained uniform-in-
time bounds for the global solution. This allows them to improve
the dissipation inequality, thus they could apply Fourier splitting
method(see [22]) to obtain a new method for the convergence to
the constant equilibrium. It should be mentioned that they also
constructed global large solution with a class of initial data which
is far away from equilibrium. Specifically, they established upper
decay rate

∥(ρ − 1)(t)∥H1 + ∥u(t)∥H1 ≤ C(1 + t)−
3
4 (

2
p −1)

. (1.2)

Here the initial data (ρ0−1, u0) ∈ Lp(R3)∩H2(R3) with p ∈ [1, 2].
As mentioned in [17] (see Remark 1.2), the decay rate (1.2), which
the solution itself converges to the constant equilibrium state
(1, 0), is optimal compared to the heat equation. However, the
decay rate (1.2) shows that the first order spatial derivative of
solution converges to zero at the L2−rate (1 + t)−

3
4 (

2
p −1), which

seems not optimal. At the same time, the decay rate (1.2) does
not provide any information whether the second order spatial
derivative of solution will converge to zero or not? Thus, our first
purpose is not only to establish optimal decay rate for the solution’s
first order spatial derivative, but also prove that the second order
spatial derivative of global solution will converge to zero.

Finally, we address the lower bound of decay for the global
strong solution investigated in [17] with large initial data. For
the case of incompressible flows, there are many mathematical
results about decay to the incompressible Navier–Stokes equa-
tions, for upper bound of decay rate to weak solution [22], for
upper bound of decay rate with smooth initial data [23–25], for
lower bound of decay rate [26,27], and both upper and lower
bounds of decay for the higher order spatial derivative [28].
For the case of compressible flow, there are many results of
lower bound of decay rate for the CNS equations and related
models, such as CNS equations [14,29], compressible Navier–
Stokes-Poisson equations [30,31], and compressible viscoelastic
flows [32]. We point out that all these lower bounds of decay
were obtained under the condition of small initial data. Thus, our
second purpose is to address lower bound of decay rate of global
solution investigated in [17] with large initial data.

Before stating the main results of our paper, we have to
introduce some notation.

Notation. In this paper, we use Hs(s ∈ R3) to denote the usual
Sobolev space with norm ∥ · ∥Hs and Lp(R3) to denote the usual
Lp space with norm ∥ · ∥Lp . F(f ) := f̂ represents the usual Fourier
transform of the function f .

For the sake of simplicity, we write
∫
fdx :=

∫
R3 fdx and

∥(A, B)∥X := ∥A∥X + ∥B∥X . The constant C denotes the generic
positive constant independent of time, and may change from line
to line.

First of all, we recall the following results obtained in [17],
which will be used in this paper frequently.

Theorem 1.1 (See [17]). Let µ > 1
2λ, and (ρ, u) be a global and

smooth solution of (1.1) with initial data (ρ0, u0) where ρ0 ≥ c > 0.
Suppose the admissible condition holds:

∂tu |t=0= −u0 · ∇u0 +
1
ρ0

Lu0 −
1
ρ0

∇ρ
γ

0 ,

where operator L is defined by Lu = − div(µ∇u)−∇((λ+µ) div u).
Assume that ϱ := ρ − 1, and supt≥0 ∥ρ(t)∥Cα ≤ M for small

0 < α < 1. Then if ϱ0, u0 ∈ Lp(R3) ∩ H2(R3) with p ∈ [1, 2],
we have
(1) (Lower bound of the density)

There exists a positive constant ρ = ρ(c,M) such that for all
t ≥ 0

ρ(t) ≥ ρ. (1.3)

(2) (Uniform-in-time bounds for the regularity of the solution)

∥ϱ∥
2
L∞(H2) + ∥u∥2

L∞(H2) +

∫
∞

0
(∥∇ϱ∥

2
H1 + ∥∇u∥2

H2 )dτ

≤ C(ρ,M, ∥ϱ0∥H2 , ∥u0∥H2 ).
(1.4)

(3) (Decay estimate for the solution)

∥u(t)∥H1 + ∥ϱ(t)∥H1 ≤ C(ρ,M, ∥ϱ0∥Lp∩H1 , ∥u0∥Lp∩H2 )(1 + t)−β(p),

(1.5)

where β(p) =
3
4 (

2
p − 1).

In this paper, we are not only to establish decay rate for the
first and second order spatial derivatives of solution, but also give
the lower bound of decay rate for the solution itself. Thus, we
require the index p in Theorem 1.1 satisfies p ∈ [1, 2). Our first
result can be stated as follows:

Theorem 1.2. Define ϱ := ρ − 1, suppose all the conditions
in Theorem 1.1 hold on, and let (ρ, u) be the global solution of
compressible Navier–Stokes equations (1.1) in Theorem 1.1. Then, it
holds on for all t ⩾ T1
∥∇ϱ(t)∥H1 + ∥∇u(t)∥H1 + ∥∂tϱ(t)∥L2 + ∥∂tu(t)∥L2

≤ C(1 + t)−
3
4 (

2
p −1)− 1

2 .
(1.6)

Here C is a constant independent of time, and T1 is a large constant
given in Lemma 2.5.

Remark 1.1. Compared with decay rate (1.5), the advantage of
decay rate (1.6) not only implies that the second order spatial
derivative of solution tends to zero, but also shows that the first
and second order spatial derivatives of solution converge to zero
at the L2−rate (1 + t)−

3
4 (

2
p −1)− 1

2 , p ∈ [1, 2). The decay rate for
the first order spatial derivative of solution is optimal in the
sense that it coincides with the decay rate of solution to the heat
equation.

Remark 1.2. By the Sobolev interpolation inequality, it is shown
that the solution (ρ, u) converges to the constant equilibrium
state (1, 0) at the Lq(2 ≤ q ≤ 6)−rate (1 + t)−

3
4 (

2
p −1)− 3q−6

4q , p ∈

[1, 2).

Finally, we investigate the lower bound of decay rate for the
density and velocity. In order to make the upper bound of decay
rate the same as the lower one, we take the index p = 1 in
Theorem 1.1 specially. Our second result can be stated as follows:

Theorem 1.3. Let p = 1, and suppose all the assumptions of
Theorem 1.1 hold on. Denote m0 := ρ0u0, assume that the Fourier
transform F(ϱ0,m0) = (ϱ̂0, m̂0) satisfies |ϱ̂0| ⩾ c0, m̂0 = 0, 0 ≤

|ξ | ≪ 1, with c0 > 0 a constant. Then, the global solution (ϱ, u)
obtained in Theorem 1.1 has the decay rates for large time t

c3(1 + t)−
3
4 ≤ ∥u(t)∥L2 ≤ C1(1 + t)−

3
4 ; (1.7)

c3(1 + t)−
3
4 ≤ ∥ϱ(t)∥L2 ≤ C1(1 + t)−

3
4 . (1.8)

Here c3 and C1 are constants independent of time.



J. Gao, Z. Wei and Z.-a. Yao / Physica D 406 (2020) 132506 3

Remark 1.3. The decay rates (1.7) and (1.8) imply that the
solution itself converges to the constant equilibrium state (1, 0) at
the L2− rate (1+t)−

3
4 . In other words, these decay rates obtained

in (1.7) and (1.8) are optimal, although the initial data for the CNS
equations (1.1) is large.

Now we comment on the analysis in this paper. First of all,
we hope to establish the decay rate for the first and second
order spatial derivatives of solution for the compressible Navier–
Stokes equations (1.1) with large initial data. Since the solution
itself and its first order spatial derivative admit the same L2−rate
(1+ t)−

3
4 (

2
p −1), these quantities can be small enough essentially if

the time is large. Thus, we will take the strategy of the frame of
small initial data (cf. [8]) to establish the energy estimate:
d
dt

E2
1 (t) + c∗(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 )

≲ Q (t)(∥∇2u∥2
H1 + ∥∇

2ϱ∥
2
L2 ) + ∥∇u∥L∞∥∇

2ϱ∥
2
L2 ,

(1.9)

where the energy norm E2
1 (t) is equivalent to ∥∇(ϱ, u)∥2

H1 , and
Q (t) consists of some difficult terms, such as ∥ϱ∥L∞ and
∥∇(ϱ, u)∥L3 . It is worth nothing that one can apply the Sobolev
interpolation inequality to control these quantities by the product
of solution itself and the second order spatial derivative. Since
the latter one is uniform bounded with respect to time, Q (t) is a
small quantity which appears as a prefactor in front of dissipation
term (∥∇2u∥2

H1+∥∇
2ϱ∥

2
L2
), which can be absorbed into the second

term on the left-hand side of inequality (1.9). On the other hand,
the term ∥∇u∥L∞ can be controlled by product of the first order
spatial derivative of velocity and dissipation term, see (2.24).
Thus, the terms on the right-hand side of (1.9) can be absorbed
into the second term on the left-hand side of inequality (1.9).

Secondly, we hope to perform the upper decay rate (1.6)
by using the energy inequality (1.9) and the Fourier splitting
method by Schonbek [22]. Compared with incompressible flows
(cf. [24,25]), the dissipation of density is weaker than the one of
velocity for the compressible Navier–Stokes equations. To over-
come this difficulty, our method here is to weaken the coefficient
of velocity dissipation; and hence, one part of the dissipation of
density will play a role of damping term. Thus, the application of
Fourier splitting method helps us to obtain the decay rate (1.6),
see Lemma 2.5.

Finally, we study the lower bound of decay rate for global
solution of compressible Navier–Stokes equations associated with
large initial data for the case of p = 1. Since the decay rate (1.6)
implies that these quantities will be small enough essentially
when the time is large. It is worth nothing that the lower bound
of decay rate for the linearized part has been obtained in [14,32]
associated with large initial data. Thus, let U and Ul be the
solutions of nonlinear and linearized problem respectively. Define
the difference Uδ := U − Ul, it holds on ∥U∥L2 ≥ ∥Ul∥L2 − ∥Uδ∥L2 .
If the solutions Ul and Uδ obey the assumptions: ∥Ul∥L2 ≥ Cl(1 +

t)−α, ∥Uδ∥L2 ≤ Cδ(1 + t)−α. If Cδ is a small constant, then we
have ∥U∥L2 ≥

1
2Cl(1+t)−α. Indeed, the constant Cδ in our analysis

depends on the quantity ∥(ϱ, u)(t)∥H1 , which is small enough
when the time is large. All these lower and upper bounds of decay
rates (1.6)–(1.8) will be established in Section 2.

2. Proof of main theorems

In this section, we will give the proof for the main
Theorems 1.2 and 1.3. In Section 2.1, we will show not only
the second order spatial derivative of solution tends to zero, but
also the first and the second order spatial derivatives of solution
converge to zero at the L2−rate (1+ t)−

3
4 (

2
p −1)− 1

2 with p ∈ [1, 2).
In Section 2.2, one investigates the lower bound of decay rate for
the solution (ϱ, u). This will show that the decay rate obtained in
Theorem 1.1 is optimal essentially for the case p = 1.

2.1. Upper bound of decay rate

In this subsection, the content of our analysis is to give the
proof for Theorem 1.2. The analysis proceeds in several steps,
which we will now detail. Denoting ϱ := ρ − 1, we rewrite (1.1)
in the perturbation form as follows{

∂tϱ + div u = S1,
∂tu − µ∆u − (µ + λ)∇ div u + P ′(1)∇ϱ = S2,

(2.1)

where the nonlinear terms S1 and S2 are defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S1 := −ϱ div u − u · ∇ϱ,

S2 := −u · ∇u −
ϱ

ϱ + 1
[µ∆u + (µ + λ)∇ div u]

− [
P ′(1 + ϱ)
1 + ϱ

−
P ′(1)
1

]∇ϱ.

The first estimate in our scheme is to perform the estimate for
the first order spatial derivative of density and velocity as follows.

Lemma 2.1. Under the assumptions of Theorem 1.1, the global
solution (ϱ, u) of Cauchy problem (2.1) has the estimate
d
dt

∫
(
1
2
|∇u|2 +

P ′(1)
2

|∇ϱ|
2)dx

+ µ

∫
|∇

2u|
2
dx + (µ + λ)

∫
|∇ div u|2dx

≤ C(∥ϱ∥

1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥2
L2 + ∥∇

2ϱ∥
2
L2 ).

(2.2)

Here C is a constant independent of time.

Proof. First, applying ∇ operator to the second equation of (2.1),
we have

∂t (∇u) − µ∆∇u − (µ + λ)∇2 div u + P ′(1)∇2ϱ = ∇S2. (2.3)

Multiplying Eq. (2.3) by ∇u and integrating over R3, we get
d
dt

1
2

∫
|∇u|2dx + µ

∫
|∇

2u|
2
dx + (µ + λ)

×

∫
|∇ div u|2dx + P ′(1)

∫
∇

2ϱ · ∇udx =

∫
∇S2 · ∇udx,

which, integrating by part and applying Hölder inequality, yields
directly
d
dt

1
2

∫
|∇u|2dx + µ

∫
|∇

2u|
2
dx + (µ + λ)

×

∫
|∇ div u|2dx + P ′(1)

∫
∇

2ϱ · ∇udx ≤ ∥S2∥L2∥∇
2u∥L2 .

Applying the Hölder and Sobolev inequalities, we show that

∥u · ∇u∥L2 ≤ ∥u∥L3∥∇u∥L6 ≤ C∥u∥H1∥∇
2u∥L2 . (2.4)

Using the lower bound of density (1.3), it holds on

∥
ϱ

ϱ + 1
[µ∆u + (µ + λ)∇ div u]∥L2 ≤ C∥ϱ∥L∞∥∇

2u∥L2 .

The combination of Sobolev inequality and uniform estimate (1.4)
yields directly

∥ϱ∥L∞ ≤ C∥ϱ∥

1
4
L2

∥∇
2ϱ∥

3
4
L2

≤ C∥ϱ∥

1
4
L2

, (2.5)

and hence, it holds on

∥
ϱ

ϱ + 1
[µ∆u + (µ + λ)∇ div u]∥L2 ≤ C∥ϱ∥

1
4
L2

∥∇
2u∥L2 . (2.6)

Using the Taylor expression, Hölder and Sobolev inequalities, we
have

∥[
P ′(1 + ϱ)
1 + ϱ

−
P ′(1)
1

]∇ϱ∥L2 ≤ C∥ϱ∥L3∥∇ϱ∥L6 ≤ C∥ϱ∥H1∥∇
2ϱ∥L2 . (2.7)
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Hence, the combination of estimates (2.4), (2.6) and (2.7) implies
directly

∥S2∥L2∥∇
2u∥L2

⩽ C∥ϱ∥

1
4
L2

∥∇
2u∥2

L2 + C(∥ϱ∥H1 + ∥u∥H1 )(∥∇2ϱ∥
2
L2 + ∥∇

2u∥2
L2 ),

which implies

d
dt

1
2

∫
|∇u|2dx + µ

∫
|∇

2u|
2
dx + (µ + λ)

×

∫
|∇ div u|2dx + P ′(1)

∫
∇

2ϱ · ∇udx

≤ C(∥ϱ∥

1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )(∥∇2ϱ∥
2
L2 + ∥∇

2u∥2
L2 ).

(2.8)

Second, applying ∇ operator to the first equation of (2.1), we
have

∂t (∇ϱ) + ∇ div u = ∇S1.

Multiplying the above equality by P ′(1)∇ϱ and integrating over
R3, it follows that
d
dt

P ′(1)
2

∫
|∇ϱ|

2dx+P ′(1)
∫

∇ϱ·∇ div udx = P ′(1)
∫

∇S1 ·∇ϱdx,

which, integrating by parts and applying Hölder inequality, yields
directly

d
dt

P ′(1)
2

∫
|∇ϱ|

2dx − P ′(1)
∫

∇
2ϱ · ∇udx ≤ C∥S1∥L2∥∇

2ϱ∥L2 .

(2.9)

Using Hölder and Sobolev inequalities, one may check that

∥S1∥L2 ≤ ∥ϱ∥L3∥divu∥L6 + ∥u∥L3∥∇ϱ∥L6

≤ C(∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥L2 + ∥∇
2ϱ∥L2 ).

(2.10)

This and the inequality (2.9) give directly

d
dt

P ′(1)
2

∫
|∇ϱ|

2dx − P ′(1)
∫

∇
2ϱ · ∇udx

≤ C(∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥2
L2 + ∥∇

2ϱ∥
2
L2 ).

(2.11)

Combining the estimates (2.8) and (2.11), we deduce

d
dt

∫
(
1
2
|∇u|2 +

P ′(1)
2

|∇ϱ|
2)dx + µ

∫
|∇

2u|
2
dx + (µ + λ)

×

∫
|∇ div u|2dx

≤ C(∥ϱ∥

1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥2
L2 + ∥∇

2ϱ∥
2
L2 ).

Therefore, we conclude the proof of this lemma. □

The content of the next step is to establish the energy estimate
for the second order spatial derivative of solution, which can help
us to achieve the decay rate for them.

Lemma 2.2. Under the assumptions of Theorem 1.1, the global
solution (ϱ, u) of Cauchy problem (2.1) has the estimate

d
dt

∫
(
1
2
|∇

2u|
2
+

P ′(1)
2

|∇
2ϱ|

2
)dx + µ

∫
|∇

3u|
2
dx + (µ + λ)

×

∫
|∇

2 div u|
2
dx

≤ C(∥u∥H1 + ∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2

+ ∥∇u∥
1
4
L2
)(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 ),

(2.12)

where C is a constant independent of time.

Proof. First, applying ∇
2 differential operator to the second

equation of (2.1), it holds on

∂t (∇2u) − µ∇
2∆u − (µ + λ)∇3 div u + P ′(1)∇3ϱ = ∇

2S2.

Multiplying the above equality by ∇
2u and integrating over R3,

we get

d
dt

1
2

∫
|∇

2u|
2
dx + µ

∫
|∇

3u|
2
dx + (µ + λ)

×

∫
|∇

2 div u|
2
dx + P ′(1)

∫
∇

3ϱ · ∇
2udx =

∫
∇

2S2 · ∇
2udx.

Let us focus on the last term
∫

∇
2S2 · ∇

2udx. The integration by
part yields directly∫

∇
2S2 · ∇

2udx = −

∫
∇S2 · ∇

3udx. (2.13)

By routine checking, one may show that

∇S2

= −∇u · ∇u − u · ∇(∇u) −
ϱ

1 + ϱ
[µ∇∆u + (µ + λ)∇2 div u]

− [
P ′(1 + ϱ)
1 + ϱ

−
P ′(1)
1

]∇
2ϱ −

∇ϱ

(1 + ϱ)2
[µ∆u + (µ + λ)∇ div u]

−
P ′′(1 + ϱ)(1 + ϱ) − P ′(1 + ϱ)

(1 + ϱ)2
∇ϱ∇ϱ.

(2.14)

Observe that

P ′(1 + ϱ) = γ (1 + ϱ)γ−1, P ′′(1 + ϱ) = γ (γ − 1)(1 + ϱ)γ−2,

and hence, it holds on

P ′′(1 + ϱ)(1 + ϱ) − P ′(1 + ϱ)
(1 + ϱ)2

= γ (γ − 2)(1 + ϱ)γ−3,

P ′(1 + ϱ)
1 + ϱ

= γ (1 + ϱ)γ−2.

(2.15)

The combination of (2.14) and (2.15) yields directly

∥∇S2∥L2

≤ C(∥∇u∥L3∥∇u∥L6 + ∥u∥L3∥∇
2u∥L6 + ∥ϱ∥L∞∥∇

3u∥L2 )

+ C(∥ϱ∥L∞∥∇
2ϱ∥L2 + ∥∇ϱ∥L3∥∇

2u∥L6 + ∥∇ϱ∥L3∥∇ϱ∥L6 )

≤ C(∥ϱ∥L∞ + ∥u∥H1 + ∥∇ϱ∥L3 + ∥∇u∥L3 )(∥∇
2u∥H1 + ∥∇

2ϱ∥L2 ).

By virtue of the Sobolev inequality and uniform estimate (1.4), it
follows that

∥ϱ∥L∞ + ∥∇ϱ∥L3 + ∥∇u∥L3 ≤ C(∥ϱ∥

1
4
L2

∥∇
2ϱ∥

3
4
L2

+ ∥ϱ∥

1
4
L2

∥∇
2ϱ∥

3
4
L2

+ ∥u∥
1
4
L2

∥∇
2u∥

3
4
L2
)

≤ C(∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2
),

(2.16)

and hence, we show that

∥∇S2∥L2 ≤ C(∥u∥H1 +∥ϱ∥

1
4
L2

+∥u∥
1
4
L2
)(∥∇2u∥H1 +∥∇

2ϱ∥L2 ). (2.17)

Thus, we conclude the following estimate

d
dt

1
2

∫
|∇

2u|
2
dx + µ

∫
|∇

3u|
2
dx + (µ + λ)

×

∫
|∇

2 div u|
2
dx + P ′(1)

∫
∇

3ϱ · ∇
2udx

≤ C(∥u∥H1 + ∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2
)(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 ).

(2.18)
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Applying ∇
2 differential operator to the first equation of (2.1)

implies

∂t (∇2ϱ) + ∇
2 div u = ∇

2S1.

Multiplying the above equality by P ′(1)∇2ϱ and integrating over
R3, we obtain
d
dt

P ′(1)
2

∫
|∇

2ϱ|
2
dx + P ′(1)

∫
∇

2 div u · ∇
2ϱdx

= P ′(1)
∫

∇
2S1 · ∇

2ϱdx.
(2.19)

Recall that S1 = −ϱ div u−u ·∇ϱ, a straightforward computation
shows that

∇
2(ϱ div u) = ϱ∇

2 div u + 2∇ϱ∇ div u + ∇
2ϱ div u,

and hence, it follows that

∥∇
2(ϱ div u)∥L2∥∇

2ϱ∥L2

≤ (∥ϱ∥L∞∥∇
2 div u∥L2 + ∥∇ϱ∥L3∥∇ div u∥L6 )∥∇

2ϱ∥L2

+ ∥ div u∥L∞∥∇
2ϱ∥

2
L2

≤ C(∥ϱ∥L∞ + ∥∇ϱ∥L3 )(∥∇
3u∥2

L2 + ∥∇
2ϱ∥

2
L2 )

+ C∥ div u∥L∞∥∇
2ϱ∥

2
L2 .

(2.20)

By routine checking, one may check that

∇
2(u · ∇ϱ) = u · ∇(∇2ϱ) + 2∇u · ∇

2ϱ + ∇
2u · ∇ϱ.

The integration by part yields directly∫
u · ∇(∇2ϱ) · ∇

2ϱdx =

∫
u · ∇(

1
2
|∇

2ϱ|
2
)dx

= −
1
2

∫
(div u)|∇2ϱ|

2
dx,

and hence, we obtain

|

∫
∇

2(u · ∇ϱ) · ∇
2ϱdx|

≤ C(∥∇u∥L∞∥∇
2ϱ∥L2 + ∥∇

2u∥L6∥∇ϱ∥L3 )∥∇
2ϱ∥L2

+ C∥ div u∥L∞∥∇
2ϱ∥

2
L2

≤ C∥∇u∥L∞∥∇
2ϱ∥

2
L2 + C∥∇ϱ∥L3∥∇

3u∥L2∥∇
2ϱ∥L2 .

(2.21)

It follows from the estimates (2.20) and (2.21) that

|

∫
∇

2S1 · ∇
2ϱdx| ≤ C(∥∇ϱ∥L3 + ∥ϱ∥L∞ + ∥∇u∥L∞ )∥∇2ϱ∥

2
L2

+ C(∥∇ϱ∥L3 + ∥ϱ∥L∞ )∥∇3u∥2
L2 ,

which, together with (2.16) and (2.19), implies directly

d
dt

P ′(1)
2

∫
|∇

2ϱ|
2
dx + P ′(1)

∫
∇

2 div u · ∇
2ϱdx

≤ C(∥ϱ∥

1
4
L2

+ ∥∇u∥L∞ )∥∇2ϱ∥
2
L2 + C∥ϱ∥

1
4
L2

∥∇
3u∥2

L2 .

(2.22)

The combination of (2.18) and (2.22) gives rise to

d
dt

[

∫
1
2
|∇

2u|
2
dx +

P ′(1)
2

∫
|∇

2ϱ|
2
dx] + µ

×

∫
|∇

3u|
2
dx + (µ + λ)

∫
|∇

2 div u|
2
dx

≤ C(∥u∥H1 + ∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2
)(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 )

× + C∥∇u∥L∞∥∇
2ϱ∥

2
L2 .

(2.23)

It is worth nothing that ∥∇u∥L∞∥∇
2ϱ∥

2
L2

is the delicate term,
which arises on the righthand side of inequality (2.23). Then,
our method here is to control the prefactor ∥∇u∥L∞ in front of

∥∇
2ϱ∥

2
L2

by the product of energy term ∥∇u∥L2 and dissipative
term ∥∇

3u∥L2 . More precisely, one may show that

∥∇u∥L∞∥∇
2ϱ∥

2
L2 ≤ C∥∇u∥

1
4
L2

∥∇
3u∥

3
4
L2

∥∇
2ϱ∥

5
4
L2

∥∇
2ϱ∥

3
4
L2

≤ C∥∇u∥
1
4
L2
(∥∇3u∥2

L2 + ∥∇
2ϱ∥

2
L2 ),

(2.24)

where we have used the uniform estimate (1.4) in the last in-
equality. Then, substituting the estimate (2.24) into (2.23), we
conclude the proof of this lemma. □

In order to close the estimate, it is imperative to establish the
dissipation estimate for ∇

2ϱ.

Lemma 2.3. Under the assumptions of Theorem 1.1, the global
solution (ϱ, u) of Cauchy problem (2.1) has the estimate

d
dt

∫
∇u · ∇

2ϱdx +
7
8
P ′(1)

∫
|∇

2ϱ|
2
dx

≤ C∥∇
2u∥2

H1 + C(∥ϱ∥

1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )∥∇2ϱ∥
2
L2 ,

(2.25)

where C is a positive constant independent of time.

Proof. Multiplying Eq. (2.3) by ∇
2ϱ and integrating over R3, we

get∫
∂t (∇u) · ∇

2ϱdx

−

∫
[µ∆∇u + (µ + λ)∇2 div u] · ∇

2ϱdx + P ′(1)
∫

|∇
2ϱ|

2
dx

=

∫
∇S2 · ∇

2ϱdx.

Using the transport equation, that is the first equation of (2.1), it
holds on∫

∂t (∇u) · ∇
2ϱdx

=

∫
∂t (∇u · ∇

2ϱ)dx −

∫
∇u · ∇

2ϱtdx

=
d
dt

∫
∇u · ∇

2ϱdx +

∫
∇ div u · ∂t (∇ϱ)dx

=
d
dt

∫
∇u · ∇

2ϱdx +

∫
∇ div u · (∇S1 − ∇ div u)dx.

Then using Hölder and Cauchy inequalities, and integrating by
part, we obtain

d
dt

∫
∇u · ∇

2ϱdx + P ′(1)
∫

|∇
2ϱ|

2
dx

=

∫
[µ∆∇u + (µ + λ)∇2 div u] · ∇

2ϱdx +

∫
∇S2 · ∇

2ϱdx

+

∫
∇ div u · (∇ div u − ∇S1)dx

≤
1
8
P ′(1)∥∇2ϱ∥

2
L2 + C∥∇

2u∥2
H1 + C(∥∇S2∥2

L2 + ∥S1∥2
L2 ),

which, together with (2.10) and (2.17), yields directly

d
dt

∫
∇u · ∇

2ϱdx +
7
8
P ′(1)

∫
|∇

2ϱ|
2
dx

≤ C∥∇
2u∥2

H1 + C(∥ϱ∥

1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )∥∇2ϱ∥
2
L2 .

Therefore, we complete the proof of this lemma. □

Combining all the estimates obtained in Lemmas 2.1–2.3, we
drive the following energy estimate.
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Lemma 2.4. Under the assumptions of Theorem 1.1, we define

E2
1 (t)

∆
= ∥∇u∥2

H1 + P ′(1)∥∇ϱ∥
2
H1 + 2δ0

∫
∇u · ∇

2ϱdx.

Then there exists a large time T0, such that

d
dt

E2
1 (t) + c∗(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 ) ≤ 0, (2.26)

holds on for all t ≥ T0. Here c∗ = min {µ, δ0P ′(1)}, and δ0 is a small
constant.

Proof. Adding estimate (2.2) with (2.12), it holds on

d
dt

{
1
2
∥∇u∥2

H1 +
P ′(1)
2

∥∇ϱ∥
2
H1

}
+ µ∥∇

2u∥2
H1

≤ C(∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2

+ ∥∇u∥
1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥2
H1

+ ∥∇
2ϱ∥

2
L2 ).

(2.27)

Multiplying δ0 to (2.25) and adding with (2.27), we choose δ0
being small enough to obtain

d
dt

{
1
2
∥∇u∥2

H1 +
P ′(1)
2

∥∇ϱ∥
2
H1 + δ0

∫
∇u · ∇

2ϱdx
}

+
3µ
4

∥∇
2u∥2

H1 +
3δ0
4

P ′(1)∥∇2ϱ∥
2
L2

≤ C(∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2

+ ∥∇u∥
1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥2
H1

+ ∥∇
2ϱ∥

2
L2 ).

Thanks to the decay rate (1.5) obtained in Theorem 1.1, one may
conclude that

∥ϱ∥

1
4
L2

+ ∥u∥
1
4
L2

+ ∥∇u∥
1
4
L2

+ ∥ϱ∥H1 + ∥u∥H1 ≤ C(1 + t)−
1
4 (

2
p −1)

,

and hence, there exists a large time T0 > 0 such that

C(∥ϱ∥

1
4
L2

+∥u∥
1
4
L2

+∥∇u∥
1
4
L2

+∥ϱ∥H1 +∥u∥H1 ) ≤
1
4
min {µ, δ0P ′(1)},

holds on for all t ≥ T0. Thus, we obtain the energy estimate

d
dt

{
∥∇u∥2

H1 + P ′(1)∥∇ϱ∥
2
H1 + 2δ0

∫
∇u · ∇

2ϱdx
}

+ µ∥∇
2u∥2

H1 + δ0P ′(1)∥∇2ϱ∥
2
L2 ≤ 0.

Taking c∗ = min {µ, δ0P ′(1)}, it holds on

d
dt

E2
1 (t) + c∗(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 ) ≤ 0.

By virtue of the smallness of δ0, there are two constants c1 and
C1(independent of time) such that

c1(∥∇u∥2
H1 + ∥∇ϱ∥

2
H1 ) ≤ E2

1 (t) ≤ C1(∥∇u∥2
H1 + ∥∇ϱ∥

2
H1 ), (2.28)

Therefore, we complete the proof of this lemma. □

Finally, let us prove the upper bound of decay for the first and
second order spatial derivatives of global solution to the Cauchy
problem (2.1) with large initial data.

Lemma 2.5. Under the assumptions of Theorem 1.1, there exists a
large time T1, such that

∥∇ϱ(t)∥H1 + ∥∇u(t)∥H1 + ∥∂tϱ(t)∥L2 + ∥∂tu(t)∥L2

≤ C(1 + t)−
3
4 (

2
p −1)− 1

2 ,
(2.29)

holds on for all t ≥ T1. Here C is a constant independent of time.

Proof. In order to obtain the time decay rate (2.29), our method
here is to use the Fourier splitting method (by Schonbek [22]),
which has been applied to obtain decay rate for the incompress-
ible Navier–Stokes equations in higher order derivative norm (cf.
[24,25]). The difficulty, arising from the compressible Navier–
Stokes equations, is the appearance of density that obeys the
transport equation rather than diffusive one. To get rid of
this difficulty, our idea is to rewrite the inequality (2.26) as
follows
d
dt

E2
1 (t) +

c∗
2

∫
(|∇2u|

2
+ |∇

3u|
2
)dx +

c∗
2

∫
|∇

2ϱ|
2
dx

+
c∗
2

∫
|∇

2ϱ|
2
dx ≤ 0.

(2.30)

Define S0 := {ξ ∈ R3
||ξ | ≤ ( R

1+t )
1
2 }, then we can split the phase

space R3 into two time-dependent regions. Here R is a constant
defined below. By routine checking, we can get that∫

R3
|∇

2u|
2
dx ⩾

∫
R3/S0

|ξ |
4
|û|2dξ ⩾

R
1 + t

∫
R3/S0

|ξ |
2
|û|2dξ

=
R

1 + t

∫
R3

|ξ |
2
|û|2dξ −

R
1 + t

∫
S0

|ξ |
2
|û|2dξ

⩾
R

1 + t

∫
R3

|ξ |
2
|û|2dξ −

R2

(1 + t)2

∫
S0

|û|2dξ,

or equivalently

∥∇
2u∥2

L2 ⩾
R

1 + t
∥∇u∥2

L2 −
R2

(1 + t)2
∥u∥2

L2 . (2.31)

In an analogous manner, we ultimately obtain

∥∇
3u∥2

L2 ⩾
R

1 + t
∥∇

2u∥2
L2 −

R2

(1 + t)2
∥∇u∥2

L2 , (2.32)

and

∥∇
2ϱ∥

2
L2 ⩾

R
1 + t

∥∇ϱ∥
2
L2 −

R2

(1 + t)2
∥ϱ∥

2
L2 . (2.33)

Substituting the estimates (2.31)–(2.33) into (2.30), one may
show that
d
dt

E2
1 (t) +

c∗
2

R
1 + t

(∥∇u∥2
H1 + ∥∇ϱ∥

2
L2 ) +

c∗
2

∥∇
2ϱ∥

2
L2

≤
c∗R2

2(1 + t)2
(∥u∥2

H1 + ∥ϱ∥
2
L2 ),

holds on for all t ≥ T0 (T0 defined in Lemma 2.4). Thanks to the
equivalent relation (2.28), the term ∥∇

2ϱ∥
2
L2

on left handside of
the above inequality plays a role of damping term. And hence, it
holds on
d
dt

E2
1 (t) +

c∗R
2(1 + t)

(∥∇u∥2
H1 + ∥∇ϱ∥

2
H1 )

≤
c∗R2

2(1 + t)2
(∥u∥2

H1 + ∥ϱ∥
2
L2 ),

for all t ≥ T1 := max{T0, R − 1}.
Thanks to decay estimate (1.5) in Theorem 1.1 and equivalent

relation (2.28), we have

d
dt

E2
1 (t) +

c∗R
2C1(1 + t)

E2
1 (t) ≤

c∗R2

2
C(1 + t)−

3
p −

1
2 .

Choosing R =
6C1
pc∗

and multiplying the resulting inequality by

(1 + t)
3
p , it follows that

d
dt

[
(1 + t)

3
p E2

1 (t)
]

≤ C(1 + t)−
1
2 .
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For T1=max{T0,
6C1
pc∗

− 1}, the integration over [T1, t] yields di-
rectly

E2
1 (t) ≤ (1+t)−

3
p (1+T1)

3
p E2

1 (T1)+C(1+t)−
3
p [(1+t)

1
2 −(1+T1)

1
2 ],

which, together with uniform bound (1.4) and equivalent relation
(2.28), implies

E2
1 (t) ≤ C(1 + t)−

3
2 (

2
p −1)−1

.

Using the equivalent relation (2.28) again, then it holds on

∥∇ϱ(t)∥2
H1 + ∥∇u(t)∥2

H1 ≤ C(1 + t)−
3
2 (

2
p −1)−1

, (2.34)

for all t ≥ T1=max{T0,
6C1
pc∗

− 1}.
Finally, we establish the decay rates for the time derivative of

density and velocity. Using the first equation of (2.1), estimate
(2.10) and decay rate (2.34), we have

∥∂tϱ∥L2 ≤ ∥ div u∥L2 + ∥S1∥L2

≤ ∥∇u∥L2 + C(∥ϱ∥H1 + ∥u∥H1 )(∥∇2u∥L2 + ∥∇
2ϱ∥L2 )

≤ C(1 + t)−
3
4 (

2
p −1)− 1

2 + C(1 + t)−
3
4 (

2
p −1)(1 + t)−

3
4 (

2
p −1)− 1

2

≤ C(1 + t)−
3
4 (

2
p −1)− 1

2 .

(2.35)

In an analogous fashion, it follows that

∥∂tu∥L2

≤ µ∥∆u∥L2 + (µ + λ)∥∇ div u∥L2 + P ′(1)∥∇ϱ∥L2 + ∥S2∥L2

≤ C(1 + t)−
3
4 (

2
p −1)− 1

2 .

(2.36)

The combination of (2.34)–(2.36) completes the proof of this
lemma. □

Remark 2.1. The decay rate (2.29) tells us the fact that the
first and second order spatial derivatives of velocity and density
converge to zero at the L2−rate (1 + t)−

3
4 (

2
p −1)− 1

2 although the
initial data (ρ0 − 1, u0) may be large in the sense of H2

∩ Lp(p ∈

[1, 2)) norm. It should be pointed out that the second order
spatial derivative of velocity will converge to zero at the L2−rate
(1 + t)−

3
4 (

2
p −1)−1 for the classical incompressible Navier–Stokes

equations (cf.[25]). However, this is still an open problem for the
compressible Navier–Stokes equations with large initial data, or
even the small one.

2.2. Lower bound of decay rate

In this subsection, the content of our analysis is to address
the lower bound of decay rate for the global solution of Cauchy
problem (2.1). For the sake of simplicity, we only study the lower
bound of decay rate for the global solution with initial data of the
form (ϱ0, u0) ∈ H2

∩ L1. Now, we are in a position to prove the
lower bounds of decay rates (1.7) and (1.8). Let us definem := ρu,
we rewrite (1.1) in the perturbation form as{

∂tϱ + divm = 0,
∂tm − µ∆m − (µ + λ)∇ divm + P ′(1)∇ϱ = − div F ,

(2.37)

where the function F = F (ϱ, u) is defined as

F := (1 + ϱ)u ⊗ u + µ∇(ϱu) + (µ + λ) div(ϱu)I3×3

+ (P(1 + ϱ) − P(1) − P ′(1)ϱ)I3×3.
(2.38)

Here the pressure P(ρ) = ργ with γ ≥ 1. The initial data is given
as

(ϱ,m)(x, t)|t=0= (ϱ0,m0)(x).

In order to obtain the lower decay estimate, we need to analyze
the linearized part:{

∂tϱl + divml = 0,
∂tml − µ∆ml − (µ + λ)∇ divml + P ′(1)∇ϱl = 0,

(2.39)

together with the initial data

(ϱl,ml)(x, t)|t=0= (ϱ0,m0).

Here the initial data for the linearized part (2.39) is the same as
the nonlinear part (2.37). The following estimates can be found
in [14,32].

Proposition 2.6. Assume the Fourier transform F(ϱ0,m0) :=

(ϱ̂0, m̂0) satisfies |(ϱ̂0, m̂0)| ≤ C |ξ |
η for 0 ≤ |ξ | ≪ 1. Then,

the solution (ϱl,ml) of linearized system (2.39) has the following
estimate

∥(ϱl,ml)(t)∥L2 ≤ C(1 + t)−( 34 +
η
2 )(∥(ϱ̂0, m̂0)∥L∞ + ∥(ϱ0,m0)∥L2 ),

(2.40)

for all t ≥ 0. Furthermore, if the Fourier transform F(ϱ0,m0) =

(ϱ̂0, m̂0) satisfies

|ϱ̂0| ≥ c0, m̂0 = 0, 0 ≤ |ξ | ≪ 1,

with c0 > 0 a constant, then we have for large time t

min{∥ϱl(t)∥L2 , ∥ml(t)∥L2} ≥ c1(1 + t)−
3
4 , (2.41)

where c1 and C are positive constants independent of time t.

Define ϱδ := ϱ−ϱl and mδ := m−ml, then (ϱδ,mδ) will satisfy
the following equations{

∂tϱδ + divmδ = 0,
∂tmδ − µ∆mδ − (µ + λ)∇ divmδ + P ′(1)∇ϱδ = − div F ,

(2.42)

with the zero initial data

(ϱδ,mδ)(x, t)|t=0= (0, 0). (2.43)

Define the differential operator B:

B =

(
0 −div

−P ′(1)∇ µ∆ + (µ + λ)∇div

)
(2.44)

then we can write the solution of (2.39) and (2.42) as

(ϱl(t),ml(t))tr = K (t)(ϱ0,m0)tr ,

and

(ϱδ(t),mδ(t))tr =

∫ t

0
K (t − τ )(0, − div F )tr (τ )dτ ,

respectively, where K (t) is the solution semigroup defined by
K (t) = etB, t ≥ 0. First of all, let us to establish the upper bound
of decay rate for the difference (ϱδ,mδ).

Lemma 2.7. Let p = 1, and suppose all the assumptions of
Theorem 1.1 hold on. Assume (ϱδ,mδ) be the smooth solution of the
Cauchy problem (2.42)–(2.43). Then, it holds on

∥(ϱδ,mδ)(t)∥L2 ≤ C(1 + t)−
5
4 , (2.45)

where C is a constant independent of time.

Proof. By Duhamel principle and estimate (2.40), we have
∥(ϱδ,mδ)(t)∥L2

≤

∫ t

0
(1 + t − τ )−

5
4 (∥|ξ |

−1F(div F )∥L∞ + ∥ div F∥L2 )dτ

≤ C
∫ t

0
(1 + t − τ )−

5
4 (∥F∥L1 + ∥∇F∥L2 )dτ .

(2.46)
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By Hölder and Sobolev inequalities, one may check that

∥F∥L1

≤ C((1 + ∥ϱ∥L∞ )∥u∥2
L2 + ∥∇ϱ∥L2∥u∥L2 + ∥ϱ∥L2∥∇u∥L2 + ∥ϱ∥

2
L2 )

≤ C∥(ϱ, u)∥2
H1 ,

(2.47)

and

∥∇F∥L2

≤ C(∥∇u∥L3∥u∥L6 + ∥∇ϱ∥L3∥u∥L∞∥u∥L6 + ∥u∥L∞∥ϱ∥L6∥∇u∥L3 )

+ C(∥u∥L∞∥∇
2ϱ∥L2 + ∥∇u∥L∞∥∇ϱ∥L2 + ∥ϱ∥L6∥∇

2u∥L3

+ ∥ϱ∥L6∥∇ϱ∥L3 )
≤ C(∥∇u∥H1∥∇u∥L2 + ∥∇ϱ∥H1∥u∥H2∥∇u∥L2

+ ∥u∥H2∥∇ϱ∥L2∥∇u∥H1 )

+ C(∥∇u∥
1
2
L2

∥∇
2u∥

1
2
L2

∥∇
2ϱ∥L2 + ∥∇u∥

1
4
L2

∥∇
3u∥

3
4
L2

∥∇ϱ∥L2 )

+ C(∥∇ϱ∥L2∥∇
2u∥H1 + ∥∇ϱ∥L2∥∇ϱ∥H1 )

≤ C(∥(ϱ, u)∥2
H1 + ∥∇u∥

1
2
L2

∥∇
2ϱ∥L2 + ∥∇(ϱ, u)∥L2 (∥∇

2u∥H1

+ ∥∇
2ϱ∥L2 )),

(2.48)

where we have used the uniform estimate (1.4) and Young in-
equality in the last inequality. Then, the combination of (2.46)–
(2.48) yields immediately

∥(ϱδ,mδ)(t)∥L2

≤ C
∫ t

0
(1 + t − τ )−

5
4 ∥(ϱ, u)∥2

H1dτ

+ C
∫ t

0
(1 + t − τ )−

5
4 ∥∇u∥

1
2
L2

∥∇
2ϱ∥L2dτ

+ C
∫ t

0
(1 + t − τ )−

5
4 ∥∇(ϱ, u)∥L2 (∥∇

2u∥H1 + ∥∇
2ϱ∥L2 )dτ .

(2.49)

Using Hölder inequality, we have∫ t

0
(1 + t − τ )−

5
4 ∥∇(ϱ, u)∥L2 (∥∇

2u∥H1 + ∥∇
2ϱ∥L2 )dτ

≤

{∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−2

∥∇(ϱ, u)∥2
L2dτ

} 1
2

×

{∫ t

0
(1 + τ )2(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 )dτ

} 1
2

≤ C
{∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−2

∥∇(ϱ, u)∥2
L2dτ

} 1
2

,

(2.50)

where we have used the estimate∫ t

0
(1 + τ )2(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 )dτ ≤ C, (2.51)

here C is a positive constant independent of time. Indeed, recall
the inequality (2.26), we have

d
dt

E2
1 (t) + c∗(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 ) ≤ 0, t ≥ T0.

Multiplying the above inequality by (1 + t)2 yields directly

d
dt

((1+t)2E2
1 (t))+c∗(1+t)2(∥∇2u∥2

H1 +∥∇
2ϱ∥

2
L2 ) ≤ 2(1+t)E2

1 (t),

which, together with equivalent relation (2.28) and decay rate
(2.29) with p = 1, gives directly
d
dt

[(1 + t)2E2
1 (t)] + c∗(1 + t)2(∥∇2u∥2

H1 + ∥∇
2ϱ∥

2
L2 )

≤ C(1 + t)−
3
2 , t ≥ T1.

Integrating the above inequality over [T1, t] and using the uni-
form estimate (1.4), we obtain the estimate (2.51). Using the same
method with (2.50), we also have∫ t

0
(1 + t − τ )−

5
4 ∥∇u∥

1
2
L2

∥∇
2ϱ∥L2dτ

≤ C(
∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−2

∥∇u∥L2dτ )
1
2 .

(2.52)

This together with (2.49) and (2.50), and using decay estimate
(1.5), it follows that

∥(ϱδ,mδ)(t)∥L2

≤ C
∫ t

0
(1 + t − τ )−

5
4 ∥(ϱ, u)∥2

H1dτ

+ C
{∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−2

∥∇(ϱ, u)∥2
L2dτ

} 1
2

+ C
{∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−2

∥∇u∥L2dτ
} 1

2

≤ C
∫ t

0
(1 + t − τ )−

5
4 (1 + τ )−

3
2 dτ

+ C
{∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−

11
4 dτ

} 1
2

+ C
{∫ t

0
(1 + t − τ )−

5
2 (1 + τ )−

7
2 dτ

} 1
2

≤ C(1 + t)−
5
4 .

(2.53)

This completes the proof of this lemma. □

Finally, we establish the lower bound of decay rate for the
global solution of compressible Navier–Stokes equations (2.1).

Lemma 2.8. Let p = 1, and assume all the assumptions of
Theorem 1.1 hold on. Denote m0 := ρ0u0, assume that the Fourier
transform F(ϱ0,m0) = (ϱ̂0, m̂0) satisfies |ϱ̂0| ≥ c0, m̂0 = 0, 0 ≤

|ξ | ≪ 1, with c0 > 0 a constant. Then, it holds on for large time t

c3(1 + t)−
3
4 ≤ ∥ϱ(t)∥L2 ≤ C1(1 + t)−

3
4 ; (2.54)

c3(1 + t)−
3
4 ≤ ∥u(t)∥L2 ≤ C1(1 + t)−

3
4 . (2.55)

Here c3 and C1 are constants independent of time.

Proof. The upper bounds of decay rates (2.54) and (2.55) have
been given in estimate (1.5) for the case of p = 1. In the sequel,
we will establish the lower bounds of decay rates in (2.54) and
(2.55). Remember the definition ϱδ := ϱ − ϱl and mδ := m − ml,
then it holds on

∥ϱl∥L2 ≤ ∥ϱ∥L2 + ∥ϱδ∥L2 , ∥ml∥L2 ≤ ∥m∥L2 + ∥mδ∥L2 ,

which, together with lower bound decay (2.41) and upper bound
decay (2.45), yields

∥ϱ(t)∥L2 ⩾ ∥ϱl(t)∥L2 − ∥ϱδ(t)∥L2

⩾ c1(1 + t)−
3
4 − C(1 + t)−

5
4 ⩾ c2(1 + t)−

3
4 ,

(2.56)

and
∥m(t)∥L2 ⩾ ∥ml(t)∥L2 − ∥mδ(t)∥L2

⩾ c1(1 + t)−
3
4 − C(1 + t)−

5
4 ⩾ c2(1 + t)−

3
4 ,
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for large time t . Recall that m := ρu, then by using decay estimate
(1.5), we have

∥m(t)∥L2 ≤ ∥u(t)∥L2 + ∥ϱ(t)∥L3∥u(t)∥L6

≤ ∥u(t)∥L2 + C∥ϱ(t)∥H1∥∇u(t)∥L2

≤ ∥u(t)∥L2 + C(1 + t)−
3
2 .

For large time t , it follows that

∥u(t)∥L2 ⩾ ∥m(t)∥L2 − C(1 + t)−
3
2

⩾ c2(1 + t)−
3
4 −

C

(1 + t)
3
4
(1 + t)−

3
4 ⩾ c3(1 + t)−

3
4 .

(2.57)

The combination of (2.56) and (2.57) yields directly

min{∥ϱ(t)∥L2 , ∥u(t)∥L2} ⩾ c3(1 + t)−
3
4 .

Therefore, we complete the proof of this lemma. □
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