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a b s t r a c t

In the present work, we consider the existence and spectral stability of multi-pulse solutions in
Hamiltonian lattice systems which are invariant under a one-parameter unitary group of symmetries.
We provide a general framework for the study of such wave patterns based on a discrete analogue
of Lin’s method, previously used in the continuum realm. We develop explicit conditions for the
existence of multi-pulse standing wave structures and subsequently develop a reduced matrix allowing
us to address their spectral stability. As a prototypical example, we consider the discrete nonlinear
Schrödinger equation (DNLS). Using Lin’s method, we extend existence and linear stability results
of multi-pulse solutions beyond the anti-continuum and continuum limits. Different families of
2- and 3-pulse solitary waves are discussed, and analytical expressions for the corresponding stability
eigenvalues are obtained which are in very good agreement with numerical results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The study of multi-pulse wave structures has a time hon-
ored history in continuum systems. Attempts at a systematic
formulation have taken place both at a more phenomenological,
asymptotic level [1] and at a more rigorous level [2]. The devel-
opment in the latter work of the so-called Lin’s method for such
wave patterns offered a systematic view into a reduced formula-
tion where the characteristics of the pulses (such as their centers,
or possibly also their widths) could constitute effective dynamical
variables for which simpler dynamical equations, i.e. ordinary
differential equations, could be derived. While Lin’s method for
discrete dynamical systems has been developed in [3], it has not
so far been applied to the discrete multi-pulse problem. Over
the following decade, methods were sought to isolate and freeze
the dynamics of individual pulses within the patterns [4,5]. More
recently, such freezing techniques have also been extended to
other structures, including rotating waves [6].

Despite the intense interest in such multiple coherent struc-
ture patterns at the continuum limit, similar techniques have
not been systematically developed at the discrete level. Parts of
the relevant efforts have involved an attempt at adapting the
asymptotic methodology of [1] (in the work of [7]) and also
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the consideration of structures systematically in the vicinity of
the so-called anti-continuum limit [8]. The latter setting involves
as a starting point the limit of vanishing coupling between the
discrete sites, whereby suitable Lyapunov–Schmidt conditions
can be brought to bear to identify persistent configurations for
finite coupling strengths between the adjacent lattice sites. While
works such as [9] have emerged that develop instability criteria,
it would be useful to have a systematic toolbox to study the
spectrum of multi-pulses in the spatially discrete setting. This
would serve to both quantify the persistence conditions of the
multi-structure states, and also to offer specific predictions on
their spectral stability and nonlinear dynamics.

It is this void that it is the aim of the present work to fill.
Following [10], we start with a Hamiltonian lattice system which
is invariant under a one-parameter unitary group of symmetries
R(θ ) (we will comment in Section 3.5 on the far easier case of
systems that do not respect continuous symmetries and also note
that non-Hamiltonian systems can be tackled using an adaptation
of the results in [2]). Such systems often exhibit primary pulse
solutions which are standing waves that evolve only in the direc-
tion of the symmetry group. We assume that this primary pulse
solution is orbitally stable in the sense of [10]. From a spatial
dynamics perspective, the primary pulse is a homoclinic orbit
that lies in intersection of the unstable and stable manifolds of
a saddle equilibrium at the origin.

To construct multi-pulse solutions, we use Lin’s method [3,11,
12], a Lyapunov–Schmidt reduction that can be used to find solu-
tions which remain near a known homoclinic orbit. Heuristically,
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Fig. 1. Shown is an illustration of a piecewise 2-pulse U(n), composed of the three pieces U1 , U2 , and U3 , and the linear superposition of two copies of the primary
pulse Q (n) placed at n = −N and n = N , respectively. U(n) is a genuine 2-pulse solution if and only if the two jumps at n = ±N are zero.

we can construct a 2-pulse on the integer lattice Z as follows.
Let Q (n) be the primary homoclinic orbit; then a homoclinic orbit
U(n) is said to be a 2-pulse if there is an N ≫ 1 so that

sup
n≤0

|U(n) − Q (n + N)| + sup
n≥0

|U(n) − Q (n − N)|

is small, i.e. the graph of U(n) resembles the sum of two copies
of the primary pulse translated by N units to the left and right,
respectively. For each N ≫ 1, Lin’s method produces a piecewise
2-pulse solution that is composed of three pieces⎧⎨⎩
U1(n) n ∈ (−∞,−N]

U2(n) n ∈ [−N,N]

U3(n) n ∈ [N,∞)

as shown in Fig. 1. This piecewise function will be a genuine
2-pulse if and only if these pieces coincide at n = ±N so that

U1(−N) = U2(−N), U2(N) = U3(N).

This approach therefore reduces the existence problem for
2-pulses to solving two jump conditions. Similarly, the existence
of an m-pulse is equivalent to solving m jump conditions.

For a multi-pulse, we also use Lin’s method to find the eigen-
values which result from nonlinear interactions between neigh-
boring copies of the primary pulse. These eigenvalues are close
to 0, and we call them interaction eigenvalues. To do this, we
adapt the analysis in [2] to the Hamiltonian case. (For non-
Hamiltonian systems, the analysis is much simpler, and in fact
is the discrete analogue of [2]). Invariance under the symmetry
group R(θ ) induces an eigenvalue at 0 in the linearized equation.
The corresponding eigenfunctions are, to leading order, piecewise
linear combinations of the kernel eigenfunction.

As a concrete example for the implementation of the method,
we revisit the discrete nonlinear Schrödinger (DNLS) system, for
which many of the methods of the previous paragraph have been
developed [13] (see also [14]). We show that known existence
and linear stability results hold for regimes beyond the anti-
continuum and continuum limits; in essence, we replace the
requirement that the coupling between adjacent lattice sites be
small by the requirement that the pulses are well separated. In
particular, we give a systematic description especially of 2- and
3-pulse solutions and explain how the relevant conclusions can
be generalized to arbitrary multi-pulse structures. Our presenta-
tion will be structured as follows. In Section 2, we will present
the mathematical setup of the problem and of the special case
example of interest (DNLS). In Section 3, we will develop Lin’s
method, providing the main results but deferring the proof details
to later sections. In Section 4, we apply the method to the DNLS,
comparing the theoretical findings to systematic computations of
multi-pulse solutions. Our results are then summarized in Sec-
tion 5, and some possible directions for future work are offered.
Details of the proofs are presented in Sections 6–8.

While the paradigm of interest herein will be the DNLS, we
note in passing that the technique considered is more broadly

applicable in dispersive discrete nonlinear systems. As only one
parallel worth drawing, we mention the case of multiple kinks in
the context of discrete Klein–Gordon models such as the discrete
sine–Gordon or the discrete φ4 model [15]. While there are some
nontrivial differences between this case and the one considered
herein (including, e.g., the study of fronts rather than pulses, and
the stability of configurations centered between adjacent sites
rather than on a lattice site), the relevant setting can be adapted
to such a case. Such Klein–Gordon multi-kinks are of interest both
in their static [16] and in their traveling [17] form in the discrete
problem. A more challenging generalization is the one to the
setting of discrete breathers in Klein–Gordon lattices. The latter,
however, is also worth considering in a suitable action–angle
framework where the relevant persistence and stability problem
can also be considered; see, e.g., [18] for a recent discussion
thereof.

2. Mathematical setup

A lattice dynamical system is an infinite system of ordinary
differential equations which are indexed by points (nodes) on
a lattice. For the purposes of this work, we will only consider
dynamical systems on the integer lattice Z, where the differen-
tial equation for each point on the lattice is identical, and the
equations are coupled by a centered, second order difference
operator.

As a specific example, we will look at the discrete nonlinear
Schrödinger equation (DNLS)

iψ̇n + d(ψn+1 − 2ψn + ψn−1) + |ψn|
2ψn = 0, (1)

which is (2.12) in [13], where we have taken β = −1 and σ = 1.
The parameter d represents the coupling between nodes; d > 0
is the focusing case, and d < 0 is the defocusing case [13]. When
d = 0, there is no coupling between nodes; this is referred to
as the anti-continuum limit. Eq. (1) is Hamiltonian, with energy
given by (2.17) in [13,14]. Of general interest in this type of lattice
is the existence and stability of standing waves, which are bound
state solutions of the form ψn(t) = eiωtφn [19]. Making this
substitution in (1) and simplifying, a standing wave solves the
steady state equation

d(φn+1 − 2φn + φn−1) − ωφn + |φn|
2φn = 0. (2)

From [20], a symmetric, real-valued, on-site soliton solution qn
exists to (2) for all ω ̸= 0 and d ≥ 0. This solution qn furthermore
is differentiable in ω.

We will write DNLS as a system of two real variables u =

(v,w) ∈ ℓ2(Z,R2), where v = Re ψ and w = Im ψ . In this
fashion, we can write (1) in Hamiltonian form as

u̇n − J[H′(u)]n = 0, (3)

where J is the standard skew-symmetric symplectic matrix

J =

(
0 1

−1 0

)
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and the Hamiltonian H : ℓ2(Z,R2) → R is

H(v,w)

=

∞∑
n=−∞

(
d
2
(vn − vn−1)

2
+

d
2
(wn − wn−1)

2
−

1
4

(
v2n + w2

n

)2)
.

(4)

The Hamiltonian H is invariant under the standard rotation group
R(θ ), given by

R(θ ) =

(
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)
, (5)

which has infinitesimal generator R′(0) = −J . The corresponding
conserved quantity, often called the charge [10, Section 6.C], is
given by

Q(v,w) = −
1
2

∞∑
n=−∞

(
v2n + w2

n

)
. (6)

We note that for physical considerations, typically the opposite of
this quantity appears as the relevant conserved quantity, repre-
senting, e.g., the power in optics or the number of atoms in atomic
condensates [13].

Standing waves are solutions of (3) of the form R(ωt)u, where
u is independent of t . Substituting this into (3), we obtain the
equivalent system of equations

− H′(u) − ωu = 0, (7)

which for DNLS is given by

d(vn+1 − 2vn + vn−1) + vnw
2
n + v3n − ωvn = 0

d(wn+1 − 2wn + wn−1) + v2nwn + w3
n − ωwn = 0 .

(8)

If u is a standing wave solution, then R(θ )u is also a solution
to Eq. (7). Since R(θ )u is a rotation of u by θ , we will not
distinguish between u and R(θ )u, although θ will play a central
role when we construct multi-pulses in Section 4. We note that
the steady state system is equivalent to

H′(u) − ωQ′(u) = 0, (9)

which is the stationary equation [10, (2.15)]. The steady state
equation (8) also has a conserved quantity E, which is the current
density [21, (6)] and is given by

E = 2d(vnwn−1 − vn−1wn) = 2d⟨un, Jun−1⟩. (10)

By a conserved quantity in this setting, we mean that this quan-
tity is independent of the lattice index n.

3. Main theorems

3.1. Setup

With DNLS as our principal motivation, we will consider the
following more general setting. Consider the Hamiltonian lattice
differential equation

u̇n = J[H′(u)]n, (11)

where u(t) ∈ ℓ2(Z,R2k), H : ℓ2(Z,R2k) → R is smooth with
H(0) = 0 and H′(0) = 0, and J is a 2k × 2k symplectic matrix.
The integer k is the lattice dimension, and k = 1 corresponds to
the usual one-dimensional lattice. For simplicity, and again using
DNLS as motivation, we will assume that H′(u) takes the form

[H′(u)]n = −d(∆2u)n + f (un), (12)

where∆2 is the second difference operator (∆2u)n = un+1−2un+

un−1, d is the coupling constant, and f : R2k
→ R2k is smooth with

f (0) = 0 and Df (0) = 0. This implies that, other than the terms
from ∆2u, the RHS of (11) only involves the lattice site un. We
note that Df (u(n)) is self-adjoint since H′′(u) is self-adjoint.

Using [10] as a guide, we make the following hypothesis
concerning the invariance of the system under a group of symme-
tries. This hypothesis allows us to have standing wave solutions
to (11), which are solutions which evolve only in the direction
of the symmetry group. In addition, there is a kernel eigenvalue
in the linearized problem which is a result of this symmetry
invariance. We will construct the eigenfunctions associated with
a multi-pulse standing wave using this kernel eigenvalue.

Hypothesis 1. There is unitary group of symmetries {R(θ ) : θ ∈

R} on R2k such that

(i) The Hamiltonian H is invariant under R(θ ), i.e.

H(R(θ )u) = H(u). (13)

(ii) R(θ ) satisfies the ‘‘commuting’’ relation

R(θ )J = JR∗(−θ ). (14)

Condition (ii) implies

R′(0)J = −JR′(0)∗, (15)

where R′(0) is the infinitesimal generator of the symmetry group
R(θ ). In addition, since R(θ ) is unitary,

R(θ )J = JR(θ ). (16)

For DNLS, R(θ ) is the rotation group (5). Following [10, (2.9)],
since J is an invertible matrix, the corresponding conserved quan-
tity is given by

Q(u) =
1
2

∞∑
n=−∞

⟨J−1R′(0)un, un⟩. (17)

It follows from (14) and J−1
= −J thatQ(u) is also invariant under

the symmetry group R(θ ), i.e. Q(R(θ )u) = Q(u).
Equilibrium solutions to (11) satisfy

H′(u) = 0. (18)

Differentiating the symmetry invariance (13) as in [10], we obtain
the symmetry relations

H′(R(θ )u) = R(θ )H′(u)
H′′(R(θ )u) = R(θ )H′′(u)R(θ )∗ ,

(19)

from which it follows that u is a solution to (18) if and only if
R(θ )u is a solution. We also note that f (R(θ )u) = f (u)R(θ ).

We are interested in bound states (also referred to as standing
waves), which are solutions to (11) of the form u(t) = R(ωt)u,
where u ∈ ℓ2(Z,R2k) is independent of t . Following [10], bound
states satisfy the equilibrium equation

H′(u) − ωQ′(u) = 0. (20)

Since Q′(u) = J−1R′(0)u, this is equivalent to

H′(u) − ωJ−1R′(0)u = 0. (21)

We note that if q is a bound state, R(θ )q is also a solution to (20),
i.e.

H′(R(θ )u) − ωQ′(R(θ )u) = 0. (22)

Let q be a bound state solution to (20). The linearization of (11)
about q is the linear operator

L(q) = JH′′(q) − ωJQ′′(q). (23)
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Since Q′′(u) = J−1R′(0), this is equivalent to

L(q) = JH′′(q) − ωR′(0). (24)

Taking u = q in (22) and differentiating with respect to θ at
θ = 0,

L(q)R′(0)q = 0, (25)

thus R′(0)q is an eigenfunction of L(q) with eigenvalue 0.
As in [10, Assumption 2], we take the following hypothesis

about the existence of bound state solutions. We also assume that
a stability criterion is satisfied.

Hypothesis 2. For ω ∈ (ω1, ω2), there exists an injective C1 map
ω ↦→ q such that q ∈ ℓ2(Z,R2k) is a bound state solution to (20).
Furthermore, for all ω ∈ (ω1, ω2), M > 0, where

M = −
d
dω

Q(q) = −

∞∑
n=−∞

⟨J−1R′(0)un, ∂ωun⟩. (26)

We note that for the map ω ↦→ q to be well defined, we do not
distinguish between solutions R(θ )q for θ ∈ R. The case of M < 0
is connected to an instability of the primary pulse and hence is
not further considered herein.

Remark 1. The condition M > 0 is the Vakhitov Kolokolov sta-
bility criterion [22], which is generalized to abstract Hamiltonian
systems in [10]. M > 0 implies stability of the primary pulse [10].
In general, the condition M > 0 can only be verified numerically.

Remark 2. We use the notation M for the stability criterion (26)
since M will appear in the proof of Theorem 2 as a Melnikov sum
which measures a jump in a specific direction.

By Hypothesis 2, ∂ωq exists for ω ∈ (ω1, ω2). Differentiating
(20) with respect to ω and multiplying by J , ∂ωq satisfies

L(q)∂ωq = R′(0)q. (27)

3.2. Spatial dynamics formulation

Using Eq. (12), we write the bound state equation (21) as the
first order difference equation

U(n + 1) = F (U(n)), (28)

where U(n) = (u(n), ũ(n)) = (un, un−1) ∈ R4k and F : R4k
→ R4k

is smooth and defined by

F
(
u
ũ

)
=

(
2u +

1
d

(
f (u) − ωJ−1R′(0)u

)
− ũ

u

)
. (29)

We note that F (0) = 0. Reformulation of the problem as a first
order difference equation is required by standard implementa-
tions of Lin’s method (see Eq. (1.1) in [3] for the discrete case).
For systems where the coupling between nodes is nonlinear, a
different approach would be needed.

It is straightforward to verify the symmetry relation

F (T (θ )U) = F (U)T (θ ), (30)

where

T (θ ) =

(
R(θ ) 0
0 R(θ )

)
. (31)

We can similarly write the eigenvalue problem (L(q)− λI)v =

0, where L is defined by Eq. (23), as the first order difference
equation

V (n + 1) = DF (Q (n))V (n) + λBV (n), (32)

where

DF (Q (n)) =

(
2I +

1
dDf (qn) −

1
dωJ

−1R′(0) −I
I 0

)
(33)

and B is the constant-coefficient block matrix

B =
1
d

(
J 0
0 0

)
. (34)

Since R(θ )J = JR(θ ), T (θ ) commutes with B. It follows from (25)
and (27) that

T ′(0)Q (n + 1) = DF (Q (n))T ′(0)Q (n) (35)

∂ωQ (n + 1) = DF (Q (n))∂ωQ (n) + BT ′(0)Q (n). (36)

Since F (0) = 0, the origin is an equilibrium point for the
dynamical system (28). Fix ω ∈ (ω1, ω2), and let q be the bound
state from Hypothesis 2 corresponding to ω. Let Q (n) = (qn, qn−1).
Since q ∈ ℓ2(Z,R2k), qn → 0 as n → ±∞, and Q (n) is a
homoclinic orbit solution to (28) connecting the equilibrium at 0
to itself. We will refer to this as the primary pulse solution. Since
f (0) = Df (0) = 0, for the equilibrium at 0 we have

DF (0) =

(
u
ũ

)
=

(
2I −

1
dωJ

−1R′(0) −I
I 0

)
. (37)

In the next hypothesis, we assume the equilibrium at 0 is hyper-
bolic. This facilitates the analysis by allowing us to decompose the
linearized problem in an exponential dichotomy. This also allows
us to characterize the eigenvalues of DF (0).

Hypothesis 3. The equilibrium at 0 is hyperbolic, i.e. there are
no eigenvalues ν of DF (0) on the unit circle.

We can use standard determinant identities to compute the
characteristic polynomial of DF (0).

det(DF (0)−νI) = det(−νI) det
(
2I −

1
d
ωJ−1R′(0) −

(
ν +

1
ν

)
I
)
.

(38)

It follows from (38) that the eigenvalues of DF (0) come in pairs
{ν, 1/ν}. By (15), the matrix 2I −

1
dωJ

−1R′(0) is self-adjoint, thus
DF (0) has 2k pairs of real eigenvalues {(νj, 1/νj) : j = 1, . . . , 2k},
where νj > 1. Let

r = min
j=1,...,2k

νj. (39)

The homoclinic orbit Q (n) lies in the intersection of the stable
and unstable manifolds. In the following hypothesis, we assume
that this intersection is non-degenerate.

Hypothesis 4. The tangent spaces of the stable manifold W s(0)
and the unstable manifold W u(0) have a one-dimensional inter-
section at Q (n).

By (25), this intersection is spanned by T ′(0)Q (n). By the stable
manifold theorem, we have the decay rate

|Q (n)| ≤ Cr−|n|. (40)

By Hypothesis 4, T ′(0)Q (n) is the unique bounded solution to the
variational equation

V (n + 1) = DUF (Q (n))V (n),

where

T ′(0)Q (n) =

(
R′(0)q(n)

R′(0)q(n − 1)

)
. (41)

It follows that there exists a unique bounded solution Z1(n) to the
adjoint variational equation

Z(n) = DUF (Q (n))∗Z(n + 1).
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We can verify directly that

Z1(n) =

(
−R′(0)q(n − 1)

R′(0)q(n)

)
. (42)

In both of these cases, uniqueness is up to scalar multiples.

3.3. Existence of multi-pulses

We are interested in multi-pulses, which are bound states
that resemble multiple, well separated copies of the primary
pulse Q (n). In this section, we give criteria for the existence of
multi-pulses. We will characterize a multi-pulse solution in the
following way. Let m > 1 be the number of copies of Q (n); Ni
(i = 1, . . . ,m − 1) be the distances (in lattice points) between
consecutive copies; and θi ∈ R (i = 1, . . . ,m) be symmetry
parameters associated with each copy of Q (n). We seek a solution
which can be written piecewise in the form

U−

i (n) = T (θi)Q (n) + Q̃−

i (n) n ∈ [−N−

i−1, 0]

U+

i (n) = T (θi)Q (n) + Q̃+

i (n) n ∈ [0,N+

i ] ,
(43)

where N+

i = ⌊
Ni
2 ⌋, N−

i = Ni − N+

i , N−

0 = N+
m = ∞, and

N =
1
2
min{Ni}. (44)

The individual pieces are joined together end-to-end as in [2].
The functions Q̃±

i (n) are remainder terms, which we expect to
be small; see the estimates in Theorem 3. The process of con-
structing a double pulse in terms of overlapping, well-separated
single pulses resembles the construction of multi-site breathers
in [23] (see [23, Lemma 1] for a two-site breather in the discrete
Klein–Gordon equation).

In addition to satisfying (28), the pieces U±

i (n) must match at
the endpoints of consecutive intervals. Thus, in order to have a
multi-pulse solution, U±

i (n) must satisfy the system of equations

U±

i (n + 1) = F (U±

i (n))
U+

i (N+

i ) − U−

i+1(−N−

i ) = 0
U+

i (0) − U−

i (0) = 0
(45)

for i = 1, . . . ,m. The first equation in (45) states that the
individual pulses are solutions to the difference equation (28)
on the appropriate domains; the second equation glues together
the individual pulses at their tails; and the third equation is a
matching condition at the centers of the pulses.

We will solve (45) using Lin’s method. Lin’s method yields a
solution which has m jumps in the direction of Z1(0). An m−pulse
solution exists if and only if all m jumps are 0. These jump
conditions are given in the next theorem.

Theorem 1. Assume Hypotheses 1, 2, 3, and 4, and let Q (n) be the
primary pulse solution to (28). Then there exists a positive integer N0
with the following property. For all m > 1, pulse distances Ni ≥ N0
and symmetry parameters θi, there exists a unique m−pulse solution
Qm(n) to (28) if and only if the m jump conditions

ξ1 = ⟨T (θ1)Z1(N+

1 ), T (θ2)Q (−N−

1 )⟩ + R1 = 0
ξi = ⟨T (θi)Z1(N+

i ), T (θi+1)Q (−N−

i )⟩
− ⟨T (θi)Z1(−N−

i−1), T (θi−1)Q (N+

i−1)⟩ + Ri = 0
for i = 2, . . . ,m − 1

ξm = −⟨T (θm)Z1(−N−

m−1), T (θm−1)Q (N+

m−1)⟩ + Rm = 0

(46)

are satisfied, where the remainder terms have uniform bound

|Ri| ≤ Cr−3N ,

and r is defined in Eq. (39). Qm(n) can be written piecewise in the
form (43), and the following estimates hold:

∥Q̃±

i ∥ ≤ Cr−N

Q̃+

i (N+

i ) = T (θi+1)Q (−N−

i ) + O(r−2N )

Q̃−

i+1(−N−

i ) = T (θi)Q (N+

i ) + O(r−2N ).

(47)

Remark 3. If Eq. (28) has a conserved quantity, i.e. a function
E : R4k

→ R such that E(F (U)) = E(U), we can remove one
of the jump conditions in (46) as is done in [24]. For DNLS, this
conserved quantity is the current density (10).

3.4. Eigenvalue problem

We will now turn to the spectral stability of multi-pulses. In
particular, we will locate the interaction eigenvalues. Let Qm(n) =

(qm(n), qm(n − 1)) be an m−pulse solution to (28) constructed
according to Theorem 1. By Theorem 1, Qm(n) can be written
piecewise in the form (43). The eigenvalue problem is

V (n + 1) = DF (qm(n))V (n) + λBV (n), (48)

where DF (qm(n)) and B are given by (33) and (34). Since qm(n)
decays exponentially to 0 and F is smooth, DF (qm(n)) is exponen-
tially asymptotic to the constant coefficient matrix DF (0), which
is hyperbolic.

We can now state the following theorem, in which we locate
the eigenvalues of Eq. (32) resulting from interactions between
neighboring pulses.

Theorem 2. Assume Hypotheses 1, 2, 3, and 4. Let Qm(n) be
an m−pulse solution to (28) constructed according to Theorem 1
with pulse distances {N1, . . . ,Nm−1} and symmetry parameters
{θ1, . . . , θm}. Then there exists δ > 0 small with the following
property. There exists a bounded, nonzero solution V (n) of the
eigenvalue problem (48) for |λ| < δ if and only if E(λ) = 0, where

E(λ) = det
(
A −

1
d
Mλ2I + R(λ)

)
. (49)

M is defined in (26), and A is the tridiagonal m × m matrix

A =

⎛⎜⎜⎜⎜⎝
−a1 a1
−ã1 ã1 − a2 a2

− ã2 ã2 − a3 a3
. . .

. . .

−ãm−1 ãm−1

⎞⎟⎟⎟⎟⎠ , (50)

where

ai = ⟨T (θi)Z1(N+

i ), T (θi+1)T ′(0)Q (−N−

i )⟩
ãi = ⟨T (θi+1)Z1(−N−

i ), T (θi)T ′(0)Q (N+

i )⟩ .

The remainder term has uniform bound

|R(λ)| ≤ C
(
(r−N

+ |λ|)3
)
, (51)

where N =
1
2 min{N1, . . . ,Nm−1} and r is defined in Eq. (39).

3.5. Transverse intersection

We present one more result, which concerns the existence of
multi-pulse solutions in the case where the stable manifoldW s(0)
and unstable manifold W u(0) intersect transversely, as opposed
to the one-dimensional intersection in Hypothesis 4. This is par-
ticularly useful for DNLS, as this occurs when we consider its
real-valued solutions. In the transverse intersection case, we have
a much more general result. Consider the difference equation

U(n + 1) = F (U(n)), (52)
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where F : Rk
→ Rk is smooth. We make the following assump-

tions about F .

Hypothesis 5. The following hold concerning the function F .

(i) There exists a finite group G (which may be the trivial
group) for which the group action is a unitary group of
symmetries T (θ ) on Rk such that

F (T (θ )U) = F (U)T (θ ) (53)

for all θ ∈ G and all U ∈ Rk.
(ii) The origin is a hyperbolic equilibrium for F , thus there

exists a radius r > 1 such that for all eigenvalues ν of
DF (0), |ν| ≤ 1/r or |ν| ≥ r . Furthermore, dim Es

≥ 1 and
dim Eu

≥ 1, where Es and Eu are the stable and unstable
eigenspaces of DF (0).

(iii) There exists a primary pulse homoclinic orbit solution Q (n)
to (52) which connects the equilibrium at 0 to itself.

(iv) The stable and unstable manifolds W s(0) and W u(0) inter-
sect transversely.

We note that for DNLS, the group G is ({±1}, ·). In this case,
Lin’s method yields a unique m−pulse solution to (52).

Theorem 3. Assume Hypothesis 5, and let Q (n) be the primary
pulse solution to (28). Then there exists a positive integer N0 with
the following property. For all m > 1, pulse distances Ni ≥ N0
and symmetry parameters θi, there exists a unique m−pulse solution
Qm(n) to (28) which can be written in the form (43). The remainder
terms Q̃±

i (n) have the same estimates as in Theorem 1.

Note that if the discrete system comes from a discrete Hamil-
tonian system, the Hessian of the Hamiltonian H about the pri-
mary pulse will not have an eigenvalue at the origin. If the
Hessian of the Hamiltonian H for the primary pulse is positive
definite, the primary pulse will be orbitally stable. Lin’s method
then shows that the multi-pulses we constructed in Theorem 3
will not have any eigenvalues near the origin either: their Hes-
sians will therefore also be positive definite, and the multi-pulses
are orbitally stable.

4. Discrete NLS equation

4.1. Background

We will now apply the results of the previous section to the
DNLS to illustrate the impact of the discrete Lin’s method. Before
we do that, we will give a brief overview what is already known.
Many more details can be found in [13,14].

At the anti-continuum limit, Eq. (2) reduces to a system of
decoupled algebraic equations. Any un with un ∈ {0,±

√
ω} is a

solution. For d > 0, the DNLS possesses two real-valued, sym-
metric, single pulse solutions (up to rotation): on-site solutions,
which are centered on a single lattice point; and off-site solutions,
which are centered between two adjacent lattice points [13].
The on-site solution has a single eigenvalue at 0 from rotational
symmetry. The off-site solution has an additional pair of real
eigenvalues; since the off-site solution is spectrally unstable,
we will only consider the on-site solution from here on as the
foundation for the single pulse state.

For sufficiently small d, m-pulse solutions exist to Eq. (2)
for any pulse distances as long as the phase differences satisfy
∆θi ∈ {0, π} [8, Proposition 2.1]. For sufficiently small d, this
m−pulse is spectrally unstable unless all of the phase differences
∆θi are π ; in that case there are m− 1 pairs of purely imaginary
eigenvalues with negative Krein signature [8, Theorem 3.6]. This
means that these eigendirections, although neutrally stable, are

prone to instabilities upon collision with other eigenvalues, which
can occur when parameters (such as d) are varied. However, they
may also lead to instabilities at a purely nonlinear level (despite
potential spectral stability) as a result of the mechanism explored,
e.g., in [25,26]. For any d for which the m−pulse exists, if one or
more phase differences ∆θi is 0, it was shown in [9] that there is
at least one positive, real eigenvalue.

4.2. Main results

Let q(n) be the on-site, real-valued soliton solution to (2). The
existence of q(n) is discussed in Section 2. The symmetry group
R(θ ), which is the rotation group (5), satisfies the commuting
relation (14). Since J−1R′(0) = −I , the conserved charge is given
by

Q(u) = −
1
2

∞∑
n=−∞

⟨un, un⟩, (54)

which is the same as (6). The stability criterion M from (26) is
given by

M = ∂ω

(
1
2

∞∑
n=−∞

q2n

)
=

∞∑
n=−∞

qn∂ωqn. (55)

We will assume that M > 0, as confirmed by numerical com-
putation [13]. Following Section 3.2, Eq. (8) can be written as
U(n + 1) = F (U(n)), where

F
(
u
ũ

)
=

((
2 +

ω
d

)
u +

1
d f (u) − ũ

u

)
. (56)

The origin is a hyperbolic equilibrium of F , and the eigenvalues
of DF (0) are ν = {r, 1/r}, each with multiplicity 2, where

r = 1 +
ω

2d

(
1 +

√
1 +

4d
ω

)
. (57)

For ω, d > 0, we have r > 1.
We will characterize an m−pulse solution to (2) in terms

of the m − 1 pulse distances {N1, . . . ,Nm−1} and phase dif-
ferences {∆θ1, . . . ,∆θm−1} between consecutive copies of q(n).
Using Theorem 3, the m jump conditions necessary for an
m−pulse to exist can be written in terms of the phase differences
∆θi as

ξi = ⟨T (−∆θi)Z1(N+

i ),Q (−N−

i )⟩ − ⟨T (∆θi−1)Z1(−N−

i−1),Q (N+

i−1)⟩
+ Ri for i = 1, . . . ,m,

(58)

where we take ∆θ0 = ∆θm = 0. We have the following theorem
regarding the existence of m−pulse solutions.

Theorem 4. There exists a positive integer N0 (which depends on ω
and d), with the following property. For any m ≥ 2, pulse distances
Ni ≥ N0, and phase differences ∆θi ∈ {0, π}, there exists a unique
m−pulse solution qm(n) to (2) which resembles m consecutive copies
of the on-site pulse q(n). No other phase differences are possible.

Remark 4. For ω, d > 0, r is an increasing function of both ω
and d, thus the threshold N0 decreases as ω and d increase.

In addition, we note that an alternative approach to the exis-
tence of pulse solutions in DNLS using the underlying reversibility
of the system can be found in [27].

By (25) and (27), the linearization (48) about qm(n) has a
kernel with algebraic multiplicity at least 2 and geometric mul-
tiplicity at least 1 which is a result of rotational invariance. As-
suming Hypothesis 5, the geometric multiplicity is exactly 1. The
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following theorem locates the small eigenvalues of the lineariza-
tion about qm(n) resulting from interaction between consecutive
copies of q(n).

Theorem 5. Let qm(n) be an m−pulse solution to (2) with pulse
distances Ni and phase differences ∆θi. Assume that M > 0, where
M is given by (55). Let N =

1
2 min{N1, . . . ,Nm−1}. Then for N

sufficiently large, there exist m − 1 pairs of interaction eigenvalues
{±λ1, . . . ,±λm−1}, which can be grouped as follows. There are kπ
pairs of purely imaginary eigenvalues and k0 pairs of real eigenval-
ues, where kπ is the number of phase differences ∆θi which are π ,
and k0 is the number of phase differences ∆θi which are 0. The λj
are close to 0 and are given by the following formula

λj =

√
dµj

M
+ O(r−2N ) for j = 1, . . . ,m − 1, (59)

where r is defined in Eq. (57), d is the coupling constant and
{µ1, . . . , µm−1} are the distinct, real, nonzero eigenvalues of the
symmetric, tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎝
−a1 a1
a1 −a1 − a2 a2

a2 −a2 − a3 a3
. . .

. . .

am−1 −am−1

⎞⎟⎟⎟⎟⎠ , (60)

where ai = cos(∆θi)bi and

bi =

⎧⎨⎩q
(

Ni
2

) [
q
(

Ni
2 + 1

)
− q

(
Ni
2 − 1

)]
Ni even

q
(

Ni−1
2

)(
Ni+3
2

)
−

(
Ni+1
2

)
q
(

Ni−3
2

)
Ni odd.

(61)

Remark 5. If all the nonzero eigenvalues µj of A are larger than
O(r−4N ), then the formula (59) is the sum of a leading order
term and a small remainder term. A good approximation for the
eigenvalues λj can be obtained by computing the eigenvalues of
A. A sufficient condition for this is Nmax < 2N , where Nmax =
1
2 max{N1, . . . ,Nm−1}.

In addition, we remark that if bi = b for all i, A = −bM1,
where the matrix M1 is defined in [13, (2.84)] and represents
interactions between neighboring sites. The scaling of the interac-
tion eigenvalues with respect to d and N is similar to that of small
eigenvalues of multi-site breathers in the discrete Klein–Gordon
equation [23, Lemma 2], where we note that N in our analysis
corresponds to 2N in [23].

We can compute the nonzero eigenvalues of Eq. (60) in several
special cases. In the first corollary, we consider the case where the
pulse distances Ni are equal.

Corollary 1. Let qm(n) be an m−pulse solution to (2) with pulse
distances Ni = 2N and phase differences ∆θi. Then the interaction
eigenvalues λj are as follows.

(i) For m = 2, we have

λ1 =

{√
2ν + O(r−2N ) ∆θ1 = 0

√
2νi + O(r−2N ) ∆θ1 = π.

(62)

(ii) For m = 3, we have

λ1,2 =

⎧⎨⎩
ν,

√
3ν + O(r−2N ) (∆θ1,∆θ2) = (0, 0)

31/4ν, 31/4νi + O(r−2N ) (∆θ1,∆θ2) = (0, π )
νi,

√
3νi + O(r−2N ) (∆θ1,∆θ2) = (π, π ).

(63)

(iii) For m > 3, if ∆θi = ∆θ for all i,

λj =

⎧⎨⎩
√
2
(
cos π jm − 1

)
ν + O(r−2N ) ∆θ = 0√

2
(
cos π jm − 1

)
νi + O(r−2N ) ∆θ = π

for j = 1, . . . ,m − 1.

where ν =

√
|b|d
M

= O(r−N ), and b is given by Eq. (61).

The case of equal pulse distances in DNLS resembles the multi-
site breathers considered in [23, Lemma 2]. In the second corol-
lary, we give a general formula for the eigenvalues for a 3-pulse.

Corollary 2. Let q3(n) be an 3−pulse solution to (2) with pulse dis-
tances N1,N2 and phase differences ∆θ1,∆θ2. Then the interaction
eigenvalues λ1, λ2 are given by

λ1,2 =

√
d
M

(
−b1 cos∆θ1 − b2 cos∆θ2

±

√
b21 + b22 − b1b2 cos∆θ1 cos∆θ2

)1/2
+ O(r−2N ).

(64)

If N1 < N2 < 2N1, then, to leading order, these have magnitude

|λ1| =

√
2|b1|d
M

= O(r−N1/2)

|λ2| =

√
3|b2|d
2M

= O(r−N2/2) ,

(65)

where b1 and b2 are given by Eq. (61).

4.3. Numerical results

In this section, we provide numerical verification for the re-
sults in the previous section. We first construct multi-pulse so-
lutions to the steady state DNLS problem by using Matlab for
parameter continuation in the coupling constant d from the anti-
continuum limit. We then find the eigenvalues of the linearization
about this solution using Matlab’s eig function.

First, we look at multi-pulses where the pulse distances are
equal. The left and center panels of Fig. 2 show the pulse profile
and eigenvalue pattern for the two double pulses (of relative
phase 0 and π ). Eq. (62) from Corollary 1 states that for fixed ω
and d, the interaction eigenvalues decay as r−N . In the right panel
of Fig. 2, we plot log λ vs. N for the two possible double pulses
and construct a least-squares linear regression line. In both cases,
the relative error of the slope of this line (which is predicted
to be − log r) is order 10−4. This result provides theoretical and
numerical support to the earlier observations of [9].

We do the same for triple pulses with equal pulse distances in
Fig. 3. Since the pulse distances are equal, both sets of interaction
eigenvalues decay as r−N by Eq. (63) from Corollary 1. In the right
panel of Fig. 3, we plot log λ vs. N for the three triple pulses and
construct a least-squares linear regression line. In all three cases,
namely the in-phase (or +++) pulse, the out-of-phase (or +−+)
and finally the intermediate/mixed phase case (or + + −), the
relative error of the slope of the least squares linear regression
line is of order 10−4.

We can also look at triple pulses with unequal pulse distances
N1 and N2. If N1 < N2 < 2N1, then by Corollary 2, there are two
pairs of eigenvalues of order r−N1/2 and r−N2/2. We can similarly
verify these decay rates numerically.

Finally, we can compute the leading order term in Eq. (59) and
compare that to the numerical result. A value for ω is chosen,
and the single pulse solution q(n;ω) is constructed numerically
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Fig. 2. Solution profile (left panel), spectral plane eigenvalue pattern (center panel), and plot of log(λ) vs. N with least squares linear regression line (right panel)
for ++ (top) and +− (bottom) pulses. The symbolic notation here and below follows that of [19], referring with a symbolic sign representation to the positive or
negative value of the peak of the pulse. Parameters ω = 2 and d = 1.0.

using parameter continuation from the anti-continuum limit until
the desired coupling parameter d is reached. The terms bi from
the matrix A are computed by using Eq. (61) with the numer-
ically constructed solution q(n;ω). For the derivative ∂ωq(n;ω),
solutions q(n;ω+ ϵ) and q(n;ω− ϵ) are constructed numerically
for small ϵ by parameter continuation from the anti-continuum
limit to the same value of d. The derivative ∂ωq(n;ω) is computed
from these via a centered finite difference method; this is used
together with q(n;ω) to calculate M .

First, we consider the case of equal pulse distances. We use
the expressions from Corollary 1 to compute the leading order
term for the interaction eigenvalues, and we compare this to the
results from Matlab’s eig function. In Fig. 4 we fix the inter-pulse
distances and plot the log of the relative error of the eigenvalues
vs. the coupling parameter d. For intermediate values of d, the
relative error is less than 10−3. Since the results of Theorem
Theorem 2 are not uniform in d, i.e. they hold for sufficiently
large N once d and ω are chosen, we do not expect to have a
nice relationship between the error and d. This is furthermore
complicated by the fact that additional sources of error arise from
numerically approximating bi and M . In principle, though, the
method (and the asymptotic prediction) yields satisfactory results
except for the vicinity of the anti-continuum limit and the near-
continuum limit (where the role of discreteness is too weak). It
is interesting to point out that at a ‘‘middle ground’’ between
these two limits, namely around d = 0.5, we observe the optimal
performance of the theoretical prediction.

We can also do this for triple pulses with unequal pulse
distances. In this case, we use Corollary 2 to compute the eigen-
values to leading order. Fig. 5 shows the log of the relative
error of the eigenvalues vs. the coupling parameter d. For inter-
mediate values of d, the relative error is again less than 10−3.
Once again this validates the relevance of the method espe-
cially so for the case of intermediate ranges of the coupling
parameter d.

5. Conclusions and future challenges

In this paper we used Lin’s method to construct multi-pulses
in discrete systems and to find the small eigenvalues resulting
from interaction between neighboring pulses in these structures.
In doing so, we are able to extend known results about DNLS to
parameter regimes which are further from the anti-continuum
limit. In essence, we replace the requirement that the coupling
parameter d be small by the condition that the pulses are well
separated. This method also allows us to estimate these interac-
tion eigenvalues to a good degree of accuracy for intermediate
values of d.

The theoretical results we obtained will apply to many other
Hamiltonian systems, as long as the coupling between nodes is
via the discrete second order centered difference operator ∆2.
Since these restrictions were motivated partly by mathematical
convenience, future work could extend these results to a broader
class of Hamiltonian systems. Indeed, there exist numerous ex-
amples worth considering, ranging from simpler ones such as
discrete multiple-kink states in the discrete sine–Gordon equa-
tion [28], to settings of first order PDE discretizations related,
e.g., to the Burgers model [29] or even discretizations of third
order models such as the Korteweg–de Vries equation [30]. This
work could also be applied to the spectral stability of multi-site
breathers, a wider class of equations, such as that considered
in [31].

Another direction for future work is characterizing the family
of multi-pulse solutions which arises as the coupling parameter d
is varied. Recent work [32] has investigated stationary, spatially
localized patterns in lattice dynamical systems which change as a
parameter is varied; the coupling parameter in this case is fixed.
In some cases, these patterns exist along a closed bifurcation
curve known as an isola. Numerical continuation with AUTO in
the coupling parameter d suggests that multi-pulse solutions in
DNLS exist on an isola. The parameter d varies over a bounded in-
terval which includes the origin, thus the isola contains solutions
to both the focusing and defocusing equation.



R. Parker, P.G. Kevrekidis and B. Sandstede / Physica D 408 (2020) 132414 9

Fig. 3. Solution profile (left panel), spectral plane eigenvalue pattern (center panel), and plot of log(λ) vs. N with least squares linear regression line (right panel)
for the three triple pulse cases: + + + (top), + − + (middle), and + + − (bottom) pulses. Parameters ω = 2 and d = 1.0.

Fig. 4. Log of relative error of eigenvalues vs. coupling parameter d for double (in phase) pulse ++ (N1 = 10) and triple (out-of-phase) pulse + − + (N1 = N2 = 8).
ω = 2 in both cases.

A final direction for future works would concern the con-
sideration of higher dimensional settings. Here, the interaction
between pulses would involve the geometric nature of the con-
figuration they form and the ‘‘line of sight’’ between them. The
latter is expected (from the limited observations that exist [33])
to determine the nature of the interaction eigenvalues. Here,

however, the scenarios can also be fundamentally richer as coher-
ent states involving topological charge/vorticity may come into
play [13]. In the latter case, it is less straightforward to identify
what the conclusions may be and considering such more complex
configurations (given also their experimental observation [34,35])
may be of particular interest.
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Fig. 5. Log of relative error of eigenvalues vs. coupling parameter d for triple
in-phase pulse + + + with unequal pulse distances (N1 = 8,N2 = 6), ω = 2.

6. Proof of existence theorems

In this section, we will prove Theorems 1 and 3. Since the
proofs are very similar, we will prove Theorem 1 then state what
modifications are necessary for the proof of Theorem 3. Through-
out this section, we will assume Hypotheses 1, 2, 3, and 4. We
begin with setting up the exponential dichotomy necessary for
the proof. The technique of the proof is very similar to that in [36].

6.1. Discrete exponential dichotomy

First, we define the discrete evolution operator for linear dif-
ference equations.

Lemma 1 (Discrete Evolution Operator). Consider the difference
equation together with its adjoint

V (n + 1) = A(n)V (n) (66)

Z(n + 1) = [A(n)−1
]
∗Z(n), (67)

where n ∈ Z, V (n) ∈ Rd, and the matrix A(n) is invertible for all n.
Define the discrete evolution operator by

Φ(m, n) =

⎧⎨⎩
I m = n
A(m − 1) · · · A(n + 1)A(n) m > n
A−1(m) · · · A−1(n − 2)A−1(n − 1) m < n.

(68)

(i) The evolution operators Φ of Eq. (66) and Ψ of Eq. (67) are
related by

Ψ (m, n) = Φ(n,m)∗. (69)

(ii) If V (n) is a solution to Eq. (66) and Z(n) is a solution to
Eq. (67), then the inner product ⟨V (n), Z(n)⟩ is constant in
n.

Proof. For (i), the result holds trivially for m = n. For, m < n we
have

Ψ (m, n) = A(m)∗ · · · A(n − 2)∗A(n − 1)∗

= [A(n − 1)A(n − 2) · · · A(m)]∗

= Φ(n,m)∗.

The case for m > n is similar.
For (ii), we have

⟨V (n + 1), Z(n + 1)⟩ = ⟨A(n)V (n), [A(n)−1
]
∗Z(n)⟩

= ⟨A(n)−1A(n)V (n), Z(n)⟩
= ⟨V (n), Z(n)⟩. □

Next, we give a criterion for an exponential dichotomy.

Lemma 2 (Exponential Dichotomy). Consider the difference equation

V (n + 1) = A(n)V (n). (70)

Suppose there exist a constant r > 1 and a constant coefficient
matrix A such that

|A(n) − A| ≤ Cr−|n| (71)

and |λ| ≥ r or |λ| ≤ 1/r for all eigenvalues λ of A. Then (70) has
exponential dichotomies on Z±. Specifically, there exist projections
P s

±
and Pu

±
defined on Z± such that the following are true.

(i) Let Φ(m, n) be the evolution operator for (70). Then

P s/u
± (m)Φ(m, n) = Φ(m, n)P s/u

± (n). (72)

(ii) Let Φs/u
± (m, n) = Φ(m, n)P s/u

± (n) for m, n ≥ 0 and m, n ≤ 0
(respectively). Then we have the estimates

|Φs
+
(m, n)| ≤ Cr−(m−n) 0 ≤ n ≤ m

|Φu
+
(m, n)| ≤ Cr−(n−m) 0 ≤ m ≤ n

|Φs
−
(m, n)| ≤ Cr−(m−n) n ≤ m ≤ 0

|Φu
−
(m, n)| ≤ Cr−(n−m) m ≤ n ≤ 0 ,

where the evolution operator Φ(m, n) is defined in Lemma 1.
(iii) Let Es/u be the stable and unstable eigenspaces of A, and let

Q s/u be the corresponding eigenprojections. Then we have

dim ran P s
±
(n) = dim Es

dim ran Pu
±
(n) = dim Eu

and the exponential decay rates

|P s/u
± (n) − Q s/u

| ≤ Cr−|n|. (73)

Proof. We will consider the problem on Z+. Since A is con-
stant coefficient and hyperbolic, the difference equation W (n +

1) = AW (n) has an exponential dichotomy on R+. All the results
except for Eq. (73) follow directly from [37, Proposition 2.5].
Eq. (73) follows from using the estimate (71) in the proof of [37,
Proposition 2.5]. □

The last thing we will need is a version of the variation of
constants formula for the discrete setting.

Lemma 3 (Discrete Variation of Constants). The solution V (n) to the
initial value problem

V (n + 1) = A(n)V (n) + G(V (n), n)
V (n0) = Vn0

can be written in summation form as

V (n) =

⎧⎪⎨⎪⎩
Vn0 n = n0

Φ(n, n0)Vn0 +
∑n−1

j=n0
Φ(n, j + 1)G(V (j), j) n > n0

Φ(n, n0)Vn0 −
∑n0−1

j=n Φ(n, j + 1)G(V (j), j) n < n0.

(74)

Proof. For n = n0 + 1,

V (n0 + 1) = A(n0)V (n0) + G(V (n0), n0)
= Φ(n0 + 1, n0)V (n0) +Φ(n0, n0)G(V (n0), n0).

Iterate this to get the result for n > n0. The case for n < n0 is
similar. □
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6.2. Fixed point formulation

To find a solution to the system of equations (45), we will
rewrite the system as a fixed point problem. First, we expand F
in a Taylor series about T (θi)Q (n) to get

F (U±

i (n)) = F (T (θi)Q (n) + Q̃±

i (n))

= F (T (θi)Q (n)) + DF (T (θi)Q (n))Q̃±

i (n) + G(Q̃±

i (n))

= T (θi)DF (Q (n))T (θi)−1Q̃±

i (n) + G(Q̃±

i (n)),

where G(Q̃±

i (n)) = O(|Q̃±

i |
2
) with G(0) = 0 and DG(0) = 0, and

we used the symmetry relation (19) in the last line. Finally, let

di = T (θi+1)Q (−N−

i ) − T (θi)Q (N+

i ). (75)

Substituting these into (45), we obtain the following system of
equations for the remainder functions Q̃±

i .

Q̃±

i (n + 1) = T (θi)DF (Q (n))T (θi)−1Q̃±

i (n) + G(Q̃±

i (n)) (76)

Q̃+

i (N+

i ) − Q̃−

i+1(−N−

i ) = di (77)

Q̃+

i (0) − Q̃−

i (0) = 0. (78)

Next, we look at the variational and adjoint variational equa-
tions associated with (28), which are

V (n + 1) = DF (Q (n))V (n) (79)

Z(n + 1) = [DF (Q (n))∗]−1Z(n). (80)

The variational equation (79) has a bounded solution T ′(0)Q (n),
thus we can decompose the tangent spaces to W s(0) and W u(0)
at Q (0) as

TQ (0)W u(0) = Y−
⊕ RT ′(0)Q (0)

TQ (0)W s(0) = Y+
⊕ RT ′(0)Q (0).

The adjoint variational equation also has a unique bounded so-
lution Z1(n) given by Eq. (42). By Lemma 1, Z1(0) ⊥ T ′(0)Q (0) ⊕

Y−
⊕ Y+, thus we can decompose R4k as

R4k
= RT ′(0)Q (0) ⊕ Y+

⊕ Y−
⊕ RZ1(0). (81)

Since T (θ ) is unitary, we also have the decomposition

R4k
= RT (θi)T ′(0)Q (0) ⊕ T (θi)Y+

⊕ T (θi)Y−
⊕ RT (θi)Z1(0). (82)

Finally, since perturbations in the direction of T (θi)T ′(0)Q (0) are
handled by the symmetry parameter θi, we may without loss of
generality choose Q̃±

i so that

Q̃±

i (0) ∈ T (θi)Y+
⊕ T (θi)Y−

⊕ RT (θi)Z1(0). (83)

Let Φ(m, n; θ ) be the evolution operator for

V (n + 1; θ ) = T (θ )DF (Q (n))T (θ )−1V (n; θ ). (84)

We note that T (θ )T ′(0)Q (n) is a solution to Eq. (84). Using Eq. (19),
the evolution operators are related to those for θ = 0 by

Φ(m, n; θ ) = T (θ )Φ(m, n; 0)T (θ )−1. (85)

Since T (θ )DF (Q (n))T (θ )−1 decays exponentially to T (θ )DF (0)T
(θ )−1 and DF (0) is hyperbolic, Eq. (84) has exponential dichoto-
mies on Z+ and Z− by Lemma 2, and we note that the esti-
mates from Lemma 2 do not depend on θ . Let P±

s/u(m; θ ) and
Φ±

s/u(m, n; θ ) be the projections and evolutions for this exponen-
tial dichotomy on Z±. The projections P±

s/u(m; θ ) are related to
those for θ = 0 by

P±

s/u(m; θ ) = T (θ )P±

s/u(m; 0)T (θ )−1.

Finally, let Es(θ ) and Eu(θ ) be the stable and unstable eigenspaces
of T (θ )DF (0)T (θ )−1, and let P s

0(θ ) and Pu
0 (θ ) be the corresponding

eigenprojections.
Next, as in [36] and [3], we write Eq. (76) in fixed-point form

using the discrete variation of constants formula (74) together
with projections on the stable and unstable subspaces of the
exponential dichotomy.

Q̃−

i (n) = Φ−

s (n,−N−

i−1; θi)a
−

i−1 +Φ−

u (n, 0; θi)b−

i

+

n−1∑
j=−N−

i−1

Φ−

s (n, j + 1; θi)G−

i (Q̃
−

i (j))

−

−1∑
j=n

Φ−

u (n, j + 1; θi)G−

i (Q̃
−

i (j))

Q̃+

i (n) = Φ+

u (n,N+

i ; θi)a+

i +Φ+

s (n, 0; θi)b+

i

+

n−1∑
j=0

Φ+

s (n, j + 1; θi)G+

i (Q̃
+

i (j))

−

N+

i −1∑
j=n

Φ+

u (n, j + 1; θi)G+

i (Q̃
+

i (j)),

(86)

where Q̃−

i (n) ∈ ℓ∞([−N−

i−1, 0]), Q̃
+

i (n) ∈ ℓ∞([0,N+

i ]), and the
sums are defined to be 0 if the upper index is smaller than the
lower index. For the initial conditions,

a−

i ∈ Es(θi), a+

i ∈ Eu(θi), and a−

0 = a+

m = 0
b+

i ∈ T (θi)Y+ and b−

i ∈ T (θi)Y−.

We note that we do not need to include a component in T ′(0)Q (0)
in b±

i , since that direction is handled by the symmetry para-
meter θi.

Since we wish to construct a homoclinic orbit to the rest state
at 0, we take the initial conditions a−

0 = 0 and a+
m = 0. For these

cases, the fixed point equations are given by

Q̃−

1 (n) = Φ−

u (n, 0; θi)b−

i +

n−1∑
j=−∞

Φ−

s (n, j + 1; θi)G−

i (Q̃
−

i (j))

−

−1∑
j=n

Φ−

u (n, j + 1; θi)G−

i (Q̃
−

i (j))

Q̃+

m (n) = Φ+

s (n, 0; θi)b+

i +

n−1∑
j=0

Φ+

s (n, j + 1; θi)G+

i (Q̃
+

i (j))

−

∞∑
j=n

Φ+

u (n, j + 1; θi)G+

i (Q̃
+

i (j)),

where the infinite sums converge due to the exponential di-
chotomy.

6.3. Inversion

As in [36], we will solve Eqs. (76), (77), and (78) in stages. In
the first lemma of this section, we solve Eq. (76) for Q̃±

i .
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Lemma 4. For i = 1, . . . ,m there exist unique bounded func-
tions Q̃±

i (n) such that Eq. (76) is satisfied. These solutions depend
smoothly on the initial conditions a±

i and b±

i , and we have the
estimates
∥Q̃−

i ∥ ≤ C(|a−

i−1| + |b−

i |)

∥Q̃+

i ∥ ≤ C(|a+

i | + |b+

i |) .
(87)

For the interior pieces, we have the piecewise estimates

|Q̃−

i (n)| ≤ C(r−(N−

i−1+n)
|a−

i−1| + rn|b−

i |) n ∈ [−N−

i−1, 0]

|Q̃+

i (n)| ≤ C(r−(N+

i −n)
|a+

i | + r−n
|b+

i |) n ∈ [0,N+

i ] .
(88)

Proof. First, we show that the RHS of the fixed point equations
(86) defines a smooth map from ℓ∞ (on the appropriate interval)
to itself. For the terms in (86), we have the estimates

|Φ−

s (n,−N−

i−1; θi)a
−

i−1| + |Φ−

u (n, 0; θi)b−

i | ≤ C(|a−

i−1| + |b−

i |) (89)

and⏐⏐⏐⏐⏐⏐⏐
n−1∑

j=−N−

i−1

Φ−

s (n, j + 1; θi)G−

i (Q̃
−

i (j))

⏐⏐⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐⏐
−1∑
j=n

Φ−

u (n, j + 1; θi)G−

i (Q̃
−

i (j))

⏐⏐⏐⏐⏐⏐ ≤ C∥Q̃−

i ∥
2
ℓ∞([−Ni−1,0]) ,

both of which are independent of n. Define the map K−

i :

ℓ∞([−Ni−1, 0]) × Es
× Y−

→ ℓ∞([−Ni−1, 0]) by

K−

i (Q̃−

i (n), a−

i−1, b
−

i )

= Q̃−

i (n) −Φ−

s (n,−N−

i−1; θi)a
−

i−1 −Φ−

u (n, 0; θi)b−

i (90)

−

n−1∑
j=−N−

i−1

Φ−

s (n, j + 1; θi)G−

i (Q̃
−

i (j))

+

−1∑
j=n

Φ−

u (n, j + 1; θi)G−

i (Q̃
−

i (j)).

Since 0 is an equilibrium, K (0, 0, 0) = 0. It is straightforward to
show that the Fréchet derivative of K−

i with respect to Q̃−

i at
(Q̃−

i (n), a−

i−1, b
−

i ) = (0, 0, 0) is a Banach space isomorphism on
l∞([−Ni−1, 0]). Thus we can solve for Q̃−

i (x) in terms of (a−

i−1, b
−

i )
using the implicit function theorem. This dependence is smooth,
since the map K−

i is smooth. The estimate (87) on Q̃−

i comes
from (89), since the terms in (90) involving sums are quadratic
in Q̃±

i . The case for Q̃+

i is similar. It is straightforward to obtain
the piecewise estimates (88) for the interior pieces. □

Next, we use the center matching conditions at N±

i to
solve Eq. (77). This will give us the initial conditions a±

i .

Lemma 5. For i = 1, . . .m−1 there is a unique pair of initial con-
ditions (a+

i , a
−

i ) ∈ Eu(θi) × Es(θi) such that the matching conditions
(77) are satisfied. (a+

i , a
−

i ) depends smoothly on (b+

i , b
−

i+1, di), and
we have the following expressions for a−

i and a+

i .

a−

i = −P s
0(θi)di + ã−

i

a+

i = Pu
0 (θi)di + ã+

i ,
(91)

where

ã±

i = O
(
r−N (|b+

i | + |b−

i+1|) + |b+

i |
2
+ |b−

i+1|
2
)
. (92)

In terms of Q (±N±

i ), we can write P s
0(θi)di and Pu

0 (θi)di as

P s
0(θi)di = −T (θi)Q (N+

i ) + O(r−2N )

Pu
0 (θi)di = T (θi+1)Q (−N−

i ) + O(r−2N ).
(93)

Proof. Evaluating the fixed point equations (86) at ±N±

i and
subtracting, solving Eq. (77) is equivalent to solving Ki(a+

i , a
−

i ,

b+

i , b
−

i+1, di) = 0, where Ki : Es
× Eu

× Y+
× Y−

× R4k
→ R4k

is defined by

Ki(a+

i ,a
−

i , b
+

i , b
−

i+1, di)
= a+

i − a−

i − di + (P+

u (N+

i ; θi) − Pu
0 )a

+

i

− (P−

s (−N−

i ; θi+1) − P s
0)a

−

i

+ Φ+

s (N+

i , 0; θi)b
+

i −Φ−

u (−N−

i , 0; θi+1)b−

i+1

+

N+

i −1∑
j=0

Φ+

s (N+

i , j + 1; θi)G+

i (Q̃
+

i (j; a+

i , b
+

i ))

+

−1∑
j=−N−

i

Φ−

u (−N−

i , j + 1; θi+1)G−

i (Q̃
−

i+1(j; a
−

i , b
−

i+1)),

and we substituted Q̃−

i+1(n; a
−

i , b
−

i+1) and Q̃+

i (n; a+

i , b
+

i ) from
Lemma 4. Next, we note that Ki(0, 0, 0, 0, 0) = 0 and that

∂

∂a−

i
Ki(0, 0, 0, 0, 0) = −1 + O(r−N−

i )

∂

∂a+

i
Ki(0, 0, 0, 0, 0) = 1 + O(r−N+

i ),

since the derivatives of the terms in Ki involving sums will be
0 since G±

i is quadratic in Q̃±

i , thus quadratic order in a±

i by
Lemma 4. For sufficiently large N , Da±

i
K (0, 0, 0, 0, 0) is invertible

in a neighborhood of (0, 0, 0, 0, 0). Thus, since (a+

i , a
−

i ) ∈ Es(θi)⊕
Eu(θi) = R4k, we can use the implicit function theorem to solve
for a±

i in terms of (b+

i , b
−

i+1, di) for (b
+

i , b
−

i+1, di) sufficiently small.
To get the estimates on and expressions for a±

i , we project
Ki(a+

i , a
−

i , b
+

i , b
−

i+1) = 0 onto Es(θi) and Eu(θi) in turn to get

a+

i = Pu
0 (θi)di + O(r−N (|b+

i | + |b−

i+1|) + |b+

i |
2
+ |b−

i+1|
2)

a−

i = −P s
0(θi)di + O(r−N (|b+

i | + |b−

i+1|) + |b+

i |
2
+ |b−

i+1|
2),

which we can write in the form (91) with estimates (92).
To get the first equation in (93), we apply the projection P s

0(θi)
to each term in (75). For the second term in (75),

P s
0(θi)T (θi)Q (N+

i ) = (P s
0(θi) − P+

s (N+

i ; θi))T (θi)Q (N+

i )
+ P+

s (N+

i ; θi)T (θi)Q (N+

i )
= T (θi)(P s

0(0) − P+

s (N+

i ; 0))Q (N+

i )
+ P+

s (N+

i ; θi)T (θi)Q (N+

i )

= T (θi)Q (N+

i ) + O(r−2N ),

where in the second line we used Eq. (73). Similarly, for the first
term in (75), we can show that

P s
0(θi)T (θi+1)Q (−N−

i ) = O(r−2N ).

The second equation in (93) can be similarly obtained by applying
the projection Pu

0 (θi) to (75). □

It only remains to satisfy (78), which is the jump condition at
0. We will not in general be able to solve Eq. (78). In the next
lemma, we will solve for the initial conditions b±

i . This will give
us a unique solution which will generically have m jumps in the
direction of T (θ )Z1(0). We will obtain a set of m jump conditions
which will depend on the symmetry parameters θi. Satisfying
the jump conditions, which solves (78), can be accomplished by
adjusting the symmetry parameters.

Recall that for all θ ∈ R we have the decomposition

R4k
= RT (θ )T ′(0)Q (0) ⊕ T (θ )Y+

⊕ T (θ )Y−
⊕ RT (θ )Z1(0).
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Projecting in these directions, we can write Eq. (78) as the system
of equations

PT (θi)T ′(0)Q (0)

(
Q̃+

i (0) − Q̃−

i (0)
)

= 0 (94)

PT (θi)Y+⊕T (θi)Y−

(
Q̃+

i (0) − Q̃−

i (0)
)

= 0 (95)

PRT (θi)Z1(0)
(
Q̃+

i (0) − Q̃−

i (0)
)

= 0. (96)

Since Q̃±

i (0) ∈ T (θi)Y+
⊕ T (θi)Y−

⊕ RT (θi)Z1(0), Eq. (94) is
automatically satisfied. Since b+

i ∈ T (θ )Y+ and b−

i ∈ T (θ )Y−, we
will be able to satisfy Eq. (95) by solving for the b±

i , which we do
in the following lemma.

Lemma 6. For i = 1, . . .m there is a unique pair of initial
conditions (b−

i , b
+

i ) ∈ T (θi)Y−
× T (θi)Y+ such that Eq. (95) is

satisfied. We have the uniform bound

b = O(r−2N ). (97)

Proof. For convenience, let Xi = T (θi)Y+
⊕ T (θi)Y−. Evaluating

the fixed point equations (86) at 0, subtracting, and applying the
projection PXi to both sides, we have

PXi (Q̃
+

i (0) − Q̃−

i (0)) = b+

i − b−

i + PXi (Φ
+

u (0,N+

i ; θi)a+

i )
− PXi (Φ

−

s (0,−N−

i−1; θi)a
−

i−1)

− PXi

⎛⎝N+

i −1∑
j=0

Φ+

u (0, j + 1; θi)G+

i (Q̃
+

i (j))

−

−1∑
j=−N−

i−1

Φ−

s (0, j + 1; θi)G−

i (Q̃
−

i (j))

⎞⎟⎟⎠ .
Next, substitute Q̃±

i from Lemma 4 and a±

i from Lemma 5. Define
the spaces

Y =

m⨁
i=1

(T (θ )Y+
⊕ T (θ )Y−) =

m⨁
i=1

R4k−2 (98)

Z =

m−1⨁
i=1

R4k. (99)

Let b = (b+

1 , b
−

1 , . . . , b
+
m, b

−
m) ∈ Y and d = (d1, . . . , dm−1) ∈ Z .

Define the function K : Y × Z → Y component-wise by

Ki(b, d) = b+

i − b−

i + PXi
(
Φ+

u (0,N+

i ; θi)Pu
0di

+Φ−

s (0,−N−

i−1; θi)P
s
0di−1

)
+ PXi

(
Φ+

u (0,N+

i ; θi)ã+

i (b
+

i , b
−

i+1)

−Φ−

s (0,−N−

i−1; θi)ã
−

i−1(b
+

i−1, b
−

i )
)

− PXi

N+

i −1∑
j=0

Φ+

u (0, j + 1; θi)G+

i (Q̃
+

i (j; b+

i , b
−

i+1))

− PXi

−1∑
j=−N−

i−1

Φ−

s (0, j + 1; θi)G−

i (Q̃
−

i (j; b+

i−1, b
−

i )),

where d0 = dm = 0, and we have indicated the dependencies on
the b±

i . Using the estimates from Lemmas 4 and 5, K (0, 0) = 0.
For the partial derivatives with respect to b±

i , we have

∂

∂b+

i
Ki(0) = 1 + O(r−N )

∂

∂b−

i
Ki(0) = −1 + O(r−N )

∂

∂b+

i−1
Ki(0),

∂

∂b−

i+1
Ki(0) = O(r−N ).

For all other indices,
∂

∂b±

j
Ki(0) = 0.

Thus, for sufficiently large N , the matrix DbK (0, 0) is invertible.
Using the implicit function theorem, there exists a unique smooth
function b : Z → Y with b(0) = 0 such that K (b(d), d) = 0 for d
sufficiently small, which is the case for N sufficiently large, since
d = O(r−N ). The bound for b comes from projecting Ki(b(d), d) =

0 onto T (θ )Y+ and T (θ )Y− together with the estimate d =

O(r−N ). □

Finally, we will use (96) to derive the jump conditions in the
direction of T (θi)Z1.

Lemma 7. The jumps in the direction of T (θi)Z1 are given by

ξ1 = ⟨T (θ1)Z1(N+

1 ), T (θ2)Q (−N−

1 )⟩ + R1 = 0
ξi = ⟨T (θi)Z1(N+

i ), T (θi+1)Q (−N−

i )⟩
− ⟨T (θi)Z1(−N−

i−1), T (θi−1)Q (N+

i−1)⟩ + Ri = 0
for i = 2, . . . ,m − 1

ξm = −⟨T (θm)Z1(−N−

m−1), T (θm−1)Q (N+

m−1)⟩ + Rm = 0,

where the remainder term has bound

|Ri| ≤ Cr−3N . (100)

Proof. Evaluating the fixed point equations (86) at 0 and substi-
tuting Eq. (91) from Lemma 4, we get

Q̃+

i (0) − Q̃−

i (0) = Φ+

u (0,N+

i ; θi)Pu
0 (θi)di

+ Φ−

s (0,−N−

i−1; θi)P
s
0(θi−1)di−1

+ b+

i − b−

i +Φ+

u (0,N+

i ; θi)ã+

i −Φ−

s (0,−N−

i−1; θi)ã
−

i−1

−

N+

i −1∑
j=0

Φ+

u (0, j + 1; θi)G+

i (Q̃
+

i (j))

−

−1∑
j=−N−

i−1

Φ−

s (0, j + 1; θi)G−

i (Q̃
−

i (j)).

Next, we project on RT (θi)Z1(0) by taking the inner product with
T (θi)Z1(0). Since b±

i ∈ T (θi)Y±

i , these terms are eliminated by the
projection. For the leading order terms in (96), using Eq. (93) from
Lemma 5, we have

⟨T (θi)Z1(0),Φ+

u (0,N+

i ; θi)Pu
0 (θi)di⟩

= ⟨T (θi)Z1(N+

i ), T (θi+1)Q (−N−

i )⟩ + O(r−3N )
⟨T (θi)Z1(0),Φ−

s (0,−N−

i−1; θi)P
s
0(θi−1)di−1⟩

= −⟨T (θi)Z1(−N−

i−1), T (θi−1)Q (N+

i−1)⟩ + O(r−3N ).

For the higher order terms in Eq. (96), we substitute Q̃±

i from
Lemma 4, ã±

i from Lemma 5, and b±

i from Lemma 6. This gives
us the remainder bound (100). Since N−

0 = N+
m = ∞, one of the

two inner product terms vanishes in the jumps ξ1 and ξm. □

6.4. Proof of Theorem 1

The existence statement follows from the jump conditions in
Lemma 7. The uniform bound ∥Q̃±

i ∥ ≤ Cr−N in (47) follows
from Lemma 4 together with the estimates on a±

i and b±

i . For the
second estimate in (47), recall that in Lemma 5 we solved the
matching condition at the pulse tails

Q̃+

i (N+

i ) − Q̃−

i+1(−N−

i ) = T (θi+1)Q (−N−

i ) − T (θi)Q (N+

i ). (101)
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Apply the projection Pu
−
(−N−

i ; θi+1), noting that it acts as the
identity on T (θi+1)Q (−N−

i ). We look at the three remaining terms
in Eq. (101) one at a time. For T (θi)Q (N+

i ), we follow the proof of
Lemma 5 and use the estimate (73) to get

Pu
−
(−N−

i ; θi+1)T (θi)Q (N+

i ) = O(r−2N ).

For Q̃+

i (N+

i ), we use the fixed point equations (86) and the uni-
form bound on Q̃±

i from Lemma 4 to get

(I − Pu
−
(−N−

i ; θi+1))Q̃+

i (N+

i ) = P s
−
(−N−

i ; θi+1)Q̃+

i (N+

i ) = O(r−2N ),

from which it follows that

Pu
−
(−N−

i ; θi+1)Q̃+

i (N+

i ) = Q̃+

i (N+

i ) + O(r−2N ).

For Q̃−

i+1(−N−

i ), we follow a similar procedure to conclude that

Pu
−
(−N−

i ; θi+1)Q̃−

i+1(−N−

i ) = O(r−2N ).

Combining all of these gives us the second estimate in (47). For
the third estimate in (47), we apply the projection P s

+
(N+

i ; θi) to
Eq. (101) and follow the same procedure.

6.5. Proof of Theorem 3

In the transverse intersection case, we can decompose Rk as
Rk

= Y+
⊕ Y−, where Y+

= TQ (0)W s(0) and Y−
= TQ (0)W u(0).

Lemmas 4 and 5 are identical. To obtain a multi-pulse, all that
remains to do is solve

Q̃+

i (0) − Q̃−

i (0) = PT (θi)Y+⊕T (θi)Y− (Q̃+

i (0) − Q̃−

i (0)) = 0,

which is done in Lemma 6. There are no remaining jump condi-
tions to satisfy.

7. Proof of Theorem 2

In this section, we will prove Theorem 2, which provides
a means of locating the interaction eigenvalues associated
with a multi-pulse. Throughout this section, we will assume
Hypotheses 1, 2, 3, and 4. The technique of the proof is similar
to the proof of [2, Theorem 2].

7.1. Setup

Let Qm(n) be an m−pulse solution to (28), constructed using
Theorem 1 with pulse distances Ni and symmetry parameters θi.
Write Qm(n) piecewise as

Q−

i (n) = T (θi)Q (n) + Q̃−

i (n) n ∈ [−N−

i−1, 0]

Q+

i (n) = T (θi)Q (n) + Q̃+

i (n) n ∈ [0,N+

i ].
(102)

From Theorem 1 and (40), we have the following bounds:

Q (n) = O(r−|n|)

∥Q̃∥ ≤ Cr−N

|Q̃−

i+1(−N−

i ) − T (θi)Q (N+

i )| ≤ Cr−2N

|Q̃+

i (N+

i ) − T (θi+1)Q (−N−

i )| ≤ Cr−2N .

(103)

Recall that the eigenvalue problem is given by

V (n + 1) = DF (Qm(n))V (n) + λBV (n), (104)

where B is defined in (34). Following (35) and (36), we have

T ′(0)Qm(n + 1) = DF (Qm(n))T ′(0)Qm(n)
∂ωQm(n + 1) = DF (Qm(n))∂ωQm(n) + BT ′(0)Qm(n).

(105)

As in [2], we will take an ansatz for the eigenfunction V (n) which
is a piecewise perturbation of the kernel eigenfunction. If we
follow [2] and use an ansatz of the form

V±

i (n) = diT ′(0)Qm(n) + W±

i (n),

we will obtain a Melnikov sum of the form

M1 =

∞∑
j=−∞

⟨Z1(j + 1), BT ′(0)Q (j),

which is zero. Instead, we will take a piecewise ansatz of the
form

V±

i (n) = di[T ′(0)Qm(n) + λ∂ωQm(n)] + W±

i (n), (106)

where di ∈ C. Substituting this into (104), and simplifying by
using (105), the eigenvalue problem becomes

W±

i (n + 1) = DF (T (θi)Q (n))W±

i (n) + G±

i (n)W
±

i (n) + λBW±

i (n)

+ λ2diB∂ωQ±

i (n),

(107)

where

G±

i (n) = DF (Qm(n)) − DF (T (θi)Q (n)). (108)

In addition to solving (107), the eigenfunction must satisfy
matching conditions at n = ±Ni and n = 0. Thus the system
of equations we need to solve is

W±

i (n) = DF (T (θi)Q (n))W±

i (n) + (G±

i (n) + λB)W±

i (n)

+ λ2diBH̃±

i (n)
W+

i (N+

i ) − W−

i+1(−N−

i ) = Did
W±

i (0) ∈ CT (θi)Y+
⊕ T (θi)Y−

⊕ T (θi)Z1(0)
W+

i (0) − W−

i (0) = 0,

(109)

where

Did = [T (θi+1)T ′(0)Q (−N−

i ) + T ′(0)Q̃−

i+1(−N−

i )]di+1

− [T (θi)T ′(0)Q (N+

i ) + T ′(0)Q̃+

i (N+

i )]di
+ λ[∂ωQ−

i−1(−N−

i )di+1 − ∂ωQ+

i (N+

i )di]

(110)

and

H̃±

i (n) = ∂ωQ±

i (n)
Hi(n) = T (θi)∂ωQ (n).

(111)

We can require the third condition in the system (109) since
perturbations in the direction of T (θi)T ′(0)Q (0) are handled by the
diT ′(0)Qm(0) = diT (θi)T ′(0)Q (0)+ diT ′(0)Q̃±

i (0) term in Eq. (106).
As in [2] and the previous section, we will generally not be

able to solve the system (109). Instead, we will relax the fourth
condition in (109) to get the system

W±

i (n) = DF (T (θi)Q (n))W±

i (n) + (G±

i (n) + λB)W±

i (n)

+ λ2diBH̃±

i (n) (112)

W+

i (N+

i ) − W−

i+1(−N−

i ) = Did (113)

W±

i (0) ∈ T (θi)Y+
⊕ T (θi)Y−

⊕ CT (θi)Z1(0) (114)

W+

i (0) − W−

i (0) ∈ CT (θi)Z1(0). (115)

Using Lin’s method, we will be able to find a unique solution to
this system. This solution, however, will generically havem jumps
at n = 0. Thus a solution to this system is eigenfunction if and
only if the m jump conditions

ξi = ⟨T (θi)Z1(0),W+

i (0) − W−

i (0)⟩ = 0

are satisfied. Using the bounds from (103), we have the estimates

∥G±

i ∥ ≤ Cr−N

∥H̃±

i − Hi∥ ≤ Cr−N .
(116)
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7.2. Fixed point formulation

As in [2], we write Eq. (112) as a fixed point problem using the
discrete variation of constants formula from Lemma 3 together
with projections on the stable and unstable subspaces of the
exponential dichotomy from Lemma 2. Let δ > 0 be small, and
choose N sufficiently large so that r−N < δ. Let Φ(m, n; θi) be the
family of evolution operators for Eqs. (84). Define the spaces

VW = ℓ∞([−Ni−1, 0]) ⊕ ℓ∞([0,Ni])

Va =

m−1⨁
i=1

Eu
⊕ Es

Vb =

m⨁
i=1

ran Pu
−
(0; θi) ⊕ ran P s

+
(0; θi)

Vλ = Bδ(0) ⊂ C
Vd = Cm.

Then for

W = (W−

i ,W
+

i ) ∈ VW

a = (a−

i , a
+

i ) ∈ Va

b = (b−

i , b
+

i ) ∈ Vb

λ ∈ Vλ,

the fixed point equations for the eigenvalue problem are

W−

i (n) = Φ−

s (n,−N−

i−1; θi)a
−

i−1 +

n−1∑
j=−N−

i−1

Φ−

s (n, j + 1; θi)[(G−

i (j)

+ λB)W−

i (j) + λ2diBH̃−

i (j)]

+ Φ−

u (n, 0; θi)b−

i −

−1∑
j=n

Φ−

u (n, j + 1; θi)[(G−

i (j)

+ λB)W−

i (j) + λ2diBH̃−

i (j)]

W+

i (n) = Φ+

s (n, 0; θi)b+

i +

n−1∑
j=0

Φ+

s (n, j + 1; θi)[(G+

i (j)

+ λB)W+

i (j) + λ2diBH̃+

i (j)]

+ Φ+

u (n,N+

i ; θi)a+

i −

N+

i −1∑
j=n

Φ+

u (n, j + 1; θi)[(G+

i (j)

+ λB)W+

i (j) + λ2diBH̃+

i (j)],

(117)

where a−

0 = a+
m = 0, and the sums are defined to be 0 if the

upper index is smaller than the lower index. Since we are taking
a−

0 = a+
m = 0, the corresponding equations are

W−

1 (n) =

n−1∑
j=−∞

Φ−

s (n, j + 1; θ1)[(G−

1 (j) + λB)W−

1 (j) + λ2d1BH̃−

1 (j)]

+ Φ−

u (n, 0; θ1)b−

1 −

−1∑
j=n

Φ−

u (n, j + 1; θ1)[(G−

1 (j)

+ λB)W−

1 (j) + λ2d1BH̃−

1 (j)]
W+

m (n) = Φ+

s (n, 0; θm)b+

m

+

n−1∑
j=0

Φ+

s (n, j + 1; θm)[(G+

m(j) + λB)W+

m (j) + λ2dmBH̃+

m (j)]

−

∞∑
j=n

Φ+

u (n, j + 1; θm)[(G+

m(j) + λB)W+

m (j)

+ λ2dmBH̃+

m (j)].

7.3. Inversion

We will now solve the eigenvalue problem in a series of
lemmas. This is very similar to the procedure in [2]. First, we use
the fixed point equations (117) to solve for W±

i .

Lemma 8. There exists an operator W1 : Vλ ×Va ×Vb ×Vd → VW
such that

W = W1(λ)(a, b, d)

is a solution to (112) for (a, b, d) and λ. The operator W1 is analytic
in λ, linear in (a, b, d), and has bound

∥W1(λ)(a, b, d)∥ ≤ C
(
|a| + |b| + |λ|2|d|

)
. (118)

Proof. Rewrite the fixed point equations (117) as

(I − L1(λ))W = L2(λ)(a, b, d),

where L1(λ) : VW → VW is the linear operator composed of terms
in the fixed point equations involving W

(L1(λ)W )−i (n) =

n−1∑
j=−N−

i−1

Φ−

s (n, j + 1; θi)(G−

i (j) + λB)W−

i (j)

−

−1∑
j=n

Φ−

u (n, j + 1; θi)(G−

i (j) + λB)W−

i (j)

(L1(λ)W )+i (n) =

n−1∑
j=0

Φ+

s (n, j + 1; θi)(G+

i (j) + λB)W+

i (j)

−

N+

i −1∑
j=n

Φ+

u (n, j + 1; θi)(G+

i (j) + λB)W+

i (j)

and L2(λ) : Vλ×Va×Vb×Vd → VW is the linear operator composed
of terms in the fixed point equations not involving W .

(L2(λ)(a, b, d))−i (n)

= Φ−

s (n,−N−

i−1; θi)a
−

i−1 +

n−1∑
j=−N−

i−1

Φ−

s (n, j + 1; θi)λdiBH̃−

i (j)

+Φ−

u (n, 0; θi)b−

i −

−1∑
j=n

Φ−

u (n, j + 1; θi)λdiBH̃−

i (j)

(L2(λ)(a, b, d))+i (n)

= Φ+

s (n, 0; θi)b+

i +

n−1∑
j=0

Φ+

s (n, j + 1; θi)λ2diBH̃+

i (j)

+Φ+

u (n,N+

i ; θi)a+

i −

N+

i −1∑
j=n

Φ+

u (n, j + 1; θi)λ2diBH̃+

i (j).

Using the exponential dichotomy bounds from Lemma 2, we
obtain the following uniform bounds for L1 and L2.

∥L1(λ)W∥ ≤ C (∥G∥ + |λ|) ∥W∥ ≤ Cδ∥W∥

∥L2(λ)(a, b, d)∥ ≤ C
(
|a| + |b| + |λ|2|d|

)
.

For sufficiently small δ, ∥(L1(λ)W )∥ < 1, thus I−L1(λ) is invertible
on VW . The inverse (I − L1(λ))−1 is analytic in λ, and we obtain
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the solution

W = W1(λ)(a, b, d) = (I − L1(λ))−1L2(λ)(a, b, d),

which is analytic in λ, linear in (a, b, d), and for which we have
the estimate

∥W1(λ)(a, b, d)∥ ≤ C
(
|a| + |b| + |λ|2|d|

)
. □

In the next lemma, we solve Eq. (113), which is the matching
condition at the tails of the pulses.

Lemma 9. There exist operators

A1 : Vλ × Vb × Vd → Va

W2 : Vλ × Vb × Vd → VW

such that (a, w) = (A1(λ)(b, d),W2(λ)(b, d)) solves (112) and (113)
for any (b, d) and λ. These operators are analytic in λ, linear in (b, d),
and have bounds

|A1(λ)(b, d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|b| + (|λ|2 + |D|)|d|
)

(119)

∥W2(λ)(b, d)∥ ≤ C
(
|b| + (|λ|2 + |D|)|d|

)
. (120)

Furthermore, we can write

a+

i = Pu
0 (θi)Did + A2(λ)+i (b, d)

a−

i = −P s
0(θi)Did + A2(λ)−i (b, d),

where A2 is a bounded linear operator with uniform bound

|A2(λ)(b, d)|

≤ C
(
(r−N

+ ∥G∥ + |λ|)|b| + (r−N
+ ∥G∥ + |λ|)|D||d| + |λ|2|d|

)
.

(121)

Proof. Substituting the fixed point equations (117) into Eq. (113)
and recalling that Φ−

s (−N−

i ,−N−

i ; θi+1) = P s
−
(−N−

i ; θi+1),
Φ+

u (N+

i ,N
+

i ; θi) = Pu
+
(N+

i ; θi), a−

i ∈ Es(θi), and a+

i ∈ Eu(θi), we
have

Did = a+

i − a−

i + (P+

u (N+

i ; θi) − Pu
0 )a

+

i − (P−

s (−N−

i ; θi+1) − P s
0)a

−

i

+ Φ+

s (N+

i , 0; θi)b
+

i −Φ−

u (−N−

i , 0; θi+1)b−

i

+

N+

i −1∑
j=0

Φ+

s (N+

i , j + 1; θi)[(G+

i (j) + λB)W+

i (j)

+ λ2diBH̃+

i (j)]

−

−1∑
j=−N−

i

Φ−

u (−N−

i , j + 1; θi+1)[(G−

i (j) + λB)W−

i (j)

+ λ2diBH̃−

i (j)].

Substituting W = W1(λ)(a, b, d) from Lemma 8, we obtain an
equation of the form

Did = (a+

i − a−

i ) + L3(λ)i(a, b, d). (122)

Using Lemma 2, the bound for W1 from Lemma 8, and the es-
timate (73) from Lemma 2, the linear operator L3 has uniform
bound

L3(λ)(a, b, d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)(|a| + |b|) + |λ|2|d|
)

(123)

≤ Cδ|a| + C
(
(r−N

+ ∥G∥ + |λ|)|b| + |λ|2|d|
)
.

Define the map

J1 : Va →

m−1⨁
j=1

C4k

by (J1)i(a+

i , a
−

i ) = a+

i − a−

i . Since Es
⊕ Eu

= C4k, the map J1 is a
linear isomorphism. Let

K1(a) = J1(a) + L3(λ)(a, 0, 0) = J1
(
I + J−1

1 L3(λ)(a, 0)
)
.

For sufficiently small δ, ∥J−1
1 L3(λ)(a, 0, 0)∥ < 1, thus the operator

K1(a) is invertible. We can then solve for a to get

a = A1(λ)(b, d) = K−1
1 (−Dd − L3(λ)(b, d)) ,

which has uniform bound

|A1(λ)(b, d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|b| + (|λ|2 + |D|)|d|
)
.

We plug this estimate into W1 to get W2(λ)(b, d), which satisfies
the bound

∥W2(λ)(b, d)∥ ≤ C
(
|b| + (|λ|2 + |D|)|d|

)
.

Finally, we project Eq. (122) onto Es(θi) and Eu(θi) to get

a+

i = Pu
0 (θi)Did − Pu

0 (θi)L3(λ)i(a, b, d)
a−

i = −P s
0(θi)Did + P s

0(θi)L3(λ)i(a, b, d).

Substituting A1(λ)(b, d) for a we obtain the equations

a+

i = Pu
0 (θi)Did + A2(λ)+i (b, d)

a−

i = −P s
0(θi)Did + A2(λ)−i (b, d).

Substituting the bound for A1 into the bound for L3, we obtain the
uniform bound

|A2(λ)(b, d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|b|

+ (r−N
+ ∥G∥ + |λ|)|D||d| + |λ|2|d|

)
. □

The last step in the inversion is to satisfy Eqs. (114) and (115).
Since we have the decomposition

C4k
= CT (θi)Z1(0) ⊕ CT (θi)T ′(0)Q (0) ⊕ T (θi)Y+

⊕ T (θi)Y−, (124)

these two equations are equivalent to the three projections

P(T (θi)T ′(0)Q (0))W−

i = 0
P(T (θi)T ′(0)Q (0))W+

i = 0
P(T (θi)Y+

⊕ T (θi)Y−)(W+

i − W−

i ) = 0,
(125)

where the kernel of each projection consists of the remaining
elements of the direct sum decomposition (124). Since we have
eliminated any component in T (θi)T ′(0)Q (0) in the first two pro-
jections, we do not need it in the third projection.

We decompose b±

i uniquely as b±

i = x±

i + y±

i , where x±

i ∈

CT (θi)T ′(0)Q (0) and y±

i ∈ T (θi)Y±. In the next lemma, we solve
the system of equations (125).

Lemma 10. There exist operators

B1 : Vλ × Vd → Vb

A3 : Vλ × Vd → Va

W3 : Vλ × Vd → VW

such that (a, b,W ) = (A3(λ)(d), B1(λ)(d),W2(λ)(d)) solves (112),
(113), (114), and (115) for any d and λ. These operators are analytic
in λ, linear in d, and have bounds

|B1(λ)(d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|D||d| + |λ|2|d|
)

(126)

|A3(λ)(d)| ≤ C
(
|λ|2 + |D|

)
|d| (127)

∥W3(λ)(d)∥ ≤ C
(
|λ|2 + |D|

)
|d|. (128)

Furthermore, we can write

a+

i = Pu
0Did + A4(λ)+i (d)

a−

i = −P s
0Did + A4(λ)−i (d),
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where A4 is a bounded linear operator with estimate

|A4(λ)(d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|D||d| + |λ|2|d|
)
. (129)

Proof. At n = 0, the fixed point equations (117) become

W−

i (0) = x−

i + y−

i +Φ−

s (0,−N−

i−1; θi)a
−

i−1

+

−1∑
j=−N−

i−1

Φ−

s (0, j + 1; θi)[(G−

i (j) + λB)W−

i (j)

+ λ2diBH̃−

i (j)]
W+

i (0) = x+

i + y+

i +Φ+

u (0,N+

i ; θi)a+

i

−

N+

i −1∑
j=0

Φ+

u (0, j + 1; θi)[(G+

i (j) + λB)W+

i (j)

+ λ2diBH̃+

i (j)].

Eqs. (125) can thus be written as⎛⎝ x−

i
x+

i
y+

i − y−

i

⎞⎠ = (L4(λ)(b, d))i . (130)

Using the exponential dichotomy estimates from Lemma 2 and
(a,W ) = (A1(λ)(b, d),W2(λ)(b, d)) from Lemma 9, we get the
uniform bound on L4

|L4(λ)(b, d)|

≤ C
(
(r−2N

+ ∥G∥ + |λ|)|b| + (r−N
+ ∥G∥ + |λ|)|D||d| + |λ|2|d|

)
≤ Cδ(|x| + |y|) + C

(
(rN + ∥G∥ + |λ|)|D||d| + |λ|2|d|

)
.

Define the map

J2 :

⎛⎝ m⨁
j=1

CT ′(0)Q (0) ⊕ CT ′(0)Q (0)

⎞⎠⊕

⎛⎝ m⨁
j=1

Y−
⊕ Y+

⎞⎠
→

m⨁
j=1

CT ′(0)Q (0) ⊕ CT ′(0)Q (0) ⊕ (Y−
⊕ Y+)

by

J2((x+

i , x
−

i ), (y
+

i , y
−

i ))i = (x+

i , x
−

i , y
+

i − y−

i ).

Since C4k
= CT (θi)Z1(0) ⊕ CT (θi)T ′(0)Q (0) ⊕ T (θi)Y−

⊕ T (θi)Y+,
J2 is an isomorphism. Using this and the fact that (b−

i , b
+

i ) =

(x−

i + y−

i , x
+

i + y+

i ), we can write (130) as

J2((x+

i , x
−

i ), (y
+

i , y
−

i ))i + L4(λ)i(b, 0) + L4(λ)i(0, d) = 0. (131)

Consider the map

K2(b)i = J2((x+

i , x
−

i ), (y
+

i , y
−

i ))i + L4(λ)i(b, 0).

Substituting this in (131), we have

K2(b) = −L4(λ)(0, d).

For sufficiently small δ, the operator K2(b) is invertible. Thus we
can solve for b to get

b = B1(λ)(d) = −K−1
2 (L4(λ)(0, d)) , (132)

where we have the uniform bound on B1

|B1(λ)(d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|D||d| + |λ|2|d|
)
. (133)

We can plug this into A1, W2, and A2 to get operators A3, W3,
and A4 with bounds

|A3(λ)(d)| ≤ C
(
|λ|2 + |D|

)
|d|

∥W3(λ)(d)∥ ≤ C
(
|λ|2 + |D|

)
|d|

|A4(λ)(d)| ≤ C
(
(r−N

+ ∥G∥ + |λ|)|D||d| + |λ|2|d|
)
. □

7.4. Jump conditions

Given λ and d, we have used Lin’s method to find a unique
solution to Eqs. (112), (113), (114), and (115), which is given by
W = W3(λ)(d). Such a solution will generically have m jumps in
the direction of T (θi)Z1(0), which are given by

ξi = ⟨T (θi)Z1(0),W+

i (0) − W−

i (0)⟩. (134)

In the next lemma, we derive formulas for these jumps.

Lemma 11. W+

i (0) = W−

i (0) for i = 1, . . . ,m if and only if the
m jump conditions

ξi = ⟨T (θi)Z1(0),W+

i (0) − W−

i (0)⟩ = 0 (135)

are satisfied. The jumps ξi can be written as

ξi = ⟨T (θi)Z1(N+

i ), Pu
0 (θi)Did⟩ + ⟨T (θi)Z1(−N−

i−1), P
s
0(θi−1)Di−1d⟩

−

∞∑
j=−∞

⟨Z1(j + 1), B∂ωQ (j)⟩ + R(λ)i(d),

(136)

where the remainder term R(λ)(d) has bound

|R(λ)(d)| ≤ C(r−N
+ ∥G∥ + |λ|)

(
(r−N

+ ∥G∥ + |λ|)|D| + |λ|2
)
|d|.

(137)

Proof. From the previous lemma, the fixed point equations at
n = 0 are given by

W−

i (0) = b−

i +Φ−

s (0,−N−

i−1; θi)a
−

i−1

+

−1∑
j=−N−

i−1

Φ−

s (0, j + 1; θi)[(G−

i (j) + λB)W−

i (j)

+ λ2diBH̃−

i (j)]
W+

i (0) = b+

i +Φ+

u (0,N+

i ; θi)a+

i

−

N+

i −1∑
j=0

Φ+

u (0, j + 1; θi)[(G+

i (j) + λB)W+

i (j)

+ λ2diBH̃+

i (j)].

(138)

To evaluate (134), we will compute the inner product of each of
the terms in (138) with T (θi)Z1(0). The b±

i terms will vanish since
they lie in spaces orthogonal to T (θi)Z1(0). We will evaluate the
remaining terms in turn. For the terms involving a, we substitute
A4 from Lemma 10 to get

⟨T (θi)Z1(0),Φ−

s (0,−N−

i−1; θi)a
−

i−1⟩

= −⟨T (θi)Z1(−N−

i−1), P
s
0(θi−1)Di−1d⟩

+ O
(
r−N ((r−N

+ ∥G∥ + |λ|)|D| + |λ|2)|d|
)

⟨T (θi)Z1(0),Φ+

u (0,N+

i ; θi)a+

i ⟩

= ⟨T (θi)Z1(N+

i ), Pu
0 (θi)Did⟩

+ O
(
r−N ((r−N

+ ∥G∥ + |λ|)|D| + |λ|2)|d|
)
.



18 R. Parker, P.G. Kevrekidis and B. Sandstede / Physica D 408 (2020) 132414

The sums involving H̃ give us a Melnikov-type sum.⟨
T (θi)Z1(0),

−1∑
j=−N−

i−1

Φ−

s (0, j + 1; θi)BH̃−

i (j)

+

N+

i −1∑
j=0

Φ+

u (0, j + 1; θi)BH̃+

i (j)
⟩

=

−1∑
j=−N−

i−1

⟨T (θi)Z1(j + 1), BT (θi)∂ωQ (j)⟩

+

N+

i −1∑
j=0

⟨T (θi)Z1(j + 1), BT (θi)∂ωQ (j)⟩ + O(r−N )

=

∞∑
j=−∞

⟨T (θi)Z1(j + 1), BT (θi)∂ωQ (j)⟩ + O(r−N )

=

∞∑
j=−∞

⟨Z1(j + 1), B∂ωQ (j)⟩ + O(r−N ),

where in the last line we used the fact that T (θ ) is unitary and
commutes with B.

Finally, we need to obtain a suitable bound for the sum involv-
ing W . To do this, as in [2], we will need an improved bound for
W . Plugging in the bounds for A3, W3, and B1 into the fixed point
equations (117), we have piecewise bounds

|W−

i (n)| ≤ C
(
r−(N−

i−1+n)
|D| + (r−N

+ ∥G∥ + |λ|)|D| + |λ|2
)

|d|

|W+

i (n)| ≤ C
(
r−(N+

i −n)
|D| + (r−N

+ ∥G∥ + |λ|)|D| + |λ|2
)

|d|.

It follows from the definition (42) of Z1(n) and Eq. (40)
that Z1(n) ≤ Cr−|n|. Since DF (0) is hyperbolic, we can find a
constant r̃ > r such that |Z1(n)| ≤ Cr̃−n. The price to pay
is a larger constant C . Using this bound, the sum involving W
becomes⏐⏐⏐⏐⏐⏐⏐

−1∑
j=−N−

i−1

⟨Z1(j + 1), (G−

i (j) + λB)W−

i (j)⟩

⏐⏐⏐⏐⏐⏐⏐
≤ C(∥G∥ + |λ|)

−1∑
j=−N−

i−1

r̃−|j+1|r−(N−

i−1+j)
|D||d|

+ C(∥G∥ + |λ|)
(
(r−N

+ ∥G∥ + |λ|)|D| + |λ|2
)
|d|

≤ C |D|r−N (∥G∥ + |λ|)|d|
∞∑
j=1

( r
r̃

)j
+ C(∥G∥ + |λ|)

(
(r−N

+ ∥G∥ + |λ|)|D| + |λ|2
)
|d|

≤ C(∥G∥ + |λ|)
(
(r−N

+ ∥G∥ + |λ|)|D| + |λ|2
)
|d|.

The infinite sum is convergent by our choice of r̃ . We have a sim-
ilar bound for the other sum. Putting this all together, we obtain
the jump equations (136) and the remainder bound (137). □

7.5. Proof of Theorem 2

Using the estimates (47), we have

T ′(0)Q̃−

i+1(−N−

i ) = T (θi)T ′(0)Q (N+

i ) + O(r−2N )

T ′(0)Q̃+

i (N+

i ) = T (θi+1)T ′(0)Q (−N−

i ) + O(r−2N ),

since the infinitesimal generator of a group commutes with the
group elements. Substituting these into Eq. (110) and simplifying,

we have

Did = [T (θi+1)T ′(0)Q (−N−

i ) + T (θi)T ′(0)Q (N+

i )]di+1

− [T (θi)T ′(0)Q (N+

i ) + T (θi+1)T ′(0)Q (−N−

i )]di
+ O

(
r−N (|λ| + r−N )

)
.

(139)

Next, we substitute Eq. (139) into the jump expressions ξi from
Lemma 11. For the inner product term ⟨T (θi)Z1(N+

i ), Pu
0 (θi)Did⟩,

we use Eq. (73) to get

⟨T (θi)Z1(N+

i ), Pu
0 (θi)Did⟩

= ⟨T (θi)Z1(N+

i ), T (θi+1)T ′(0)Q (−N−

i )⟩(di+1 − di) + O(r−3N ),

since T (θ ) is unitary and ⟨Z1(n), T ′(0)Q (n)⟩ = 0 for all n. Similarly,
we have

⟨T (θi)Z1(−N−

i−1), P
s
0Di−1d⟩

= ⟨T (θi)Z1(−N−

i−1), T (θi−1)T ′(0)Q (N+

i−1)⟩(di − di−1).

For the Melnikov sum, we use Eq. (42) for Z1(j) to get
∞∑

j=−∞

⟨Z1(j + 1), B∂ωQ (j)⟩ =

∞∑
j=−∞

⟨(
−R′(0)q(j)

R′(0)q(j + 1)

)
,
1
d

(
J∂ωq(j)

0

)⟩

= −
1
d

∞∑
j=−∞

⟨R′(0)q(j), J∂ωq(j)⟩

= −
1
d

∞∑
j=−∞

⟨J−1R′(0)q(j), ∂ωq(j)⟩

=
1
d
M,

where M is defined in (26).
Substituting these into the jump equations, we obtain the

jump conditions

ξi = ⟨T (θi)Z1(N+

i ), T (θi+1)T ′(0)Q (−N−

i )⟩(di+1 − di)
+ ⟨T (θi)Z1(−N−

i−1), T (θi−1)T ′(0)Q (N+

i−1)⟩(di − di−1)

−
1
d
M + R(λ)i(d).

(140)

For the remainder term, we substitute |D|, ∥G∥ = O(r−N ) into the
remainder term in Lemma 11 to get

|R(λ)(d)| ≤ C
(
(r−N

+ |λ|)3
)
.

The result follows by writing the jump conditions (140) in matrix
form as in [2].

8. Proofs of results from Section 4

8.1. Proof of Theorem 4

First, we will look for real-valued solutions to (1). In this case,
the stationary equation (2) reduces to

d(un+1 − 2un + un−1) − ωun + u3
n = 0.

For d ̸= 0, this is equivalent to the first order difference equation
U(n + 1) = F (U(n)), where U(n) = (un, ũn) ∈ R2, ũn = un−1, and

F (U) =

(
ω
d + 2 −1
1 0

)(
u
ũ

)
−

1
d

(
u3

0

)
. (141)

The symmetry group G = {1,−1} acts on R2 via T (θ ) = θ I . For
d, ω > 0, DF (0) has a pair of real eigenvalues {r, 1/r}, where r
depends on both d and ω, and is given by Eq. (57). As d → ∞,
r → 1, thus the spectral gap decreases with increasing d. As
d → 0, r → ∞.
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It follows that 0 is a hyperbolic equilibrium point with
1-dimensional stable and unstable manifolds. Let qn be the sym-
metric, real-valued, on-site soliton solution to DNLS, and let
Q (n) = (qn, q̃n) be the primary pulse solution, where q̃n = qn−1.
Since the variational equation does not have a bounded solution,
the stable and unstable manifolds intersect transversely. Thus
we have satisfied Hypothesis 5. Using Theorem 3, for sufficiently
large N (which depends on r , thus ω and d) there exist m−pulse
solutions for any θi = ±1 and lengths Ni ≥ N . These correspond
to phase differences of 0 and π .

We will now show that there are no multi-pulse solutions
with phase differences other than 0 and π . For this, we write
the DNLS equation (8) as the first order system (28) in R4. In
this formulation, the primary pulse solution is given by Q (n) =

(qn, 0, q̃n, 0). The unique bounded solutions to the variational
equation (79) and the adjoint variational equation (80) are

T ′(0)Q (n) = (0, qn, 0, q̃n)
Z1(n) = (0,−q̃n, 0, qn).

Using Theorem 1, for sufficiently large N (which depends on r ,
thus ω and d) there exist m−pulse solutions with lengths N±

i
and phase parameters θi if and only if the jump conditions (46)
are satisfied. Since the symmetry group T (θ ) is unitary, we can
rewrite the jump conditions in terms of the phase differences
∆θi = θi+1 − θi to get the jump conditions

ξi = ⟨T (−∆θi)Z1(N+

i ),Q (−N−

i )⟩ − ⟨T (∆θi−1)Z1(−N−

i−1),Q (N+

i−1)⟩
+ Ri,

(142)

where we take ∆θ0 = ∆θm = 0. The inner product terms in
Eq. (142) are

⟨T (−∆θi)Z1(N+

i ),Q (−N−

i )⟩ = −bi sin(∆θi)
⟨T (∆θi−1)Z1(−N−

i−1),Q (N+

i−1)⟩ = −bi−1 sin(∆θi−1),
(143)

where

bi = q(N+

i − 1)q(N−

i ) − q(N+

i )q(N−

i + 1).

Since the single pulse q(n) is an even function, the bi are given by
Eq. (61). Since q(n) is non-negative, unimodal, and exponentially
decaying [20, Theorem 1], q(n) is strictly decreasing as n moves
away from 0, thus bi < 0 for all i.

Substituting Eqs. (143) into (142), and letting si = sin∆θi, the
jump conditions become

ξ1 = −b1s1 + R1

ξi = bi−1si−1 − bisi + Ri for i = 2, . . . ,m − 1
ξm = bm−1sm−1 + Rm.

(144)

Since bi = O(r−2N ) and Ri = O(r−3N ), the jump conditions can
only be satisfied if si = O(r−N ). Thus we only have to consider
that case from here on. Since the steady state equation (8) has
a conserved quantity (10), we can eliminate the final equation
in (144) as is done in [24]. We write the m − 1 remaining jump
conditions in matrix form as Hs+R = 0, where s = (s1, . . . , sm−1)
and H is the (m − 1) × (m − 1) matrix

H =

⎛⎜⎜⎜⎜⎝
−b1
b1 −b2

b2 −b3
. . .

. . .

bm−2 −bm−1

⎞⎟⎟⎟⎟⎠ .
Since H is lower triangular and all the bi are nonzero, B is
invertible, thus s = B−1R is the unique value of s for which all
the jump conditions are satisfied.

We showed above that for sufficiently large N , real-valued
multi-pulses exist with phase differences which are either 0 or
π ; in all of those cases, s = 0. Since s = B−1R is the unique
solution which satisfies the jump conditions, and s = 0 is also
a solution, we conclude that s = 0 must be the unique solution
that satisfies the jump conditions. Thus, for sufficiently large N ,
the jump conditions can only be satisfied if all of the phase
differences ∆θi are either 0 or π . No other phase differences are
possible.

8.2. Proof of Theorem 5

To find the interaction eigenvalues for DNLS, we will solve
the matrix equation (49) from Theorem 2. For DNLS, the stability
criterion M is given by (55), and we are assuming that M > 0.

For N sufficiently large, we can find the eigenvalues of (48)
using Theorem 2. The matrix A is given by Eq. (60). First, we
rescale Eq. (49) by taking

A = r−2N Ã

λ = r−N λ̃

R(λ) = r−3N R̃(λ)

and dividing by r−2N to get the equivalent equation

Ẽ(λ) = det
(
Ã −

1
d
Mλ̃2I + r−N R̃(λ)

)
= 0. (145)

To solve Ẽ(λ) = 0, we need to find the eigenvalues of Ã. Since
Ã is symmetric tridiagonal, its eigenvalues are real. Further-
more, Ã has an eigenvalue at 0 with corresponding eigenvector
(1, 1, . . . , 1)T . Let {µ̃1, . . . , µ̃m−1} be the remaining m − 1 eigen-
values of Ã. Since bi < 0 for all i, it follows from [2, Lemma 5.4]
that the signs of {µ̃1, . . . , µ̃m−1} are determined by the phase
differences ∆θi. Specifically, Ã has kπ negative real eigenvalues
(counting multiplicity), where kπ is the number of ∆θi which are
π , and Ã has k0 positive real eigenvalues (counting multiplicity),
where k0 is the number of ∆θi which are 0.

Next, we show that the eigenvalues of Ã are distinct. The
eigenvalue problem (Ã − µ̃I)v = 0 is equivalent to the Sturm–
Liouville difference equation with Dirichlet boundary condi-
tions
∇(pj∆dj) = µ̃dj j = 1, . . . ,m

d0 = 0
dm+1 = 0,

(146)

where pj = cos(∆θj)bj, ∆ is the forward difference operator
∆f (j) = f (j+ 1)− f (j) and ∇ is the backward difference operator
∇f (j) = f (j) − f (j − 1). It follows from [38, Corollary 2.2.7]
that the eigenvalues of Eq. (146), thus the eigenvalues of Ã, are
distinct.

We can now solve Eq. (145) for λ. By Eq. (105), we will
always have an eigenvalue at 0 with algebraic multiplicity 2 and
geometric multiplicity 1. The remaining eigenvalues result from
interaction between the pulses. Let η = r−N , and rewrite Eq. (145)
as

K (λ̃; η) = det
(
Ã −

1
d
Mλ̃2I + ηR̃(λ)

)
. (147)

For j = 1, . . . ,m−1, K
(
±
√
dµ̃j/M; 0

)
= 0. Since the eigenvalues

of Ã are distinct,
∂

∂λ̃
K (λ̃; 0)

⏐⏐⏐
λ̃=±

√
dµ̃j/M

̸= 0.

Using the implicit function theorem, we can solve for λ̃ as a
function of η near (λ̃, η) =

(
±
√
dµ̃j/M; 0

)
. Thus for sufficiently
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small η, we can find smooth functions λ̃±

j (η) such that λ̃±

j (0) =

±
√
dµ̃j/M and K (λ̃±

j (η); η) = 0. Expanding λ̃(η) in a Taylor
series about η = 0 and taking η = r−N , we can write λ̃±

j as
λ̃±

j (N) = ±
√
dµ̃j/M+O(r−N ). Undoing the scaling, the interaction

eigenvalues are given by

λ±

j = ±

√
dµj

M
+ O(r−2N ) for j = 1, . . . ,m − 1,

where {µ1, . . . , µm−1} are the distinct, real, nonzero eigenvalues
of A, and µj = r−2N µ̃j.

By Hamiltonian symmetry, the eigenvalues of DNLS must
come in quartets ±α± iβ . Since the µj are distinct and only come
in pairs, the eigenvalues λ±

j must be pairs which are real or purely
imaginary. Thus there are m − 1 pairs of nonzero interaction
eigenvalues at λ = ±λj, given by

λj =

√
dµj

M
+ O(r−2N ) for j = 1, . . . ,m − 1.

These are either real or purely imaginary, and the remainder
term cannot move these off of the real or imaginary axis. Since
M, d > 0, we conclude that there are kπ pairs of purely imaginary
eigenvalues and k0 pairs of real eigenvalues.

We note that upon variations of d, these interaction eigen-
values may collide with other eigenvalues, including the ones
associated with the continuous spectrum, and lead to quartets as,
for example, in some of the cases in [8]. We can ensure this will
not happen by choosing N sufficiently large.

8.3. Proof of Corollaries 1 and 2

First, we prove Corollary 1. For (i), the matrix A in the case of
the 2-pulse has a single eigenvalue µ1 = − cos(∆θ1)b1. For (ii),
the matrix A in the case of the 3-pulse with equal pulse distances
is given by

A = b

⎛⎜⎝− cos(∆θ1) cos(∆θ1) 0

cos(∆θ1) − cos(∆θ1) − cos(∆θ2) cos(∆θ2)

0 cos(∆θ2) − cos(∆θ2)

⎞⎟⎠ ,
which has nonzero eigenvalues

µ1,2 =

(
±

√
cos(∆θ1)2 − cos(∆θ1) cos(∆θ2) + cos(∆θ2)2

− cos(∆θ1) − cos(∆θ2)
)
b.

For the three distinct 3-pulses, these eigenvalues are

µ1,2 =

⎧⎪⎪⎨⎪⎪⎩
−3b,−b (∆θ1,∆θ2) = (0, 0)

±
√
3b (∆θ1,∆θ2) = (0, π )

3b, b (∆θ1,∆θ2) = (π, π ).

For (iii), if bi = b and ∆θi = ∆θ for all i, the eigenvalue problem
(A − µI)v = 0 is equivalent to the difference equation with
Neumann boundary conditions

vn−1 − 2vn + vn+1 −
µ

b cos(∆θ )
vn = 0

v0 = v1

vm+1 = vm,

which has solutions

µj = 2b
(
cos

π j
m

− 1
)
cos(∆θ ) for j = 1, . . . ,m.

For Corollary 2, Eq. (64) follows from computing the eigenval-
ues of A explicitly for the 3-pulse and noting that (cos∆θi)2 = 1
since ∆θi ∈ {0, π}. We note that for N1 < N2, b1 > b2, thus we

can write√
b21 + b22 − b1b2 cos∆θ1 cos∆θ2

= b1

√
1 +

b22
b21

−
b2
b1

cos∆θ1 cos∆θ2

and expand in a Taylor series to obtain the estimates (65).
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