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a b s t r a c t

We analyze the dynamical stability of a naturally straight, inextensible and unshearable elastic rod, under
tension and controlled end rotation,within the Kirchhoffmodel in three dimensions. The cases of clamped
boundary conditions and isoperimetric constraints are treated separately. We obtain explicit criteria for
the static stability of arbitrary extrema of a general quadratic strain energy. We exploit the equivalence
between the total energy and a suitably defined norm to prove that local minimizers of the strain energy,
under explicit hypotheses, are stable in the dynamic sense due to Liapounov. We also extend our analysis
to damped systems to show that static equilibria are dynamically stable in the Liapounov sense, in the
presence of a suitably defined local drag force.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Filamentary structures are found in many different systems
and diverse applications e.g. biological systems such as DNA,
proteins, bacterial fibers; engineering applications such as sub-
oceanic cables; theory of liquid crystals and polymers [1–3]. The
stability of filamentary structures is of intrinsic theoretical interest
and has important practical implications for the application areas
listed above. There are multiple approaches to stability analyses
e.g. static bifurcation analysis, dynamic approaches, conjugate
point methods, distinguished diagram methods etc. and the
interested reader is referred to [4–9] for further references.

We focus on the model problem of an intrinsically straight,
twisted elastic rod, subject to clamped boundary conditions and
a terminal end-load. We only consider a special class of Kirchhoff
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rods in this paper i.e. an inextensible, unshearable rodwith circular
cross-section [2]. In our previous work [10], we study the static
stability of the natural straight state in terms of the second
variation of a general quadratic strain energy, in three dimensions.
We obtain explicit criteria for the static stability and the onset of
instability, in terms of the twist and the tension and our aim, in
this paper, is to quantify the dynamic implications of static stability
criteria for Kirchhoff rods. The intricate relationship between static
and dynamic stability is, in general, poorly understood (see [11]
for examples of counter-intuitive behavior) and it is, therefore,
of interest to study this relationship for these rods, where both
computations can be carried out explicitly.

Our work builds on results reported by Caflisch and Maddocks
in [12]. We work in a fully three-dimensional setting i.e. account
for both in-plane andout-of-plane configurations and consider two
different boundary-value problems: (i) clamped boundary con-
ditions and (ii) clamped boundary conditions with isoperimetric
constraints. Our first result is a novel characterization of static
equilibria, given by localminimizers of the quadratic strain energy,

http://dx.doi.org/10.1016/j.physd.2013.03.003
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in a time-independent setting. We use the Euler angle representa-
tion and only consider equilibria that avoid the polar singularities.
This restriction excludes rod configurationswhich turn over them-
selves or rods with self-contact. Nevertheless, we can account for
all equilibria within a large neighborhood of the unbuckled state,
which comprises a large subset of physically admissible equilib-
ria. We analyze the second variation of the quadratic strain en-
ergy [13], without appealing to associated eigenvalue problems,
and obtain explicit stability criteria in terms of the Euler angles,
which in turn yield explicit bounds for the curvature and torsion
of the static equilibria. Our methods may be generalized to the
quaternion representation of the rod configuration, which does
not have any polar singularities but has an associated nonlinear
constraint of unit length [14]. The ensuing analysis of the second
variation of the strain energy would be more complicated in the
quaternion representation but would offer more detailed informa-
tion. The Euler angle representation suffices for the purposes of
this paper, since our aim, in the first instance, is to illustrate the
links between static and dynamic stability for a class of analytically
tractable problems with transparent computations.

The dynamic evolution of the rod is governed by the Kirchhoff
equations in three dimensions [2,5]: a six-dimensional system of
couplednonlinear PDEs of secondorder in space and time, based on
linear constitutive relations between moments and Darboux cur-
vature. We do not address questions related to the existence and
regularity of solutions of the Kirchhoff equations subject to differ-
ent boundary conditions as we are mainly interested in the clas-
sification of static equilibria and the interplay between static and
dynamic stability. The total energy, which is the sum of the kinetic
and potential energy, is a conserved quantity [15,2] and follow-
ing the methods in [12], we establish the equivalence between the
energy and a suitably defined dynamic norm in three dimensions.
This equivalence allows us to prove the strong statement that lo-
cal minimizers of the quadratic strain energy (under explicit hy-
pothesis) are stable in the dynamic sense due to Liapounov. More
precisely, we use the direct method due to Liapounov to prove the
equivalence between static and dynamic stability (under explicit
hypothesis) in a three-dimensional framework. This is a significant
generalization of the powerful two-dimensional study carried out
in [12]. We further extend our results to damped systems with an
isotropic drag force proportional to the tangent-velocity; the re-
sulting equations of motion are different to the traditional Kirch-
hoff equations in [2] and have additional damping terms. However,
the total energy is a decreasing function of time and hence, can still
be used as a Liapounov function. As a consequence, local minimiz-
ers of the strain energy retain dynamic stability in the presence of
a suitably defined local drag force. These methods are generalized
to arbitrary functionals, that are quadratic and strictly convexwith
respect to the derivatives of the model variables, wherein we de-
rive explicit criteria that guarantee the equivalence between static
and Liapounov stability.

We primarily focus on clamped boundary conditions in this
paper and address the question of isoperimetric constraints at the
end. In two dimensions, it is known that the classical buckling
force for the constrained problem with isoperimetric constraints
differs from the classical Euler buckling formula by a factor of
4 [16]. Previous work has demonstrated the onset of instability
for terminal loads greater than an explicit critical value. In two
dimensions, we use Wirtinger’s inequality to prove stability in the
complementary regime. In three dimensions, we obtain explicit
bounds for a critical tension Fc in the presence of isoperimetric
constraints, such that the unbuckled state is stable for all loads,
|F | < |Fc |. Our approach is novel and it is possible that such integral
inequalities can be exploited to study post-buckling behavior too.

The paper is organized as follows. In Section 2, we review the
general theory of Kirchhoff rods and elaborate on the concepts
of static and dynamic stability. In Section 3, we use Hamilton’s
principle to derive the equations of motion in terms of the Euler
angle representation. In Section 4, we derive explicit static stability
criteria and examine the relationship between static and dynamic
stability for a clampedKirchhoff rod and in Section 5,we generalize
these results to damped systems. Finally, in Section 6, we consider
the case of isoperimetric constraints and in Section 7, we present
our conclusions and directions for future work.

2. Preliminaries

In this section, we recall the model problem in [10] and the
concomitant concepts of static and dynamic Liapounov stability
from [12,7].

The Kirchhoff rod is initially aligned along the x̂-axis of a
Cartesian basis,


x̂, ŷ, ẑ


, and is subject to an external force, F , in

the x-direction along with a controlled end-rotation at a terminal
end [10]. The end-rotation is characterized by a non-zero twist
parameter,M , throughout the paper. We work in the thin filament
approximation and hence, all physically relevant quantities are
attached to the central rod-axis. The rod is, thus, parameterized by
its arc length, s, and since the rod is inextensible, we take s ∈ [0, 1].
In a dynamic framework, all dependent variables are functions of
s and the time variable, t ∈ [0,∞). Following the conventions
in [12,7], we describe the configuration of the rod by its axis, r(s, t),
and a triad of orthonormal directors, {d1, d2, d3}, with d3 being
the tangent vector, d3 =

∂r
∂s . The orientation of the basis {di(s, t)}

changes smoothly relative to a fixed basis {ei} and this change is
described by

d′

i = κ × di i = 1, 2, 3 (1)

where d′

i =
∂di
ds and

κ = (χ1(s, t), χ2(s, t), τ (s, t))

is the strain vector. The first two components, χ1 and χ2, contain
information about the rod curvature and τ is a measure of the
physical twist.

We follow the Euler angle formulation [15,7] and introduce
a set of Euler angles, Θ(s, t) = {θ(s, t), φ(s, t), ψ(s, t)}, to de-
scribe the orientation of the directors with respect to a fixed ba-
sis {ei}. We work with sufficiently smooth rod configurations so
that, {θ(s, t), φ(s, t), ψ(s, t)}, are at least twice continuously dif-
ferentiable i.e. belong to C2 ([0, 1] × [0,∞); R). Explicit expres-
sions for the directors in the Euler angle representation can be
found in [17,18]. The strain components are given byMaddocks [7]

χ1 = −φ′ sin θ cosψ + θ ′ sinψ
χ2 = φ′ sin θ sinψ + θ ′ cosψ

τ = φ′ cos θ + ψ ′. (2)

In what follows, we consider two separate boundary-value
problems: (i) BVP I with clamped boundary conditions and (ii) BVP
II with clamped boundary conditions and isoperimetric con-
straints. BVP I is a Dirichlet boundary-value problem for the Euler
angles as stated below:

BVP I θ(0) = θ(1) =
π

2
,

φ(0) = φ(1) = 0,
ψ(0) = 0 & ψ(1) = 2πM. (3)

BVP II is defined by the Dirichlet conditions above and two addi-
tional isoperimetric constraints

BVP II
 1

0
sin θ(s, t) sinφ(s, t) ds = 0, 1

0
cos θ(s, t)ds = 0. (4)
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The isoperimetric constraints ensure that the end-point, s = 1, lies
on the x-axis and we do not consider the case of self-intersecting
rods. The unbuckled state is defined by the triplet

Θ0 = (θ0, φ0, ψ0) =

π
2
, 0, 2πMs


, (5)

that is a straight rod twistedwithM-turns, aligned along the x-axis.
It is trivial to note that Θ0 respects both the Dirichlet conditions
and the isoperimetric constraints above in (3)–(4).

The Kirchhoff rod, under consideration, is assumed to be hyper-
elastic, to possess kinetic symmetry and obey linear constitutive
stress–strain relations. The potential energy of the rod is then given
by Maddocks [7] and Majumdar et al. [10]:

V [θ, φ,ψ] :=

 1

0

A
2


φ2
s sin2 θ + θ2s


+

C
2
(φs cos θ + ψs)

2

+ F sin θ cosφ ds (6)

where A, C > 0 are material-dependent elastic constants and
F > 0 is the external force. The first two terms in the integrand
represent the stored energy density of the rod and the last term is
the work done by the external force at the terminal end.

We want to characterize isolated, relative minima of the po-
tential energy in a fully three-dimensional framework, account-
ing for both planar and non-planar equilibria. Here, planar refers
to a constant θ(s) =

π
2 for s ∈ [0, 1] whereas non-planar can

include a non-uniform out-of-plane angle such that, θ(s) ≠
π
2 ,

for s in some interior interval. Let Θ∗
= (θ∗(s), φ∗(s), ψ∗(s)) de-

note an arbitrary extremal of the potential energy in (6), such that
θ∗(s) ∈ (0, π) for all s ∈ [0, 1] i.e. θ∗ never encounters the po-
lar singularities at θ = 0 and θ = π . The energy density in (6)
is strictly convex with respect to the gradient arguments as long
as the equilibria stay away from the polar singularities [7,10] and
the strict convexity is a crucial pre-requisite for the application of
standard results in the calculus of variations.

Definition 1 ([12]). An extremalΘ∗ is said to be an isolated strong
relative minimum of the potential V in the class of admissible
functions if there exists ϵ > 0 such that

V

θ∗(s)+ α(s), φ∗(s)+ β(s), ψ∗(s)+ γ (s)


− V


θ∗(s), φ∗(s), ψ∗(s)


> 0 (7)

for admissible functions α, β, γ : [0, 1] → R satisfying

0 < sup
s∈[0,1]

|α(s)| , |β(s)| , |γ (s)| < ϵ. (8)

We refer to isolated strongminima of the potential energy as static
equilibria in the rest of the text.

For one-dimensional variational problems as in (6), one can
fully characterize isolated strong minima in terms of the second
variation of the potential energy. More precisely, we consider
variations of the form

θϵ(s) = θ∗(s)+ ϵα(s)
φϵ(s) = φ∗(s)+ ϵβ(s)

ψϵ(s) = ψ∗(s)+ ϵγ (s), (9)

where 0 < ϵ ≪ 1 and α, β, γ are sufficiently smooth functions
that vanish at the end-points. For BVP II, the functions α, β, γ
are additionally also constrained to satisfy the linearization of the
isoperimetric constraints (4) about the extremal, Θ∗, as shown
below: 1

0
α(s) cos θ∗(s) sinφ∗(s)+ β(s) sin θ∗(s) cosφ∗(s) ds = 0, 1

0
α(s) sin θ∗(s)ds = 0. (10)
One can then explicitly compute the second variation as an integral
expression involving {θ∗, φ∗, ψ∗} and {α, β, γ } and deduce global
conditions for its positivity in the sense of (11) below:

δ2V

θ∗, φ∗, ψ∗


≥ σ

 1

0
α2
s + β2

s + γ 2
s + α2

+ β2
+ γ 2 ds, (11)

where αs =
dα
ds etc. and σ > 0 is a positive constant independent

ofΘ∗. From standard results in the calculus of variations, [19], the
inequality (11) is sufficient to guarantee static stability in the sense
of (7) above and we shall refer to (11) as the static stability criterion
in the subsequent sections.

Whilst studying static stability, we frequently use two versions
of Wirtinger’s integral inequality as given below [13]:

Proposition 1 (Poincare–Wirtinger Inequality). For every continu-
ously differentiable function u : [0, 1] → R with u(0) = u(1) = 0,
we have 1

0


du
ds

2

ds ≥ π2
 1

0
u2 (s) ds. (12)

Proposition 2 (Wirtinger Inequality). Let

X =


u ∈ C1 ([0, 1]; R) ; u(0) = u(1) = 0;

 1

0
u(s) ds = 0


.

Then 1

0


du
ds

2

ds ≥ 4π2
 1

0
u2 (s) ds ∀u ∈ X . (13)

In [10], we study the second variation of the potential energy
about the unbuckled state,Θ0, defined in (5), and obtain results on
its stability and instability. In this paper, these results are gener-
alized to an arbitrary extremal point, Θ∗, to yield explicit stabil-
ity criteria in terms of θ∗, φ∗, ψ∗, provided θ∗ does not encounter
the polar singularities. Of great interest is the relationship between
this static stability criterion and dynamic stability in the Liapounov
sense, in a three-dimensional framework. We recall the definition
of Liapounov stability from [12].

Definition 2. Let X denote a set of solutions. A solutionΘ1(s, t) ∈

X is said to be Liapounov stable in X , if, for any δ > 0, there exists
ϵ > 0 such that ifΘ2(s, t) ∈ X satisfies

∥Θ1(s, 0)−Θ2(s, 0)∥ < ϵ, (14)

thenΘ2 also satisfies

∥Θ1(s, t)−Θ2(s, t)∥ < δ, t ≥ 0 (15)

where ∥ − ∥ is a suitably defined norm.

We take X to be the set of solutions of the equations of motion,
derived in Section 3, subject to BVP I or BVP II in (3) and (4).
A suitable norm needs to be defined as stated in (14)–(15); by
analogy with the norm in [12], we use the following norm

∥Θ(·, t)∥2
= ∥(θ(·, t), φ(·, t), ψ(·, t))∥2

=

 1

0
θ2(s, t)+ φ2(s, t)+ ψ2(s, t)+ θ2s (s, t)

+φ2
s (s, t)+ ψ2

s (s, t)+ θ2t (s, t)

+φ2
t (s, t)+ ψ2

t (s, t) ds. (16)

Then a solution, Θ1 = (θ1, φ1, ψ1) ∈ X , is Liapounov stable in
X , if any solution Θ2 = (θ2, φ2, ψ2) ∈ X , which initiates
within an ϵ-neighborhood ofΘ1 (see (14)), remains within a small
δ(ϵ)-neighborhood ofΘ1 for all times (see (15)) and δ(ϵ) → 0+ as
ϵ → 0+.
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3. Rod dynamics in Euler angles

The rod energy is the sum of the potential energy (defined in
(6)) and the kinetic energy,

T [θ, φ,ψ] :=

 1

0

K1

2


φ2
t sin2 θ + θ2t


+ K1 (φt cos θ + ψt)

2 ds +

 1

0

ρ

2


x2t + y2t + z2t


ds (17)

where

x(s, t) =

 s

0
sin θ(u, t) cosφ(u, t) du + x(0, t)

y(s, t) =

 s

0
sin θ(u, t) sinφ(u, t) du + y(0, t)

z(s, t) =

 s

0
cos θ(u, t) du + z(0, t), (18)

K1 > 0 is a spin constant and ρ > 0 is the rod mass-density
(mass per unit length) [12,15]. For simplicity and without loss of
generality, we take x(0, t) = y(0, t) = z(0, t) = 0. Following
themethodology in [12] where the authors compute the equations
of motion for planar equilibria in a two-dimensional framework,
we compute the equations of motion from Hamilton’s principle of
stationary action i.e. the integral t1

t0
T [θ, φ,ψ] − V [θ, φ,ψ] dt (19)

is stationary for all t0 and t1. For BVP I, (19) is complemented by
the following constitutive relations for the resultant force vector,
F = (F x, F y, F z), where

F x
s = −ρ

 s

0
sin θ(u, t) cosφ(u, t) du


tt
,

F x(1, t) = F > 0;

F y
s = ρ

 s

0
sin θ(u, t) sinφ(u, t) du


tt
, F y(1, t) = 0;

F z
s = ρ

 s

0
cos θ(u, t) du


tt
, F z(1, t) = 0. (20)

For BVP II, the Lagrangian in (19) is augmented by two addi-
tional Lagrange multipliers accounting for the isoperimetric con-
straints in (4) as shown below: t1

t0
T [θ, φ,ψ] − V [θ, φ,ψ] + λ(t)y(1, t)+ ν(t)z(1, t) dt. (21)

Here λ(t) and ν(t) are time-dependent Lagrange multipliers as-
sociated with (4) and can be interpreted as being the unknown
reaction of the boundary support at s = 1 that maintains the
isoperimetric constraints. Following the conventions in [12], the
resultant force vector, F = (F x, F y, F z), is then given by

F x
s = −ρ

 s

0
sin θ(u, t) cosφ(u, t) du


tt
, F x(1, t) = F;

F y
s = ρ

 s

0
sin θ(u, t) sinφ(u, t) du


tt
, F y(1, t) = λ(t);

F z
s = ρ

 s

0
cos θ(u, t) du


tt
, F z(1, t) = ν(t). (22)
The variational derivation of the corresponding equations of
motion is technically difficult but standard. Detailed derivations of
the equations of motion can also be found in [15,2]. We skip the
technical details and the equations of motion are given below.

C (φs cos θ + ψs)s = 2K1 (φt cos θ + ψt)t

K1θtt + K1φ
2
t sin θ cos θ + 2K1φtψt sin θ

= Aθss − Aφ2
s sin θ cos θ + Cφs sin θ (φs cos θ + ψs)

− F x cos θ cosφ + F y cos θ sinφ − F z sin θ

K1φtt sin θ − 2K1θtψt = Aφss sin θ + 2Aφsθs cos θ

− Cθs (φs cos θ + ψs)+ F x sinφ + F y cosφ. (23)

The dynamical system (23) has been derived fromHamilton’s prin-
ciple and hence, the total energy, E [θ, φ,ψ] = T [θ, φ,ψ] +

V [θ, φ,ψ], is a constant of motion. In what follows, we use the to-
tal energy as a Liapounov function to investigate the relationship
between static and dynamic stability criteria.

4. Stability estimates for BVP I

Consider the BVP I in (3) with clamped boundary conditions.
Our first result concerns the derivation of explicit stability criteria
for an arbitrary solution of this boundary-value problem.

4.1. Static stability

Proposition 3. Let Θ∗
= (θ∗(s), φ∗(s), ψ∗(s)) be an arbitrary ex-

tremal of the potential energy (6), subject to the clamped boundary
conditions in (3). We assume that θ∗(s) ∈ (0, π) for s ∈ [0, 1] i.e. θ∗

remains bounded away from the polar singularities. Then

φ∗

s cos θ∗(s)+ ψ∗

s = K

θ∗, φ∗, ψ∗


, (24)

where K (θ∗, φ∗, ψ∗) is a constant that only depends on Θ∗. Define
the quantities

Γ1 = min
s∈[0,1]


A

φ∗

s

2 cos 2θ∗
− A|φ∗

s sin 2θ∗
| − C |φ∗

s sin θ∗
|

− CKφ∗

s cos θ∗
− CK sin θ∗


Γ2 = min

s∈[0,1]


A sin2 θ∗

− A|φ∗

s sin 2θ∗
| − C | cos θ∗

| − CK sin θ∗


Γ3 = min
s∈[0,1]


1 − | cos θ∗

| − |φ∗

s sin θ∗
|

. (25)

Let

Γ2,Γ3 > 0

Aπ2
+ Γ1 > 0. (26)

ThenΘ∗ is stable in the static sense for sufficiently small forces

|F | < min

π2Γ2, Aπ2

+ Γ1

. (27)

Comment: Eq. (24) is an immediate consequence of the equations
of motion (23); for a time-independent solution, we necessarily have
d
ds (φs cos θ + ψs) = 0, which is equivalent to (24).

Proof. We compute the second variation of the potential en-
ergy about the extremal, Θ∗, by considering arbitrary three-
dimensional perturbations of the form (9), where ϵ > 0 is a small
parameter and {α, β, γ } are continuously differentiable functions
that vanish at the end-points, s = 0 and s = 1. An explicit com-
putation shows that the second variation of the potential energy
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aboutΘ∗ is given by

δ2V

Θ∗


=
d2

dϵ2
V [θϵ, φϵ, ψϵ]


ϵ=0

=

 1

0
A

β2
s sin2 θ∗

+ 2αβsφ
∗

s sin 2θ∗

+α2 φ∗

s

2 cos 2θ∗


ds +

 1

0
Aα2

s ds

+

 1

0
Cγ 2

s + C

βs cos θ∗

− αφ∗

s sin θ∗
2 ds

+

 1

0
2Cγsβs cos θ∗

− 2Cαγsφ∗

s sin θ∗ ds

− 2CK
 1

0
αβs sin θ∗

+
1
2
α2φ∗

s cos θ∗ ds

− F
 1

0


α2

+ β2 sin θ∗ cosφ∗

+ 2αβ cos θ∗ sinφ∗ ds. (28)

We repeatedly use Young’s inequality, ab ≤
1
2


a2 + b2


, to com-

pute a lower bound for δ2V (Θ∗) as shown below:

δ2V

Θ∗


≥

 1

0
Aβ2

s sin2 θ∗
− A|φ∗

s sin 2θ∗
|

α2

+ β2
s


+ Aα2 φ∗

s

2 cos 2θ∗
+ Aα2

s ds

+

 1

0
Cγ 2

s − C | cos θ∗
|

γ 2
s + β2

s


− C |φ∗

s sin θ∗
|

α2

+ γ 2
s


ds

− CK
 1

0


α2φ∗

s cos θ∗
+ sin θ∗


α2

+ β2
s


ds

− |F |

 1

0
α2

+ β2 ds. (29)

Comment: Note that
α2

+ β2 sin θ∗ cosφ∗
+ 2αβ cos θ∗ sinφ∗

≤
1
2


(α2

+ β2)(sin2 θ∗
+ cos2 φ∗)

+ 2 |αβ|

cos2 θ∗

+ sin2 φ∗

.

The right-hand side can be further simplified by observing that

(α2
+ β2) sin2 θ∗

+ 2 |αβ| cos2 θ∗
≤ α2

+ β2,

yielding the following inequality
α2

+ β2 sin θ∗ cosφ∗
+ 2αβ cos θ∗ sinφ∗

≤

α2

+ β2 .
Recalling the definitions of Γ1,Γ2,Γ3 from (25) and grouping

together the coefficients of {α, β, γ } and their first derivatives in
(29), we obtain

δ2V

Θ∗


≥

 1

0
Aα2

s + α2 (Γ1 − |F |) ds

+

 1

0
Γ2β

2
s − |F |β2 ds +

 1

0
CΓ3γ

2
s ds. (30)

Let |F | < min

π2Γ2, Aπ2

+ Γ1

. We focus on the first term on

the right-hand side of (30) and compute conditions which guar-
antee the positivity of this integral. If Γ1 ≥ |F |, then the integral,
 1
0 Aα2

s +α2 (Γ1 − |F |) ds, is necessarily positive and there is noth-
ing to prove. We assume that Γ1 < |F |. Then the first integral on
the right-hand side of (30) can be decomposed as 1

0
Aα2

s + α2 (Γ1 − |F |) ds =

 1

0


A +

Γ1 − |F |

π2


α2
s

+ (|F | − Γ1)


α2
s

π2
− α2


ds. (31)

Since Γ1 < |F | by assumption, we can use Wirtinger’s inequality
(12) to note that

(|F | − Γ1)

 1

0


α2
s

π2
− α2


ds ≥ 0

and hence 1

0
Aα2

s + α2 (Γ1 − |F |) ds ≥

 1

0


A +

Γ1 − |F |

π2


α2
s ds,

where

A +

Γ1−|F |

π2


> 0 from the hypothesis.

Using similar arguments as above, we recast the integral on the
right-hand side of (30) as

δ2V

Θ∗


≥ min

min


A, A +

Γ1 − |F |

π2


,Γ2 −

|F |

π2
, CΓ3


×

 1

0
α2
s + β2

s + γ 2
s ds. (32)

Hence, if

2σ = min

min


A, A +

Γ1 − |F |

π2


,Γ2 −

|F |

π2
, CΓ3


> 0

from the hypotheses (26) and (27), then

δ2V

Θ∗

> σ

 1

0
α2
s + β2

s + γ 2
s + α2

+ β2
+ γ 2 ds, (33)

which is precisely the static stability criterion (11), leading to the
conclusion of Proposition 3. �

Comment:We note that in general,Θ∗ depends on A, C,M and the
external load F . An exception is the unbuckled state, Θ0, which is an
equilibrium for all F > 0. Hence, the criterion (27) specifies a self-
consistent relation between these quantities that guarantees static
stability.

4.2. Interpretation of the static stability criterion

Wegive an interpretation of the bounds (26) in terms of the cur-
vature and torsion of the static equilibria. The strain components
can be equivalently expressed as

χ1 = κ sin∆
χ2 = κ cos∆
τ = η +∆s (34)

where κ is the curvature, η is the torsion and ∆ is a register vari-
able [20]. In terms of the Euler angles, we compare (34) with (2) to
find

θs = κ cosψ
φs sin θ = κ sinψ
ψs = η − φs cos θ. (35)

We consider the bounds (26) for solutions with constant curva-
ture, κ , and torsion, η (setting∆(s) = 0), without paying attention
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to the boundary conditions. A qualitative analysis shows that the
bounds (26) require

κ ≤ 1; η ≤
A
C

min
s∈[0,1]

sin2 θ∗(s) ≥


C2η2

A2
, max
s∈[0,1]


C
A
, 2κ


| cos θ∗

|


;

C
A

≤


π2

κ
+ 2κ


. (36)

These bounds are not rigorous and are meant to give general
insight in terms of geometric quantities. Loosely speaking, they
require that the curvature and torsion be small and that the equi-
librium remains sufficiently bounded away from the polar sin-
gularities i.e. sin2 θ∗ is always bounded from below. Recalling
the underlying assumptions of rod-theory [17,18], the curvature
and torsion are always necessarily small compared to geometrical
parameters and 2

3 ≤
C
A ≤ 1 [2]. Hence, these bounds do not im-

pose unrealistic restrictions on the curvature, torsion andmaterial-
dependent parameters.

One can use similar methods to deduce that an arbitrary ex-
tremal,Θ∗

= (θ∗, φ∗, ψ∗), with θ∗
∈ (0, π), is unstable for

|F | >
π2 max {A, C}

2
 1
0 sin (πs) sin θ∗(s) cosφ∗(s) ds

, (37)

provided the denominator is non-zero. The derivation of (37) re-
quires us to identify conditions under which the second variation,
δ2V (θ∗, φ∗, ψ∗), is negative. Collectively, the bounds (26), (27)
and (37) provide a set of explicit stability and instability criteria,
in terms of the end-rotation, terminal load, material constants and
the equilibrium itself. In principle, one could numerically compute
equilibria and check their stability against these bounds i.e. we can
deduce static stability if (26) and (27) are satisfied and instability
for loads satisfying (37).We cannotmake any deductions about the
stability or instability when these bounds are not satisfied.

We can compute the quantities (25) for the unbuckled state,Θ0,
defined in (5). They are K = 2πM , Γ2 = A − 2πMC and Γ3 = 1
from the definitions in (25). ThenΘ0 is stable for forces

|F | < π2 (A − 2πMC)

from the stability criteria in (27), which is in perfect agreement
with the results in [10], where we demonstrate that Θ0 is stable
for forces

|F | < π2 (A − 2πMC)

and is unstable for forces |F | > Aπ2. Our next propositions concern
the equivalence between static and dynamic Liapounov stability
for static equilibria.

4.3. Dynamic Liapounov stability

Proposition 4. The unbuckled equilibrium, Θ0, defined in (5), is
Liapounov stable in the set of solutions,Θ∗(s, t) = (θ∗(s, t), φ∗(s, t),
ψ∗(s, t)) ∈ C2 ([0, 1] × [0,∞); R), of the dynamical system (23)
subject to the boundary conditions (3), for forces

|F | < π2 (A − 2πMC) . (38)

Here, Liapounov stability is understood in terms of the norm defined
in (16).
Proof. Let Θ∗(s, t) be an arbitrary solution of the dynamical
system (23). One can readily check that the unbuckled state, Θ0,
is a solution of the dynamical system (23) subject to the boundary
conditions (3). Define the difference,Θ1(s, t) = Θ∗(s, t)−Θ0(s) =

(θ1, φ1, ψ1) i.e.

θ1(s, t) = θ∗(s, t)− θ0(s)
φ1(s, t) = φ∗(s, t)− φ0(s)

ψ1(s, t) = ψ∗(s, t)− ψ0(s); (39)

the clamped boundary conditions in (3) necessarily imply that the
triplet Θ1 vanishes at the end-points. We consider solutions that
initiate in a small ϵ-neighborhood ofΘ0 for which

∥Θ1(·, 0)∥2 < ϵ; (40)

recall the definition of the norm in (16). To demonstrate Liapounov
stability, we need to prove that the norm ∥Θ1(·, t)∥2 remains small
for all subsequent times.

In what follows, we study the second variation of the poten-
tial energy, V [θ, φ,ψ], around Θ0, exploit relations between the
potential energy and its second variation and finally use the con-
servation of energy

∆E(t) = E

Θ∗ (·, t)


− E [Θ0] = ∆E(0) (41)

to establish Liapounov stability for forces |F | < π2 (A − 2πMC).
In [10], we compute the second variation of the potential en-

ergy, δ2V [Θ0], aroundΘ0 to be

δ2V [Θ0] = A
 1

0


θ21s + φ2

1s


ds

+

 1

0
Cψ2

1s − 4πMCθ1φ1s − |F |

θ21 + φ2

1


ds. (42)

Since |F | < π2 (A − 2πMC), we decompose the second variation
integral in (42) as follows:

δ2V [Θ0] ≥

 1

0


A −

|F | + 2πMC
π2


θ21s

+


|F | + 2πMC

π2

 
θ21s − π2θ21


ds

+

 1

0


A − 2πMC −

|F |

π2


φ2
1s ds

+
|F |

π2


φ2
1s − π2φ2

1


ds +

 1

0
Cψ2

1s ds. (43)

FromWirtinger’s inequality (12), 1

0


θ21s − π2θ21


ds ≥ 0

and from the hypotheses, A − 2πMC −
|F |

π2 > 0. Hence, δ2V [Θ0] is
bounded from below by

δ2V [Θ0] ≥ min

A − 2πMC −

|F |

π2
, C


×

 1

0
θ21s + φ2

1s + ψ2
1s ds. (44)

We recall (12) and use the inequality 1

0
θ21s ds ≥

1
2

 1

0
θ21s + θ21 ds (45)
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for functions, θ1 ∈ C1 ([0, 1]; R), such that θ1(0) = θ1(1) = 0.
Therefore,

δ2V [Θ0] ≥
1
2
min


A − 2πMC −

|F |

π2
, C


×

 1

0
θ21s + φ2

1s + ψ2
1s + θ21 + φ2

1 + ψ2
1 ds. (46)

It is straightforward to verify that

δ2V [Θ0] ≤ max {A, A + 2πMC, C}

×

 1

0
θ21s + φ2

1s + ψ2
1s + θ21 + φ2

1 + ψ2
1 ds. (47)

From (46) and (47), we deduce the existence of two positive con-
stants a1 and a2, independent ofΘ1, such that

a1

 1

0
θ21s + φ2

1s + ψ2
1s + θ21 + φ2

1 + ψ2
1 ds ≤ δ2V [Θ0]

≤ a2

 1

0
θ21s + φ2

1s + ψ2
1s + θ21 + φ2

1 + ψ2
1 ds. (48)

Thus Θ0 is a strong potential energy minimum under the hypoth-
esis (38). Following themethods in [12], the potential energy close
to a local minimum can be bounded by its second variation as fol-
lows:

a3δ2V [Θ0] ≤ ∆V = V

θ∗, φ∗, ψ∗


− V [θ0, φ0, ψ0]

≤ a4δ2V [Θ0] (49)

where a3, a4 are positive constants that only depend on A, C, |F |

and the twist parameterM > 0.
The next step is to compute lower and upper bounds for the ki-

netic energy difference

∆T = T

θ∗, φ∗, ψ∗


− T [θ0, φ0, ψ0] (50)

where T has been defined in (17). The kinetic energy ofΘ0 vanishes
since this is a time-independent solution. Thus,

T

θ∗, φ∗, ψ∗


=

 1

0

K1

2


θ21t + φ2

1t sin
2 θ∗(s, t)

+ 2

φ1t cos θ∗(s, t)+ ψ1t

2 ds

+

 1

0

ρ

2

 s

0


sin θ∗ cosφ∗


t ds

2

+

 s

0


sin θ∗ sinφ∗


t ds

2

+

 s

0


cos θ∗


t ds

2


ds (51)

and θ1, φ1 have been defined in (39). Since we are only considering
solutions, Θ∗, in a neighborhood of Θ0, the inequality, sin2 θ∗

≥
1
2 + cos2 θ∗, holds for all t ≥ 0 and s ∈ [0, 1]. Thus,

K1

2


θ21t +

1
2
φ2
1t +

2
3
ψ2

1t


≤

K1

2


θ21t + φ2

1t sin
2 θ∗(s, t)

+ 2

φ1t cos θ∗(s, t)+ ψ1t

2
≤

K1

2


θ21t + 5φ2

1t + 4ψ2
1t


. (52)
Similarly, one can check that

ρ

2

 1

0

 s

0


sin θ∗ cosφ∗


t ds

2

+

 s

0


sin θ∗ sinφ∗


t ds

2

+

 s

0


cos θ∗


t ds

2


ds

≤
ρ

2

 1

0
θ21t + φ2

1t ds. (53)

Combining (52) and (53), we deduce that there are two positive
constants, a5, a6, depending only on K1 and ρ, such that

a5

 1

0
θ21t + φ2

1t + ψ2
1t ds ≤ ∆T ≤ a6

 1

0
θ21t + φ2

1t + ψ2
1t ds. (54)

From (48), (49) and (54), the total energy difference satisfies the
inequalities

a7∥Θ1(·, t)∥2
≤ ∆E(t) = ∆V (t)+∆T (t) ≤ a8∥Θ1(·, t)∥2, (55)

a7, a8 are positive constants independent of Θ1, and the norm
∥ − ∥

2 has been defined in (16). However, ∆E(t) = ∆E(0) (from
conservation of energy) and from the inequalities in (55),

∆E(0) ≤ a8∥Θ1(·, 0)∥2 < a8ϵ

as a consequence of the imposed initial condition (see (40)). Thus,

∥Θ1(·, t)∥2
≤

a8
a7
ϵ (56)

for all t ≥ 0. Hence, the norm ∥ − ∥
2 remains small for all sub-

sequent times and we conclude thatΘ0 is Liapounov stable under
the hypothesis (38). �

Following the characterization of static equilibria in Proposi-
tion 3, we next address the question of their dynamic stability.

Proposition 5. Let Θ∗
= (θ∗(s), φ∗(s), ψ∗(s)) be an arbitrary ex-

tremal of the potential energy (6), subject to the clamped boundary
conditions in (3), such that θ∗

∈ (0, π) for s ∈ [0, 1]. ThenΘ∗ is Lia-
pounov stable in the set of C2-solutions of the dynamical system (23),
with respect to the norm defined in (16), if

Γ2 = min
s∈[0,1]


A sin2 θ∗

− A|φ∗

s sin 2θ∗
|

− C | cos θ∗
| − CK sin θ∗


> 0

Γ3 = min
s∈[0,1]


1 − | cos θ∗

| − |φ∗

s sin θ∗
|

> 0

Γ1 = min
s∈[0,1]


A

φ∗

s

2 cos 2θ∗
− A|φ∗

s sin 2θ∗
| − C |φ∗

s sin θ∗
|

− CKφ∗

s cos θ∗
− CK sin θ∗


> −Aπ2 (57)

and for applied forces

|F | < min

π2Γ2, Aπ2

+ Γ1

. (58)

Proof. In Proposition 3, we show that under the hypotheses (57)
and (58), the second variation of the potential energy about Θ∗ is
bounded from below by

δ2V

Θ∗


≥ min

min


A, A +

Γ1 − |F |

π2


,Γ2 −

|F |

π2
, CΓ3


×

 1

0
α2
s + β2

s + γ 2
s ds. (59)
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Equivalently, from (12) (using arguments similar to (45)),

δ2V

Θ∗


≥
1
2
min


min


A, A +

Γ1 − |F |

π2


,Γ2 −

|F |

π2
, CΓ3


×

 1

0
α2
s + β2

s + γ 2
s + α2

+ β2
+ γ 2 ds (60)

for arbitrary C1-functions, Θ̄1 = (α, β, γ ), that vanish at the
terminal points. Similarly, there exists a positive constant, a9,
independent of Θ̄1, such that (see (47) for analogous arguments
in the case ofΘ0)

δ2V

Θ∗


≤ a9

 1

0
α2
s + β2

s + γ 2
s + α2

+ β2
+ γ 2 ds. (61)

From (60) and (61), there exist two positive constants a9 and a10
(independent of Θ̄1) such that

a10

 1

0
α2
s + β2

s + γ 2
s + α2

+ β2
+ γ 2 ds ≤ δ2V


Θ∗


≤ a9

 1

0
α2
s + β2

s + γ 2
s + α2

+ β2
+ γ 2 ds. (62)

This is analogous to the inequality (48) in Proposition 4, with Θ̄1
being identified withΘ1 in (39).

The rest of the proof parallels that of Proposition 4. Let

Θ̄∗(s, t) = Θ∗(s)+ Θ̄1(s, t)

denote an arbitrary solution of the dynamical system (23) subject
to the boundary conditions (3), confined to a small neighborhood
ofΘ∗, such that

∥Θ̄1(·, 0)∥2 < ϵ,

and ∥−∥
2 has been defined in (16). There are two key inequalities:

a11δ2V

Θ∗


≤ ∆V = V

Θ̄∗(s, t)


− V


Θ∗(s)


≤ a12δ2V


Θ∗


a13

 1

0
α2
t + β2

t + γ 2
t ds ≤ ∆T = T


Θ̄∗(s, t)


≤ a14

 1

0
α2
t + β2

t + γ 2
t ds, (63)

the derivation of the second inequality (involving the kinetic
energy) is identical to (54) and all constants a11 · · · a14 are indepen-
dent of Θ̄1(s, t). Proposition 5 follows from combining the inequal-
ities, (62) and (63), above with the conservation of energy. �

4.4. Generalizations

We conclude this section by generalizing our methods to an
energy functional with n dependent variables, y1 · · · yn, and all n
dependent variables are assumed to be smooth on the real interval,
s ∈ [0, 1]. We take

E [y1 · · · yn] :=

 1

0
V

y1 · · · yn, y′

1 · · · y′

n


+ g [y1 · · · yn] ds, (64)

y′

i =
dyi
ds , the potential energy V is quadratic in the gradient argu-

ments and is strictly convexwith respect to the gradient arguments
in the sense that

n
i,j=1

η′

iη
′

jVy′iy
′
j
≥ α

n
i=1


dηi
ds

2

(65)

where {η1 . . . ηn} ∈ C∞ ([0, 1]; R) and α > 0 is a positive constant
independent of the ηi’s [21].
Let

y∗

i


denote an arbitrary extremal of the functional in

(64), subject to Dirichlet boundary conditions. Since this is a one-
dimensional variational problem, we are guaranteed the static
stability of


y∗

i


under the positivity of the second variation of

E [y1 · · · yn] around

y∗

i


, in the sense of (11). As in Proposition 3,

we consider perturbations of the form

yϵi(s) = y∗

i (s)+ ϵηi(s) i = 1 · · · n, (66)
where ϵ > 0 is a small parameter and the functions, ηi, vanish at
the end-points. The second variation, δ2E


y∗

i


, can be explicitly

computed as a Taylor expansion as shown below:

δ2E


y∗

i


=

n
i,j=1

 1

0
ηiηj


∂2V
∂yi∂yj

+
∂2g
∂yi∂yj


|{y∗i }

ds

+

n
i,j=1

 1

0


η′

iη
′

j
∂2V
∂y′

i∂y
′

j
+ ηiη

′

j
∂2V
∂yi∂y′

j


|{y∗i }

ds. (67)

A lower bound for (67) can be obtained from the following inequal-
ities:

n
i,j=1

η′

iη
′

j
∂2V
∂y′

i∂y
′

j


{y∗i }

≥ α

n
i=1


dηi
ds

2

n
i,j=1

ηiηj


∂2V
∂yi∂yj

+
∂2g
∂yi∂yj

 
{y∗i }

≥

n
i=1

η2i


Vyiyi + gyiyi −


j≠i

|Vyiyj | + |gyiyj |


n

i,j=1

ηiη
′

j
∂2V
∂yi∂y′

j


{y∗i }

≥ −

n
i=1


|Vyiy′i

|y∗i


η2i +


η′

i

2
+

1
2


j≠i

|Vyiy′j
|y∗i


η2i +


η′

j

2
. (68)

Define the following functions:

Γ1i


y∗

i


= min

s∈[0,1]


α − |Vyiy′i

|y∗i
−

1
2


j≠i

|Vy′iyj
|y∗i



Γ2i


y∗

i


= min

s∈[0,1]


Vyiyi + gyiyi − |Vyiy′i

|y∗i

−


j≠i


|Vyiyj | + |gyiyj |


y∗i

+
1
2
|Vyiy′j

|y∗i


. (69)

Substituting (68) and (69) into (67) shows that

δ2E


y∗

i


≥

n
i=1

 1

0
Γ1i


dηi
ds

2

+ Γ2iη
2
i (s) ds. (70)

One can immediately deduce that δ2E > 0 if
Γ1i > 0 for i = 1 · · · n and

π2Γ1i + Γ2i > 0 for i = 1 · · · n. (71)
The inequalityπ2Γ1i+Γ2i > 0 follows fromWirtinger’s inequality 1

0


dηi
ds

2

≥ π2
 1

0
η2i (s) ds,

since ηi(0) = ηi(1) = 0 by virtue of the clamped boundary condi-
tions.

The constraints (71) are a set of explicit stability criteria for ex-
trema of the energy functional (64). The equivalence between the
stability criteria in (71) and dynamic Liapounov stability with re-
spect to a suitably defined norm, follows by our previous method-
ology.
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5. Damped systems

In this section, we consider a local drag force, FD, acting on the
elastic rod, given by

FD ∝ −ξ(s)

[sin θ cosφ]t , [sin θ sinφ]t , [cos θ ]t


(72)

where ξ(s) > 0 is an inhomogeneous, positive damping coeffi-
cient. As a consequence,

d3 · FD = (sin θ cosφ, sin θ sinφ, cos θ) · FD = 0

since d3 · d3 = 1 i.e. the drag force is acting normal to the tangent
vector of the rod. Our aim is to study dynamic stability of localmin-
imizers of the potential energy in (6), in the presence of such local
damping.

The resultant force vector, F = (F x, F y, F z), is given by the fol-
lowing constitutive relations that include the additional damping
terms as shown below:

F x
s = −ρ

 s

0
sin θ cosφdu


tt

− [ξ(s) sin θ cosφ]st

F y
s = ρ

 s

0
sin θ sinφdu


tt

+ [ξ(s) sin θ sinφ]st

F z
s = ρ

 s

0
cos θdu


tt

+ [ξ(s) cos θ ]st , (73)

coupled with the boundary conditions

F x (1, t) = F > 0; F y(1, t) = F z(1, t) = 0. (74)

The clamped boundary conditions in (3) necessarily imply that

[sin θ cosφ]t = [sin θ sinφ]t = [cos θ ]t = 0 (75)

at the terminal points, s = 0 and s = 1.
The corresponding equations ofmotion for the Euler angles are:

C (φs cos θ + ψs)s = 2K1 (φt cos θ + ψt)t

K1φtt sin θ − 2K1θtψt + ξ(s)φt sin2 θ

= Aφss sin θ + 2Aφsθs cos θ
− Cθs (φs cos θ + ψs)+ F x sinφ + F y cosφ

K1θtt + 2K1φtψt sin θ + K1φ
2
t sin θ cos θ + ξ(s)θt

= Aθss − Aφ2
s sin θ cos θ + Cφs sin θ (φs cos θ + ψs)

− F z sin θ − F x cos θ cosφ + F y cos θ sinφ, (76)

where ξ(s)φt sin2 θ and ξ(s)θt are interpreted as being damping
terms. One can then check that the total energy is decreasing with
time i.e.

d
dt

E(θ, φ, ψ) ≤ −σ

 1

0
ξ(s)


φ2
t sin2 θ + θ2t


ds < 0 (77)

where σ > 0 is a positive coefficient that can be computed ex-
plicitly. In particular, this implies that the total energy can still be
used as a suitable Liapounov functionwhilst studying dynamic sta-
bility [12]. We note that it is possible to obtain stronger stability
results (asymptotic stability/exponential stability) with a strictly
decreasing energy functional but we restrict ourselves to Lia-
pounov stability throughout this paper [11,9], for consistency with
previous sections.

Proposition 6. The unbuckled equilibrium Θ0 defined in (5) is Lia-
pounov stable in the set of twice-differentiable solutions, Θ∗(s, t), of
the dynamical system (76) subject to the boundary conditions (3), for
forces

|F | < π2 (A − 2πMC) . (78)

Here, Liapounov stability is defined with respect to the norm defined
in (16).
Comment: The condition (78) is valid only for rods with A >
2πMC in the presence of an external load |F | > 0.

Proof. The proof is a minor modification of the proof of Proposi-
tion 4. The inequalities (48), (49) and (54) remain unchanged. Since
the total energy is a decreasing function of time, the inequality (55)
is modified to

b1∥Θ1(·, t)∥2
≤ ∆E(t) = ∆V (t)+∆T (t)

≤ ∆E(0) ≤ b2∥Θ1(·, 0)∥2 (79)

where b1, b2 are positive constants that only depend onA, C, K1, ρ,
|F | andM . However, ∥Θ1(·, 0)∥2 < ϵ by assumption and hence,

∥Θ1(·, t)∥2
≤

b2
b1
ϵ

for all t ≥ 0, thus establishing the claimed Liapounov stability for
forces

|F | < π2 (A − 2πMC) . �

A similar result concerns the Liapounov stability of arbitrary
minima of the potential energy V , in connection to the damped dy-
namical system (76).

Proposition 7. Let Θ∗
= (θ∗(s), φ∗(s), ψ∗(s)) be an arbitrary ex-

tremal of the potential energy (6), subject to the clamped boundary
conditions in (3), such that θ∗

∈ (0, π) for s ∈ [0, 1]. ThenΘ∗ is Lia-
pounov stable in the set of C2-solutions of the dynamical system (76),
with respect to the norm defined in (16), if

Γ2 = min
s∈[0,1]


A sin2 θ∗

− A|φ∗

s sin 2θ∗
|

− C | cos θ∗
| − CK sin θ∗


> 0

Γ3 = min
s∈[0,1]


1 − | cos θ∗

| − |φ∗

s sin θ∗
|

> 0

Γ1 = min
s∈[0,1]


A

φ∗

s

2 cos 2θ∗
− A|φ∗

s sin 2θ∗
| − C |φ∗

s sin θ∗
|

− CKφ∗

s cos θ∗
− CK sin θ∗


> −Aπ2 (80)

and for applied forces

|F | < min

π2Γ2, Aπ2

+ Γ1

. (81)

Proof. The proof of Proposition 7 parallels that of Proposition 6
above and the details are skipped for brevity. �

Propositions 6 and 7 illustrate that stability results for con-
servative dynamical systems of the form (23) can be extended to
damped systems of the form (76), provided we can construct a
Liapounov function that is non-increasing with time [11]. In the
examples above, the total energy plays the role of a suitable Lia-
pounov function andwe use the equivalence between the total en-
ergy and the norm, defined in (16), to establish Liapounov stability.

6. Stability estimates for BVP II

The clamped boundary conditions in BVP I are the simplest
choice of boundary conditions. Nevertheless, the boundary con-
ditions and the isoperimetric constraints in BVP II are of practi-
cal interest since they naturally arise in classical experiments with
controlled end-displacements. BVP II is technically harder than
BVP I and the key difference arises from the inequalities, (12) and
(13) which, in turn, affects the corresponding stability estimates as
shown below. Our first result reproduces a well-known result for
the stability of the trivial equilibrium state in two dimensions [7].
We obtain this result by a direct application ofWirtinger’s inequal-
ity (see (13)) and present it here since it does not seem to have been
previously reported in the literature.
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6.1. Static stability in two dimensions

Proposition 8. Define the potential energy

V [φ, λ] =

 1

0

B
2


dφ
ds

2

+ λ cosφ ds (82)

where φ(s) denotes the angle between the tangent vector, rs =

(xs, ys), and the x-axis, B > 0 is the bending stiffness of the rod and λ
is the external load. The boundary conditions are

φ(0) = φ(1) = 0 (83)

accompanied by the fixed-end constraint 1

0
sinφ(s) ds = 0. (84)

Then the trivial equilibrium, φ(s) = 0 for s ∈ [0, 1], is stable in the
static sense for loads

λ < 4Bπ2 (85)

and unstable for loads

λ > 4Bπ2. (86)

Proof. To demonstrate stability, it suffices to show that the second
variation of V [φ, λ] about φ = 0 is strictly positive for loads
λ < 4Bπ2, for admissible perturbations [22,7]. We consider
perturbations of the form

φϵ(s) = ϵη(s)

where

η(0) = η(1) = 0

and 1

0
η(s) ds = 0.

The integral constraint above is a linearization of the nonlinear
constraint, (84), about φ = 0. From [7], it suffices to consider the
linearization of nonlinear constraints whilst computing the second
variation; nonlinear terms can be absorbed into the dominant
linear term for small perturbations.

A direct computation shows that the second variation ofV [φ, λ]
about φ = 0 is given by

δ2V [0, λ] :=

 1

0
B

dη
ds

2

− λη2(s) ds. (87)

Recalling (13), we have that

δ2V [0, λ] ≥

 1

0


4Bπ2

− λ

η2(s) ds, (88)

and hence,

δ2V [0, λ] > 0

for

λ < 4Bπ2

as stated in (85).
To demonstrate instability, it suffices to construct a η∗

∈ C1

([0, 1]; R), subject to the constraints above, for which δ2V [0, λ]
< 0. We take

η∗ (s) = sin 2πs. (89)
One can readily check that
 1
0


dη∗

ds

2
ds = 4π2

 1
0 (η

∗(s))2 ds. We
substitute (89) into (87) to find that

δ2V [0, λ] < 0

for λ > 4Bπ2, as stated in (86). �

Comment: The classical buckling load is, λ = Bπ2, without fixed-
end constraints as in (84).

6.2. Static stability in three dimensions

Proposition 9. Consider the potential energy defined in (6)

V [θ, φ,ψ] =

 1

0

A
2


φ2
s sin2 θ + θ2s


+

C
2
(φs cos θ + ψs)

2

+ F sin θ cosφ ds (90)

subject to the clamped boundary conditions in (3) and the fixed-end
constraints in (4). Then the unbuckled stateΘ0, defined in (5), is stable
in the static sense if A > 2πMC,

|F | < 4Aπ2
− 8π3MC (91)

and M > 0 is the twist parameter defined in (3).

Proof. To demonstrate stability of the trivial equilibrium,we com-
pute the second variation of the potential energy in (90). We con-
sider arbitrary three-dimensional perturbations of the form

θϵ(s) =
π

2
+ ϵα(s)

φϵ(s) = ϵβ(s)

ψϵ(s) = 2πMs + ϵγ (s) (92)

where the C1-functions, (α, β, γ ), vanish at the end-points. Fur-
ther, the functions α and β are required to satisfy the linearization
of the constraints (4) aboutΘ0, as shown below: 1

0
α(s) ds = 0;

 1

0
β(s) ds = 0. (93)

As in [10], we compute the second variation of the potential en-
ergy aboutΘ0 to obtain:

δ2V (Θ0) =
d2

dϵ2
V [θϵ, φϵ, ψϵ]


ϵ=0

= A
 1

0


dα
ds

2

+


dβ
ds

2

ds

+ C
 1

0


dγ
ds

2

− 4πMα
dβ
ds


ds

− |F |

 1

0
α2

+ β2 ds

≥

 1

0
A

dα
ds

2

− (|F | + 2πMC) α2 ds

+

 1

0
(A − 2πMC)


dβ
ds

2

− |F |β2 ds, (94)

where α and β are constrained as in (93). Applying (13) to the in-
tegrals involving α, β above, we deduce that δ2V (Θ0) > 0 for
|F | < 4Aπ2

− 8π3MC as stated above. The positivity of the sec-
ond variation for linearly admissible perturbations is sufficient to
guarantee static stability [12,7]. �
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In [10], we demonstrate thatΘ0 is stable in the static sense for
forces

|F | < π2 (A − 2πMC) ,

for BVP I. As in Proposition 8 for two dimensions, there are differ-
ences in the estimates for the buckling load in three dimensions,
for BVP I and BVP II respectively.

6.3. Dynamic stability for BVP II

Proposition 10. The trivial equilibrium Θ0, defined in (5), is Lia-
pounov stable in the set of C2-solutions, Θ∗(s, t), of the dynami-
cal system (23) subject to the boundary conditions (3) and (4), if
A > 2πMC and for forces

|F | < 4Aπ2
− 8π3MC . (95)

Here, Liapounov stability is defined in terms of the norm (16).

Proof. The proof of Proposition 10 parallels that of Proposition 4
and is an immediate consequence of Proposition 9, the conserva-
tion of energy and the equivalence between the total energy and
the norm defined in (16). �

In [12], the authors address questions related to the equivalence
between static and Liapounov stability for arbitrary planar equilib-
ria, for boundary-value problems with integral constraints of the
form (84). Here, we analyze the stability, both static and dynamic,
of only the trivial equilibrium for BVP II, in a three-dimensional
context. This is because we cannot apply simple integral inequal-
ities of the form (13) to the linearized integral constraints around
arbitrary equilibria and further extensions need to be considered.

7. Conclusions

We study the static and dynamic stability of arbitrary extremals
of the general quadratic strain energy in (6), in a three-dimensional
framework. In particular, we establish the equivalence between
static stability and Liapounov stability under explicit conditions
in Proposition 5. Our work heavily builds on the mathematical
machinery in [12] and we generalize (to some extent) the two-
dimensional results in [12] to three dimensions. As in [12], we use
the direct method due to Liapounov, with the total energy as a
suitable Liapounov function.

The main novelty of our work lies in the derivation of explicit
stability criteria for arbitrary extrema, in Propositions 3 and 5. In
the absence of body forces and couples, there are explicit formulae
for the stationary equilibria in terms of elliptic functions; see [23].
The stability criteria in (26)–(27) can be explicitly computed for
these elliptic functions and the bounds, (26)–(27), can be used to
quantify the stability regimes of nearby equilibria, in the presence
of a terminal load.

We introduce local damping forces in Section 5, analogous to
local drag forces studied in the context of cellular biophysics, in-
cluding bacterial flagellar motion and DNA transcription and repli-
cation [24,25]. The drag force in (72) is proportional to the local
velocity of the tangent vector at each point of the Kirchhoff rod. It is
useful to know that stability results for conservative systems hold
for systems with such drag forces. The natural next step would be
to consider non-local drag forces and study the dynamic evolution
of local energy minimizers i.e. do the solutions remain confined to
a small neighborhood of the local energyminimizer for all times or
can the dynamics drive the system out of equilibrium altogether.

In Section 6, we set up the mathematical machinery for sta-
bility analysis of constrained boundary-value problems in three
dimensions. Our results are clearly only a first step and there
are alternative, very successful approaches to stability analysis in
the literature [4,6,8]. However, our methods are direct and sim-
ple to use and there is scope for a successful generalization to a
larger class of boundary conditions, a larger class of integral con-
straints (e.g. topological constraints as in [26]) and analysis of post-
buckling behavior in Kirchhoff rods.
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