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a b s t r a c t

We study modulational instability of matter-waves in Bose–Einstein condensates (BEC) under strong
temporal nonlinearity-management. Both BEC in an optical lattice and homogeneous BEC are considered
in the framework of the Gross–Pitaevskii equation, averaged over rapid time modulations. For a BEC in
an optical lattice, it is shown that the loop formed on a dispersion curve undergoes transformation due to
the nonlinearity-management. A critical strength for the nonlinearity-management strength is obtained
that changes the character of instability of an attractive condensate. MI is shown to occur below (above)
the threshold for the positive (negative) effective mass. The enhancement of number of atoms in the
nonlinearity-managed gap soliton is revealed.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The phenomenon of modulational instability (MI) of nonlinear
plane waves under different types of management of the system
parameters has been the subject of intensive research over the
last years [1].Main emphasiswas given to dispersion-management
and nonlinearity-management. In nonlinear optics strong and
rapid modulations of the fiber dispersion is achieved by periodic
arrangement of fiber spans with alternating sign of the dispersion.
Dispersion-managed solitons supported by such a system have
essential advantages over conventional optical solitons for long
distance communication purposes [2–4]. Modulations of the
nonlinearity is a challenging problem also in fiber ring lasers
and in generation of Faraday waves in Bose–Einstein condensates
(BEC) [5–9]. MI in the form of Faraday waves can be observed both
in attractive and repulsive condensates. Recent observation of the
MI in optical media resulted from the periodic modulation of the
nonlinearity in the evolution variable, confirms the existence of
parametric resonances in the MI growth rate [6,10,11]. Faraday
waves (parametrically excited waves) in a BEC emerging from
temporal periodic variation of the atomic scattering length have
been studied in [9]. Such type of modulations can be achieved by
variation of the external magnetic field near Feshbach resonances
(FR). The corresponding technique is known as FR management.
In the Gross–Pitaevskii equation this corresponds to a temporal
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variation of the mean-field nonlinearity, i.e. to the nonlinearity-
management. MI in a harmonically trapped BEC under FR
management has been investigated in [12].
Recently the strong dispersion-management has been applied

to the dynamics of nonlinear periodic waves, namely cnoidal
waves, in optical fibers [13,14]. In these works the existence of
dispersion-managed cnoidal waves and strong deviation of the
stability borders of these waves from the ones of standard cnoidal
wave solutions of the nonlinear Schrödinger equation (NLSE) have
been established. Extension of the stability regions of some types
of nonlinear periodic waves can be due to the different scenarios
for the onset of MI of the background plane waves. Adiabatic
FR management for cnoidal waves in optical lattices has been
considered in [15,16]. The case of strongnonlinearity-management
remains unexplored.
The strong nonlinearity-management may be an effective tool

for stabilization of matter-wave solitons in multi-dimensional
attractive BEC [17–26]. In the context of nonlinear optics
such stabilization mechanism was first discussed in [27,28].
The phenomenon of MI is particularly important for generation
of soliton trains in BEC with controlled spatial arrangement
(repetition rate).MI of BEC in linear andnonlinear optical lattices in
the absence of time-periodic nonlinearity-management has been
investigated in our recent work [29]. Here we consider both theMI
of a homogeneous BEC and MI of a BEC loaded in an optical lattice
under FR management. The gap soliton structure existing in a BEC
with the zero background scattering length (asb = 0) has been
investigated in Ref. [30]. The couple-mode theory can be used to
analyze MI of nonlinear plane waves in an optical lattice subject
to FR management. In our investigations particular interest will be
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paid to the properties of loop structures emerging in the band gaps
(forbidden band).
In the present paper we investigate nonlinear dispersion

relations and the process of MI in a BEC under strong temporal
nonlinearity management (SNM). The outline of the paper is as
follows: The mathematical model is formulated in Section 2; MI
in a homogeneous BEC under SNM is considered in Section 3;
The nonlinear dispersion relation and loop structures for BEC in
an optical lattice under SNM are analyzed in Section 4 using the
coupled-mode theory. This section also includes the regions of MI
found in different areas of the band structure; The properties of gap
solitons are investigated in Section 5; Section 6 is devoted to details
of our numerical procedure; In the final Section 7 we summarize
our main results.

2. The model

Let us consider a BEC under temporal Feshbach resonance
management when the scattering length as varies in time. Then
an elongated BEC can be described by the quasi-1D GP equation
with a periodic potential (optical lattice) and the time-dependent
management of the coefficient of nonlinearity

ih̄ψt = −
h̄2

2m
ψxx + V (x)ψ − g1D(t)|ψ |2ψ, (1)

where g1D(t) = 2h̄as(t)ω⊥ is the mean field nonlinearity
coefficient, ω⊥ is the transverse oscillator frequency and V (x) =
V0 cos2(kx) is an optical lattice potential,

∫
∞

−∞
dx|ψ |2 = N , N is

the number of atoms. In dimensionless units we have

x→ kx, t → ωRt, ε =
V0
2ER

, ER =
h̄2 k2

2m
,

ωR = ER/h̄, u =

√
2h̄asω⊥
ER

ψe−iεt .

Eq. (1) takes the form of the NLSE with varying in time mean field
nonlinearity coefficient

iut + uxx + γ (t)|u|2u− 2ε cos(2x)u = 0, (2)

where γ (t) describes the strong nonlinearity-management and
has the form

γ (t) = γ0 +
1
µ
γ1

(
t
µ

)
,

∫ 1

0
γ1(τ ) dτ = 0, τ =

t
µ
,

µ� 1. (3)

This model has been considered in recent papers [15,16,30].
Specifically, in works [15,16] the evolution of nonlinear periodic
waves under adiabatic time-variation of the scattering length has
been studied and a possibility of generation of a train of solitons
by such a management scheme has been shown. Properties of
gap solitons under the strong management of nonlinearity were
analyzed based on the coupled mode system of equations in [30].
In thiswork the gap soliton solutions and their stability for the case
γ0 = 0were investigated. Herewewill studyMI of nonlinear plane
waves in a BEC (without, andwith an optical lattice) under SNM, as
well as properties of gap solitons in themodel (2) for nonzero value
of γ0. In particular, we will analyze the possibility of enhancement
of number of atoms in the gap soliton under SNM.
In deriving averaged equation we follow the works [30,31] and

use the transformation

u(x, t) = eiγ−1(t)|v|
2
v(x, t),

γ−1(τ ) =

∫ 1

0
γ (τ ′) dτ ′ −

∫ 1

0

∫ τ

0
γ (τ ′) dτ ′ dτ .

(4)
Supposing the parameter µ to be small (that corresponds to high
frequencies of modulation) unknown function v can be expanded
in series as

v = w + µv1 + µ
2v2 + · · · , (5)

where unknownw is a slowly varying function. Using transforma-
tion (4) and expansion (5) in governing Eq. (2) with posterior aver-
aging over the period of rapid modulation, we arrive at the follow-
ing averaged equation forw [31]

iwt + wxx + γ0|w|2w − 2ε cos(2x)w + σ 2[2(|w|2)xx|w|2

+ ((|w|2)x)
2
]w = 0. (6)

Parameter σ is defined as σ 2 =
∫ 1
0 γ

2
−1 dτ . For particular case of

sinusoidal modulations γ1 = h sin(ωt)we have σ 2 = h2/(2ω2) ∼
O(1) (ω = 1/µ). For the step-like modulation with the same
amplitude h and frequency ω we have σ 2 = h2/ω2.
This form of averaged equation can be also obtained for the case

of the weak nonlinearity management when γ = γ0 + γ1(t/µ),
with σ 2 � 1 [31,32].

3. Modulational instability of nonlinear plane wave in a
homogeneous media

Now let us consider the casewhen the optical lattice is switched
off, i.e. ε = 0 in Eq. (2). The MI of a nonlinear plane wave w =
A exp(i(γ0A2t)) can be explored using the linear stability analysis,
i.e. looking for the solution in the form

w = (A+ ψ(x, t)) exp[iγ0A2t], ψ � A. (7)

We have the following equation for ψ

iψt + ψxx + γ0A2(ψ + ψ∗)+ 2σ 2A4(ψxx + ψ∗xx) = 0. (8)

Representingψ = ψr+iψi and performing Fourier transformation
ψr(ψi)(x, t) =

∫
dkū(v̄)(k, t) exp(ikx) we get the dispersion

relation

p2 = k2[2γ0A2 − (1+ 4σ 2A4)k2]. (9)

Instability region corresponds to the condition p2 > 0. Thus we
obtain

k2 ≤
2γ0A2

1+ 4σ 2A4
. (10)

The maximum of the MI gain is achieved at the value of the wave
number

kc =
√

γ0

1+ 4σ 2A4
A. (11)

Maximal value of the MI growth rate is

pc =
γ0A2

√
1+ 4σ 2A4

. (12)

Thus we find that under the temporal nonlinearity management
the MI growth rate is decreased by a factor of

√
1+ 4σ 2A4.

Such decrease of the gain is due to the defocusing effect induced
by the nonlinearity management. This observation explains the
stabilizing role of the strong nonlinearity management in a higher
dimensional attractive BEC [17,18,33,34].
Numerical simulations of the 1D GP Eq. (2) with a strong

nonlinearity management confirm these predictions. In Fig. 1 we
plot theMI gain versus thewave number ofmodulations k for three
different caseswith γ0 = 1 andω = 10: (a)when the nonlinearity-
management is absent, σ 2 = 0 and when the management is
present (b) σ 2 = 0.125(h = 5), (c) σ 2 = 0.5(h = 10). One
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Fig. 1. MI gain p versus the wave number modulations k. Three curves correspond
to the cases when: (a) nonlinear management is turned off, σ 2 = 0; (b), (c)
nonlinear management is turned on, with A = 1.2, σ 2 = 0.125 and σ 2 = 0.5.
Filled squares correspond to gains obtained from full PDE simulations.

Fig. 2. Evolution of the small spatially periodic perturbation when p and the wave
number k are in the region of stability and inequality (10) is not fulfilled. The case
with σ 2 = 0.02, k = 2, A = 1.2 is presented.

can observe a good agreement between the theory and numerical
simulations for the value and the position of theMI gainmaximum
given by Eqs. (11) and (12). In Fig. 2 we plot the profiles of the field
module |u(x)| in the region of stability. Fig. 3 depicts the case of
breakdown of the stability caused by increasing the strength of the
nonlinearity-management, σ 2.
One can see that modulation in an initial plane wave evolves
into a train of solitons when the wave number of the modulation
is in the region of instability. As can be seen from Fig. 3(a) even
moderate nonlinearity management (σ 2 = 0.125) causes notable
decreasing in the amplitude of solitons.

4. MI in a BEC loaded in an optical lattice and nonlinearity-
management

4.1. Nonlinear dispersion relation. The loop structure

The analysis performed in the previous section was relevant
to a BEC without optical lattice potential. In the presence of an
optical lattice the band structure strongly affects the process of
MI [35,36]. Equations of the coupled-mode theory for the GP Eq.
(6) with shallow optical lattice have been obtained in [30]. The
wave function can be represented in the form of superposition of
backward and forward propagating waves

w(x, t) =
√
ε
(
A(X, T )eix + B(X, T )e−ix

)
e−it . (13)

where X = εx, T = εt are slow variables. Substituting this into
the averaged equation we get the following coupled mode system
of equations

iAT + 2iAX = B− γ0(|A|2 + 2|B|2)A
+ 8εσ 2(2|A|2 + |B|2)|B|2A, (14)

iBT − 2iBX = A− γ0(2|A|2 + |B|2)B
+ 8εσ 2(|A|2 + 2|B|2)|A|2B. (15)

In derivation of this system, the derivatives of the nonlinear terms
have been neglected as the terms of the next order of smallness
with respect to ε. The group velocity varies in the interval −2 <
v < 2, in physical units that corresponds to −vR < v < vR, vR =
h̄k/m. This system describes two counter propagating waves,
with the cubic self phase modulation term and cubic and quintic
cross-phase modulation terms. The quintic cross modulation term
describes effect of the Feshbach resonancemanagement. Note that
this system has a similarity with the one previously considered
for description of MI in the cubic–quintic NLSE with the Bragg
grating [37]. However, as distinct from that model, no self-phase
modulation quintic terms like |A|4A and |B|4B present in ourmodel.
The absence of these terms changes significantly the MI process
in NM systems in comparison with the standart cubic–quintic NLS
model.
Fig. 3. Development of small spatially periodic perturbations into a soliton train when parameters are in the region of instability. Plot (a) depicts the field profiles |u(x)| at
different times. The dashed line stands for initial small modulations at t = 0, dotted (solid) line is for the case, when SNM is turned off (on) at t = 20.1. Plot (b) depicts time
evolution of the maximal value of |u(x)|. Dotted (solid) line correspond to turned off (on) SNM. The parameters are k = 0.5, A = 0.5, σ 2 = 0 (σ 2 = 0.125).
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The plane wave solutions of Eqs. (14) and (15) are looked for in
the form

A =
α√
1+ f 2

ei(QX−ΩT ), B =
αf√
1+ f 2

e2i(QX−�T ),

where α = |A|2 + |B|2. The parameter f defines the weight of
the forward and backward propagating waves. The case |f | > 1
corresponds to the domination of the backwardwave. Substituting
these expressions into the system (14) and (15), we obtain
nonlinear dispersion relation

Ω = −
3γ0
2
α2 +

1
2
1+ f 2

f
+
4εσ 2α4

(1+ f 2)2
(f 4 + 4f 2 + 1), (16)

Q =
(8εσ 2α2 − γ0)α2

4
1− f 2

1+ f 2
+
1
4
1− f 2

f
. (17)

The parameter f determines the position on the dispersion relation
in Ω,Q plane. Inspecting the dispersion relation at small α2 one
can observe that f > 0 corresponds to the upper dispersion curve
and f < 0 to the lower one. The velocity inside the grating is
v = 2(1 − f 2)/(1 + f 2) and equals to zero at the edges of the
gap f = ±1.
From Eqs. (16) and (17) one can again see a defocusing role of

the strong nonlinearity management. We find that the effect of
nonlinearity is cancelled if |f | = 1 and the density of BEC reaches
a threshold value

α2c =
γ0

4εσ 2
.

Suppression of the mean-field nonlinearity in the lattice leads to
enhancement of such an effect as tunnelling between sites. The
SNM also introduces changes in the dispersion curves. Indeed, it is
well known that the focusing Kerr nonlinearity (attractive BEC) is
responsible for appearance of a loop beyond the critical power [38–
40] on the upper curve.
Effective nonlinear dispersion induced by the nonlinearity-

management (the last term in Eq. (6)) will increase the critical
power necessary for appearance of the loop. To find this value of
critical power let us consider the value of fc at which Q becomes
zero (|f | 6= 1). We obtain that

fc =
α2(γ0 − 8εσ 2α2)

2
±

√(
α2(γ0 − 8εσ 2α2)

2

)2
− 1. (18)

Let us consider the case of upper curve with f > 0 and
an attractive condensate γ0 > 0. Then a loop appears on the
dispersion curve if the power (BEC density)

α22 < α2 < α21, α
2
1,2 =

γ0

16εσ 2

(
1±

√
1−

64εσ 2

γ 20

)
. (19)

When σ 2 = 0 we have a well known result for the critical
power [38] α2c = 2/γ0. Fig. 4 depicts two branches of the
dispersion relations (16) and (17). The branches in theΩ–Q plane
are defined parametrically by Eqs. (16) and (17). Thus, each value
of f defines a point in this plane. Two ranges of values f > 0 and
f < 0 define upper and lower curves correspondingly. In our case
the loop structure appears on the upper branch when α is greater
than the threshold value α2c . One can see from this figure that the
loop decreases with increasing of the strength of themanagement.
It should be noted that at the same time the bandwidth (a distance
between upper and lower branches) at Q = 0 does not change.
In the case of the defocusing Kerr nonlinearity γ0 < 0 (repulsive

BEC) one could expect formation of the loop on the lower branch of
the dispersion curve f < 0. But from the condition (19) it follows
thatα2 < 0. So in this case NM fully suppresses the loop formation.
Fig. 4. Loop structure in dispersion relationswhenα2 > α2c : solid (dotted) line and
full squares (circles) are for the case when nonlinearity management is turned off
(on). Scatter points (squares and circles) represent data obtained from numerical
simulations. Parameters are: σ 2 = 0 and σ 2 = 0.055(h = 4) with α = 2.5, ε =
0.08, ω = 12.

It is also of interest to investigate the loop structure in the case
γ0 = 0. This configuration can be realized employing the Feshbach
resonance technique. It corresponds to the case of a BEC with the
effective repulsive nonlinearity in an optical lattice. The loop will be
formed on the lower branch of the dispersive curve f < 0 when
the BEC density excesses the value

α2 >
1

2
√
εσ
.

Let us discuss the physical consequences. Existence of a loop
at the edge of the Brillouin zone reflects the superfluid character
of the BEC, since we have nonzero velocity in the Bragg reflection
condition [39,40]. It should be noted that in a linear system of
free atoms the Bloch wave at the zone edge has zero velocity.
From this point of view a critical value of the SNM strength exists
which destroys the superfluid property of the BEC in an optical
lattice. Another possible effect is the existence of breakdown
of Bloch oscillations due to the tunnelling into the upper band
(Landau–Zeener tunnelling). The SNM is expected to suppress this
breakdown.

4.2. Modulational instability

To investigate MI of matter waves in an optical lattice under
SNM, perturbed plane wave solutions are taken in the form

A =

(
α√
1+ f 2

+ δA(X, T )

)
ei(QX−ΩT ), (20)

B =

(
αf√
1+ f 2

+ δB(X, T )

)
ei(QX−ΩT ),

where δA and δB are unknown small perturbations of CWsolutions.
Substituting these expressions into Eqs. (14) and (15) and using a
linear approximation, we get the system of equations for δA and δB

iδAT + 2iδAX + f δA− δB+
α2

1+ f 2

[(
γ0 −

16εσ 2α2f 2

1+ f 2

)
× (δA+ δA∗)+ 2f (γ0 − 8εσ 2α2)(δB+ δB∗)

]
= 0, (21)

iδBT − 2iδBX +
1
f
δB− δA+

α2f 2

1+ f 2

[(
γ0 −

16εσ 2α2

1+ f 2

)
× (δB+ δB∗)+

2
f
(γ0 − 8εσ 2α2)(δA+ δA∗)

]
= 0. (22)
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Fig. 5. Evolution of small spatial periodic perturbations when the parameters are in the region of instability with γ0 = 1 and f = 1 (upper branch of the dispersion relations
(16) and (17)). Plot (a) depicts the field profiles |u(x)| at different times when the nonlinearity management is turned off and σ 2 = 0. Plot (b) depicts the case when the
nonlinearity management is turned on and σ 2 = 0.125(h = 5). Other parameters are α = 0.8, Q = 0, q = 0.5, ω = 10. Initial amplitude of modulations is taken to
be 0.05.
For f = ±1 the system coincides with the one considered by
de Sterke [35] with renormalized nonlinearity coefficient γr =
γ0 − 8εσ 2α2. One can see that the NM plays essential role in
the MI process. When the nonlinearity management is turned off,
for the case of attractive condensate the CW wave is unstable if
the parameters follow the upper branch of the dispersion curve.
On the lower branch the attractive BEC is modulationally stable.
The repulsive condensate is modulationally unstable on the lower
branch and stable on the upper branch.
In the case of nonlinearity-management there exists a critical

value of the management strength σ 2, namely σ 2c = γ0/8εα2. If
σ 2 > σ 2c , then the attractive condensate behaves as the repulsive
and the modulational instability regions should correspond to the
above described picture.
Looking for solutions of Eq. (21) in the form

δA(B) = C(D) cos(qX − ωT )+ iE(F) sin(qX − ωT )

we find the dispersion relation of the form

(ω2 − 4q2)2 − 2(1− N)(ω2 − 4q2)−
1
f

(
1
f
+ P

)
(ω − 2q)2

− f (f +M)(ω + 2q)2 = 0, (23)

where

M =
2α2

1+ f 2

(
γ0 −

16εσ 2α2f 2

1+ f 2

)
,

N =
4f α2

1+ f 2
(
γ0 − 8εσ 2α2

)
,

P =
2α2f 2

1+ f 2

(
γ0 −

16εσ 2α2

1+ f 2

)
.

Analytical results can be obtained for the particular case |f | = 1,
corresponding to the edges of the gap.We come to the equation for
the frequency ω

ω2 = 4q2 + 2− G̃±
√
16q2

(
1+ G̃

)
+
(
2− G̃

)2
,

G̃ = G/f , f = ±1. (24)
Evidently, this equation coincideswith the one obtained inRef. [35]
where the parameter G is renormalized as G = (γ0 − 8εσ 2α2)α2.
Let us analyze the condition of MI for different sets of

parameters.
(1) The top of the band gap f = 1, σ 2 < σ 2c (̃G > 0). The wave

is unstable if the wavenumber of modulations is in the interval
−
√
3G/2 < q <

√
3G/2. The maximal MI gain occurs at the

wavenumber

qm =

√
3G

4+ G
16(1+ G)

. (25)

Results of numerical simulations of the Gross–Pitaevskii equa-
tion (2) for evolution of the nonlinear plane wave modulations is
shown in Fig. 5. The emergence of a train of gap solitons is observed.
The reduction of theMI gainwhen the SNM is applied can be noted.
(2) The bottom of the band gap f = −1, σ 2 < σ 2c (̃G < 0).

The condensate becomes unstable if G > 1 and the wavenumber
satisfies the inequality

|q| >
2+ G
4

√
1

G− 1
. (26)

(3) In the case σ 2 > σ 2c , an attractive condensate behaves
like the repulsive condensate under the strong nonlinearity
management. We can expect modulational instability in the case
of f = −1, corresponding to the negative effective mass. In this
case the condensate is unstable in the region of modulations with
the wave numbers q2 < 3|G|/2.
Let us consider separately the case γ0 = 0, G = −8εσ 2α4.

As it was shown in [30], near the upper edge of the gap, the gap
soliton is the solution of the focusing quintic NLSE, while near
the bottom of the gap it is a solution of the defocusing quintic
NLSE. Fig. 6 depicts the formation of a gap soliton train under
strong nonlinearity management. It should be noted that when
γ0 = σ

2
= 0, the soliton does not form.

For f = −1 the instability region is |q| <
√
12εσ 2α2/2.

For |f | 6= 1 we can perform analytical consideration for the case
of vanishing wave numbers of modulations q = 0. Then in the
ordinary optical lattice the gain of MI turns to be finite and for the
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Fig. 6. Evolution of small spatial periodic perturbations when parameters are in
the region of instability with γ0 = 0 and f = −1 (lower branch of the dispersion
relations (16) and (17)). The plot depicts the field profiles |u(x)| at different times
when the strength of the nonlinearity-management is σ 2 = 0.08(h = 4). Other
parameters are α = 1.5, Q = 0, q = 0.5, ω = 10. Initial amplitude of
modulations is 0.05.

MI in the normal dispersion region there exists a threshold in the
power. In the case of the action of a SNMwe find from Eq. (23) that
the instability occurs if

(1+ f 2)2

f 2
−
4f (γ0 − 8εσ 2α4)

1+ f 2
< 0. (27)

For example, if γ0 > 0 and f > 0 the MI is possible only if
α22 < α2 < α21 , where

α21,2 =
γ0

16εσ 2

(
1±

√
1−

8(1+ f 2)3εσ 2

f 3γ 20

)
.

The MI interval on α2 for f < 0 can be obtained analogously.

5. Gap soliton

Following the works [29,30] let us study the properties of a gap
soliton. The solution is sought in the form A = a(X) exp(−iΩ̄T ),
B = b(X) exp(−iΩ̄T ), a = b∗, a =

√
Q (X) exp(−iθ(X)/2). The set

of equations for Q (X), θ(X) is

QX = Q sin(θ), (28)

θX = −Ω̄ + cos(θ)− 3γ0Q + 24εσ 2Q 2. (29)

The first integral of this set is

E = −Ω̄Q + Q cos(θ)−
3
2
γ0Q 2 + 8εσ 2Q 3.

Inside the gap−1 ≤ Ω ≤ 1. The solution for γ0 6= 0 is difficult to
be derived in an explicit form. What we can calculate is the peak
value of gap soliton amplitude, the quantity, which is of interest
for the experiment. For the soliton peak the condition Qx = 0 is
valid. Taking into account that for bright soliton solution E = 0,
we obtain the following equation for the peak value of the soliton
amplitude

±1 = Ω̄ +
3
2
γ0Q − 8εσ 2Q 2,
where the signs ± correspond to θ = 0 and θ = π respectively.
Peak values, corresponding to the bright soliton solutions, are

Q =
3

32εσ 2
γ0

[
1−

√
1+

128εσ 2(Ω̄ ∓ 1)
9γ 20

]
. (30)

It should be noted that when γ0 = 0we get Q =
√
(Ω̄ ∓ 1)/8εσ 2,

that coincides with the value obtained in [30]. Existence of two
families of gap solitons has similarity with the ones observed in
the cubic–quintic NLSE with a periodic potential [41]. From (30)
we obtain the restriction

σ 2 <
9γ 20

128ε(1− Ω̄)
.

For the estimations of the experiment with ε = 0.2, Ω̄ = 0.6,
we obtain the restriction σ 2 < 0.6. The defocusing role of the
nonlinearity management leads to the possibility of increasing the
number of atoms in the bright gap soliton in comparison with
a standard gap soliton. The low nonlinearity requires the larger
number of atoms to support soliton solution. Taking σ 2 = 0
in the low amplitude solution, we obtain for the peak amplitude
the value Q0 = 2(1 − Ω̄)/3, that reproduce the standard result
for a gap soliton [42]. Expanding the solution (30) in series, we
obtain

Q ≈ Q0 +
64ε(1− Ω̄)2σ 2

27γ 30
.

The number of atoms in the gap soliton is enhanced and the
enhancement factor is proportional to the nonlinearity map
strength σ 2. For typical values of parameters V = 0.6ER(ε =
0.3), h = 3.16ω, f = 33, ω = 10ωR(σ 2 = h2/2ω2 = 5), Ω̄ =
−1, γ0 = 1 we obtain double enhancement in the number of
atoms. It means that for the experiment with 87Rb [43] the number
of atoms in a gap soliton (N ∼ 600) can be increased by the
nonlinearity management up to N ∼ 1200. The increasing of
number of atoms in the discrete breather of discrete nonlinear
Schrödinger equation under weak nonlinearity management has
been observed in numerical simulations [32].

6. Numerical simulations

In numerical simulations we proceed from the governing
Gross–Pitaevskii equation (2). The problem is discretized in a
standard way with the time step 1t and spatial step 1x so
that terms ukj approximate u (j1x, k1t). More specifically, in the
approximation of Eq. (2) we have used the following implicit
Crank–Nicholson-type scheme of second order accuracy in space
and first order accuracy in time
i(uk+1j − u

k
j )

1t
= −

1
21x2

[(uk+1j−1 − 2u
k+1
j + u

k+1
j+1 )

+ (ukj−1 − 2u
k
j + u

k
j+1)] + ε cos(2xj)(u

k
j + u

k+1
j )

−
1
2
γ (tk)|ukj |

2(ukj + u
k+1
j ), (31)

where the strong nonlinearity management factor γ (t) is defined
by Eq. (2), xk = j1x and tk = k1t . In our calculations the second
term in Eq. (2) is chosen as γ1 = h sin(ωt). For this case σ 2 =
h2/(2ω2).
Since our problem deals with nonlinear plane waves, periodic

boundary conditions are imposed on the governing equation (2).
Eq. (31) together with the boundary condition uk+10 = uk+1N
form a quasi tridiagonal set of equations for unknown uk+1j , [j =
0, 1, 2 . . .N] in a lattice of N + 1 points. The length of the lattice
L is determined by the period of the periodic potential and value
of the wave number for which the solution is sought. The set of
these algebraic equations is solved by themodified vectorial sweep
method. In actual calculations the typical space step 1x ranged
from 0.01 to 0.005 and time step1t from 0.005 to 0.001.
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In calculations, the initial wave packet is constructed in
the following way. At first slow component of the solution
w(x, t = 0) is taken in the form of Eq. (7) or Eq. (13) with
Eq. (20), depending on the problem we consider. Then leaving
only first term in Eq. (5) and making use of transformation Eq.
(4) we obtain actual initial wave function u(x, t = 0) used in
computations.
In the simulation of the loop structure (see Fig. 4) and

constructing the initial wave function, the position on the loop for
given value of the wave number Q is determined by choosing a
necessary value of the parameter f , which, in turn, is determined
from the dispersion relation Eq. (16).

7. Conclusion

We have investigated the modulational instability and gap
soliton formation in the media with Kerr nonlinearity and periodic
potential. Such systems appear in the nonlinear optical media
with Bragg grating and Bose–Einstein condensates in optical
lattices under time-dependent Feshbach resonance management.
We considered the case of strong management and showed that
in the case of homogeneous Kerr media under NM the gain of
MI is strongly suppressed, that explains the defocusing role of
the NM and thus the stabilization of 2D and 3D attractive BEC by
this method. We have studied the nonlinear dispersion relation in
the case of NM and showed that the loop structure is essentially
modified by the NM. The critical value of the strength of the
NM is shown to exist in the MI regions. In the case of attractive
condensate it means that above the threshold an attractive BEC
behaves as repulsive. The NM leads to a new effect of enhancement
of the number of atoms in the bright gap soliton. The enhancement
factor is proportional to the strength of the management σ 2.
We confirmed the predictions based on the analysis of the
averaged GP equation by direct numerical simulations of the 1DGP
equation.
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