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A B S T R A C T

Recent experimental investigations of small model boats propelled by propagating flexural waves carried out by
the present author and his co-workers demonstrated viability of this type of propulsion as an alternative to a well-
known screw propeller. Since the amplitudes of propagating flexural waves propelling the model boats are large
enough, it is natural to consider the effect of nonlinear distortion of propagating localised flexural waves on
generated thrust. This problem is explored in the present work by adding nonlinear harmonics of propulsive
flexural waves to the well-known Lighthill's formula for generated thrust, which predicts a zero value of thrust in
the case of linear flexural wave of constant amplitude. For simplicity, only the lowest (third) harmonic growing
linearly with the distance of propagation is used. The resulting formula for the averaged thrust shows that, due to
the effect of the third harmonic, the thrust is no longer zero, thereby demonstrating that nonlinear distortion of
the propulsive flexural waves contributes positively to the generated thrust.
1. Introduction

It is well known that the most common method of aquatic propulsion
used in existing marine vessels is a screw propeller. It has a simple design,
and it is reliable and efficient. However, the conventional propeller has a
number of disadvantages. Among them are the presence of cavitation and
generation of the associated under-water noise. Another big disadvan-
tage associated with a propeller is a shaft-sealing problem. This problem
is especially serious for deep-water exploration submarines operating
under high hydrostatic pressures, whereas the need in such submarines
has become apparent during the ecological disaster a few years ago at one
of the deep-water oil rigs in the Gulf of Mexico.

To overcome the above-mentioned problems associated with a pro-
peller, one could use alternative aquatic propulsive systems, in particular
those taking inspiration from nature and attempting to emulate undu-
lating fish swimming modes by using natural or artificially simulated
wave motion in different immersed structures.

One of the first investigations of this kind has been undertaken by
Botman (1965) who demonstrated the feasibility of using a mechanically
excited undulating plate to propel a model catamaran. He has demon-
strated experimentally that this type of propulsion is viable and it has a
number of advantages over a propeller, such as the absence of
shaft-sealing problem, low underwater noise (due to the absence of
2017; Accepted 24 August 2017
cavitation), safe environment for swimmers, small idling drag and good
thrust control. Paidoussis (1976) used a similar model catamaran with a
submerged undulating plate. It is important to note that in both in-
vestigations mentioned above the authors tried to emulate the so-called
‘anguilliform’ fish swimming mode, which is a subcategory of the more
general type of body and/or caudal fin locomotion (BCF) (Sfakiotakis
et al., 1999; Paidoussis, 2004; Colgate and Lynch, 2004).

In more recent works, the anguilliform and other types of BCF loco-
motion have been subjected to numerous investigations and engineering
imitations, using undulating plates, simple oscillating fins, or artificial
waving structures made of linked fragments, each of them being actuated
by a separate servo motor (Triantafyllou and Triantafyllou, 1995; Tri-
antafyllou et al., 2000; Yamamoto et al., 1995; Sfakiotakis et al., 1999;
Wolfgang et al., 1999; Guo et al., 2003; Guglielmini et al., 2003;
Schouveiler et al., 2005; Terada and Yamamoto, 2006; Heo et al., 2007).
One should note, however, that practical applications of anguilliform and
other types of BCF propulsion are limited to unmanned autonomous un-
derwater vehicles (AUV), which can be used for research and surveillance
operations. For manned vessels the anguilliform and BCF propulsion is
unsuitable, as the main body of the vessel in this case would be subject to
intensive vibrations in reaction to the propulsion, which would make
onboard conditions unsustainable for the crew and passengers.

For the above reason, emulating of another type of fish locomotion,

mailto:V.V.Krylov@lboro.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2017.08.049&domain=pdf
www.sciencedirect.com/science/journal/00298018
http://www.elsevier.com/locate/oceaneng
http://dx.doi.org/10.1016/j.oceaneng.2017.08.049
http://dx.doi.org/10.1016/j.oceaneng.2017.08.049
http://dx.doi.org/10.1016/j.oceaneng.2017.08.049


Fig. 1. Propagation of localised elastic waves along the tip of a linear wedge (Kry-
lov, 1994).

Fig. 2. Guided flexural waves propagating along the free edge of a clamped-free plate.
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the so-called median and/or paired fin (MPF) locomotion seems to be
more suitable for manned vessels. One of the subcategories of this
locomotion, called 'rajiform', which seems to be most suitable, is used in
nature by stingrays and skates (Sfakiotakis et al., 1999). There are several
published experimental works that try to emulate rajiform mode of
swimming in order to propel marine vessels (see e.g. Takagi et al., 2006;
Low, 2009). In all these works, the authors use artificially created waving
fins made of linked elements actuated by separate servo motors, which
results in rather complicated constructions of the propulsion systems.

The idea of wave-like aquatic propulsion of manned marine vessels
that is considered in this paper has been first published by the present
author (Krylov, 1994). This idea is based on employing the 'rajiform' type
locomotion which is implemented using a special type of localised
(guided) flexural waves freely propagating along edges of wedge-like
structures immersed in water, also known as 'wedge elastic waves' (see
Fig. 1). Different wedge-like structures supporting this type of guided
localised elastic waves can be attached to a body of a small ship or a
submarine as keels or wings that are to be used for aquatic propulsion.

The above-mentioned wedge elastic waves propagating in contact
with water have been first predicted and investigated theoretically by the
present author (Krylov, 1994, 1998). The principle of using localised
elastic waves as a source of aquatic propulsion is similar to that used in
nature by stingrays. It is vitally important for the application of localised
elastic waves for propulsion of marine vessels that, in spite of vibration of
the fins, the main body of the craft remains undisturbed because the
energy of localised waves is concentrated near the wings’ tips (Krylov,
1994). This permits this method to be used for propulsion of manned
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marine vessels.
Comparing this method of propulsion with the methods developed in

the other works emulating rajiform type locomotion using systems of
actuators (Takagi et al., 2006; Low, 2009), one can conclude that the
former is much simpler as it uses natural wave propagation and does not
need numerous actuators to simulate the localised propulsive wave. Such
a wave already exists in the immersed fin structure under consideration,
and only one actuator is needed to excite the wave of desirable frequency
and amplitude.

The advantages of this method, in comparison with traditional
methods of propulsion, such as propellers and jets, are largely the same as
those associated with BCF propulsion and mentioned by Botman (1965)
and Paidoussis (1976). Namely, the absence of propeller shaft-sealing
problem, low underwater acoustic noise (due to the absence of cavita-
tion), safe environment for swimmers, small idling drag, good thrust
control, and the ability to propel vessels in muddy and weed-infested
environments. The main envisaged applications of the proposed type of
wave-like propulsion are small and medium sized manned deep-water
exploration submarines, as well as autonomous underwater vehicles
(AUV). Other possible applications can be for small and medium surface
marine vessels, in particular for sailing boats (in times of low wind).

Wedge elastic waves that are to be used for this type of propulsion are
very complex in nature. As a rule, they can be described only numeri-
cally, even for the simplest case of wedges in vacuum which was first
considered back in the 1970's by Lagasse (1972) and Maradudin et al.
(1972) (see also the book of Biryukov et al. (1995) and references
therein). The degree of complexity is even higher for wedges in contact
with water. However, for an important case of slender wedges the situ-
ation can be simplified in both cases by using the geometrical acoustics
approximation. Using this approximation, one can solve the equations for
bending vibrations of slender wedges of arbitrary shapes. As a result, one
can obtain relatively simple and physically explicit solutions for localised
waves propagating in wedges in contact with water (Krylov, 1994, 1998;
Krylov and Shuvalov, 2000; Shuvalov and Krylov, 2000). Other known
approaches to analysing wedge elastic waves in contact with water
include Wiener-Hopf techniques (Shanin and Krylov, 2000) and finite
element calculations (Hladky-Hennion et al., 1997). It should be noted
that wedge elastic waves in contact with water that should be used for
propulsion are waves propagating in the subsonic regime of wave
propagation (in comparison with the speed of sound in water). As it is
well known, such waves do not generate sound in the surrounding water.
Adding to this the absence of cavitation normally associated with pro-
pellers, one could expect that the proposed wave-like propulsion should
be much quieter than a propeller.

For the purpose of aquatic propulsion of manned vessels, one can use
wedge waves propagating in wedges of any shapes, including linear
wedges. All of them provide localisation of the wave energy in the lateral
direction. The most suitable, however, appear to be quadratic wedges,
which local thickness is described by the function h(x) ¼ εx2, where x is
the distance from the edge and ε is a constant. In such wedges, all modes
of guided flexural waves are dispersive, i.e. their phase velocities depend
on frequency (Krylov and Shuvalov, 2000). In the case of using these
waves for aquatic propulsion, this would allow an operator of a vessel to
change wedge wave velocity by changing frequency, which may be
convenient for efficient start and acceleration of the vessel from rest.
Another advantage of using quadratic or higher profile wedges is that
they utilise a larger proportion of their surfaces for localised wave
propagation in comparison with linear wedges, which again is beneficial
for aquatic propulsion.

Although waves in quadratic wedges seem to be the most suitable for
aquatic propulsion of manned vessels, it is rather difficult to use them in
the initial experimental investigations due to difficulties in
manufacturing of experimental quadratic or higher profile wedges. To
avoid this problem on the initial stage it is convenient to use the earlier
established similarity between guided wave propagation in quadratic
wedges and in the systems comprising thin ridges embedded into an



Fig. 3. View of the model catamaran with a propulsive rubber plate before testing in the
experimental pool (Krylov et al (2007a,b)).

Fig. 4. Underwater view of the mono-hull model boat with the assembled propulsive
rubber plate (Krylov and Porteous, 2010).

Fig. 5. Underwater view of the hull and of the assembled propulsive plate in action
(Krylov and Porteous, 2010); localised flexural wave propagation in the propulsive plate is
clearly seen (at 3 Hz frequency and 20 mm amplitude).
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elastic half-space (Krylov, 1990b). The latter systems are in turn similar
to thin rectangular plates with one long edge being free and another one
being clamped. Therefore, for experimental purposes, one can use guided
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flexural waves propagating along free edges of the 'clamped-free' plates
(Fig. 2), instead of quadratic wedges. One should keep in mind though
that, in contrast to quadratic wedges, such plates do transmit vibrations
to the main body of a vessel. Therefore, they can not be recommended for
applications in real-life manned vessels.

The first practical implementation and experimental testing of this
type of aquatic propulsion have been carried out using a small model
catamaran (Fig. 3) employing guided localised flexural waves propa-
gating in a vertical clamped-free rubber plate (Krylov and Porteous,
2007a, b; 2010). The test results have shown that the catamaran was
propelled quite efficiently and could achieve the speed of 36 cm/s (or
about one body length per second), thus demonstrating that the idea of
wave-like aquatic propulsion of manned craft by propagating flexural
waves is viable.

The above investigation was followed by the design and experimental
testing of a small-scale mono-hull model boat (Krylov and Porteous,
2010) propelled by a localised flexural wave propagating along the free
edge of a clamped-free rubber plate forming the boat's keel (see Fig. 4).
Experimental investigations have been carried out in a water tank (Fig. 5)
and in open water conditions. The open-water tests included measure-
ments of the boat speed as well as measurements of drag, thrust and
propulsion efficiency. The propulsive plate was driven at the front edge
by the exciter bar (Figs. 4 and 5). The exciter bar, which was driven by a
servo motor, has been designed to allow maximum angle of 30� to be
achieved either side of the centre line. With the exciter bar length used
this gave a maximum amplitude of flexural wave displacement of 33 mm.
To actuate the exciter bar of the propulsion system under consideration a
commercial programmable servo motor was used. The measured results
for steady state craft speed as a function of frequency and amplitude (see
Fig. 6) have demonstrated the viability and efficiency of this type of
propulsion (the maximum swimming speed was about 32 cm/s). The
results for generated thrust (see Fig. 7) have been calculated from the
measured values of steady-state swimming speed (Fig. 6) using the
experimentally measured dependence of the craft's drag as a function of
swimming speed.

It should be noted that the idea and method of wave-like aquatic
propulsion described above have been subsequently explored for an
underwater model of a 'robotic fish' (Liu et al., 2010). The propulsive
system used by the authors was similar to the one that was used earlier to
propel a model catamaran (Krylov et al, 2007a,b). Experimental mea-
surements of generated thrust have shown its positive value. However,
the numerical calculations carried out by the authors using the compu-
tational fluid dynamics (CFD) method predicted a negative value of
thrust, which was in contradiction with the experiments.

In light of the above-mentioned successful experimental demonstra-
tions of feasibility of the wave-like aquatic propulsion using guided
flexural waves, it is important to achieve better understanding of the
processes of generating hydrodynamic thrust by freely propagating
flexural waves. Solution to this problem would allow the developers to
determine optimal parameters of propagating waves and of the geometry
of propulsive wedges and plates providing maximum efficiency of the
propulsion.

The aim of the present paper is to report the results of the initial
theoretical research into the role of nonlinear distortion of propagating
flexural waves in generating thrust that could be applied to small marine
craft experimentally tested in the papers by Krylov et al (2007a,b; 2010).
The main motivation for this investigation was the fact that the ampli-
tudes of flexural waves used for propulsion of the model craft were large
enough, so that nonlinear effects were expected to be important.

It was natural to use the well-known Lighthill's theory of fish loco-
motion (Lighthill, 1960, 1970) as the basis for analysing the role of
nonlinear effects in generating thrust. It should be noted that Lighthill's
theory in its standard form predicts zero thrust at all frequencies when
applied to flexural waves of constant amplitude. Note in this connection
that the localised flexural waves used for propulsion in the papers by
Krylov et al (2007a, b; 2010) were excited from the front edges of the



Fig. 6. Experimental values of steady state swimming speed of a model boat as functions of the propulsive wave frequency and amplitude (Krylov and Porteous, 2010).

Fig. 7. Experimental values of generated thrust for a model boat as functions of the propulsive wave frequency and amplitude (Krylov and Porteous, 2010).
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propulsive plates via mechanical arms, which means that the amplitudes
of these waves were maximal at the front edges of the propulsive plates
and were decreasing (or at best were kept constant) over the length of the
plates towards the rear edges. According to Lighthill's formula (Lighthill,
18
1960), this results in zero thrust, which is in contradiction with the
above-mentioned experiments, in particular with the measured nonzero
values of generated thrust (see Fig. 7). One should note in this connection
that Lighthill's theory of fish locomotion usually assumes that the
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amplitudes of propulsive waves created by fish body motion grow from
zero on the front (at fish heads) to their maximum values at the tails. This
is consistent with fish body motion in nature, but is not compatible with
the behaviour of the propagating localised flexural waves employed for
propulsion in the model vessels used in the experiments of Krylov et al
(2007a,b; 2010).

It is suggested in the present paper that nonlinear distortion of
localised flexural waves in the process of their propagation may play an
important role in generating thrust in real experimental marine craft.
Indeed, the Mach numbers of propagating flexural waves used for pro-
pulsion in the above-mentioned experimental works were as large as
about two (Krylov and Porteous, 2010), which makes the above sug-
gestion quite realistic. This hypothesis is explored in the present work by
adding nonlinear harmonics of propulsive flexural waves, that are
growing with the distance of propagation due to elastic nonlinearity, to
the Lighthill's formula for generated thrust. For simplicity, only the
lowest (third) harmonic of the localised flexural waves is used, similarly
to the earlier work by Krylov and Parker (1992). Also for simplicity, the
effect of wave dispersion on generation of the nonlinear harmonic is
neglected, assuming that the plate-like structures used in the experiments
are short enough in the direction of wave propagation. The sum of the
initial time-harmonic wave and its third nonlinear harmonic having the
amplitude linearly increasing with the distance of propagation is then
substituted into Lighthill's formula to derive the analytical expression for
the averaged thrust.

The derived analytical expression for the averaged thrust shows that,
due to the effect of the third harmonic, the thrust calculated according to
Lighthill's formula is no longer zero, thereby demonstrating that
nonlinear distortion of the propulsive flexural waves may be important
for accurate description of wave-like aquatic propulsion of small marine
craft employing freely propagating flexural waves. Using the derived
expression, the initial numerical estimates of the generated thrust are
carried out for the parameters of the experimental vessels and of the
propulsive flexural waves used in the experiments.

2. Theoretical background

2.1. Lighthill's approach to the theory of wave-like aquatic propulsion

One of the first theoretical papers on wave-like aquatic propulsion in
application to fish locomotion has been published by Lighthill (1960)
who developed a three-dimensional elongated body theory (EBT) (see
also the paper of Cheng and Blikhan, 1994). Soon after Lighthill's pub-
lication, a two-dimensional theory applied to an infinite 'waving plate'
has been published by Wu (1961). Since a three-dimensional approach
seems to be more appropriate for description of the experimental pro-
pulsive systems used in the papers of Krylov et al (2007a,b; 2010), we
will use Lighthill's approach in further consideration.

In his analysis of the problem, Lighthill considered a slender fish that
remains stationary in a steady flow of water with the velocity U in the x-
direction. It is assumed that when the fish is motionless, or ‘stretched
straight’, there is no normal force acting upon the cross section. It was
also assumed that the motion of the fish at any particular cross section
can be modelled as a displacement h in the perpendicular direction (z-
direction), which is a function of x and t. This displacement causes the
velocity of the fluid flowing past the cross section to change from the
initial value of U to a new value, V, which is also a function of distance
and time:

Vðx; tÞ ¼ ∂h
∂t

þ U
∂h
∂x

: (1)

The mean mechanical work over a long time W done by the fish by
making displacements h(x, t) can be expressed in the form (Light-
hill, 1960):
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W ¼ ρU

"
∂h
∂t

VAðxÞ
#L

0

; (2)

where A(x) is the area of the circumscribing circle of the ellipse-shaped
cross section of the fish. Lighthill then assumes that the function A(x)
and/or h(x, t) has a zero value for x ¼ 0 (at fish head). He also assumes
that h(x, t) grows towards the tail to reach its maximum there (at x ¼ L),
which is a good approximation for real fish body motion in nature. In
these cases Eqn (2) reduces to

W ¼ ρU

"
∂h
∂t

VAðxÞ
#
x¼L

; (3)

which results in the following expression for the total thrust produced
(Lighthill, 1960):

P ¼ 1
2
ρAðLÞ

8<
:
�
∂h
∂t

�2

� U2

�
∂h
∂x

�2
9=
;

x¼L

: (4)

Let us now apply the above expressions to the above-described
experimental marine craft investigated in the papers by Krylov et al
(2007a,b; 2010), keeping in mind that localised flexural waves used for
propulsion in these papers were excited from the front edges of the
propulsive plates via mechanical arms, which means that, contrary to
Lighthill's assumption of h(x,t) ¼ 0 at x ¼ 0, the amplitudes of these
waves were maximal at the fronts of the propulsive plates (at x ¼ 0) and
were decreasing (or at best were kept constant) over the length of the
plates towards the rear edges. Also, instead of A(x) ¼ 0 at x ¼ 0, there is
A(x) ¼ A ¼ const ≠ 0.

Let us assume that the flexural waves that were generated in the ex-
periments of the papers by Krylov et al (2007a,b; 2010) are time-
harmonic and have a constant amplitude H along the length of the flex-
ible plate (fin):

hðx; tÞ ¼ H cosðωt � kxÞ: (5)

Here k¼ ω/c is the wavenumber of the localised flexural wave, where
ω is the circular frequency, and c is the velocity of the localised wave
propagation along the propulsive plate. It must be noted that in the case
of localised flexural waves used in the experiments the wave amplitudes
were not constant at different points along the perpendicular direction
(y-axis). However, for simplicity, it is assumed in Eqn (5) that the am-
plitudes are constant everywhere over the plate.

As it follows from Eqn (5), the Lighthill's assumption of h(x, t)¼ 0 at x
¼ 0 is no longer applicable, and in order to calculate the mean me-
chanical work W one should use Eqn (2) instead of Eqn (3). Similarly,
instead of using Eqn (4) to calculate thrust, one should use the full
expression

P ¼ 1
2
ρA

8<
:
�
∂h
∂t

�2

� U2

�
∂h
∂x

�2
9=
;

L

0

: (6)

Here A ¼ π(d2/4), where d is the width of the propulsive plate.
Substituting Eqn (5) into Eqn (6), one can see that the resulting long-

time average thrust is zero. This means that, according to Lighthill's
theory, there is no thrust produced by a propulsive wave of constant
amplitude described by Eqn (5). This contradicts the experimental results
of Krylov et al (2007a,b; 2010) showing that there is a significant amount
of thrust generated (see Fig. 7). Therefore, one can conclude that the
above-mentioned theoretical analysis must be neglecting some mecha-
nisms that are present in real experiments and are responsible for gen-
eration of non-zero thrust.
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2.2. Some other theoretical approaches

It should be noted that the numerical calculations using CFD (Shir-
gaonkar et al., 2008) do predict a non-zero thrust generated by linear
harmonic waves of constant amplitude propagating along a ribbon-fin
system similar to the propulsive plates used in the papers of Krylov et
al (2007a,b; 2010). Moreover, the general behaviour of the predicted
thrust, in particular its growth with frequency, is in line with the
experimental observations of Krylov et al (2007a,b; 2010). The earlier
developed analytical approach to a similar propulsive system (Lighthill
and Blake, 1990) also predicts a non-zero thrust, but the results are
significantly underestimated in comparison with the paper of Shirgaon-
kar et al. (2008).

As was mentioned above, the numerical calculations in the paper of
Liu et al. (2010) have predicted the negative value of thrust for a similar
system propelling a 'robotic fish'. In their calculations, the authors
considered the propulsive wave with the amplitude decaying with
propagation distance. Therefore, this result is in agreement with Light-
hill's formula for this case, but it is in contradiction with the experimental
observations of the same authors demonstrating a positive thrust for
this model.

It is suggested in the present paper that one of the 'missing' mecha-
nisms responsible for generation of non-zero thrust, in addition to those
that can be captured by CFD (Shirgaonkar et al., 2008), may be the
nonlinear waveform distortion (Vinogradova et al., 1979; Whitham,
1974) of the propulsive flexural waves during their propagation from the
front to the rear edge of the plate. A detailed exploration of this idea is
presented in the next section.

3. Accounting for generation of nonlinear harmonics

In this section, we explore the hypothesis that one of the mechanisms
contributing to a positive thrust observed in the experiments described in
the papers by Krylov et al (2007a,b; 2010) may be the nonlinear
distortion of the waveforms of the propulsive flexural waves during their
propagation. Using a spectral interpretation, this nonlinear distortion can
be described as a result of generation of higher order harmonic waves
propagating along the length of the propulsive plate. This hypothesis is
backed up by the experimental data from the paper by Krylov and Por-
teous (2010), as the results for the lowest wave amplitude tested (15 mm
displacement) were practically zero, and only at the larger amplitudes
there was a significant thrust achieved (see Fig. 7).

In the earlier published theoretical paper on generation of nonlinear
harmonics in wedge elastic waves (Krylov and Parker, 1992), it was
shown that in the case of anti-symmetric localised waves, which is also
the case for the propulsive waves used in the above-mentioned experi-
ments (Krylov et al 2007a,b; 2010), the lowest order of nonlinearity is the
third order, as the quadratic term vanishes because of the symmetry of
the problem. Therefore, the description of the nonlinear distortion of the
time-harmonic propulsive waves for the problem under consideration
can be limited to the accounting for the third nonlinear harmonic only,
for simplicity.

In light of the above, let us consider the addition of a nonlinear third
harmonic to the Lighthill's formula, Eqn (6). Based on the results of
Krylov and Parker (1992), we will assume that the amplitude of the
generated third harmonic is proportional to H3, and it grows with dis-
tance x linearly, starting from zero at the front edge of the propulsive
plate. The addition of the third harmonic thus changes the expression (5)
for h(x,t), which now takes the form:

hðx; tÞ ¼ H cosðωt � kxÞ þ FnlðHÞ x cosð3ωt � 3kx� ψÞ: (7)

Here Fnl(H), which is proportional to H3, is a non-dimensional func-
tion describing the effect of nonlinearity, and ψ is the initial phase for the
nonlinear term. The function Fnl(H) also depends on the nonlinear elastic
moduli of the material of the propulsive plate, which constitutes 'elastic
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nonlinearity'. In what follows we will assume that the material of the
propulsive plate is rubber, as it was in the experiments (Krylov et al
2007a,b; 2010).

In the expression (7), it is assumed that H ¼ const, i.e. that the
amplitude of the first (main) harmonic does not change with the distance
as a result of nonlinear distortion. This initial rather rough approxima-
tion, which can be called the 'approximation of a given field' (Vinogra-
dova et al., 1979), will be considered here first. Later on, we will take the
change of amplitude of the first harmonics into account using energy
conservation law.

Substituting Eqn (7) into Eqn (6) and doing the required operations,
we obtain that the generated thrust is no longer zero, and it is defined by
the following expression:

P ¼ 9
4
ρAF2

nlðHÞL2ω2

�
1� U2

c2

�
: (8)

It follows from Eqn (8) that thrust is generated due to the nonlinearity
if the expression in brackets is positive, i.e. when c >U, which is the usual
condition for the velocity c of an elastic wave propagating along the plate
to be larger than the velocity of swimmingU. Although the expression (8)
for the thrust is meaningful, the correctness of the assumption H ¼ const
in application to this problem does not look very convincing.

For that reason, we now consider a more refined approach taking into
account the change in the amplitude of the first harmonic with the dis-
tance of propagation because of the nonlinear generation of the third
harmonic. This can be done using energy conservation law. In the
approximation of only two interacting harmonics, the first and the third,
this law takes the form

ω2H2 ¼ ω2H2ðxÞ þ ð3ωÞ2H2
3ðxÞ ¼ ω2H2ðxÞ þ 9ω2F2

nlðHÞx2; (9)

where H now denotes the initial amplitude of the first harmonics (at x ¼
0), andH(x) represents its changing value at x> 0. It follows from Eqn (9)
that the changing amplitude H(x) can be expressed as

HðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 9 F2

nlðHÞx2
q

: (10)

We now expand the expression in the right-hand side of Eqn (10) into
the Taylor series, retaining terms up to the fourth order in Fnl. This gives
the following approximate expression for H(x):

HðxÞ ¼ H � 9 F2
nlðHÞx2
2 H

þ 81 F4
nlðHÞx4

8 H3
: (11)

Let us now replace Eqn (7) by the more precise expression taking into
account the changing amplitude of the first harmonic H(x) according to
Eqn (11),

hðx; tÞ ¼
�
H � 9 F2

nlðHÞx2
2 H

þ 81 F4
nlðHÞx4
8 H3

�
cosðωt � kxÞ

þ FnlðHÞ x cosð3ωt � 3kx� ψÞ; (12)

and substitute it into Eqn (6) for generated thrust, keeping terms up to the
fourth power of Fnl(H). After rather bulky derivations, it can be shown
that all terms of the second order in Fnl(H) cancel each other, and the
resulting expression for generated thrust takes the form

P ¼ 1
2
ρA

81
4

F4
nlðHÞω2L4

H2

�
1� U2

c2

�
1þ 2

k2L2

��
; (13)

where k ¼ ω/c is the wavenumber of the propagating flexural wave. This
means that the initial ‘approximation of a given field’, Eqn (7), is insuf-
ficient, and the expression for generated thrust, Eqn (8), following from
that approximation is incorrect as it does not take into account some
terms of the second order in Fnl(H) that appear due to the change of
amplitude of the first harmonic with the propagation distance, which



Table 1
Values of the parameters used in calculations.

Parameter Notation Values

Wedge wave displacement amplitude (m) H 0.028; 0.022
Wedge angle (degrees) θ 5
Mass density of rubber (kg/m3) ρs 1 100
Shear wave speed in rubber (m/s) ct 30
Swimming speed (m/s) U 0.23; 0.19
Propulsive length (m) L 0.25
Effective width of fin (m) d 0.055
Poisson ratio of rubber σ 0.49

Fig. 8. Calculated waveform distortion of a localised flexural wave due to its nonlinear
propagation at frequency f ¼ 4.5 Hz and amplitude H ¼ 28 mm along the tip of a rubber
wedge immersed in water; calculations have been carried out for x ¼ 0 (solid line) and for
x ¼ 0.17 m (dashed line).

Fig. 9. Calculated thrust as a function of the propulsive wave frequency for the wave
amplitude of 28 mm (solid line) in comparison with the corresponding experimental data
(boxes) obtained for a mono-hull model boat (Krylov and Porteous, 2010).
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results in the mutual cancellation of all terms of the same (second) order
in Fnl(H), and thus in zero thrust generated in this order of nonlinearity.
Using a more refined formula for h(x, t), Eqn (12), and keeping all the
terms of the fourth order versus Fnl(H) in further derivations results in the
expression for generated thrust, Eqn (13), that is proportional to the
fourth power of Fnl(H).

It is convenient to simplify Eqn (13) using a typical relationship be-
tween the parameters of the problem. Usually, L ≈ 2λ ¼ 4π/k. Therefore,
21
k2L2 ≈ 16π2 ≈ 158 and 2/(k2L2) ≈ 0.013, which is much less than 1. Thus,
the second term in round brackets can be neglected. This results in a
simplified expression for generated thrust:

P ¼ 1
2
ρA

81
4

F4
nlðHÞω2L4

H2

�
1� U2

c2

�
: (14)

Let us now specify the nonlinear function Fnl(H). The easiest way to
proceed is to use the results of the work by Krylov and Parker (1992),
where this function has been calculated for wedge elastic waves in linear
wedges, which are localised non-dispersive flexural modes propagating
along wedge tips (Fig. 1). Although linear elastic wedges are not exactly
the structures that have been used in the experiments of Krylov et al
(2007a,b; 2010), they are interesting for their own sake and they also can
be used for rough estimates of the experimental situation. According to
Krylov and Parker (1992), the function Fnl(H) for linear elastic wedges in
vacuum takes the form

FnlðHÞ ¼ 1
4
P
Q

b
a
θ2

n2
ðk HÞ3: (15)

Here P and Q are dimensionless parameters depending on modal
shapes of wedge modes, a ¼ E/12(1-σ2) ¼ ρscp2/12 is a non-specified
parameter, where E is the Young's modulus, σ is the Poisson's ratio, ρs
is the mass density of the wedge material, and cp is the velocity of plate
compression waves for the wedge material, θ is the wedge angle, and k ¼
ω/c is the wavenumber of a wedge mode characterised by the number n
¼ 1, 2, 3, …, where c is the velocity of wedge mode of number n (for
shortness, k and c are written without index n), and the value of ψ in Eqn
(12) should be taken as -π/2. The parameter b¼ 0.4f(ct/cl)6 describes the
nonlinear properties of the structure. Here ct and cl are the velocities of
shear and longitudinal elastic waves in the wedge material, and f is the
relevant 4th order elastic module describing cubic nonlinearity.

For linear elastic wedges immersed in water, we will calculate Fnl(H)
using the same Eqn (15), but with the wavenumbers k ¼ ω/c being
replaced by those for wedge waves in water. This means that instead of
wedge wave velocities c for wedges in vacuum (Krylov, 1989, 1990a),

c ¼ cpffiffiffi
3

p θ n; (16)

we will use the expression for wedge wave velocities for wedges in water
(Krylov, 1998),

c ¼ ctA
�5=2
0 D�3=2ðπnÞ3=2θ 3=2; (17)

where

A0 ¼ 61=5
�
ρ

ρs

�1=5

½2ð1� σÞ�1=5; (18)

and D ¼ 2.102.

4. Numerical calculations and discussion

Numerical calculations have been carried out to determine the thrust
generated by the first order (n ¼ 1) localised wedge mode for a given
swimming speed U using formulas (14), (15) and (17), (18) for the pa-
rameters of the problem shown in Table 1. Because of the lack of reliable
information about the forth order elastic moduli of rubber, we used a
typical value of the relation between the forth and second order moduli,
assuming that f/E ≈ 10. For the fraction P/Q, we took the estimated value
of 2, which was based on the numerical calculations of the paper by
Krylov and Parker (1992). For convenience of comparison with the ex-
periments (Krylov and Porteous, 2010), the thrust was calculated in
gramms, rather than in Newtons. We remind the reader that the rela-
tionship between the same forces F expressed in Newtons (N) and in



Fig. 10. Calculated thrust as a function of the propulsive wave frequency for the wave
amplitude of 22 mm (solid line) in comparison with the corresponding experimental data
(boxes) obtained for a mono-hull model boat (Krylov and Porteous, 2010).
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gramms (g) is

FðgÞ ¼ FðNÞ
g

1000
; (19)

where g ¼ 9.81 m/s2 is gravity acceleration.
Before discussing the results for generated thrust, it is instructive to

visualise the nonlinear waveform distortion of the propagating localised
flexural wave calculated according to Eqns (12) and (15). The results are
presented in Fig. 8; the waveforms are shown for the initial harmonic
wave at frequency f¼ 4.5 Hz and amplitudeH¼ 28mm (at x¼ 0) and for
the nonlinearly distorted wave after its propagation until the
point x ¼ 0.17 m.

The results of the calculations of thrust are shown in Fig. 9 in the
frequency range 2–4.8 Hz for the flexural wave amplitude H ¼ 28 mm.
For comparison, the experimental results of Krylov and Porteous (2010)
are also shown in Fig. 9 by boxes (see also Fig. 7 for experimental data).

The results of the calculations of thrust for the flexural wave ampli-
tude H ¼ 22 mm are shown in Fig. 10 in the same frequency range. Also,
the corresponding experimental results of Krylov and Porteous (2010)
are shown in Fig. 10 by boxes.

As can be seen from Figs. 9 and 10, the nonlinear mechanism gives
rather large contributions to thrust at higher frequencies, but it signifi-
cantly underestimates the experimental values of thrust at lower fre-
quencies. This means that the nonlinear mechanism of thrust generation
is important at higher frequencies. However, in the current stage of the
theory, its contribution to thrust grows very rapidly with frequency,
which does not agree well with the experimental values. One of the
possible reasons for that could be the fact that elastic wedges of linear
profile have been used in this paper for modelling the real plate-like
propulsive structures used in the experiments. Wedge elastic waves
propagating in wedges of linear profile have no dispersion, whereas
localised flexural waves propagating in clamped-free plates used in the
experimental propulsive systems are dispersive. This could have a sub-
stantial effect on limitation of the nonlinear generation of the third
harmonic in the experimental plate-like propulsive structures. Further
theoretical and experimental research would be required in
this direction.

5. Conclusions

The results of the initial research into the effect of elastic nonlinearity
on the theory of aquatic propulsion by propagating flexural waves pre-
sented in this paper demonstrate that the nonlinear distortion of the
22
propagating flexural waves may be important for generating a positive
thrust at higher frequencies.

The comparison between the theoretical calculations of generated
thrust and the experimental measurements at higher frequencies, where
the contribution of nonlinear distortion is essential, shows that the theory
predicts a too rapid increase of thrust with frequency. One of the possible
reasons for that could be the modelling of the real plate-like propulsive
structures used in the experiments by elastic wedges of linear profile that
cause no dispersion for propagating localised flexural waves and thus
facilitate the development of nonlinear effects during wave propagation.

Further theoretical and experimental research in this direction is
needed. In particular, it would be important to acquire experimental
evidence of the nonlinear distortion of localised flexural waves propa-
gating in immersed propulsive wedges and plates.
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