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A B S T R A C T

This paper investigates the use of constrained surrogate models to solve the multi-design optimization problem of
a flexible hydrofoil. The surrogate-based optimization (EGO) substitutes the complex objective function of the
problem by an easily evaluable model, constructed from a limited number of computations at carefully selected
design points. Associated with ad-hoc statistical strategies to propose optimum candidates within the estimated
feasible domain, EGO enables the resolution of complex optimization problems. In this work, we rely on Gaussian
processes (GP) to model the objective function and adopt a probabilistic classification method to treat non-explicit
inequality constraints and non-explicit representation of the feasible domain. This procedure is applied to the
design of the shape and the elastic characteristics of a hydrofoil equipped with deformable elements providing
flexibility to the trailing edge. The optimization concerns the minimization of the hydrofoil drag while ensuring a
non-cavitating flow, at selected sailing conditions (boat speed and lifting force). The drag value and cavitation
criterion are determined by solving a two-dimensional nonlinear fluid-structure interaction problem, based on a
static vortex lattice method with viscous boundary layer equations, for the flow, and a nonlinear elasticity solver
for the deformations of the elastic components of the foil. We compare the optimized flexible hydrofoil with a
rigid foil geometrically optimized for the same sailing conditions. This comparison highlights the hydrodynamical
advantages brought by the flexibility: a reduction of the drag over a large range of boat speeds, less susceptibility
to cavitation and a smaller angle of attack tuning range.
1. Introduction

Created in 1851, the America's Cup trophy is one of the oldest in-
ternational sports competition. The race opposes two sailing boats, rep-
resenting a defender and a challenger yacht clubs, that race one against
the other to be the winner of the America's Cup match races. In each
edition, specific rules are provided by the defender in accordance with
the Deed of Gift, which define the format of the regatta, the location of the
races and restrictions on the type of boats allowed to compete. When a
challenging yacht club wins the match races, it becomes the defender and
gains the stewardship for the next America's Cup edition. The 35th edi-
tion, which took place in June 2017, has been raced on so-called AC50s
(M. Sacher).
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catamarans with size fixed to 50 feet, equipped with hydrofoils and wing-
sails. The hydrofoils are expected to be a key component of the AC50s
performance, and the competing teams are dedicating a growing fraction
of their design effort to their optimization in comparison to older yacht
design approach (Richards et al., 2001). The optimization aims at
designing hydrofoil with a minimal drag force over a whole range of boat
speeds (BS), while ensuring a sufficient lift force for the boat to fly,
especially at the lowest BS. The design of the hydrofoil is restricted by the
AC Class Rule documents. In particular, the rule number 11.11 states:
Daggerboard components shall be rigidly fixed to each other and the dagger-
board shape shall not be adjusted while racing. One possible way to comply
with this rule, while allowing for some adaptivity of the shape with the
arch 2018
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BS, is to design a hydrofoil composed of rigidly mounted components,
undergoing large elastic deformations under the hydrodynamical loads
and without crew adjustments (Hueber et al., 2017). For instance, a
reduction of the hydrofoil camber, with increasing BS and hydrodynamic
loads, can be obtained using a flexible trailing edge.

Drag reduction by shape optimization is an important research topic,
with many applications in domains ranging from aeronautic to wind-
energy recovery. Multiple studies have been proposed, based on phys-
ical models with different levels of complexity. For instance, the
geometrical optimization of an airfoil with a two-dimensional steady
flow model is considered in Ribeiro et al. (2012) when the unsteady flow
situation is treated in Srinath and Mittal (2010). Complex optimizations
for a range of Mach numbers of a two-dimensional airfoil have been
performed by Li et al. (2002), and the robust optimization for uncertain
flows and geometries is considered in Papadimitriou and Papadimitriou
(2016). The numerical optimization of hydrofoils is to our knowledge
much rarer, and the hydrofoil literature generally focuses on the stability
(Inukai et al., 2001), wake energy reduction (Kandasamy et al., 2011),
and free surface elevation (Duvigneau and Visonneau, 2004) aspects.

This paper reports the development and application, in partnership
with the Groupama Team France (GTF) design team, of an Efficient Global
Optimization (EGO) procedure tailored to the flexible hydrofoil optimi-
zation problem. We restrict ourselves to the optimization of a two-
dimensional hydrofoil consisting of rigid forward and trailing parts,
connected by a deformable element. The objective of the optimization is
the reduction of the hydrodynamic drag at several BS and lift conditions,
with cavitation constraints. Cavitation is indeed an important concern for
the hydrofoil performance (Sedlar et al., 2016), but its numerical pre-
diction remains a difficult problem, as shown for instance in Leroux et al.
(2005), Coutier-Delgosha et al. (2007), Ducoin et al. (2009), Akcabay
et al. (2014). These difficulties explain that cavitation aspects are usually
not considered in hydrofoil shape optimization, unless when the objec-
tive is precisely to delay the cavitation, such as in WEI et al. (2015).

The optimization of flexible hydrofoils raises many challenges. First it
requires multi-design variables to prescribe the foil geometry at rest
(unloaded shape), on the one hand, and the elastic properties and the
internal structure of the deformable parts, on the other hand. Second, the
evaluation of the performance of a given design requires the resolution of
a fully nonlinear fluid-structure interaction (FSI) problem, possibly
combining different boat speeds, with a numerical cost that inherently
limits the number of designs that can be evaluated. Finally, for a given
design, the consideration of non-cavitating flow requires an appropriate
treatment of constraints that are costly to evaluate. As a matter of fact,
the numerical optimization requires dedicated techniques to circumvent
the computational complexity of the problem. In the present work, the
numerical modeling involves the coupling of the two-dimensional vortex
lattice method solver XFOIL (Drela, 1989), to compute the flow, with the
structural ARA software developed by K-Epsilon (Durand et al., 2014), to
compute the hydrofoil deformations. Even for this two-dimensional
modeling, the computational times prevent the direct optimization
based on the FSI solution with standard methods.

We then rely on a surrogate model to reduce the computational
burden of optimizing complex systems with costly objective function
estimation (Simpson et al., 2001). Specifically, we use Gaussian processes
(Kleijnen, 2009) surrogate models with Efficient Global Optimization
(EGO) strategies (Jones et al., 1998), that have been previously applied
to aerodynamic drag reduction (Jeong et al., 2005), vibration reduction
for rotating aircrafts (Glaz et al., 2009), optimization of FSI problems
(Aghajari and Sch€afer, 2015) and sail trimming optimization (Sacher
et al., 2017). The classification approach for discontinuous or binary
constraints proposed in Basudhar et al. (2012) is extended to the treat-
ment of the cavitation constraints in the optimization procedure. In our
approach, The admissible domain is approximated using Least-Squares
Support Vector Machine (LS-SVM) (Suykens and Vandewalle, 1999)
regression from the previous observations. An original contribution of
the work is a new probabilistic treatment of the constraints which is
63
designed to mitigate the risk of exploring unfeasible solutions (which
yield a cavitating flow).

This optimization procedure used in the present work is briefly
described in Section 2, while Section 3 discusses the formulation of the
optimization problem for the flexible hydrofoil, including the definition
of the optimization variables and a brief discussion of the numerical
models. Section 4 presents the optimization results, emphasizing on
impact of the flexibility of the performance of the optimal hydrofoil. In
particular, these performances are contrasted with the case of a rigid
hydrofoil optimized for the same conditions. We have tried to provide as
much as possible quantitative results, but for confidentiality reasons
related to the partnership with the GTF design team, some values can not
be provided and only trends are reported. Finally, conclusions and rec-
ommendations for future development are given in Section 5.

2. GP-based constrained optimization

The objective is to estimate the solution xopt of the following abstract
optimization problem

min
x2Ω

P ðxÞ; s:t: QðxÞ � 0;

where x 2 ℝd is the vector of control variables, Ω the optimization
domain, P : Ω 7!ℝ the objective function and Q : x7!ℝm is the vector of
constraints. Even in the unconstrained case, m ¼ 0, finding the global
optimum of P can be very costly, in particular when its evaluation is
numerically expensive. The use of surrogate models for P is then a
classical solution to reduce the computational burden of complex systems
optimization (Simpson et al., 2001). We use Gaussian processes (GP)
(Kleijnen, 2009) which, owing to their statistical nature, provide both a
prediction of the objective function and a measure of the uncertainty
(variance) in the prediction. These features are appealing in optimiza-
tion, as they can be used to derive rigorous optimization strategies based
on the maximization of the Expected Improvement (EI) criterion, leading
to methods referred globally as the Efficient Global Optimization (EGO)
(Jones et al., 1998) methods. In Section 2.1 we review the construction of
the GP model for P and the resulting optimization strategy in the un-
constrained case. The constrained case is considered in Section 2.2.

2.1. Unconstrained EGO using GP

Consider a set of n training inputs points Xn ¼ fx1; …; xng, each
associated to a noisy observation yi of the objective function. Specifically,
it is assumed that yi ¼ P ðxiÞþ εi, where the εi are Gaussian measure-
ment noises, assumed for simplicity independent and identically
distributed with variance σ2ε . The GP construction considers that P is a
realization of a zero-mean multivariate Gaussian process with covariance
function CP . In this work, we consider the multidimensional squared
exponential covariance functions defined by

CP

�
x; xopt;Θ

�
≐θ1

Y
i¼1

d

exp

 
�ðxi � x0 iÞ2

2l2i

!
þ θ2; (1)

where Θ ¼ fθ1; θ2; l1; l2;…; ldg is a vector of hyper-parameters to be
inferred from the observations. From the conditional rules of joint
Gaussian distributions (Rasmussen and Williams, 2006), the best pre-

diction cP nðxÞ of P ðxÞ, i.e. the mean of y, and the prediction variancebσ2
P ðxÞ are given by

cP nðxÞ ¼ kTðxÞ�CðΘÞ þ σ2ε I
��1Yn; (2)

bσ2
P ðxÞ ¼ κðxÞ þ σ2ε � kTðxÞ�CðΘÞ þ σ2

εI
��1kðxÞ: (3)

where CðΘÞ 2 ℝn�n is the covariance matrix with entries Ci;jðΘÞ≐CP ðxi;
xj;ΘÞ;1 � i;j � n, κðxÞ≐CP ðx;x;ΘÞ, kðxÞ is the covariance vector between
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the observations in Xn and x, and I is the identity matrix of ℝn. The hyper-
parameters Θ and noise variance σ2ε can be determined by maximizing
the log-marginal likelihood (Rasmussen and Williams, 2006) using an
evolution strategy algorithm (Hansen, 2006). More details on GP
meta-models can be found in (Rasmussen and Williams, 2006).

Let bxn be the optimum of cP nðxÞ. It is expected that bxn � xopt if the

approximation error cP n �P is small enough. The advantage of mini-

mizing cP n instead of P is that GP models are usually inexpensive to
evaluate compared to the original objective function. To control the error
in the approximation, one proceeds sequentially by adding progressively
new observation points in the area of interest. A deterministic optimi-
zation procedure would choose the next point xnþ1 as the optimal point ofcP n. However, the GP model provides probabilistic information that can
be exploited to propose more robust strategies based on merit functions,
which combine the prediction and its variance. In this work, we use the
Augmented Expected Improvement (AEI) merit function (Huang et al.,
2006), which estimates the expected progress in the objective, taking
into account the noise in the observed values and the prediction variance:

AEIðxÞ ¼ EIðxÞ

0B@1� σεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2
P ðxÞ þ σ2

ε

q
1CA; (4)

where the Expected Improvement EIðxÞ is defined by

EIðxÞ ¼ bσP ðxÞ½uðxÞΦðuðxÞÞ þ ϕðuðxÞÞ�; (5)

uðxÞ ¼
cP nðx�;nÞ �cP nðxÞbσP ðxÞ ; (6)

with Φ and ϕ the cumulative and density functions of the standard
Gaussian distribution, and x�;n 2 Xn is the current effective best solution
(see Huang et al. (2006)). The optimum xnþ1 of the AEI is added to Xn,
and P is evaluated at the new point providing ynþ1. Setting n←nþ 1, a
new iteration can start updating the GP model with the new observation.
Overall, each iteration requires one computation of the objective and the
resolution of two optimization problems: a first one for the
hyper-parameters of the GP model, and a second one to find the AEI
optimum. The iterations of the GP-based optimization problem are
continued until a stopping criterion is satisfied or the resources allocated
to the optimization have been exhausted.

2.2. EGO under constraints, a classification based approach

EGO methods with inequality constraints was considered in Schonlau
(1997). The key idea was to rely on m additional surrogates to estimate
the constraints QiðxÞ. For Gaussian Process models, one can easily
determine the probability PiðQi � 0jxÞ that a constraint Qi is satisfied at x
and, assuming the independence of the constraints probability, to come
up with the consolidated probability PðQ � 0jxÞ ¼Πm

i¼1PiðQi � 0jxÞ. This
probability is used to modify the unconstrained AEI criterion and favor
feasible regions:

AEIQðxÞ ¼ AEIðxÞPðQ � 0jxÞ:
Although effective in many problems, this GP modeling of the con-

straints faces several limitations. First, its computational cost increases
with the number m of constraints and can be an issue for problems with
large m. Second, the approximation by GP models assumes a sufficient
smoothness of the Qi, which must be evaluable for almost every x 2 Ω.
This rules out the case of binary constraints (feasible/infeasible) and
models having no solution for . Finally, the approach is also
limited to situations where the feasible domain has an explicit repre-
sentation in terms of the constraints. The optimization of hydrofoils
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reaches some of these limitations as it is difficult to express feasible ge-
ometries in terms of constraints on design parameters, while some values
may lead to uncomputable solutions.

Classification methods recently proposed in Basudhar et al. (2012)
are better suited to deal with discontinuous or binary constraints in a
GP-based optimization procedure. The binary classifier considers two
classes Cþ and C� over Ω, corresponding to the feasible and unfeasible
domains respectively. Each xi of Xn is equipped with a value zi ¼ 	1
depending on its membership C	. To predict the class of a new point xwe
introduce a classification function h : x 2 Ω→ℝ, such that zðxÞ ¼
signhðxÞ. A Least-Squares Support Vector Machine (LS-SVM) (Suykens
and Vandewalle, 1999) is used to construct h. The LS-SVM method ex-
tends the original Support Vector Machine (SVM) classifier Vapnik
(1995) to quadratic penalization, resulting in a linear (but non-sparse)
system to be solved (see below). Further details and discussion on SVM
and LS-SVM methods can be found in Cawley (2006).

The LS-SVM method (Suykens and Vandewalle, 1999) is a linear
classifier, for Cþ and C�, in a feature space induced by the transformation
ϕ : Ω→F :

hðxÞ ¼ wTϕðxÞ þ b: (7)

Here, w and ϕðxÞ are the weights and features vectors, while b 2 ℝ is a
constant. The feature space F is generated by a reproducing kernel r :
Ω�Ω→ℝ representing the inner product between images in F of vec-
tors: rðx;xoptÞ ¼ ϕðxÞ⋅ϕðxoptÞ. We use the classical Gaussian kernel,

r
�
x; xopt

� ¼ exp
�
� x� xopt

2

2λ2

�
; (8)

with scale factor λ 2 ℝ to be adjusted. The LS-SVM parameters ðw; bÞ
satisfy the primal constrained optimization problem

min
w;b;e

1
2
kwk2 þ γ

1
2

Xn
i¼1

e2i ;

s:t: zi ¼ wTϕðxiÞ þ bþ ei; i ¼ 1;…; n;

(9)

With trade-off parameter γ 2 ℝþ (to be fixed) and relaxation variables
ei allowing for miss-classification. By writing the Lagrangian of the
optimal problem, we introduce the αi 2 ℝ, that are the Lagrange multi-
pliers of the constraints. Denoting z ¼ ðz1⋯znÞT, the optimality condi-
tions of the Lagrangian are used to derive a linear system for the dual
model parameters b and α ¼ ðα1⋯αnÞT,�
Rþ γ�1I 1

1T 0

��
α
b

�
¼
�
z
0

�
; (10)

where R 2 ℝn�n is the kernel matrix with Ri;j ¼ rðxi; xjÞ. This system is
solved via a Cholesky factorization (Cawley, 2006), and h in (7) is
expressed in terms of dual model parameters to obtain

hðxÞ ¼
X
i¼1

n

αirðxi; xÞ þ b: (11)

The LS-SVM classifier depends on two parameters, γ and λ, to be fixed
when solving (10). We rely on a Leave-One-Out procedure to determine γ
and λ that minimize the Predicted Residual Sum-of-Squares (PRESS)
criterion (Allen, 1974). A simple expression for the predicted residuals is
proposed in Cawley and Talbot (2003), which is presently minimized for
λ and γ with the CMA-ES algorithm (Hansen, 2006).

Finally, the LS-SVM binary classifier is extended to a probabilistic
classification, relating h in (11) to the probability of the class Cþ, denoted
PðCþ		xÞ. A comparison of several probability models for the LS-SVM
classification is provided in Van Calster et al. (2007). We use the sig-
moid function (Platt, 1999) and expressing the probability of Cþ as
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P
�
Cþ		x� ¼ 1

1þ expðAhðxÞ þ BÞ : (12)
The parameters A and B of the sigmoid are determined by minimizing
the probability of misclassification, see Platt (1999), Lin et al. (2007). In
practice, the probability P goes to 1 (resp. 0) as the classifier is certain
that x is feasible and belongs to Cþ (resp. unfeasible and belongs to C�),
while a value of P ¼ 1=2 denotes a complete uncertainty in the classifi-
cation. This can occur because x is far from any observations in Xn or
close to the interface between the two classes.

Following Schonlau (1997) and Basudhar et al. (2012), the proba-
bility of feasibility/evaluability is used to derive from the AEI a merit
function and select a new point xnþ1 that yields the highest expected
improvement while having a high probability of feasibility/evaluability.
To this end, Basudhar et al. (2012) uses a modified version of the sigmoid
function in (12) that accounts for the distances to the closest classified
observations (in Xn). While improving the misclassification rate, this
modification results in a discontinuous merit function which prevents the
use of gradient-based optimization tools to determine xnþ1. Further, their
strategy requires the addition of dþ 1 new observation points per iter-
ation (to maintain isotropy in the observation points distribution) with
an associated cost deemed too important in our application. Instead, we
use the original definition (12) to extend the unconstrained AEI and we
consider a sequential infilling strategy that follows the EGO iterations, by
selecting alternatively one of the present definitions for xnþ1:

xnþ1 ¼ argmax
x2Ω

AEIðxÞP�Cþ		x�; (13)

xnþ1 ¼ argmax
x2Ω

AEIðxÞ s:t: P
�
Cþ		x� � ρ; (14)

xnþ1 ¼ argmin
x2Ω

cP nðxÞ s:t: P
�
Cþ		x� � ρ; (15)

xnþ1 ¼ argmax
x2Ω



AEIðxÞP�Cþ		x��1� P

�
Cþ		x���: (16)

The first definition in (13) corresponds to the extension of the AEI
favoring points with high chance of feasibility. The second expression
(14) maximizes the original AEI definition by enforcing a minimal
probability ρ of feasibility; we use ρ ¼ 0:5. In (15), the predicted cost is
directly minimized and enforced by ρ. Finally (16) combines the feasi-
bility and infeasibility probabilities to favor areas where the classifica-
tion is the most uncertain (P 
 0:5), with the objective to improve the
exploration of the feasible domain boundaries. In practice, the new
points xnþ1 are determined using CMA-ES algorithms without Hansen
(2006) or with constraints Arnold and Hansen (2012), depending on the
considered definition.

As a final note, we remark that the optimization procedure can
generate points that are found unfeasible in the sense that P ðxnþ1Þ
cannot be computed. This is typically the case when xnþ1 corresponds to
an impossible geometrical configuration, or to an extreme situation for
which the numerical code is not able to converge. It that case, the point is
deemed infeasible, setting znþ1 ¼ � 1, but no value of the objective
function is provided and the construction of the GP model for P simply
disregard the missing data. As a result, the GP model of P and the LS-
SVM classification can involve different numbers of observations.

3. Hydrofoil optimization setup

This Section introduces the formulation of the constrained optimi-
zation problem for the flexible hydrofoil, as defined in collaboration with
GTF. Note that some details of the optimization problem are omitted for
confidentiality reasons. We also briefly discuss the fluid and structural
solvers used in this work.
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3.1. Problem formulation

The optimization of the hydrofoil uses control variables x which
parameterize the geometry and of the hydrofoil at rest, i.e. in the absence
of fluid loads, and the elastic properties of the element that gives flexi-
bility to the trailing edge (see below). The optimization concerns the
minimization of the hydrofoil drag force over a set of 4 sailing conditions,
with an additional set of 4 constraints designed to prevent the cavitation
of the flow. Each condition corresponds to a prescribed boat speed and an
hydrodynamic lift force developed by the hydrofoil. Note that the 4 drag
points and the 4 constraints correspond to different conditions so the
evaluation of the objective function P and the vector of constraints Q at
given x requires solving 8 fluid-structure interaction problems. The
optimization problem is written as

min
x2Ω

P ðxÞ ¼
X
i¼1

wiCdi ðxÞ;

s:t:

8>><>>:
Q1ðxÞ ¼ �Cpmin1 ðxÞ � λ1
Q2ðxÞ ¼ �Cpmin2 ðxÞ � λ2
Q3ðxÞ ¼ �Cpmin3 ðxÞ � λ3
Q4ðxÞ ¼ �Cpmin4 ðxÞ � λ4

:
(17)

Here, the Cdi are the drag force coefficients, the wi > 0 are prescribed
weights, the Cpmini are the minimum pressure coefficients, and the λi are
the cavitation numbers defined by

λ ¼ p0 � pv
1
2 ρU

2
0

: (18)

We have denoted U0 and p0 the reference velocity (that is, the boat-
speed) and pressure, ρ the fluid density, and pv the saturated vapor
pressure. The reference pressure is taken as p0 ¼ patm þ ρgh, where patm is
the atmospheric pressure, g is the gravity acceleration, and h is the im-
mersion depth of the hydrofoil. The minimum of the pressure coefficient
is defined by Cpmin ¼ pmin�p0

0:5ρU2
0
, where pmin is the minimal pressure over the

hydrofoil surface. The simplest criterion to prevent cavitation is to ensure
that the minimal pressure remains higher than the vapor pressure:
pmin � pv. This condition can be expressed in terms of cavitation number λ
to obtain the conditions on the minimum pressure coefficient Cpmin to
formulate the constraints in (17).
3.2. Hydrofoil parametrization

The geometric and elastic characteristics of the flexible hydrofoil are
defined starting from a baseline geometry provided by GTF. The baseline
geometry was produced by an optimization procedure using an evolu-
tionary method (B€ack and Schwefel, 1993) and assuming a complete
rigidity of the hydrofoil (no elastic effects). The geometry at rest of the
flexible hydrofoil is defined by rotating the sections of the baseline ge-
ometry (rigid hydrofoil), without changing the sections thickness. We
denote pðsÞ the law of the sections rotation angle, where 0 � s � 1 is the
reduced coordinate along the chord of the baseline geometry. In practice
we restrict the rotation to the last 30% of the hydrofoil chord (pðsÞ ¼ 0;
s � 0:7) and use a smooth B-Spline interpolation (Piegl and Tiller, 1997;
Wang et al., 2006) of pðsÞ between 4 control points 0:7 < s1 < … < s4 ¼
1, as illustrated in Fig. 1. We shall refer to the rotation angles p1;…;4 at the
control points as the geometrical parameters.

Regarding the flexibility of the hydrofoil, the results presented in the
following consider a perfectly rigid hydrofoil except for an elastic
element located in the backward part of the hydrofoil. As illustrated in
Fig. 2, the location of the elastic element is prescribed by the reduced
coordinates of its starting and ending points 0 < s1 < s2 < 1 (resp.
0 < ds1 < ds2 < 1) on the lower (resp. upper) surface of the baseline
hydrofoil. The deformable element is made of a homogeneous material
having a Young modulus ELST; it is further reinforced by a beam (shown



Fig. 2. Illustration of the structural parameters.

Fig. 1. Illustration of the unloaded geometry definition using a rotation of the
baseline geometry. The top plot shows the B-Spline approximation of the rota-
tion rule pðsÞ based on the rotation angles p1 to p4 at the control points. The
bottom plot compares the baseline (red) and unloaded flexible geometries, the
green vertical line indicating the chord position s ¼ 0:7. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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in black in Fig. 2) on the pressure surface (lower side). The elastic beam
has a progressive Young modulus varying linearly between s1 and s2,
with mean value EBeam and slope CBeam. The use of a single, homoge-
neous, flexible element is supported by preliminary optimization studies
briefly presented in the Appendix at the end of the paper. Overall, the
parametrization of the deformable part involves 7 parameters (4 geo-
metric coordinates and 3 elastic properties) globally referred to as the
structural parameters.

3.3. Fluid-structure interaction solver

Given a value of the geometric and structural parameters, the eval-
uation of the objective function and the constraints of the optimization
problem calls for the resolution of 4 FSI problems (one for each condition
of the objective function). We assume that these problems have steady
solutions for all values of the parameters and we rely on a quasi-steady
approach to treat the coupling between the structural and fluid solvers.

For the flow solver, we rely on XFOIL (Drela, 1989) which has been
developed for many years and is widely used for many aerodynamic
applications. While based on a two-dimensional airfoil panel code
method, XFOIL can provide viscous and inviscid analyses. It incorporates
a two-equation integral formulation of the viscous boundary layer and
the approximate eN envelope method (Van Ingen, 2008); it allows the
prediction of transition points and separation bubble, through the reso-
lution of the boundary layer and the transition equations which is based
on a Newton method. Further details on XFOIL are given in Drela (1989)
and it is compared with other CFD methods and solvers in Morgado et al.
(2016). We only mention that the setting of our optimization problem
imposes to enforce a prescribed lift force in the flow computation. This is
achieved in XFOIL by determining the Angle of Attack (AoA) that yields
the requested lift force. Overall, XFOIL is simple to use and has a
reasonable computation cost on a classical workstation, in most of the
cases, making it a natural candidate to be coupled with a structural solver
(see for instance (MacPhee and Beyene, 2013) for a recent FSI study of
wind turbine blades using XFOIL).

The ARA software developed by K-Epsilon was used to solve the
structural model of the flexible hydrofoil. The solver was originally
developed for FSI computations of sails (Durand et al., 2014) and pro-
poses various structural elements (Durand, 2012). In this work, the
elastic part of the hydrofoil is modeled by 2D Linear Strain Triangles
(LST) (Pedersen, 1973) and Timoshenko beam elements (see Fig. 2). The
nonlinear equilibrium solution is computed by a Newton method with
Aitken relaxation.

A quasi-monolithic algorithm (Durand, 2012) is finally applied to
couple the structural and flow solvers. Briefly, in this algorithm, the
resolution of the structural problem is nested inside the iterations of the
nonlinear steady flow solver. This approach preserves the convergence
rate and stability properties of the monolithic approach. The resulting
coupled solver is finally driven by a utility that computes the set of FSI
solutions required to estimate the objective function value and its con-
straints (17). This utility is itself nested into the optimization driver that
decides of the sequence of new optimal parameters xnþ1 to be evaluated.

4. Results and discussions

We now present the results of the optimization problem. In particular,
we contrast the optimal flexible hydrofoil with its rigid counterpart opti-
mized for the same set of conditions and constraints. This comparison
concerns the characteristics and performances of the two optimal hydro-
foils. We do not provide a comparison in terms of computational times
because the two optimizations use different strategies and have signifi-
cantly different complexities. Indeed, the optimization of the rigid hy-
drofoil although involving a larger number of optimization variables has
an objective function and constraints much faster to compute than in the
flexible case (which requires the resolution of FSI problems), enabling the
application of evolutionary-based methods (B€ack and Schwefel, 1993).
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In the following, the rigid hydrofoil corresponds to the optimized
baseline geometry provided by GTF, assuming a perfectly rigid hydrofoil,
while the unloaded geometry refers to the rest geometry resulting from
our optimization of the flexible hydrofoil, that is, the rigid geometry with
the rotations of the trailing edge sections (but without elastic de-
formations). We stress that the structural and geometrical parameters



Table 1
Best objective function values, at convergence, and corresponding computational
times for different numbers of optimization variables.

Dimension minP Time [h]

2 0.006527 3
5 0.006520 36
9 0.006518 844
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characterizing the flexible hydrofoil and are not changing with the boat
speed. Thus, the rigid, unloaded, and in fact, all flexible geometries are
coinciding if the elastic element is infinitely stiff, because the rigid ge-
ometry is optimal in the absence of elastic deformations. For a finite
elastic stiffness, one needs, in general, to jointly optimize the geometrical
and structural parameters of the flexible hydrofoil to improve the per-
formances compared to the rigid case. Optimizing only for the structural
(resp. geometrical) parameters usually leads to a degradation of the
performance, compared to the rigid hydrofoil case, unless the geomet-
rical (resp. structural) parameters are fixed close to their joint optimi-
zation solution values.

4.1. Selection of the design variables

The computational time for the optimization of the flexible hydrofoil
is an important aspect, and several tests were made to determine an
appropriate trade-off between the computational and parametrization
complexities, before arriving at the set-up described in Section 3.2 with
the up to 11 parameters to be optimized (4 geometrical and 7 structural).
The number of optimization variables can be further reduced, fixing, for
instance, the material properties, the geometry of the deformable
element, or changing the number of control points in the parametrization
of the rotation rule. These reductions yield different complexities of the
optimization problem with different computational times as a result.
However, reducing the number of optimization variables also impacts the
performance of the optimal design if the fixed parameters are not set
close to their optimal values. Fig. 3 shows the evolutions with the
computational time of the estimated minimum of the objective function
for different numbers of optimization variables considered in the opti-
mization problem. The plot shows that when nine variables are consid-
ered the optimization needs � 16 times more resources to converge than
for only five optimization variables, with close optimal objective values
in this case. The case of two optimization variables is even less compu-
tationally demanding, but leads to a noticeable drop in the optimal
performance because of inappropriately set values for the parameters
disregarded in the optimization problem. These effects can be better
appreciated from Table 1 which reports the objective function values and
associated computational times for the different numbers of design var-
iables to optimize. This underlines the importance of identifying the most
influent variables of the optimization problem. In the following, we focus
on the case of 9 optimization variables, corresponding to the 4 geomet-
rical and 5 of the 7 structural parameters. EBeam and CBeam have been
fixed close to their optimization solution values.
Fig. 3. Convergence of the objective function minimum with the computational
time, for different numbers of optimization variables considered.
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4.2. Optimal shapes and pressure distributions

Figs. 4 and 5 show for 20 and 40 kts of boat-speed respectively, the
shapes of the rigid and flexible hydrofoils. These shapes are depicted at
their effective angle of attack giving the prescribed lift force. The pres-
sure coefficient distributions are also reported in the top part of the
Figures. At low boat-speed (20 kts), in Fig. 4, the rigid and deformed
hydrofoils have noticeable differences in term of angle of attack: the rigid
one is higher. Regarding the pressure coefficient distributions, the rigid
case presents a minimum at the leading edge of� � 2:25, whereas in the
flexible case the minimum peaks to Cp � �1:1 only, at the same location.
This can be explained as a less cambered geometry generally requires a
higher angle of attack to achieve the same lift force, while the minimum
pressure coefficient usually increases with the angle of attack. Anyway,
the results indicate a poorer tolerance to cavitation for the rigid hydrofoil
in these conditions.

For 40 kts of boat-speed, shown in Fig. 5, the two angle of attack are
negative and the rigid one presents again the largest deviation from zero
angle of attack. The deformation of the trailing edge is now pronounced,
in the flexible case, as it can be appreciated using dashed black contour
which corresponds to the unloaded flexible geometry (which comes from
the GTF optimizations with flap laws). The trailing edge deflection is �
9:5 deg. The minimum pressure coefficients are now located approxi-
mately at mid-chord with Cpmin � �0:5 in the two cases. The distortions
in the pressure coefficient distribution observed at � 0:8 percent of the
chord in the case of the flexible hydrofoil are due to the transitions be-
tween the rigid parts and the deformable element constituting the flex-
ible hydrofoil.

The flow around the flexible hydrofoil at 40 kts of boat-speed has also
been computed with a URANS transition model in order to validate the
pressure coefficient distribution predicted by XFOIL. For that purpose, a
structured mesh of the fluid domain around the hydrofoil has been
Fig. 4. Shapes and distributions of Cp at 20 kts of boat-speed for the rigid and
flexible hydrofoils.



Fig. 7. Flexible hydrofoil camber distribution at several boat-speeds. The rigid
hydrofoil case is also shown for comparison.

Fig. 5. Shapes and distributions of the pressure coefficient Cp at 40 kts of boat-
speed for the rigid and flexible hydrofoils.
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generated using � 110 000 elements; the flow was subsequently solved
using FLUENT with the Transition SST turbulence model (Menter et al.,
2006). The computed pressure coefficient distribution is reported in Fig. 6,
together with the XFOIL prediction, highlighting the excellent agreement
between XFOIL and the Transition SSTflowmodel. Small differences in the
pressure coefficients are visible only on the pressure side at � 90% of the
chord length, and the magnitude of the differences in the global hydro-
dynamic loads are 2:6% and 4:2% for the lift and drag coefficients
respectively. Thus, the pressure coefficients computed by XFOIL can be
considered reliable, even in the area of the deformable element.

Fig. 7 shows the evolutions of the camber along the chord for the
rigid, unloaded and the loaded flexible hydrofoils at several boat-speeds.
These geometrical quantities are computed based on the distances in the
direction normal to the deformed chord, following the classical con-
ventions. Note that because of the changes of the displacement of the
trailing edge and the change in chord length with the boat-speed, for the
flexible hydrofoil, the camber law in the forward part before the flexible
element is also affected. The flexibility is seen to have an important effect
Fig. 6. Distributions of the pressure coefficients Cp predicted by XFOIL and
with the URANS transition models.
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for a boat-speed larger than 20 kts. In addition, the shapes of the camber
distribution of the flexible hydrofoil differ significantly from the rigid
one for all the boat-speeds shown. Specifically, the maximum camber of
the flexible foil at 20 kts of boat-speed is more than twice that of the rigid
one, while at 40 kts of boat-speed it is less by roughly 20%. These evo-
lutions of the apparent camber distribution with the boat-speed (and load
in general) is one of the hydrodynamical advantages brought by the
flexibility.

4.3. Angles of attack and cavitation criterion

The effective angle of attack of the optimal hydrofoils is reported in
Fig. 8 as a function of the boat-speed. The previous observations
regarding the angle of attack are confirmed. The angle of attack of the
rigid hydrofoil almost linearly decreases from � 3:9 deg at 20 kts to � �
0:9 deg at 30 kts of boat-speed, and subsequently continues to decrease,
Fig. 8. Effective angle of attack as a function of the boat-speed (BS).



Fig. 10. Drag Cd of the optimal hydrofoils as a function of the boat-speed (BS).
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but at a lower rate, when the boat-speed increases further. For the flexible
case, the maximum of angle of attack is only � 1:8 deg at 20 kts and
decreases to � �0:1 deg at 25 kts of boat-speed. Then, unlike in the rigid
case, the flexible hydrofoil keeps an almost constant effective angle of
attack between 0 and �1 deg for the rest of boat-speed range, instead of
decreasing continuously in the rigid case. Again, the flexibility can
explain this behavior, as the deformation of the trailing edge (and
reduction of the camber) discharges the foil when the boat-speed in-
creases. This discharge calls for fewer changes in the angle of attack
compared to the rigid case. Note that this sort of automatic trimming,
through flexibility, may also be beneficial by saving some trimming ef-
forts to the crew members.

Another positive impact of the flexible hydrofoil can be appreciated in
Fig. 9 which reports the minimum pressure coefficients for the two
optimal hydrofoils, as a function of the boat-speed. The dashed black
curve corresponds to the critical value based on the cavitation number
(18). We thus expect the optimal hydrofoils to have a minimum pressure
coefficient greater than this critical value over the whole range of boat-
speeds considered. However, we recall that the cavitation criterion is
enforced for a finite set of only 4 distinct values of the boat-speed. For the
maximal boat-speed shown, 40 kts, the two optimal foils, in fact, violate
by a small margin the criteria based on the cavitation number, which
indeed is not explicitly enforced for this boat-speed. As lower boat-speeds
are considered, till 25 kts, the two foils satisfy the non-cavitating crite-
rion by a large margin, suggesting that any constraints in this range of
boat-speeds would not be active. Finally, when the boat-speed ap-
proaches 20 kts the behavior of the minimum pressure coefficient differs
between the two hydrofoils: while for the flexible hydrofoil Cpmin re-
mains away from its critical value, it decreases sharply and even becomes
significantly lower than its critical value in the rigid case. Comparing the
trends of the two hydrofoils, it can be concluded that the flexibility yields
a design with minimum pressure coefficient much less dependent on the
boat-speed, and therefore having lower chances of violating the non-
cavitating conditions for a boat-speed other than in the constraints.
4.4. Drag performances

To complete the comparison between the flexible and rigid hydrofoil,
we report in Fig. 10 the drag coefficients as a function of the boat-speed.
The actual values are not shown, for confidentiality reasons, but the plot
allows to appreciate the improvement brought by the flexible hydrofoil.
Except for the lowest boat-speed (20 kts), the flexible hydrofoil has a drag
Fig. 9. Minimum pressure coefficients Cpmin as a function of the boat-speed
(BS). Also shown is the cavitation number λ given by (18).
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coefficient Cd consistently lower than for the rigid one. The improvement
is particularly significant at 25 and 40 kts of boat-speed, with roughly
20% drag reduction at the highest boat-speed. Again, these improve-
ments come from the flexibility which allows the hydrofoil to naturally
adapt its camber with the boat-speed, with a thinner geometry at rest and
lower variations of the angle of attack in the boat-speed range.

For a boat-speed between 20 and 25 kts, the hydrofoil drag is mainly
depending on the location of the transition point on the suction side,
denoted xtr. As the boat-speed is lowered, the angle of attack increases to
satisfy the required lift force and the transition point xtr moves toward the
leading edge with a sharp increase in the friction drag (see Fig. 10). Note
that in XFOIL the location of the transition point is computed whenever it
appears to be in the first 40% of the chord. Otherwise, it is set at this
maximal location. To highlight the importance of the transition point on
the drag of the hydrofoil, Fig. 11 presents the evolutions of the flexible
hydrofoil drag and the location of the transition point as functions of the
boat-speed. The sharp drop in the hydrofoil drag, around 22.5 kts of boat-
speed, is clearly related to the displacement of the transition point away
Fig. 11. Drag Cd and transition point location xtr for the flexible hydrofoil as
functions of the boat-speed (BS).



Table 2
Comparison of the hydrodynamical characteristics of the Rigid 30 kts and flexible
solutions at 30 kts of boat-speed.

Rigid 30 kts Flexible Difference

AoA � 0:36� � 0:81� 0.55
Cpmin � 0:605 � 0:627 0.035
Cd – – � 0:012
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from the leading edge. Note that by using different weights and adding
more conditions in (17), one could further improve the hydrofoil drag at a
low boat-speed, by delaying the displacement of the transition point, but to
the detriment of the drag at higher boat-speeds.
Fig. 13. Difference ΔCd in the drags of the Rigid 30 kts and flexible optima, as a
function of the boat-speed (BS).
4.5. Optimal hydrofoil at 30 kts

To illustrate the importance of the selected conditions used in the
definition of the objective function, we optimize another rigid hydrofoil
based on the minimization of the drag and non-cavitating constraint in
(17) based on the unique condition corresponding to 30 kts of boat-
speed. The design variables are reduced to the 4 geometrical angles
p1;…;4 and we refer to this optimized hydrofoil as the Rigid 30 kts one.

Table 2 compares the angle of attack (AoA), minimum pressure co-
efficient Cpmin and drag Cd of the flexible and Rigid 30 kts hydrofoils at
30 kts of boat-speed. The Rigid 30 kts case has a lower incidence, with a
drag reduction of roughly 1:2% compared to the flexible case. The two
Cpmin are relatively close and far from the criterion based on the cavi-
tation number λ. The closeness of the two hydrofoils at this boat-speed of
30 kts can be further appreciated from Fig. 12, where the two distribu-
tions of pressure coefficients Cp and the shapes plotted at the same angle
of attack for comparison purposes are shown. The main difference in the
pressure coefficient is the smoother character of the distribution in the
Rigid 30 kts case, which can be explained by the absence of the localized
elastic deformations present in the flexible case. However, the differences
between the two distributions are small as one could have expected from
the similarity of the shapes and effective angle of attack.

However, as soon as the boat-speed departs from 30 kts, the flexible
hydrofoil exhibits a lower drag compared to the Rigid 30 kts one. This
can be appreciated in Fig. 13 which reports the differences in the drag
coefficients, with positive values in favor of the flexible case. Note that
Fig. 12. Shapes and pressure coefficient Cp distributions for the flexible and
Rigid 30 kts solutions at 30 kts of boat-speed.
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these consistent improvements were not necessarily expected as the
Rigid 30 kts case does not enforce any non-cavitating conditions at boat-
speeds other than 30 kts. Therefore, the Rigid 30 kts optimization may
have produced a cavitating design with lower drag for other boat-speeds.
Note also the higher drag for the flexible hydrofoil, at 20 kts of boat-
speed, where the cavitation criterion is actually not satisfied by the
rigid solution.

5. Conclusions

An advanced multi-design constrained optimization method has been
proposed in this paper for the design of a two-dimensional hydrofoil with
a flexible trailing edge. Surrogate-model based optimization, with
inequality constraints, have been used to enable the optimization of the
hydrofoil at a reasonable computational cost. The surrogates are con-
structed and updated using a limited number of carefully selected reso-
lutions of the fully nonlinear fluid-structure interaction problem. The
nonlinear FSI solver used in this work couples a two-dimensional vortex
lattice method code for the flow around the hydrofoil with a static
structural solver, based on linear stress triangle and Timoshenko beam
elements, for the hydrofoil deformations. The optimization involves 4
parameters describing the rotation of a base geometry, and seven elastic
parameters describing the properties of the elastic bound between the
rigid leading part and trailing edge of the hydrofoil. These parameters are
sought to globally minimize the hydrofoil drag forces in selected condi-
tions (boat speeds and lift forces), while constraints were introduced to
ensure noncavitating conditions.

The performances of the resulting optimal flexible hydrofoil have been
compared to the rigid case optimized for the same set of conditions. It was
found that theflexible hydrofoil performs globally better over thewhole set
of conditions, compared to the rigid one. In fact, the flexible hydrofoil was
found tohavedrag forces lower than that of the rigid one thewhole range of
boat speeds, except around 20 knots where the two cases have essentially
the same drag force. The improvement in the drag force brought by the
flexibility is particularly noticeable for the highest boat speeds (� 35 knots)
and around 25 knots. A closer inspection of the optimal solutions revealed
that not only the flexible hydrofoil performs better for most conditions, but
its angle of attack varies with the boat speed in a tighter range to achieve
the prescribed lift conditions, compared to the rigid case. In particular, the
flexible hydrofoil has a much smaller angle of attack at low boat speed,
which immediately translates into a higher minimum of pressure and less



M. Sacher et al. Ocean Engineering 157 (2018) 62–72
susceptibility to cavitation.
Overall, the optimization clearly evidences the various advantages of

considering a hydrofoil with a flexible trailing edge. In particular, it dem-
onstrates that, if correctly designed, the flexible trailing edge allows for an
auto-adaption of the hydrofoil camber line and angle of attackwith the boat
speed, with a global reduction of the drag and lower cavitation risk.

Future developments will concern the optimization of a three-
dimensional flexible hydrofoil with the use of more advanced flow
models to account for the three-dimensional effects, turbulence, and
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more complex cavitation criteria. We are currently exploring multi-
fidelity strategies (Park et al., 2016) to tempered the increase in the
computational costs in the three-dimensional case. Another aspect
requiring further investigation is the dependence of the transition point
displacement as a function of the hydrofoil angle of attack at lower boat
speed range. Indeed, we believe that the flexible trailing edge could be
effective in producing enough lift for the platform to take off at a lower
boat speed.
Appendix. Preliminary study

We report in this appendix an optimization result to support the definition of the elastic hydrofoil used in the paper. Specifically, we considered a
more general definition of the elastic hydrofoil using six consecutive homogeneous elastic elements in the elastic part ranging in the last 30 % of the
hydrofoil chord (see Fig. 14). The elastic elements have a fixed size and their respective Young moduli Ei¼1;…;6 are optimized for the same objective
function and constraints in (17), together with 3 geometrical parameters (rotations p1;…;3 defined in Section 3.2), leading to an optimization problem
with 9 design variables. The Young moduli are also constrained to remain in a finite (positive) range of available materials.

Fig. 14. Flexible hydrofoil composed of 6 elastic elements.
The optimal Young moduli E1;…;6 are reported (as a function of the chord length coordinate), in Fig. 15. The values have been divided by a reference
value for confidentiality reasons. It is seen that the optimal solution corresponds a localized flexibility, located at � 85 % of the chord length, and with
the first and last elastic elements of the flexible hydrofoil having Youngmoduli equal to the maximum value allowed. In other words, the optimal design
presents very stiff upstream part and trailing edge, separated by a significantly softer region. An idealized version of this solution is the case of a single
homogeneous elastic element described in Section 3.2 and depicted in Fig. 2.

Fig. 15. Optimal distribution of the Young modulus (arbitrary units) with the chord length.
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